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Soft lubrication: a generalized numerical methodology

Carmine Putignano*

Department of Mechanics, Mathematics and Management,Politecnico di Bari, Bari,
Ttaly.

Abstract

A generalized numerical methodology is introduced to deal with the lubrica-
tion between soft solids exhibiting linear viscoelastic rheological properties.
By means of this approach, it is shown that significant deviation from classic
elasto-hydrodynamic theory occur in terms of film thickness, pressure distri-
bution and friction. By focusing on a simple tribo-system, consisting in a
sphere in contact with a layer, the influence of the contact configuration is
investigated. Ultimately, viscoelastic lubrication is shown to be exhaustively
governed by three parameters: the Hersey number and the two contacting
solids dimensionless velocities. Finally, numerically obtained friction values
are compared with experiments to validate the methodology.

Keywords: viscoelasticity, friction, lubrication, film thickness, soft matter.

1. Introduction

In the past decade, soft lubrication has emerged as a crucial field in
applied mechanics and, specifically, tribology research. Indeed, a countless
number of investigations, relying on analytical, numerical and experimental
approaches, has been aimed at understanding what occurs when two soft
bodies, properly lubricated by a fluid, come into contact (1)(2). The reasons
for such an intense interest is directly related to the large variety of systems,
where soft lubrication is the fundamental governing mechanism (3)(5)(4)(6).
Certainly, an important class of soft structures under lubricated conditions
is found in biomechanics: soft bio-lubrication is ubiquitous in our body as it
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occurs at different scales and in several systems, including cells, organs and
tissues (7)(8). As an example at the macro-scale, let us recall that human
fingertip grasping and gripping are dramatically governed by the amount of
liquid at the contact interface: this is extremely critical in the touchscreens
Era we are currently living (9)(10). On the other hand, we should not un-
derestimate the importance that soft lubrication has currently in industry.
Indeed, a slow, but continuos shift from metals to polymers has been occur-
ing in the last decades, given the cheaper cost, the lighter weight and the
environmental compatibility offered by rubber-based materials and compos-
ites. Rubber bearings, seals, spacers, dampers are only possible examples of
soft mechanical components (11)(12)(13)(14)(15). Furthermore, at smaller
scales, soft lubrication plays a crucial role in determining the operation and
the dynamics of micro- and nano-actuators (16).

Such a marked applicative interest is intrinsically linked to the theoret-
ical complexity of the theme. Indeed, soft matter exhibits a non-linearly
elastic and, often, time-dependent constitutive behaviour: this makes hard
to develop effective theoretical models (17). Things become even more com-
plicated when soft bodies are involved into a lubricated contact: the presence
of different phases, including gases and fluids, determines strong coupling ef-
fects to be accounted for in a complex multi-physics simulation environment
(1). Furthermore, the presence of roughness on the solids into contact ex-
acerbates the problem intricacy as it introduces a large range of space and,
thus, time scales to be considered (18)(19).

The complexity of such a scenario has, thus, required the aforementioned
research efforts: by inferring data from tribological experiments or numerical
simulations, these have been aimed at obtaining relations between pressure
distribution, film thickness and, ultimately, friction (1). However, only very
recently, an aspect of dramatic importance has started to attract the proper
consideration it deserves. This is related to the soft materials rheology, which
is time-dependent and can be often modelled as viscoelastic (20)(21)(22)(23).
The poor consideration of the influence of solid viscoelasticity on lubrication
is somehow surprising, given the large number of investigations dedicated,
conversely, to the dry viscoelastic contact mechanics. Analytical (24; 11),
numerical (25)(26)(31)(32) and experimental (27; 28) studies have been pro-
posed to point out aspects related to contact area, stiffness and, ultimately,
hysteretic friction. However, in Ref. (21), it has been shown that viscoelas-
ticity does really play a significant role in lubricated conditions as much as
in the dry case. Specifically, there occur dramatic changes in the pressure



and the thickness distributions; as a consequence, the friction/speed curve
shows a marked deviation from the trend predicted by the Stribeck relation
classically formulated in lubrication science.

In this paper, we generalize the approach proposed in Ref. (21) to con-
sider different contact configurations and show how viscoelasticity works dif-
ferently in each case. As shown in Figure 1, without loss of generality, we
focus on a simple yet explicative tribo-system, i.e., a ball rolling over a disk.
Incidentally, such a scheme describes a ball-on-disk tribometer and is, there-
fore, of particular importance in Tribology. Three different configurations are
investigated. In the hard-on-soft configuration (HS), the ball is hard and the
disc is soft. In the soft-on-hard configuration (SH), the ball is soft and the
disc is hard. Finally, in the soft-on-soft configuration (SS), both the ball and
the disc are soft. As well known, in purely linear elastic conditions, no differ-
ence would be observed in the three cases, but, if the bodies are viscoelastic,
dramatic changes have to be expected. Here, we propose a novel numerical
methodology to consider the three aforementioned configurations and to ac-
count for the different speed values respectively assumed by the ball and the
disk. We focus on the film thickness and the pressure distribution, showing
the main peculiarities in comparison with classic EHL results. Finally, we
propose a comparison, in terms of frictional force, between the numerical
outcomes of our methodology and some experimental data recently proposed
in literature (23).

2. Mathematical formulation

When dealing with lubrication of deformable bodies, it is necessary to
solve, at the same time, the Reynolds equations and the elastic (or viscoelas-
tic) problem governing the deformation experienced by the interacting pair
into contact. Indeed, the two aspects are strongly coupled: the displacement
of the solid surfaces determines the lubricating film and, consequently, the
solution of the Reynolds equations, which govern, on their turn, the pressure
distribution and, thus, the solid deformation field. Ultimately, the complete
solution of the lubrication problem requires the determination of two un-
known distributions, i.e., the film thickness in the contact region and the
normal interfacial stress.

Let us start with the geometrical definition of the system. As sketched
in Figure 2, a punch clamped in its center rolls, with a peripheral velocity
vy, over a layer sliding with a constant speed v, . Both the solids are de-
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Figure 1: Schematic of the tribo-system under investigation. Three different configurations
area considered: hard ball on soft disk (HS), soft ball on hard disk (SH) and soft ball on
soft disk (SS).

formable and, specifically, linearly viscoelastic. As for the velocities, given
the reference in Figure 2, we assume that there is no spin and, thus, v, and
vy have the same direction, i.e., v, = vi and vq = v4i with i being the
unit vector referred to xr—axis. At this point, it should be observed that the
mathematical formulation under development is totally general and can be
applied to any contact configuration, once the geometry of the contacting
solids and the velocities v, and v, are properly defined.

Before focusing in detail on the equations governing film thickness and
pressure distribution, it is important to briefly recall how to model, from a
mechanical point of view, linear viscoelasticity (39). Indeed, the most general
linear viscoelastic model can be encompassed in the following relation:

e(t)= / drJ (t — 7)o (1) (1)
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Figure 2: Geometrical definition of the system.

with ¢ (t) being the time-dependent strain, o (t) the stress [the symbol ‘-’
stands for the time derivative|, and the function J (t) being the creep func-
tion. The latter quantity J (¢) must satisfy causality and, therefore, J (¢ < 0) =
0. Furthermore, J (t) can be related to the material properties by means of
the following integral relations (39):

J(t)=H() [Eio — /;OO drC (1) exp (—t/T)} =H (1) {L + /;00 drC (1) exp (—t/7)

Ex
(2)
where H (t) is the Heaviside step function, the real quantities Fy and F,, are
respectively the so-called rubbery and glassy elastic moduli, C (7) is a positive



function usually referred to as the creep (or retardation) spectrum (39), and 7
is the relaxation time continuously distributed on the real axis. Let us observe
that, by writing C (1) = >, Cvd (T — 1) , Eq. (2) can be discretized as
J () =H(t)[1/Ey— > p_, Crexp (—t/7)] with Cy and 73, being respectively
the creep coefficients and the relaxation times. Such a discrete form for 7 (¢)
is necessary when featuring any real viscoelastic material.

Furthermore, it is noteworthy to define an additional quantity, that is,
the so-called complex viscoelastic modulus of the material £ (w) . Indeed,
if we carry out the Fourier transform of Eq. (1) by introducing J (w) =
[dtT (t) exp (—iwt), 0 (w) = [ dto (t) exp (—iwt) and e (w) = [ dte (t) exp (—iwt),
we obtain ¢ (w) = ¢ (w) /E (w) where E (w) is equal to E (w) = [iwJ (w)] " .
By moving from Eq. (2) , one can easily prove the sum rule:

11 2~ 11
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Now, after recalling the fundamentals of linear viscoelasticity, we can
focus on the viscoelastic problem for the bodies into contact. As shown in
detail in Ref. (25), because of the translational invariance for the geometrical
domain and the elastic-viscoelastic correspondence principle (39), in a general
linear viscoelastic solid, the linear-viscoelastic relation between the normal
surface displacement wu (x,¢) and the normal interfacial stress o (x,t) can be
described by means of the following integral equation:

u(x,t) = /_too dr / 2T (t-1)G(x—-x)o((x,7), (4)

where x is the in-plane position vector, t is the time, G (x) and J () are
respectively the elastic Green’s function and the creep function previously
introduced. Incidentally, it should be recalled that, in Eq. (4), the factor-
ization of the integral equation kernel in two terms, that is, G (x) and J (),
can be done under the assumption that the solid under study is perfectly
homogenous.

Now, if any effect due to a non-uniform temperature field can be ne-
glected, and if both v and v, are constant, we are in steady-state conditions
and, as shown in detail in Ref. (25), Eq. (4) can be significantly simplified.
Specifically, the normal displacement distributions for two bodies, respec-
tively u, and uy , can be estimated as:



w (x) = / P2 Cy (x — %, v) o () (5)
ug (x) = /de'Gd (x —x',vy) o (X)) (6)

The kernel Gy(x,vp) and Gy(x,v,), which depends only parametrically
on the sliding speed v, and v4, can be proved to be equal to:

1 —v? 1 1
Gy (X> Vb) = —Tb {Km (7)
+o0 h +o0 1
+ drCy (T / dz———exp(—2z }
/0 ) | e (-2)
1 —vg 1 1
Gq (X, Vd) = - - HE (8)

+o0o +o0 1
+/ drCy (7‘)/ dz———exp (—z)}
0 0 ‘X - VdeZ‘

Where the quantities vy, ,Ey ,Cp , o and vy , Ey_ , Cq , T4 are respectively
the Poisson ratio, the glassy modulus, the creep function and relaxation
function respectively for the body on the top and for that one on the bottom,
that is, for the ball and the disk in Figure 2.

Let us, now, define the total viscoelastic uz (X) = up (X) + ug (x) . It is
straightforward to write wu; (x) as:

Ugor (X) = /dzzv'Gtot (x —x', vy, vy) o (X)) 9)

where Gy (x — X', vy, vg) is clearly equal to Gy (x — X/, vy, vg) = Gy (x — X/, vp)+
G4(x—x',v4) . In order to be numerically solved, Eq. (9) has to be dis-
cretized as a linear system (36; 37). Indeed, this strategy consists in meshing
the contact domain in NV square cells and, then, assuming that in each square
cell the normal stress o is constant and equal to oy, = 0 (X ), where Xy, is the
position vector of the center of the square cell D, . The normal displacement



at the center of the i-th square cell is u; = u (X;). As shown in detail in Ref.
(25), the problem is then reduced to a vectorial linear relation:

w; = Ly (Vp, Va) 0p (10)

where the response matrix L (vy, v4) parametrically depends on the velocity
vy and v,. We observe that the total load acting on the system F), is equal
to F,, = Dkaleak with D, being the area of each square cell.

Once the solid viscoelastic problem has been reduced to the linear system
10, it is necessary to focus on the equations governing the fluid dynamics of
the system. All the assumptions commonly employed when dealing with soft
lubrication are considered valid; specifically, we assume no-slip boundary
conditions at both solids interface. Let us, then, introduce the Reynolds
equations, whose general form can be written as (see Ref. (1; 18)):

3
% +V - (phU) =V - (%VU) (11)
where U is the entrainment speed, i.e., the mean surface velocity being
equal, for the system in Figure 1, to U = (v}, + vg4) /2, p is the density (which
here is considered constant), 7 is the fluid viscosity and h is the film thick-
ness. The latter quantity is directly to the total normal displacement u;,; and,
specifically, h(z,y) = ho+s(x, y) +uwe(x, y) with hg and s(x, y) being respec-
tively a rigid motion constant and the separation of the contacting surfaces
in the undeformed configuration. For the tribo-system studied in this paper
and sketched in Figure 1, s(z,y) is equal to s(z,y) = R — (R — 2% — y?)"/”
with R being the radius of the sphere.

Under the steady-state assumption considered in this study, Equation
(11) can be simplified as the time derivative vanishes. Equation (11) is,
then, tackled by implementing a finite difference scheme, whose nodes, being
equally spaced in the computational domain, correspond to the centers of the
boundary elements previously defined for the solid problem. This method-
ology consists in discretizing the differential terms in Eq. (11) with central
differences (1; 18) , thus obtaining the following vectorial equation:

h; = R (Unu) Ok (12)

Ultimately, the problem requires to couple the solid mechanics and fluid
dynamics (1; 18; 19) in order to determine the pressure distribution that
satisfies, at the same time, both Eq. (10) and Eq. (12). An iterative scheme
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is implemented to solve the system formed by the aforementioned vectorial
equations. Basically, at each iteration, moving from the film thickness es-
timation h; computed at the previous iteration, Eq. (12) is inverted and,
thus, an estimated stress field G, is calculated; &} is, then, inputted into
Eq. (10) in order to compute the new viscoelastic deformation field ;4
and, consequently, the film thickness fLHl for the following iteration. Such
an iterative procedure, properly underrelaxed with the Aitken acceleration
approach (see e.g. Ref. (18)), keeps on running until film thickness and
pressure distributions numerically converge in two consecutive iterations.
Once the lubrication problem is fully solved in terms of pressure distribu-
tion and deformations, it is possible to focus on the friction force determined
as sum of the viscoelastic hysteretic term (25) and the contribution coming
from the fluid losses (1). More in detail, if we recall now that v, and v, are
assumed, without any loss of generality, to be along the x-axis, i.e. v, = i
and vq = v4i , by focusing on the solid on the top, that is, the sphere, the
friction force F, can be obtained by adding up the rolling hysteric friction
F, , the Poisseulle contribution F,, and the Couette term F¢, thus leading to:

B Ohy h Op (vg — vp)
F, = /dApax /dA2ax+/dAn - (13)

where hy, is the deformed shape of the ball. Consequently, we can define
the friction coefficient as f = |F,/F,| .

Finally, as suggested in Ref. (21), it can be useful to employ dimension-
less quantities in the discussion of the results. As for the film thickness h
(and, similarly, for all the deformations and quantities defined using units
of length), by considering the radius R as characteristic length of the prob-
lem, the dimensionless quantity h/R is introduced. Then, by referring to the
rubbery elastic modulus Fj , we define the dimensionless stress distribution
o/Ey and, consequently, the normal dimensionless load F,/ (R*E,) . With
regards to the speed, it may be observed that the problem is governed by two
time scales: the first one is a characteristic relaxation time 7 of the material
and the second one is the time employed by each deformable body to cover
the length R (25). As a consequence, we define, for the sphere and the disk
respectively, the dimensionless speeds &, = vy,/R and & = vg74/ R with 7,
and 7, being characteristic relaxation times for the sphere and the disk. Fi-
nally, the dimensionless Hersey parameter H is introduced as H = nUR/F,,



3. Results and discussion

3.1. Pressure distribution and film thickness

In this Section, as focusing on the simple yet explicative sphere-on-disk
scheme in Figure 1, we explore the influence that different contact configu-
rations have, in the case of viscoelastic materials, on the pressure and film
thickness distributions. In the model, the sphere radius is R = 0.02 m. As for
the material, in the following analysis, in all the cases when we refer to the
soft solids, we employ the same one relaxation time material with a glassy
modulus F., = 10 MPa, a ratio E,,/Ey equal to E/FEs = 100 and a relax-
ation time 7 = 0.01 s. With regards to the lubricant, the fluid is iso-viscous
with n = 1 Pa-s. Without loss of generality and for illustration purposes,
all the calculations are carried out for a constant dimensionless normal load
F,/ (R*E,) = 8.5 102,

Now, by employing the aforementioned methodology, it is possible to
focus on the different contact conditions. Let us start from the simple case,
where the sphere is stationary, i.e., & = 0 , and let us analyze what occurs
in the three different configuration, that is, hard ball on soft layer (HS), soft
ball on hard layer (SH), soft ball on soft layer (SS).

In Figure 3, in the three different cases, the deformed system at the
centreline is shown: we refer, with dotted lines, to the undeformed solids-
reported as reference for our analysis- , whereas, with the continuous lines,
to the deformed surfaces. Calculations are carried out with the dimension-
less speed & = 0 and §; = —0.21: the resulting Hersey parameter H is
H = —1.26F — 04. Now, in the HS case, where the ball is rigid, we are ex-
actly in the case studied in Ref. (21): the sphere is, obviously, undeformed,
while, due to viscoelasticity, the layer shows a non-symmetric deformation
with smaller displacements at the leading edge, corresponding to the fluid in-
let, and larger deformations at the trailing edge. Such an effect is well known
in dry contact mechanics (25): indeed, at the trailing edge of a viscoelas-
tic contact, the material has been deformed and, because of viscoelasticity,
needs time to fully relax. When lubrication is considered, in the geometrical
and motion configurations under investigation, nothing changes for the vis-
coelastic solid: at the flow inlet, i.e. where the lubricant is ”sucked in”, the
viscoelastic material of the layer has not yet been indented; on the contrary,
at the outlet, where the lubricant exits the contact region, the solid is still
relaxing. Consequently, the layer leading edge corresponds to fluid inlet, and
the trailing one to the fluid outlet.

10
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Figure 3: Deformed system at the centerline for the three different configurations: hard-
on-soft (HS), soft-on-hard (SH) and soft-on-soft (SS). Red color refers to the sphere, blue
to the layer. The dotted lines refer to the undeformed bodies, while the continuous lines
are for the deformed surfaces. Calculations are carried out with the dimensionless speed
& =0 and &g = —0.21: the resulting Hersey parameter H is H = —1.26F — 04.
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In the SH configuration, we have a very different outcome: here, only
the sphere is deformable, but, as its speed is null, at the steady-state, no
viscoelastic effect can occur and the sphere deforms with the rubbery mod-
ulus Ey . The solution corresponds to what predicted by the classic elasto-
hydrodynamic (EHL) theory. Finally, in the SS case, where both the sphere
and the layer are deformed, the ball keeps on behaving elastically as its speed
is null, whereas, in the layer deformation, there exist clear viscoelastic effects
with a dissymmetry between the leading and the trailing edges. Interestingly,
although the sphere is in the rubbery elastic regime, its deformation is not
symmetric since the solid has to shape up with the viscoelastic layer below.

Figure 4 shows that, in the three cases, pressure distribution and film
thickness are perfectly coherent with the deformed configurations in 3. In-
deed, in the hard on soft contact (HS), we have a clear pressure peak at
the leading edge due to the solid viscoelasticity: a correspondent minimum
appears in the fluid film distribution. Furthermore, another minimum point
occurs, then, at the fluid outlet for flow conservation. In the second config-
uration (SH), we have the classic iso-viscous EHL solution, whereas, in the
last one (SS), a clear dissymmetry is present due to viscoelasticity, but, as
the entire soft-on-soft system results more compliant, no pressure peak at
the leading edge occurs. Indeed, as expected, the hard on soft case results
the stiffest with larger values for the pressure distribution and smaller ones
for the film thickness.

Contour maps in Figure 5 confirm the aforementioned trends. Indeed,
in the SH configuration, the classic EHL contour maps, validated experi-
mentally (the reader is referred, for example, to Ref. (1)), are found both
in terms of pressure and fluid film. In the HS and SS configurations, vis-
coelasticity plays a major role with both the quantities showing a shape that
is increasingly far from a circle and is affected by a sharp shrinkage at the
fluid outlet, corresponding to the layer trailing edge. Incidentally, it can be
observed that, because of the larger stiffness, the HS case shows a smaller
contact region.

These results show how far viscoelastic lubrication may be from classic
EHL. Ultimately, this is due to the different behaviour that occurs, when
dealing with viscoelastic solids, between the leading and trailing edges of
the contact region. However, things can become even more complicated.
Indeed, this happens as soon as, in the soft on soft configuration, the sphere
is allowed to move. In fact, in the previous analysis, & was null and, thus,
the sphere behaved elastically; however, when we set a dimensionless speed

12
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Figure 4: Film thickness (blue) and pressure distribution (red) at the centerline for the
three different configurations: hard-on-soft @ﬁS), soft-on-hard (SH) and soft-on-soft (SS).
Calculations are carried out for & = 0 and £; = —0.21: the resulting Hersey parameter H
is H=—-1.26E—04 .



Figure 5: Contour plots for the film thickness (left) and pressure distribution (right) for the
three different configurations: hard-on-soft (HS), soft-on-hard (SH) and soft-on-soft (SS).
Calculations are carried out for & = 0 and &; = —0.21: the resulting Hersey parameter H
is H=—-1.26E—04 . 14



&, different from zero, the viscoelasticity effects on the sphere combine with
those on the layer. Let us focus, in particular, on two possible soft on soft
configurations. In the first one, defined SS;, calculations are carried out for
& = 0.64 and &4 = —0.21 with a resulting Hersey number H = 2.5F —04 ; in
the second case, defined SSs, the sphere and the layer speed &, and &; are set
respectively to & = —0.21 and &; = —0.21 and, thus, the resulting Hersey
number is H = —2.5F — 04. If we were in linear elastic conditions, the two
cases would be perfectly specular with just the inlet and the outlet swapped
by the sign of H. Conversely, in this study, things will be very different own
to the viscoelasticity in the contacting bodies.

In the configuration SS;, the leading edge of the viscoelastic layer is still
at the right of the contact center, whereas the leading edge for the sphere is at
the left side. The latter corresponds to the fluid inlet. This is clear in Figure
6, where the deformed system at the centreline is plotted. Incidentally, we
notice that detecting, for each viscoelastic body, the leading region can be
done easily by observing the zone where the material is stiffer and, thus,
where the deformed surface is closer to the undeformed reference. In the
configuration SS, at the right side of the contact center, we found both the
sphere and the layer leading edge and the fluid inlet.

The difference between the configurations SS;and SS, appears, then, ev-
ident in Figure 6 and is confirmed when we look at the pressure and fluid
film distributions in Figure 7. We observe that, in the case SSo, where the
leading edges of the contacting solids coincide with the fluid inlet, we have
a clear viscoelastic pressure peak and, thus, the corresponding minimum in
the film thickness. In fact, as reported in the inset in Figure 7, the fluid film
distribution shows two minimum points, one corresponding to the usual one
due to flow conservation and the other related to the viscoelasticity. In the
configuration SSq, the outcome is more complicated due to the different posi-
tion of the leading edge for each viscoelastic body. Specifically, the interplay
between the viscoelastic effects in the solids produces a larger film with a
corresponding pressure distribution spreading over the contact region.

These trends are perfectly coherent with the contour maps in Figure 8
where we plot pressure distribution and film thickness in the two cases SS;and
SS,. Particularly interesting is the configuration SS;, which shows a marked
stretch, for both the distributions, perpendicularly to the speed. Indeed, we
clearly detect the fluid inlet, but no contact leading edge can be found as,
conversely, in the configuration SS,;. In the latter, we clearly identify the
usual shrinkage appearing, in the trailing zone, for a viscoelastic contact.

15



-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 6: Deformed system at the centerline for two different soft-on-soft configurations:
in the first one, SS; , calculations are carried out for & = 0.64 and & = —0.21 and, thus,
the Hersey number H = 2.5F — 04 ; in the second one, SS, , calculations are conducting
with & = —0.21 and & = —0.21 and, thus, the Hersey number H = —2.5FE — 04. The
dotted lines refer to the undeformed bodies, while the continuous lines are for the deformed
surfaces.
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Figure 7: Film thickness (blue) and pressure distribution (red) for two different soft-on-
soft configurations: in the first one, SS; , calculations are carried out for & = 0.64 and
& = —0.21 and, thus, the Hersey number H = 2.5F — 04; in the second one, SSs ,
calculations are conducting with & = —0.21 and & = —0.21 and, thus, the Hersey number
H = —25F — 04. In the latter, the inset shows a zoom of the film thickness.

Ultimately, the crucial point here is that, in soft lubricated contacts,
where both the contacting bodies have a viscoelastic rheology, the phe-
nomenon is governed not only by the Hersey parameter H , but also by
the dimensionless velocities &, and &; . This effect cannot be embedded in
classic theory of elasto-hydrodynamic lubrication and must be explained by
accounting for the solid viscoelasticity.

3.2. Friction

When considering the friction force associated to lubricated soft contacts,
as shown in Ref. (21), it is necessary to account for the viscoelastic hysteresis,
in addition to the viscous losses. Consequently, the relation between friction
and entrainment speed cannot be reduced to the classic trends predicted by
the Stribeck curve and, thus, by the empirically obtained laws proposed in
the past decades (1).

In this paper, we compare the outcomes of our methodology with the
experimental results recently published in Ref. (23). Here, a ball-on-disk
tribometer is employed to test viscoelastic lubrication in three different con-
figuration, that is, hard ball on soft layer (HS), soft ball on hard layer (SH),
soft ball on soft layer (SS). The sphere is always stationary. These exper-

17
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Figure 8: Contour plots for the film thickness (left) and pressure distribution (right)
for the three different configurations: for two different soft-on-soft configurations: in the
first one, SS; , calculations are carried out for & = 0.64 and & = —0.21 and, thus, the
Hersey number H = 2.5F — 04 ; in the second one, SSs , calculations are conducting
with & = —0.21 and & = —0.21 and, thus, the Hersey number H = —2.5FE — 04. The
dotted lines refer to the undeformed bodies, while the continuous lines are for the deformed
surfaces.
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Figure 9: Friction coefficient as a function of the disk speed uqy for different values of
viscosity n and for two values of the normal load, that are F,, = 5.13 N (on the left)
and F,, = 19.3 N (on the right). Data refer to the hard on soft configuration, i.e., to the
contact of a steel ball with a NBR layer. Dotted lines show numerical results, whereas
points are the exprimental outcomes.

imental results have shown that, in the cases (HS) and (SS), viscoelastic
hysteresis plays a fundamental role and has to be taken into account when
considering the overall lubricated friction.

Let us focus first on the hard on soft configuration (HS). Specifically, a
steel ball is into contact with a nitrile butadiene rubber (NBR) disk. For the
viscoelastic characterization of such a material, carried out by means of the
Dynamic Mechanical Analysis (DMA), the reader is referred to Ref. (23).

In Figure 9, we compare numerical results and experiments for two levels
of normal load, i.e., F;, = 5.13 N and F,, = 19.3 N , and for three different
lubricants, with viscosity respectively being equal to n = 0.1Pa-s , n = 0.35
Pas , » = 1Pa-s . As noticed above, unlike classic EHL, in lubrication
of viscoelastic solids, viscosity and sliding velocities have to be considered
independently: thus, we plot the friction coefficient as a function of the disk
speed for different values of 7. We observe a good agreement between theory
and experiments in a wide range of speed values; however, the reliability of
numerical predictions deteriorates for low values of the speed and viscosity.
This is due to the transition between a fully developed lubrication regime
and a mixed regime, where roughness plays a major role. Accounting for the
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surface roughness is out of the scope of this work, but let us notice that, as
expected, the transition to mixed lubrication becomes more marked when
increasing the load. Interestingly, when far from the mixed regime, also for
the highest level of load, numerical results agrees with experiments, thus
showing that material non-linearities have a negligible influence.
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Figure 10: Friction coefficient as a function of the disk speed uq for different values of
viscosity n and for a normal load equal to F,, = 5.13 N . Data in the main plot refer to
the soft on soft configuration, i.e., to the contact of a NBR ball with a NBR layer. In the
inset, we compare the experimental data in the such a configuration with the hard on soft
case. Dotted lines show numerical results, whereas points are the exprimental outcomes.

Now, Figure 10 shows the friction as function of the speed for the soft
on soft configuration. Experimental results have been obtained in Ref. (23)
by putting in contact a NBR ball with a NBR disk. First of all, we should
pay attention to the inset where, for the same level of load and viscosity, we
plot experimental data for the hard on soft and the soft on soft configura-
tions: as the latter is more compliant than the first contact case, it entails
smaller values for the friction coefficient. Regarding the comparison between
experimental data and numerical outcomes, we observe also in this case a
good agreement, thus confirming the generality of the numerical approach
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proposed in this paper.

4. Conclusion

In this paper, we focus on the role played by a linear viscoelastic rheol-
ogy on determining the lubrication of soft solids. Specifically, this study is
aimed at showing how viscoelasticity modifies, in comparison with the classic
elasto-hydrodynamic theory, all the quantities that characterize lubrication,
including pressure, film thickness and friction.

To this end, a generalized mathematical formulation has been developed
to deal with the lubricated contact between linearly viscoelastic solids: a
finite difference solver, implemented to tackle the Reynolds equations, has
been coupled with a boundary element methodology capable of determining
the solid deformations in each of the bodies into contact. In order to eluci-
date the phenomenon, we have studied a simple yet explicative tribo-system,
that is, the lubrication between a sphere and a layer, as in a ball-on-disk tri-
bometer. Crucially, results show the significance of the contact configuration
in determining the system outcomes. Indeed, if the sphere is stationary, in
the soft on hard configuration (SH), i.e., a soft ball into contact with a hard
disk, the classic EHL regime is found as the sphere does not move and, thus,
behaves elastically. Conversely, in the hard on soft configuration (SH), there
occurs the visco-elasto-hydrodynamic regime (VEHL) defined in Ref. (21):
the lubricating film reveals a marked shrinkage at the fluid outlet with a pos-
sible additional minimum point at the inlet, where the pressure distribution
presents a peak. Finally, in the soft-on-soft case (SS), a complex interplay
between the two solids viscoelasticity and the fluid viscosity is shown. Things
complicate when, in the latter configuration, the sphere is allowed to move.
Ultimately, we have to point out that, in order to fully assess viscoelastic lu-
brication, three parameters have to be considered. Specifically, in addition to
the Hersey number H, commonly included in lubrication theory, the dimen-
sionless velocities for the sphere and the layer, £ = v,7/R and £q = v47/R,
have to be accounted for, as they determine, each independently from the
other one, the viscoelastic behaviour of the sphere and the layer.

Viscoelastic lubrication has, finally, a direct impact also on friction: re-
sults show a significant deviation from conventional Stribeck curve and a
marked dependence on the contact configuration. Comparison between nu-
merical outcomes and experimental tests shows a good agreement, thus con-
tributing to validate the proposed numerical methodology.
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