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Artificial intelligence is revolutionizing the way healthcare is administered. 
It has the capacity to enhance healthcare outcomes, elevate the patient 
experience, and improve access to healthcare services. AI can boost the 
productivity and efficiency of healthcare delivery, enabling healthcare 
systems to offer higher quality care to a larger population. AI can expedite 
care delivery, especially by reducing the time it takes for diagnosis, and 
assist healthcare systems in taking a more proactive approach to managing 
population health, ensuring that resources are allocated where they can 
make the most significant impact. 

Thanks to knowledge transfer and collaboration among the key players in 
the innovation process, research results can reach individual citizens, 
society, and communities to enhance people's lives. 
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Executive summary and reading guide 
A great mine of innovation is represented by the excellence of the scientific know-how of 
the universities and research centers. But very often the research results remain unvalued and 
unexploited, in the so-called “Valley of death”, which represents “the gap between where 
publicly available research funding stops and where private investment or commercial 
funding starts” (Hockaday, 2020). The Valley of Death is a metaphor for the absence of 
resources and skills that hinders new ideas as they move from the laboratory of research 
centers to the marketplace. 
Recently, many universities and research centers are trying to enhance the value of their 
research results to a greater extent, increase the valorization of innovative results and the 
market uptake of new solutions, through different mechanisms, conventional and 
unconventional, of knowledge transfer (KT), in the framework of the broader concept of 
universities third mission (TM).  
This research work responds to the need to understand which are the characteristics of the 
universities that are most successful in the technology transfer action and which are the key 
factors of success, subsequently aiming at the proposition and experimentation of new 
models and good practices useful for overcoming the "Valley of Death". 
A first goal was therefore to identify the best universities and research centers worldwide 
that stand out for their performance in the third mission. The difficulties in this regard 
immediately became evident. In fact, in the complex and multifaceted scenario of the third 
mission, while performance indicators relative to research (in terms of quality of 
publications, number of citations, etc.) and teaching (in terms of student-to-staff ratio, student 
evaluation, etc.) are widely known and used, less is known about how KT or, more generally, 
TM can be characterized and evaluated. 
Widely used tools for evaluating and comparing universities performance are the so called 
“global rankings”. Unfortunately, most of the best-known global rankings lack instruments 
to evaluate KT activities and fail to properly capture and evaluate the peculiarities of KT and 
TM. In fact, defining the activities and quantifying the TM requires the design of a complex 
model of analysis that is able to determine the map of indicators related to the diversified 
dimensions of the third mission. 
Thus, in this scenario, the first research question (RQ1) faced was: according to global 
university rankings, how do the world's top universities perform from a knowledge transfer 
point of view? In other words, are the rankings currently most used able to characterize 
universities performance from a third mission point of view? In an attempt to answer this 
research question, the best-known global university rankings (The Academic Ranking of 
World Universities (ARWU), The QS World University Rankings® (QSWUR), The Times 
Higher Education World University Rankings (THEWUR)) were analyzed in order to 
identify the world’s top universities. A first consideration that emerges is that they lack of 
specific KT indicators. 
On the other hand, the European Commission, starting from the same consideration, has 
invested efforts in defining a specific set of indicators capable of capturing and evaluating 
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the complexity of the universities third mission: U-Multirank (UMR) ranking, proposed by 
the European Commission is based on a different approach compared with the existing global 
university rankings. It includes a set of 9 indicators focused on KT. This initiative has already 
produced a very rich data set over the years. 
Thus, an initial analysis carried out during the research period was aimed at verifying 
whether the top universities identified through the global rankings are also the best from the 
third mission point of view. Each ranking has its own specificities and thus we decided to 
evaluate a set consisting of the top 100 universities included in each of the selected rankings: 
ARWU, QSWUR and THEWUR. Furthermore, the coherence between rankings and their 
level of agreement, was evaluated by using Spearman’s correlation among the top 100 
positions in each ranking. The results obtained show that all rankings are strongly correlated 
and thus they exhibit an underlying coherence. 
The second step was to search and select a set of specialized KT indicators, starting from 
those proposed by UMR2020, for evaluating the world top universities in the global rankings 
from the KT point of view. Among the 9 indicators proposed by UMR2020 indicators only 
5 were selected for being used, due to the fact that they had the minimum number of null 
value (Co-publications with industrial partners, Patents awarded, Patents awarded, Industry 
co-patents, Publications cited in patents). After a data normalization and cleaning process of 
the available data set, we introduced a composite indicator called Global Performance 
Indicator KT (GPI KT), obtained as a combination of the 5 indicators selected, was also 
defined and used for evaluating the performance in knowledge transfer for each university 
included in the top 100. Then a comparison was made, and the results obtained were not as 
expected: the best universities in global rankings appear to drop many places when evaluated 
from the point of view of the third mission. Thus, global rankings are unable to properly 
evaluate the performance in the third mission. 
A further step was to investigate the top universities in order to identify groups of similar 
universities, in terms of KT indicators, through a data-driven approach based on clustering 
algorithms. The goal was to understand from the natural aggregation in groups, the presence 
of common characteristics capable of explaining the different levels of performance in 
knowledge transfer. 
The results obtained show an interesting composition of the clusters. In some cases, it appears 
to take into account the geographical dimension, i.e. the industrial, social and economic 
environment itself can affect the third mission activities, thus suggesting that there are 
contextual factors that the purely quantitative analysis used by global university rankings fail 
to grasp or bring out. 
Another key point in this first research line was to understand what are the KT indicators that 
best discriminate the performance of the world's universities. The analysis carried out 
identified 3 indicators that seems to be able to discriminate more strongly the performance 
of the world's universities from KT point of view: co-publications with industrial partners, 
patents granted, and publications cited in patents. 
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Of these three indicators, those referring to publications (co-publications with industrial 
partners and publications cited in patents) are difficult to retrieve and, moreover, there is an 
ongoing debate in the community about their real usefulness. The number of granted patents, 
on the other hand, is more available data and there are numerous patent databases that can 
be freely consulted. Since between 70% and 90% of the information about technologies is 
not published anywhere except in patent documents, patents are among the best sources of 
information. 
For these motivations, since the number of patents appears to be an important indicator, with 
data currently readily available, the research activity focused mainly on patent analysis and 
patent matchmaking platforms. 
To this end, the main methodologies of Intellectual Property Analytics were adopted, as a 
multidisciplinary approach used to gain valuable insight about intellectual property data.  
In order to address the lack of valorization of research results and help universities and 
research centers promote their research results, specific initiatives such as online patent 
platforms have emerged over time as convenient channels for patent transfer, with the joint 
effort of both academic, industrial and political partners. Existing initiatives/platform used 
for matchmaking between supply and demand for innovation are sometimes ineffective and 
not easily available, mainly for the following reasons: 

- they are paid services, not open access - often open innovation platforms;  
- they report the patent document as such, without a usable "translation" for all that 

facilitates matching;   
- the classification of the patents in a given technological area or sector is a challenging 

task: the content producers choose a category based on those already proposed by 
platforms, but they often do not know how to choose best, and the available categories 
are often ineffective for patent classification. 

Often the classification of patents and, therefore, the search and consultation method used, 
are based on taxonomies and keywords self-defined by users, experts or database managers 
and are not very effective. This often leads to multidisciplinary categories containing a 
significant number of poorly characterized and classified patents, which can be called 
“monster classes”. Monster categories are thus ineffective, not discriminating, and difficult 
to explore. A typical phenomenon of “monster class” often occurs in the case of healthcare 
related innovations, which, due to multidisciplinary and particularly innovative nature, tends 
to generate classes with a large number of patents. Also for this reason during the research 
period, the healthcare sector was investigated with particular attention, given its strategic 
importance and the poorly accurate exploration techniques.    
In consideration of the above issues, further research questions that this thesis aimed to 
answer were:  

- are the classification taxonomies used in the patent platforms effective in classifying 
the whole landscape of academic patents (RQ2)? 
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- is it possible to support the user in correctly classifying a patent entered into the 
platforms in order to improve the matchmaking between demand and supply of 
innovation (RQ3)?  

- is it possible to draw up an attempted vocabulary of technological fields from the 
keywords that emerged from an applied AI-based approach (RQ4)?  

In order to answer to these 3 research questions, the following approaches were defined and 
experimented: 

1. Natural Language Processing and clustering techniques were used to improve the 
taxonomy-based classification - answer to RQ2; 

2. Regression was used to build a multi-label classification system to support users - 
answer to RQ3; 

3. An AI-based approach on the most frequent words was defined in order to improve 
the keywords-based classifications - answer to RQ4. 

The proposed approaches were experimented on the Italy's largest and most relevant patent 
platform, Knowledge Share (KS), a public web platform with completely free access.  
The KS database includes patents registered from 12/28/1999 to 8/16/2021, consisting of 
1694 patents, uploaded to the platform by 89 Italian Research Centers, both public and 
private (Universities, Research Centers, Scientific Institute for Research, Hospitalization and 
Healthcare, etc), covering 90% of institutions nationwide. This platform can be easily 
queried by users aiming at obtaining an overview on the state-of-the-art about particular 
technologies in Italy. On one hand, this service lowers firms and investors’ entry barriers for 
innovations in fundamental and applied science, letting them overcome R&D&I challenges 
more easily. On the other hand, this platform helps scientists and startups/spin-offs in 
achieving visibility, expressing their innovative potential and gaining interests from private 
and public investors. 
In KS the patents, accurately “translated” in a simple and self-explanatory language, are 
categorized in ten technological domains: 

· Aerospace and aviation;  
· Agrifood; 
· Architecture and design;  
· Chemistry, Physics, New materials and Workflows (Basic Science);  
· Energy and Renewables (Green Energy);  
· Environment and Constructions (Environment);  
· Health and Biomedical (Biomed);  
· Informatics, Electronics and Communication System (Electronics);  
· Manufacturing and Packaging (Packaging);  
· Transports. 

In this research activity, Natural Language Processing (NLP) techniques have been applied 
on the corpus of 1694 patents. In order to answer RQ2, once the text has been cleaned up and 
processed, the TF_IDF matrix was constructed. Since the matrix appears sparse, in order to 
reduce the sparsity and make the clustering process less prone to the curse of dimensionality, 
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we applied the Singular Value Decomposition (SVD) for dimension’s reduction. Finally, we 
used the K-means clustering algorithm and we performed a grid-search exploration of the 
parameters’ space and used the Silhouette for optimization. 
The clustering analysis reveals the presence of 8 homogeneous clusters instead of the 10 
proposed by the KS platform:  

1. Technologies 4.0 (mechanics and robotics) 
2. Material science 
3. Cancer treatment 
4. Optics - Image processing 
5. Sensor technology - ICT 
6. New molecules - new compounds - pharmacology 
7. Energy/green Technologies 
8. Biomedical 

This suggest the presence of possible inhomogeneities within the traditional KS 
classifications, probably due to the emergence of novel technologies or cross-domain areas, 
e.g., Healthcare 4.0 This implies that the taxonomy used by KS could be improved 
significantly in order to better collect/expose the patents content. 
In order to answer RQ3 and RQ4, we proposed an artificial intelligence-based system that 
recognizes technological areas, thus classifying patents as correctly as possible, and 
recommends the right direction to the user, eliminating the "subjectivity" of choice. We use 
a combined approach of NLP and machine learning (ML) in order to support the patent 
platforms by addressing two main aspects: it is of paramount importance to create an 
automated recommender system that can identify the most suitable and correct technological 
area(s) a patent must be assigned, this is both useful for users looking for specific 
technologies or patent owners who want to reach the largest fraction of potentially interested 
users; on the other hand, the methodology allows for the identification of keywords 
characterizing a patent in an objective and human-independent way. This aspect is 
particularly useful to create an initial vocabulary of words extracted from patents, thus 
eventually leading to redefine the available categories and supporting the portal management 
and, again, the matchmaking among users and patent-owners. 
Through the combined framework NLP-ML, an explainable patent classification system was 
proposed for multi-label classification of patents, improve the user friendliness of a platform 
and enhance the selection of suitable patents by a company or, in general, booster the 
matchmaking of innovation leading to social and economic impact.  
It is interesting to note that patents related to the health sector, originally located in only one 
technological area in KS, “Health and Biomedical” category, that account for a large portion 
(about 30 percent of the total), after the processing proposed were rearranged into multiple 
and more specialized categories. In fact, in addition to the three clusters directly related to 
health, namely No. 3, No. 6 and No. 8, Cluster No. 1 - Technologies 4.0 - contains several 
patents connected to new technologies applied to healthcare. 
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For this reason, they were further investigated because of their proximity to Healthcare 4.0 
applications. Healthcare 4.0 (HC4.0) is a recently emerged term derived from Industry 4.0, 
used to describe the progressive emergence of typical Industry 4.0 technologies, such as 
Internet of Things (IoT), Industrial IoT (IIoT), cognitive computing, artificial intelligence, 
cloud computing, fog computing, and edge computing, applied to healthcare domain. In the 
context of this new revolution, Cyber-Physical Systems (CPS) are shaping digital health 
systems involving products, technologies, services, and businesses. HC4.0 must enable 
stepwise virtualization to support the near real-time personalization of healthcare for patients, 
workers, and formal and informal janitors.  
The methods of patent analysis illustrated have been applied to this especially impactful field, 
HC4.0, that is therefore a critical sector, in continuous turmoil and, above all, sees the 
application of transversal and multidisciplinary technologies and innovations within it. In 
addition to more performing taxonomies for classifying patents, it would therefore be useful 
to have effective keywords, to define a vocabulary useful for better characterizing patents in 
this broad sector. Thus, the last research question (RQ5) that was faced during this research 
work was - is it possible to define a first draft of HC4.0 vocabulary for characterizing the 
innovations and innovative technologies in healthcare 4.0? 
In order to answer this question, the analysis and study of the most frequent words contained 
in the 4 healthcare related clusters (Technologies 4.0, Cancer treatment, New molecules - 
new compounds and Biomedical), was carried out and a first attempt of Healthcare 4.0 
vocabulary was drafted.  
The document is organized as follows: 

- The "Introduction" chapter introduces the reader to the topics of knowledge transfer 
and the third university mission, contextualizing them in the international literature 
of the sector and clarifying which are the objectives it pursues and which are the 
difficulties encountered. 

- The chapter "Evaluate the third mission and technology transfer", contextualizing the 
discussion in the bibliographic scenario of the sector, addresses the issue of the use 
of Global Rankings and the difficulty of evaluating universities and research centers 
from the point of view of the third mission. Introduces and motivates RQ1. 

- The chapter "From university rankings to Intellectual Property Analytics", starting 
from highlighting why patents are in fact one of the few truly exploitable indicators 
to evaluate the third mission, introduces the IPA and the methods used for the 
experimental investigations during the research. It defines and motivates RQ2, RQ3 
and RQ4, in the light of the problems of the sector, also providing a rationale for how 
the various IPA methods have been used to answer the research questions. 

- The chapter "The experimental field" describes the experimental context in which the 
various proposed approaches were tested, i.e. the Knowledge Share platform with its 
dataset and the focus on Healthcare 4.0. 

The remaining chapters, for each of the research questions defined, after having enucleated 
the underlying issues in detail, present the proposed approaches/methodologies in order to 
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provide answers and the main results obtained. Each chapter closes with a discussion of the 
results. 
Finally, the last chapter presents an overall discussion of the result obtained and attempts to 
draw the conclusions of the entire research process by providing an overview of the results 
obtained. 
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CHAPTER 1. Introduction 

1.1. The new role of Universities in the society  

The university's contribution to solving the grand societal challenges foregrounds the issues 
of environmental sustainability, social justice, and inclusion, which the United Nations 2030 
Agenda places in a systemic framework, pushing universities in the direction of commitment 
to economic, social, and environmental sustainability (Goddard et al., 2016), going so far as 
to state that "none of the SDGs can be achieved without the contribution of universities 
through research, teaching and Third Mission (TM)" (UN, 2019). Universities in fulfilling 
their core mission, which is to produce knowledge and skills, serve as catalysts for political, 
economic, social, technological, and environmental change; their leadership becomes crucial 
particularly for complex issues with broad goals that cannot be confined to specific sectors 
but cross national boundaries, such as environmental issues, climate change, migration, 
illiteracy, extreme poverty, and human rights. Through research and teaching, universities 
play a key role in producing new knowledge, innovation, and developing generations of new 
leaders and skilled professionals who can drive this innovation towards social development. 
Through engagement in communities, universities work with a wide variety of stakeholders 
including governments, the private sector, and civil society to contribute toward local, 
national, and global impact (UN, 2019) (Blasi, 2023). 
With the emergence of the knowledge economy (Dasgupta and David, 1987), global 
competitiveness and economic development are played out primarily on the side of 
innovation. Universities assume a key role in the cycles of production and circulation of 
knowledge and innovation, and are called upon to participate directly in the economic 
development of the country and to make the industrial and service system more competitive. 
University is more of a protagonist on the economic scene and closer to enterprises, and the 
processes of knowledge production, ways of transferring scientific research results and 
sharing the knowledge produced are being rethought through new organizational and 
management models (Blasi, 2023). 
Universities (and more in general research institutions) carry out a more fluid and dynamic 
model, based on the development of multi- and trans-disciplinary research, where the 
boundaries between the research world and the industrial world are less defined; the 
involvement of different actors grows as the dimension of innovation and economic 
exploitation of research results; and the distinction between basic research, applied research 
and development thins (Limoges et al., 1994). The boundaries between science and 
technology and between public and private are becoming blurred, and there are no longer 
clear dividing lines between academic and industrial research. Thus, universities and 
research institutions play a crucial role in innovation processes and move within an 
ecosystem of diverse actors and organizations that work in synergy, cross institutional and 
disciplinary boundaries and pool heterogeneous objects and expertise (Gherardini, 2015; 
Marra, 2022). 
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Within a framework of increasingly permeable institutional boundaries, society interacts 
with universities, expressing a broader range of demands for innovation, providing a more 
diverse spectrum of scientific expertise, and thickening networks of inter-institutional 
collaboration. The role of academics changes: research-takers are called upon to build 
bridges between science and technology, assume entrepreneurial postures, and 
commercialize the technologies that emerge from scientific research (Clark, 1998; Shane, 
2004; Etzkowitz, 2003). The idea of the entrepreneurial university is gaining ground, 
characterized by a considerable degree of independence from the state and industry, but at 
the same time linked to these two institutional spheres by intense interaction. Universities 
are seen as part of an organic system, and the state is joined by other 'stakeholders', requiring 
the development of specific professional figures or engagement in applied research projects, 
in a joint effort of innovation and economic progress (Blasi, 2023).  
The interactions, the relationships and the impact of a university in a given territory within 
this system are classically measured by the Triple Helix Model (THM), that represents the 
interactions between institutional actors, university and business, a "helix" that has been 
established since the second half of the 1990s (Etzkowitz and Leydesdorff, 1997) and 
embraced by the European Union in the Lisbon Strategy. 
Over time, the three helices are enriched with new ones: first, the civil society sub-system 
(fourth helix), represented by the production of culture and the media system, is added to the 
triple helix (Carayannis et al., 2012). Subsequently, due to the centrality that the evolution 
of the natural environment in society assumes (mainly related to climate transformations and 
their consequences), the socio-ecological transition aspects of society and economy (fifth 
helix) are integrated, with universities at the forefront as producers of knowledge and in-
innovation (Carayannis et al., 2012; Blasi, 2023). See figure 1. 
 

 

Figure 1: quintuple helix model 
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In recent years, universities have been required to shift from predominantly teaching and 
research activities also to TM activities, understood as "contributions to society" (Abreu et 
al., 2016; Urdari et al., 2017; Backs et al., 2019; Zawdie, 2010; Compagnucci and Spigarelli, 
2020). Through the third mission, universities and research centres act as motors that make 
a contribution to the social, economic and cultural development of the regions in which they 
are active, bringing knowledge and technology to industry and society (De Jong et al., 2014; 
Secundo et al., 2017; Agasisti et al., 2019; Compagnucci and Spigarelli, 2020; Research & 
innovation valorisation channels and tools, 2020; World Economic Forum, 2019; Trippl et 
al., 2015; Cesaroni and Piccaluga, 2016; Di Berardino and Corsi, 2018). Figure 2 summarizes 
the three fondamental missions of Universities: 

 

Figure 2: the three fundamental missions of Universities (Scanlan, 2018) 

 

1.2. From Knowledge Transfer to Third Mission 

Among the three university missions, the research work is focused on Knowledge transfer 
(KT) - or often also referred to as technology transfer (TT) (the distinction is better explained 
in the following paragraphs) - that is a well-recognised activity in which research 
organizations are expected to engage and it is seen as an essential source of innovation and 
a mechanism for the dissemination of research results (Campbell et al., 2020). The public 
and private research universities are recognized as the seed capital for creating know-how 
and technologies that foster economic and social development (DeVol et al., 2017). KT plays 
a vital role in translating academic research into practical applications that drive economic 
growth, innovation, and societal development. KT aims to maximize the two-way flow of 
technology, intellectual property, and ideas. KT thus empowers companies, the government 
sector, and other nonacademic organizations to promote innovation with consequent 
economic and social benefits (Campbell et al., 2020). This is an essential function for 
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universities, enabling them to bridge the gap between academia and industry. By transferring 
knowledge and innovations to the commercial sector, universities can drive economic 
growth, foster industry collaboration, disseminate knowledge, generate funding, and make a 
positive impact on society (Godonoga and Sporn, 2023). KT serves as a catalyst for 
universities to realize the full potential of their research and innovation. It strengthens their 
economic contributions, enhances their reputation, facilitates entrepreneurship, protects 
intellectual property, and enables collaboration with industry, government, and international 
partners. 
In the past two decades there has been an evolution that has seen the concept of knowledge 
transfer change from the more traditional concept of simple commercialization and 
monetization to a more comprehensive approach that supports both co-creation and 
dissemination of research results with and to nonacademic third parties (Campbell et al., 
2020). 
For that reason, over time different terms have been used to talk about knowledge transfer 
and third mission: 

- Technology Transfer 
- Third Mission 
- Knowledge Transfer 
- Knowledge Exchange 
- Engagement.  

The Figure 3 illustrates the relationship and evolution of these concepts, from which it can 
be seen that the term Third Mission is the one that caps it all and encompasses everything 
(Hockaday, 2020): 

 

Figure 3: the evolution and extension of university technology transfer 
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The term TM is rather "nebulous" (Gregersen et al., 2009) and ambiguous (Laredo, 2007; 
Pinheiro et al., 2015), a complex and rapidly evolving phenomenon (Giuri et al., 2019). On 
the one hand, the concept is related to the themes of the "entrepreneurial university" 
(Trencher et al., 2014; Markuerkiaga et al., 2016); on the other hand, it refers to a wide range 
of activities carried out by universities in transferring knowledge to society at large and to 
external organizations (Marzocchi et al., 2023), as well as promoting entrepreneurial skills, 
innovation, social welfare and human capital formation. In addition, another key piece 
concerns the various forms of “science communication and social engagement" 
(Compagnucci and Spigarelli, 2020; Rothaermel et al., 2007; Di Berardino and Corsi, 2018). 
In other words, of course, the third mission is a complex and evolving phenomenon that, in 
the last years, has been articulated in policies resulting from the dialogue between 
universities, industry, government and society (Vorley and Nelles, 2009; Predazzi, 2012; 
Giuri et al., 2019). 
Therefore, through the third mission, universities move away from the traditional 'ivory 
tower' position in which teaching and research have always been treated as aims in 
themselves (Nakwa and Zawdie, 2016; Mahrl and Pausits, 2011; Etzkowitz et al., 2000). 
Universities, abandoning their ivory towers, move closer to society to meet social needs and 
industrial goals (Kapetaniou and Lee, 2017; Florida and Cohen, 1999; Etzkowitz, 1998; 
Molas-Gallart et al., 2002). 
The Italian National Agency for the Evaluation of Universities and Research Institutes 
(ANVUR) defines the third mission in this way: “Third mission is intended as the degree of 
openness of the HE institutions towards the socio-economic context through the valorization 
and transfer of knowledge. TM is a process of knowledge exchange, not only related to 
technology and encompassing social and cultural benefits”. 
The connection with the territory, in fact, can mainly take on two faces: 

- one more directly linked to economic reasons and thus to relations with industry and 
the commercialization of intellectual property, as well as the promotion of 
entrepreneurship; 

- another more closely linked to purposes of a social nature and the dissemination in 
the socioeconomic context of knowledge and qualified skills (ANVUR). 

The areas of the third mission according to ANVUR are (Figure 4): 
A: Valorization of research 
(a) Intellectual property management 
(b) Academic entrepreneurship (spin-off companies). 
(c) Third-party activities 
(d) Collaboration with territorial intermediaries.  
B. Production of public goods of a social, educational and cultural nature 
(a) Production and management of cultural goods 
(b) Clinical trials, research infrastructure and medical training 
(c) Continuing education 
(d) Public engagement 
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Figure 4: the areas of the third mission according to ANVUR 

For the purposes of the research questions outlined for this thesis, the focus is on the activities 
defined in Group A: valorization of research.  
The valorization of research promotes the dissemination and use of new technologies with 
the aim to increase the impact, economic and/or social, of the research for all the stakeholders 
and partners involved (Scanlan, 2018; Alexander et al., 2020). 
In this framework, the research results could be valorized through a variety of complex 
channels (Azagra-Caro et al., 2017) or mechanisms, intentional and unintentional (Scarrà 
and Piccaluga, 2022), including research conversion to intellectual property (IP) and its 
patenting and licensing activity, creation of academic start-ups or externally formed 
entrepreneurial entities, collaborative research with private sector firms or contract research 
consulting, etc. Figure 5 describes the flow of knowledge and technologies towards the 
creation of impact for a multitude of actors (Campbell et al., 2020): 
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Figure 5: flow of knowledge and technologies towards the creation of impact for a 
multitude of actors (Campbell et al., 2020) 

Thus, promoting the effective use and development of Intellectual Property and ensuring 
easier access to and sharing of IP-protected assets in times of crisis are key priorities of the 
Union’s IP Action Plan (Intellectual property action plan implementation, 2022). 
Universities are a mine of innovation and play an important role in its development, in fact 
they are recognized as a critical element in the global competitiveness of enterprises 
(Bellantuono et al., 2022; Demarinis Loiotile et al., 2022; Hu and Zhang, 2021). Patent 
transfer between universities and companies has been the subject of much attention recently. 
Previous studies demonstrated that the patent transfer has significant impacts not only on 
both academia and industry (Deng and Ma, 2022), but also on national economies (Chen and 
Deng, 2023; Lee et al., 2017; Wang et al., 2014). To name a few studies, McDevitt et al. 
(2014) showed that patent transfer provides public benefits and influences economic 
development in addition to generating revenue, increasing funding opportunities, and 
promoting a culture of entrepreneurship and innovation for universities; Roessner et al. 
(2013) combined U.S. university licensing data from 1996 to 2010 with input-output 
economic models and found that the contribution of university licensing to the U.S. economy 
during the period was at least $162.1 billion (Deng and Ma, 2022; Chen and Deng, 2023). 

The later stages of technology transfer and commercialization into marketable products and 
services, however, tend not to be easy (Shove, 1998). 
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 1.3. The lack of valorization and the Death Valley 

Many reports, such as the ASTP Survey Report on KT Activities FY2019, show a significant 
lack of valorization of the patented technologies from the Universities and Public Research 
Centers across Europe, since only 18% of those inventions are licensed or optioned (ASTP 
Report, 2019). Too many research results remain stuck in the so-called Valley of Death 
(Hudson and Khazragui, 2013), which represents “the gap between where publicly available 
research funding stops and where private investment or commercial funding starts” 
(Hockaday, 2020).  
The Valley of Death is a metaphor for the absence of resources and skills that hinders new 
ideas as they move from the laboratory to the marketplace (Hensen et al., 2015) (Figure 6). 

 

Figure 6: the Valley of Death 

Typically, academic research groups succeed in developing concepts from discovery to a 
point with a low level of technological readiness (TRL). 
Technology Readiness Levels (TRL) are used to assess the maturity of a new technology 
towards full economic operation. TRL starts at stage one, where the technology is in the 
embryonic stage, and progresses to the most mature stage, level nine, where the technology 
has been tested and launched. This tool provides a quick view of technology maturity and 
helps management make decisions about the development and transition of a technology. 
Investors and national funding agencies use this tool to identify the type of project that best 
fits their objectives. 
An explanation by European Commission of the different TRL values is: 

• TRL 1 – basic principles observed  
• TRL 2 – technology concept formulated  
• TRL 3 – experimental proof of concept  
• TRL 4 – technology validated in lab  
• TRL 5 – technology validated in relevant environment (industrially relevant 

environment in the case of key enabling technologies)  
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• TRL 6 – technology demonstrated in relevant environment (industrially relevant 
environment in the case of key enabling technologies)  

• TRL 7 – system prototype demonstration in operational environment  
• TRL 8 – system complete and qualified  
• TRL 9 – actual system proven in operational environment (competitive 

manufacturing in the case of key enabling technologies; or in space). 
In general, new technologies go through the various stages of the TRL scale during their life 
cycle. During the research and development phases, it is possible to have iterations between 
the different TRL levels. 
In the Healthcare sector, TRL assessment is even more complex because, in addition to 
technology deliverables for each milestone, deliverables for clinical, market/commercial, 
and regulatory aspects are defined to help manage risk. 
The gap lies between TRL 4 and 7. The reasons for this are diverse: 

- Basic research is carried out mainly with public funding, after which investment is 
needed, sometimes generally high, with a relatively low success rate. Only a few 
technological concepts will be transformed into successful commercial products. 

- The process requires an interdisciplinary approach. The right combination of skills is 
not always available. 

The Death Valley is sometimes used as an analogy to describe this discontinuity in 
innovation processes (Hensen et al., 2015). The role of technology and knowledge transfer 
is exactly to be a catalyst to bridge this gap and help overcome the Valley of Death. 

Finally, KT an, more in general, third mission could help Universities and Research Centers 
in the valorization process for the following reasons: 

• KT plays a crucial role in driving economic growth and development. Universities 
are often at the forefront of cutting-edge research and innovation, and technology 
transfer allows them to capitalize on their intellectual assets. By commercializing 
their research outcomes, universities can generate revenue through licensing 
agreements, spin-off companies, or partnerships, thereby fostering economic 
development in their local communities and beyond. 

• KT facilitates collaboration between academia and industry. By transferring 
technologies to the commercial sector, universities can establish partnerships with 
businesses, which can lead to joint research projects, funding opportunities, and 
access to industry expertise (Public-Private Partnerships). Such collaborations not 
only enhance the quality and relevance of research but also enable universities to 
address real-world challenges and create practical solutions. Public-private 
partnerships allow universities to tap into industry insights, gain access to funding, 
and create a pathway for the practical application of research outcomes. 

• Universities are knowledge hubs, and KT helps disseminate their research findings 
and innovations to a wider audience. By commercializing technologies, universities 
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make them accessible to industries, entrepreneurs, and the general public. This 
promotes the utilization of scientific advancements, fosters innovation in various 
sectors, and drives social progress. 

• KT provides universities with additional avenues for funding and resource 
generation. The revenue generated through licensing fees, royalties, and equity stakes 
in spin-off companies can be reinvested into further research and academic programs. 
This financial support enhances the capacity of universities to attract and retain 
talented faculty members, improve infrastructure, and expand their research 
capabilities. 

• KT enables universities to have a tangible impact on society addressing pressing 
social and environmental challenges. By translating research into practical 
applications, universities contribute to the development of new products, processes, 
and services that address societal needs and challenges. This can encompass a wide 
range of areas, such as healthcare, energy, agriculture, environmental sustainability, 
and information technology, leading to improvements in people's lives and the overall 
well-being of communities. By transferring technologies developed in these domains, 
universities can contribute to solving global issues, improving quality of life, and 
promoting sustainable development. 

• TM initiatives can enhance the reputation of universities as hubs of innovation and 
research excellence. By demonstrating their ability to translate theoretical knowledge 
into practical applications, universities gain recognition as contributors to economic 
and social advancement. This can attract top-tier faculty, students, and research 
collaborations, further bolstering the institution's prestige. 

• KT often leads to the creation of new ventures and spin off/startups. Universities can 
support aspiring entrepreneurs by providing access to their intellectual property, 
research facilities, mentoring, and business development resources. By fostering an 
entrepreneurial culture, universities stimulate job creation, promote self-
employment, and contribute to the growth of local and national economies. 

• KT activities often require collaboration between multiple disciplines and 
departments within a university. This fosters interdisciplinary research and 
collaboration, breaking down silos and encouraging cross-pollination of ideas. 
Collaborative research networks formed through technology transfer initiatives can 
lead to groundbreaking discoveries and solutions to complex problems that require 
diverse expertise. 

• KT encourages open innovation practices, where universities actively collaborate 
with external partners to exchange knowledge and resources. By engaging with 
industry, government agencies, and other stakeholders, universities can leverage 
external expertise and resources, accelerating the development and 
commercialization of technologies. Open innovation enables a broader range of 
perspectives and inputs, leading to more robust and impactful outcomes. 
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• KT is crucial for maintaining and enhancing the global competitiveness of 
universities. In an increasingly interconnected and knowledge-driven world, 
universities need to translate their research into practical applications that can be 
globally relevant. By transferring technologies, universities can contribute to 
economic competitiveness, drive innovation, and position themselves as key players 
in the global innovation landscape. 

In conclusion, knowledge/technology transfer is a multifaceted and dynamic process that 
holds immense importance for universities. It supports alumni engagement, fosters public-
private partnerships, facilitates knowledge commercialization, strengthens institutional 
capacity, and enables global collaboration. By actively embracing KT, universities can 
enhance their impact, relevance, and sustainability while contributing to economic growth, 
societal progress, and the advancement of knowledge. 
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CHAPTER 2. Evaluate the third mission and 
knowledge/technology transfer 

2.1. The role of university rankings and the limits in the evaluation of 
KT 

A first goal was to identify the best universities and research centers worldwide that stand 
out for their performance in the third mission. The difficulties in this regard immediately 
became evident. In fact, in the complex and multifaceted scenario of the third mission, while 
performance indicators relative to research (in terms of quality of publications, number of 
citations, etc.) and teaching (in terms of student-to-staff ratio, student evaluation, etc.) are 
widely known and used, less is known about how KT or, more generally, TM can be 
characterized and evaluated. 
A widely used tool for evaluating and comparing universities performance are the so called 
“global rankings”. 
The rise in relevance of rankings concerning academic institutions is a rather recent 
phenomenon that emerged since the late 1980s (Sauder and Espeland, 2009) mainly due to 
the demand for information on academic quality by potential students, triggered by the 
worldwide expansion of access to higher education (Dill and Soo, 2005; Bellantuono et al., 
2022). However, rankings have become an increasingly internalized tool for comparison and 
success quantification far beyond the matter of student’s choice, influencing researchers, 
employers and, most relevantly, academic evaluators and companies (Oțoiu and Țițan, 2021; 
Johnes, 2018; Frondizi et al., 2019; Hazelkorn et al., 2014; Bellantuono et al., 2022). 
Nowadays, rankings permeate multiple sectors and address multiple dimensions of 
individual and organizational behavior. There is a wide range of public measures such as 
different types of ratings, benchmarks, and rankings, especially for universities (Marhl and 
Pausits, 2011; Ringel et al., 2021; Dill and Soo, 2005; Bougnol and Dulá, 2015). 
Rankings have become a tool for promoting the growth of universities in the international 
context, increasing their competitiveness, enhancing the attractiveness of the educational and 
research system (Forti and Meoli, 2020) namely, a true marketing, benchmarking and 
branding tool (Olcay and Bulu, 2017). 
Efficient higher education institutions can actually prompt a spillover process in which 
regions collect knowledge and human resources that can contribute to foster their economic 
progress (Rodrigues, 2011; Saxenian, 1996; Mas Verdú et al., 2020; Agasisti et al., 2019). 
Therefore, it is evident that the evaluation of academic activity should be configured as a 
multi-purpose assessment (Oancea, 2019), which takes into account not only the scientific 
impact, but also the benefits brought to the territory, measured by an empirical quantification 
of the third mission outcomes (Benneworth and Hospers, 2007). 
Although the scientific literature has already highlighted the presence of some critical aspects 
related to university rankings, such as the inhibition of regional contributions from 
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universities (Salomaa et al., 2021), in recent years university rankings have been able to 
create impact (Hazelkorn et al., 2014; Rauhvargers, 2013) and influence higher education, 
policy and public opinion (Loukkola, 2016; Pusser and Marginson, 2013). 
In fact, rankings, whatever they are meant to measure, are not neutral tools, and their use has 
a series of relevant drawbacks. Problematic aspects mainly stem from the effects of positive 
feedback between the prestige of an institution, certified by its ranked score, and the 
possibility to receive public funding on an awarding basis or to attract investments by private 
companies (Oancea, 2019; Hicks, 2012; Jonkers and Zacharewicz, 2016). The strong causal 
relation between ranking outcomes and funding triggers off undesired phenomena. The first 
problem is reactivity to rankings, namely the development of adaptation strategies to gain 
competitive advantages with respect to the evaluation criteria, leading to academic 
conformism (Oancea, 2019; Espeland and Sauder, 2007; Livan, 2019; Li et al., 2019; Fire 
and Guestrin, 2019). Another critical aspect is represented by territorial biases, that reward 
universities placed in an advantageous socioeconomic context (Rodrigues, 2011; Trippl et 
al., 2015; Smith and Bagchi-Sen, 2012; Rodrigues et al., 2001; Charles, 2006; Gunasekara, 
2006), that can be, for example, more receptive than others with respect to third mission 
activities. The third issue is the onset of a “Matthew effect”, that, through the feedback 
between ranking and funding, consolidates existing gaps in third mission (Heher, 2006), 
internationalization (Rauhvargers, 2013; Van Vught, 2008), research (Clauset et al., 2015; 
Way et al., 2019), scholarships (Pusser and Marginson, 2013), and even diffusion of 
scientific ideas (Morgan et al., 2018). 
Lately, rankings have prompted deep changes in the higher education system, affecting 
resource distribution, decision making and status definition (Sauder and Espeland, 2009; 
Espeland and Sauder, 2007; Johnson Jr, 2006; Stake, 2006). However, they fail to capture 
individual specificities and tend to marginalize parts of the academic community whose 
distinctive traits are not suited to the general rating framework (Pusser and Marginson, 2013; 
Sugimoto and Larivière, 2018). Though the methodology behind them is criticized, and their 
overall role is questioned (Hazelkorn and Gibson, 2017), rankings nowadays represent a 
consolidated evaluation framework, mainly due to their simplicity and practicality, combined 
with the lack of suitable alternatives (Coates, 2016). A different kind of rankings, in which 
the effects of structural factors are mitigated, can be relevant for academic evaluators and 
policy makers. Such redefined rankings could actually help identify both virtuous cases of 
outstanding institutions emerging in a difficult context, and cases in which the performance 
is below expectations, which therefore require intervention. Therefore, it would be desired 
to define transparent, data-driven, shared and reproducible procedures to evaluate academic 
performance, taking into account the effect of structural features, such as the territorial 
embedding of universities and their educational mission. 
University rankings are compiled taking into account the variety of missions higher 
education is called to, which are not limited to teaching and research, but also involve the 
third mission (Laredo, 2007) or knowledge transfer (Bekkers and Freitas, 2008; Abreu et al., 
2016).  
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In this complex scenario, about the issue of TM characterization and evaluation (Scanlan, 
2018; O’Reilly et al., 2019), most of the best-known global university rankings completely 
lack instruments to evaluate KT activities (Olcay and Bulu, 2017; Landinez et al., 2019) and 
probably fail to properly capture and evaluate the peculiarities of KT and TM.  
Defining the activities and quantifying the TM requires the design of a complex model of 
analysis that is able to determine the map of indicators related to the diversified dimensions 
of the third mission. 
Several studies have tried to identify TM indicators; only a few are mentioned below. 
For example, a research project called E3M "European Indicators and Ranking Methodology 
for University Third Mission" aimed to create a ranking methodology to measure 
universities' third mission activities, constructing 54 indicators, 20 of which were identified 
for the dimension of technology transfer and innovation (Carrión et al., 2012).  
Marhl and Pausits (2011) point out in their study that TM activities pertain to more than one 
dimension, so it is not easy to obtain independent dimensions. However, they emphasize that 
these activities are important as components of institutional performance in rankings and 
therefore have devised a set of indicators to measure third mission activities using the Delphi 
method. 
Lee et al. (2020) evaluated the engagement of universities in the third mission through their 
strategic plans. 
Finne et al. (2011) attempted to design a composite indicator for knowledge transfer, 
considering three main sets of transfer mechanisms: through people (specially trained 
people), through cooperation (institutional cooperation in R&I), through university-
university cooperation (Dip, 2021). 
As can be seen, there is a lot of literature on KT indicators that could be used, but the correct 
formulation of the key indicators to measure the performance of universities in knowledge 
transfer activities is weakly developed in the literature (Rossi and Rosli, 2015; Dip, 2021). 

  

2.2. From global to specialized rankings 

Numerous global university rankings have been proposed so far, they are based on different 
parameters and indicators (Frondizi et al., 2019; Aguillo et al., 2010; Moed, 2017) and try to 
provide an all-round evaluation. In this research work, three of the best-known world 
university rankings were investigated in order to identify the best universities and be able to 
understand if and how they perform from the the third mission and knowledge transfer point 
of view:  

- The Academic Ranking of World Universities (ARWU) was first published in June 
2003 by the Center for World-Class Universities (CWCU), Graduate School of 
Education (formerly the Institute of Higher Education) of Shanghai Jiao Tong 
University, China, and updated on an annual basis. Since 2009 the Academic Ranking 
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of World Universities (ARWU) has been published and copyrighted by Shanghai 
Ranking Consultancy, a fully independent organization on higher education 
intelligence that is not legally subordinated to any universities or government 
agencies. ARWU uses six objective indicators to rank world universities, including 
the number of alumni and staff winning Nobel Prizes and Fields Medals, the number 
of highly cited researchers selected by Clarivate Analytics, the number of articles 
published in journals like Nature and Science, the number of articles indexed in 
Science Citation Index - Expanded and Social Sciences Citation Index, and the per 
capita performance of a university. More than 1800 universities are ranked by ARWU 
every year and the best 1000 are published. 

- The QS World University Rankings® (QSWUR) lists and ranks over 1000 
universities from around the world, covering 80 different locations; it continues to 
rely on a remarkably consistent methodological framework, compiled using six 
simple metrics that effectively capture university performance. Universities are 
evaluated according to the following six metrics: Academic Reputation, Employer 
Reputation, Faculty/Student Ratio, Citations per faculty, International Faculty Ratio, 
International Student Ratio. 

- The Times Higher Education World University Rankings (THEWUR) includes 
almost 1400 universities across 92 countries, standing as the largest and most diverse 
university rankings ever to date. It is based on 13 carefully balanced and 
comprehensive performance indicators and is trusted by students, academics, 
university leaders, industry and governments. Its performance indicators are grouped 
into five main areas: Teaching (the learning environment); Research (volume, income 
and reputation); Citations (research influence); International outlook (staff, students 
and research) and Industry Income (knowledge transfer). 

However, as discussed in the previous paragraph, very often the global university rankings 
have been criticized (Olcay and Bulu, 2017; Bougnol and Dulá, 2015; Johnes, 2018; Moed, 
2017) because, for example, using a single set of indicators, they compare different types of 
institutions (Hazelkorn and Gibson, 2017), evolving from a “semi-academic exercise” to an 
international business tool (Frondizi et al., 2019) and an important “instrument for the 
exercise of power” (Pusser and Marginson, 2013). Unfortunately, most of the best-known 
global rankings, probably lack instruments to evaluate KT activities and fail to properly 
capture and evaluate the peculiarities of KT and TM.   
Thus, in this scenario, the first research question (RQ1) faced was: according to global 
university rankings, how do the world's top universities perform from a knowledge transfer 
point of view? In other words, are the rankings currently most used able to characterize 
universities performance from third mission point of view? 
At the European level, given the importance of the issue related to the wider circulation of 
knowledge, increased access to knowledge and talent, and the rise of new products, services 
and markets, there is a growing interlocution regarding the need to identify effective and 
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objective indicators to measure knowledge transfer and the consequent need for harmonized 
indicators at the European level. 
However, the KT indicators used in global university rankings are not recognized as the best 
indicators at the European level where the European Commission, in an attempt to provide 
answers, has promoted two separate initiatives. 
The European Commission (European Commission Press release) has invested a significant 
effort in producing the U-Multirank (UMR) ranking (Dip, 2021). It is based on a different 
approach compared with the existing global university rankings and furthermore it includes 
a set of indicators focused on KT. This initiative has already produced a very rich data set 
over the years. 
In a further effort the European Commission with the Joint Research Centre (JRC) published 
two reports about this issue: in 2020 “Towards a European-wide set of harmonised 
indicators” (Campbell et. al., 2020) and in 2022 “Knowledge Transfer Metrics: Phase II. 
Exploration of composite indicators for knowledge transfer” (Campbell et. al., 2022). This 
initiative, to date still in the experimental stage, has not yet produced meaningful datasets 
useful for conducting comparative analyses. 
For these reasons in the present research work, in an attempt to answer the previous research 
question, we focused on UMR which uses a set of specialized KT indicators for evaluating 
the world's top universities from the KT point of view and which, thanks to the rich dataset, 
enables comparisons to be made with the most popular global rankings.  
The following paragraphs provide a brief description of the initiative promoted by the JRC 
and U-Multirank. 

2.2.1 JRC initiative  

The European Commission Joint Research Centre (JRC) published two reports about this 
issue: in 2020 “Towards a European-wide set of harmonised indicators” (Campbell et. al., 
2020) and in 2022 “Knowledge Transfer Metrics: Phase II. Exploration of composite 
indicators for knowledge transfer” (Campbell et. al., 2022). In these reports, the activity 
indicators used are: 

- Number of invention disclosures (IDF), 
- Number of licenses, 
- Revenue from licensing, 
- Number of spin-off companies, 
- Revenue from equity sale in spin-off companies, 
- Number of research collaboration agreements with non-academic entities, 
- Revenue from research collaboration with non-academic entities. 

It is quite well recognized that purely quantitative indicators, such as financial data or IP 
assets, are not sufficient to describe the complexity of knowledge transfer and their long-
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term impact. See what is also reported by the reports of leading international KT associations, 
such as, AUTM ("Better World") or Knowledge Transfer Ireland. 
Despite this, having a basic data set, together with cohesive basic definitions, gives a pathway 
for comparative and longitudinal analyses, provided the observer is adequately aware of the 
complexity of the field to appreciate an informed analysis (Campbell et. al., 2020). 
In fact, the indicators used represent a subset of the “Quadrant KT Indicators Model” 
(Campbell et. al.) (2020), shown in Figure 7, which represent the four quadrants affecting 
input and output KT Indicators: 

 

 

Figure 7: the four quadrants affecting input and output KT Indicators 

Composite indicators are becoming more widely acknowledged as valuable tools, as they 
offer straightforward comparisons of countries and organizations, shedding light on intricate 
and often elusive matters in various domains. However, composite indicators can be 
misleading if not constructed and interpreted effectively. The quality of a composite indicator 
is primarily contingent on the excellence of the framework and data employed, as well as the 
methodology developed and implemented (Campbell et. al., 2022). 

2.2.2 U-Multirank (UMR) 

UMR was launched by the European Commission in collaboration with Bertelsmann 
Foundation and Banco Santander, based on the results of a feasibility study covering 150 
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universities which was carried out in 2010/11 (van Vught and Ziegele, 2011). It is based on 
a different approach compared with the existing global university rankings. It compares 
university performances considering different activities that they are engaged in, taking into 
account the diversity of the higher education sector and the complexity of evaluating 
educational performance (Dip, 2021; Prado, 2021; Decuypere and Landri, 2021). UMR has 
been developed based on a number of design principles, user-driven, multidimensionality, 
comparability, multilevel nature of higher education, and methodological soundness (Kaiser 
and Zeeman, 2017). It is considered a transparency tool for higher education stakeholders 
(Westerheijden and Federkeil, 2018) and takes into account five aspects and dimensions of 
the universities’ performance: (1) teaching and learning, (2) research, (3) knowledge transfer, 
(4) international orientation and (5) regional engagement. The UMR web tool allows users 
to compare universities but also study programs. Based on empirical data, it compares 
institutions with similar profiles (‘like-with-like’) and allows users to develop their own 
personalized rankings by selecting indicators in terms of their own preferences. Each of the 
five aspects evaluated by UMR are ranked from A to E, with A and E indicating “very good” 
and “weak” performance, respectively. 
In this research work, the choice to use of UMR was motivated by the fact that it uses a 
focused quality model for an in-depth evaluation of KT dimension based on the following 
indicators: 

- Co-publications with industrial partners: the percentage of a department’s research 
publications that list an author affiliated with an address that refers to a for-profit 
business enterprise or private sector R&D unit (excluding for-profit hospitals and 
education organizations). 

- Income from private sources: the percentage of external research revenues (including 
not-for-profit organizations) coming from private sources, excluding tuition fees. 
Measured in €1.000s using Purchasing Power Parities and computed per fte (full time 
equivalent) academic staff. 

- Patents awarded (absolute numbers): the number of patents assigned to inventors 
working at the university in the respective reference period. 

- Patents awarded (size-normalized): the number of patents assigned to inventors 
working at the university over the respective reference period, computed per 1.000 
students to take into consideration the size of the institution. 

- Industry co-patents: the percentage of the number of patents assigned to inventors 
working at the university during the respective reference period, which were obtained 
in cooperation with at least one applicant from the industry. 

- Spinoffs: the number of spinoffs (i.e. firms established on the basis of a formal KT 
arrangement with the university) recently created by the university (computed per 
1000 fte academic staff). 

- Publications cited in patents: the percentage of the university’s research publications 
that were cited in at least one international patent (as included in the PATSTAT 
database). 
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- Income from continuous professional development: The percentage of the 
university’s total revenues that is generated from activities delivering Continuous 
Professional Development courses and training. 

- Graduate companies: The number of companies newly founded by graduates and 
computed per 1000 graduates. 
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CHAPTER 3. From university rankings to Intellectual Property 
Analytics 
3.1. The importance of the intellectual property management 

Despite the flourishing of indicators and the numerous rankings that exist, for at least two 
main reasons, the most investigated indicator in relation to KT is the number of patents 
granted. 
Indeed, on the one hand, it is certainly if not exclusively among the most correlated and 
discriminating indicators with respect to KT and the performance of a research Institution in 
knowledge transfer. 
On the other hand, the only databases available for analysis, and certainly those containing 
the most objective and universal data, are "again" the patents granted. 
In the framework of the Fourth industrial revolution, identified with exponential evolutions, 
integration of technologies and holistic system impact across society, industry, and countries 
(Schwab, 2017), the increased data availability represents an opportunity to better support 
decision-making processes and introduce disruptive technologies (Baglieri & Cesaroni, 
2013; Aristodemou & Tietze, 2018). The integration of Industry 4.0 technologies within 
society is pivotal for resolving many challenges that the world and its population are 
currently facing (Bartoloni et al., 2022). In this multidisciplinary and complex context, the 
technology transfer plays a key role for the adsorption and dissemination of technologies, 
resources, and knowledge to transform each invention into tangible and useful innovation. 
Under the EU valorization policy, the use of knowledge and technology, the management of 
intellectual property, and the involvement of citizens, academia, and industry, through 
different channels, are highly promoted (EU valorisation policy 2020). In modern knowledge 
economies, intellectual property (IP) assets are both engines of development and drivers of 
social transition. Industries that make intensive use of intellectual property rights (IPRs), 
such as patents, trademarks, industrial designs and copyrights, generate 45 percent of annual 
GDP (€6.6 trillion) in the EU and account for 63 million jobs (29 percent of all jobs) (EU 
valorisation policy 2020). 
As reported by the European Commission, the volume of annual investment in "intellectual 
property assets" has increased by 87 percent in the EU over the past two decades, in contrast 
to the volume of tangible (non-residential) investment. Thus, industries that make intensive 
use of intellectual property play an essential role in the EU economy and provide good and 
sustainable jobs for society (Press release EU, 2020). Seemingly, according to a study 
conducted by the Ponemon Institute LLC looking at the S&P500 (Standard and Poor's 500) 
companies, the relative importance of the intangible assets over the total patrimonial value 
of those organizations has increased dramatically in the last 40 years, passing from 
representing about 20% (122B$ intangibles vs. 594B$ tangibles) in 1975 to a ratio of more 
than 5 to 1 in 2018 (21T$ intangibles vs. 4T$ tangibles) (Ponemon, 2019).  
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With rapid changes in technology and industry value chains, it is vital for companies to be 
able to identify promising emerging technologies that can better respond to rapid external 
changes and be used to launch new businesses or improve current ones. 
One of the most widely used approaches to identifying promising emerging technologies is 
patent analysis (Choi et al., 2021). 
Patent documents are considered as a valuable database for understanding technology trends 
and design innovation strategies. They contain information about almost all relevant 
technological fields and record the direction of technological development and R&D 
activities (Wang and Lin, 2023). IP related documents represent valuable and recognized 
sources of technological and legal knowledge (Aristodemou et al., 2017). As a matter of fact, 
different documents, such as patents, trademarks and other IP registered in national and 
international IP systems, contain important research results which are of great value for 
industry, legal researchers, and policy advocates in science and technology R&D (Trappey 
et al., 2017). 
Intangible assets such as R&D, inventions, artistic and cultural creations, brands, software, 
know-how, business processes and data “are the cornerstones of today's knowledge 
economy” (Press release EU, 2020). 
Since between 70% and 90% of the information about technologies is not published 
anywhere except in patent documents (Asche, 2017; Giordano et al., 2021), patents are 
among the best sources of information (Puccetti et al., 2023).  Organizations analyze patents 
for, but not limited to: 

- technological mapping and forecasting (Daim et al., 2006), 
- predicting core and emerging technologies (Huang et al., 2020; Altuntas et al., 2015; 

Kim and Bae, 2017; Kyebambe et al., 2017), 
- diffusion of technologies (Daim et al., 2006), 
- convergence of technologies (Karvonen and K ̈assi, 2013), 
- identification of technological vacuums and hotspots (Abbas et al., 2014) 
- portfolio analysis (Ernst, 2003), 
- competitive analysis (Thorleuchter et al., 2010; Aristodemou and Tietze, 2018), 
- technology trend analysis (Tseng et al., 2011; Trappey et al., 2019; Choi et al., 2021), 
- avoiding infringement (Yu and Zhang, 2019), 
- identifying technological competitors (Abbas et al., 2014). 

However, technologies patented by universities and research centers notoriously, at least at 
the European level, are poorly exploited; in fact, as reported in ASTP Survey Report on KT 
Activities FY2019, only 18% of inventions are licensed or optioned (ASTP Survey Report, 
2019).  
In order to address this lack of valorization and help universities and research centers 
promote their research results, specific initiatives such as online patent platforms have 
emerged over time as convenient channels for patent transfer, with the joint effort of both 
academic and political partners (Chen et al., 2020; Chen and Deng, 2023). The platforms 
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enable the integration of isolated patents and provide communication and negotiation 
services to enhance the patent transfer (Deng and Ma, 2022; Chen and Deng, 2023). An 
active and efficient patent marketplace could help reduce the transaction cost and facilitate 
technology transfer, alleviating also the information asymmetry problem (Du et al., 2021). 
Existing initiatives/platform that are able to create matchmaking between supply and demand 
for innovation are sometimes ineffective, mainly for the following reasons: 

- they are paid services, not open access - often open innovation platforms; 
- they report the patent document as such, without a usable "translation" for all that 

facilitates matching;  
- the classification of the patent in a given technological area is a challenging task: 

users choose a category based on those proposed, but users often do not know how 
to choose best, and it is not true that the proposed choices are necessarily the best. 

Often the classification of patents and, therefore, the search and consultation method used, 
are based on taxonomies and keywords self-defined by users, experts or database managers 
and are not very effective. This often leads to multidisciplinary categories containing a 
significant number of poorly characterized and classified patents, which can be defined as 
“monster class”. Monster categories are thus ineffective, not discriminating, and difficult to 
explore. A typical phenomena of “monster class” often occur in the case of healthcare related 
innovations, which, due to multidisciplinary and particularly innovative nature, tends to 
generate classes with a great number of patents.  
Thus, one of the most prominent step in managing patents is the classification, a particularly 
expensive and time consuming phase, above all due to the increase in the number of filed 
patents and the complexity of the contents; this task is in fact conventionally performed by 
domain experts (Haghighian Roudsari et al., 2022; Krestel et al., 2021). Moreover, patent 
classification is almost always a multi-label classification task, which makes the problem 
even more complicated. Therefore, finding ways to automate this costly and labor-intensive 
task is essential to assist domain experts in managing patent documents, facilitating reliable 
searching, better matching of innovation demand and supply, especially by companies 
(Haghighian Roudsari et al., 2022; Yun and Geum, 2020; Souza et al., 2021; Gomez and 
Moens, 2014). In particular, an invention may be related to different technological areas or 
be cross domain, so a patent may be assigned to different classification labels. Therefore, 
patent classification becomes a multi-label classification problem which is more 
challenging.  

In consideration of the above issues, further research questions that this thesis aimed to 
answer are:  

- RQ2: are the classification taxonomies used in the patent platforms effective in 
classifying the whole landscape of academic patents? 

- RQ3: is it possible to support the user in correctly classifying a patent entered into 
the platforms in order to improve the matchmaking between demand and supply of 
innovation?  
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- RQ4: is it possible to draw up an attempted vocabulary of some technological fields 
from the keywords that emerged from the applied AI-based approaches?  

  

3.2. Intellectual Property Analytics (IPA) 

To answer these research questions, this research work proposes the use of a specific 
workflow in Intellectual Property Analytics (IPA). 
In recent years, Intellectual Property Analytics IPA has emerged as a multidisciplinary 
approach used to gain valuable insight about intellectual property data (Trippe, 2015; 
Aristodemou & Tietze, 2018). 
Intellectual property knowledge databases come in heterogeneous forms (text, data, images, 
colors, and smells), and it is becoming increasingly difficult to analyze, synthesize and 
classify their contents (Trappey et al., 2020a). 
For this purpose, automated approaches, such as natural language processing for data, text 
and graph mining, clustering and neural networks, are increasingly used for IP knowledge 
processing and various tools have been developed for supporting patent analysis experts, 
business managers, and technology offices (Trappey et al., 2009; Lei et al., 2019; Yoon & 
Park, 2007; Rodriguez et al., 2016; Puccetti et al., 2021; Kang et al., 2020; Trappey et al., 
2020b; Song et al., 2022). 
Analyzing patent data using the automated tools to discover the patent intelligence through 
visualization, citation analysis, and other techniques, such as text mining is termed as “patent 
informatics” (Trippe, 2003). These techniques can be broadly classified into text mining 
techniques and visualization techniques and involve three steps: in the first stage, patent 
documents are retrieved from patent databases; next, the patent documents are transformed 
into structured data using text mining techniques. In the third step, working on the structured 
data, big data learning approaches, such as classification, regression and clustering, etc., are 
used for deriving logical conclusions, such as patent novelty detection and patent quality 
identification, trend analysis and technology forecasting, R&D planning management, etc 
(Abbas et al., 2014). Figure 8 shows the generic workflow of patent analysis. 
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Figure 8: workflow of patent analysis 
Several analytical methods have been used for the analysis of intellectual property data and, 
in particular, patents (Abbas et al., 2014; Trippe, 2015). 
Abbas et al. (Abbas et al., 2014) provide a comprehensive literature review of patent analysis 
techniques, in which they distinguish between text mining and visualization approaches and 
applicability to structured and unstructured data (Bonino et al., 2010). 
Aristodemou and Tietze (2018) summarize in their review the main methods of intellectual 
property analysis in the literature (Table 1).  

Table 1: the main methods of intellectual property analysis in the literature (Aristodemou 
and Tietze, 2018) 

Approach Method 

Artificial Neural 
Networks 

Evolutionary sigmoidal unit, 

Evolutionalry product unit 

Extension theory 

Extreme learning machine (ELM) 

Growing cell structure, paired with Girvan-
Newman 



 

 

 38 

clustering algorithm 

Restricted Boltzmann machines 

Clustering K-means (and derivations) 

Deep Learning (DL) Deep Belief Networks (DBN) 

Ensemble 

Bootstrapping 

Random Forest 

Stacking 

Decision tree Classification and Regression Tree (CART) 

Dimensionality Reduction 

Linear Discriminant Analysis (LDA) 

Multi-dimensional scaling (MDS) 

Principal Component Analysis (PCA) 

Quadratic Discriminant Analysis (QDA) 

Singular Value Decomposition (SVD) 

Regression 
Linear 

Logistic 

Statistical and 
probabilistic modelling 

Conditional random fields (CRF) 

Latent Dirichlet Allocation (LDA) 

Naive Bayes 

Hidden Markov Model (HMM) 

Support Vector Networks 
(SVN) 

Support Vector Clustering (SVC) 

Support Vector Machine (SVM) 

Semantic Support Vector Machine (SVM) 

Text mining approaches 
Dictionary-based approach 

Natural Language Processing (NLP) 
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Rule-based approach 

Semantic based ontology  

In this scenario we focus attention on the following methods for providing answer to the 
research questions defined:  

1. Natural Language Processing and clustering techniques are used to improve the 
taxonomy-based classification - RQ2; 

2. Regression is used to build a multi-label classification system - RQ3; 
3. A complex network analysis on the most frequent words is used in order to 

improve the keywords-based classifications - RQ4. 

3.3. NLP and ML for clustering and regression 

In recent years, artificial intelligence (AI) and machine learning (ML) have seen a new wave 
of publicity fueled by the huge and ever-increasing amount of data and computing power, as 
well as the discovery of better learning algorithms. However, the idea of a computer learning 
some abstract concept from data and applying it to as-yet-unknown situations is not new and 
has been around since at least the 1950s (Rätsch, 2004).  
Artificial intelligence is the ability of a device to mimic intelligent human behavior (Xu et 
al., 2021). AI performs tasks that in the past could only be done by the human mind such as 
thinking, reasoning, learning from experience, and especially making decisions. 
AI can be defined as the science that develops the architecture necessary for machines to 
function like the human brain and related neural networks (Sheikh et al., 2023). It is a 
computer system that attempts to simulate biological neural networks. The ultimate goal of 
AI is to create computers with reasoning abilities similar (if not equal) to humans. 
Machine learning is the algorithm that allows intelligent machines to improve with time, just 
as it does with the human brain. Without advanced learning, in fact, it would not be possible 
to put artificial intelligence "in motion" (Jyothi and Khare, 2023). 
AI is a field focused on automating intellectual tasks normally performed by humans, and 
machine learning and deep learning (DL) are specific methods to achieve this goal. 
Figure 9 shows the relationship among AI, ML, DL and NLP: 
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Figure 9: relationship among AI, ML, DL e NLP 

 

3.3.1 NLP 

Natural Language Processing is the field of AI that focuses on language. NLP is defined as 
“the ability of systems to analyze, understand, and generate human language, including 
speech and text” (Panesar, 2019).  
NLP is the set of methods for “making human language accessible to computers”. NLP is 
embedded in our daily lives: automatic machine translation on the web and social media, text 
classification in our email inboxes; dialog system and so on (Eisenstein, 2019). 
NLP is an interdisciplinary field of research, begun in the 1950s, that embraces computer 
science, artificial intelligence, and linguistics (Nadkarni, 2011), that deals with the 
interaction between computers and human language, specifically on how to program 
computers to process and analyze large amounts of natural language data. The goal is to 
make technology capable of "understanding" the content of documents and their contextual 
nuances, so that it can then accurately extract information and ideas contained in documents, 
as well as classify and categorize them. Its aim is to develop algorithms capable of analyzing, 
representing, and then "understanding" natural language, written or spoken, in a manner 
similar to or even better performing than humans. Such "understanding" is determined by 
understanding, and then being able to use, language at various granularities, from words, in 
relation to their meaning and appropriateness of use with respect to a context, to grammar 
and the rules of structuring both sentences from words and paragraphs and pages from 
sentences. 
Language processing challenges often involve speech recognition, natural language 
understanding, and natural language generation. 
In more detail, firstly, NLP provides solutions for analyzing the syntactic structure of the 
text, associating individual words with their respective morphological categories (e.g., noun, 
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verb, adjective), identifying entities and classifying them into predefined categories (e.g., 
person, date, place), extracting syntactic dependencies (e.g., subjects and complements) and 
semantic relations (e.g., hyperonymy, meronymy). Secondly, it provides insight into the 
semantics of the text, identifying the meaning of words, also related to context and usage 
patterns (e.g., irony, sarcasm, sentiment, mood), classifying it into predefined categories 
(e.g., sports, geography, medicine) or summarizing its content. 
This process is made particularly difficult and complex because of the inherent ambiguity 
characteristics of human language. For this reason, the processing is broken down into 
different stages, however similar to those that can be encountered in the processing of a 
programming language (see Figure 10) (Indurkhya and Damerau, 2010): 

· lexical analysis: decomposition of a linguistic expression into tokens (in 
this case words); 

· grammatical analysis: association of parts of speech with each word in the 
text; 

· syntactic analysis: arrangement of tokens into a syntactic structure; 
· semantic analysis: assigning meaning (semantics) to the syntactic 

structure and, consequently, to the linguistic expression. 
In semantic analysis, the automatic procedure that assigns a meaning from among several 
possible meanings to the linguistic expression is called disambiguation (Indurkhya and 
Damerau, 2010). 

Figure 10: phases of processing of a programming language 
 NLP is useful in the following tasks: 

- The retrieval of structured and unstructured data in a dataset; 
- Social media monitoring; 
- Interpretation of natural language from humans as in virtual assistants or speech 

recognition; 
- Ability to analyze and interpret a text to get a sense of feeling and mood; 
- Image to text recognition; 
- Topic modelling; 
- Understanding sentiment from social media; 
- Etc. (Panesar, 2019). 

Despite convincing results in different applications, for example with search engines and in 
knowledge mining, the need to further improve the automatic comprehension capabilities of 
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natural language content, reaching human-like levels, is, still, an open challenge that the 
research world is working on. 
NLP has a toolkit of text processing procedures including a range of data mining methods 
that can be used for model development (Panesar, 2019). The main steps of NLP are 
performed in the following order: 

· Tokenization. 
· Stop-words removal. 
· Stemming. 

In the Tokenization phase, texts were subdivided into single words (also called “tokens”). A 
tokenizer breaks unstructured data and natural language text into chunks of information that 
can be viewed as discrete elements. The occurrences of tokens in a document can be used 
directly as a vector representing that document. This step is then able to transform an 
unstructured string (text document) into a numeric data structure that can be used directly by 
a computer to trigger useful actions and responses or instead suitable for machine 
learning.  Tokenization is used to separate sentences, words, characters, or subwords. When 
the text is splitted into sentences, we talk about sentence tokenization. 
Regarding tokenization of words, it is also important to consider: 

· Bigrams: Tokens consist of two consecutive words, known as bigrams. 
· Trigrams: Tokens consist of three consecutive words, known as trigrams. 
· Ngrams: Tokens consist of an 'N' number of consecutive words, known as ngrams. 

In the second step the noise from the data was removed. In the Stop-words removal phase all 
the useless tokens (such as articles, prepositions, conjunctions, punctuation, numbers etc.) 
were removed. Thus, some ubiquitous words, which seem of little value for analysis purposes 
but increase the dimensionality of the feature set, are excluded completely from the 
vocabulary as part of the stopword removal process. Stopwords refer to the most common 
words in a language (such as "the," "a," "in") that aid in sentence formation, but these words 
provide less or no meaning in language processing.  
The removal of these words occurs essentially for two reasons:  

· Irrelevance: It allows only content-bearing words to be analyzed. Stopwords, also 
called empty words because they generally do not have much meaning, introduce 
noise into the analysis/modeling process. 

· Dimensionality: Removing stopwords allows tokens in documents to be 
significantly reduced, thus decreasing the size of features. 

NLTK library consists of a list of words that are considered stopwords for the English 
language. Some examples are: [i, me, my, myself, we, our, ours, ourselves, you, you’re, 
you’ve, you’ll, you’d, your, yours, yourself, yourselves, he, most, other, some, such, no, nor, 
not, only, own, same, so, then, too, very, s, t, can, will, just, don, don’t, should, should’ve, 
now, d, ll, m, o, re, ve, y, ain, aren’t, could, couldn’t, didn’t, didn’t]. But not only the list 
provided by the library was used as stopwords, as they were chosen wisely based on our 
patent text. 
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In the Stemming phase, the remaining words were “stemmed” so that only the root-words 
were kept; stemming is a normalization technique in which words are stemmed or reduced 
to their basic root/form to remove redundancy. A computer program that reduces words can 
be called a stemmer. A stemmer reduces words such as 'programmer', 'programming', 
'program' to 'program'; ‘fished’ and ‘fishing’ were transformed into their common root-word 
“fish” (Panesar, 2019). 

In particular, the pre-processing phase in patent analysis is useful to extract the information 
from structured and unstructured data contained into the patent documents. In other words, 
NLP is used to transform technological information into simple linguistic structures by 
extracting grammatical structures from text data and creating structural relationships between 
components (Abbas et al., 2014; Masiakowski and Wang, 2013). The text mining techniques 
help in this task because it is a knowledge-based process using analytical tools in order to 
derive meaningful information from natural language text (Abbas et al., 2014). The most 
widely used text mining techniques in the literature for patent analysis are mainly based on 
NLP approaches, property function-based approaches, rule-based approaches, neural 
network-based approaches and semantic-based approaches (Park et al., 2013; Abbas et al., 
2014). 

3.3.2 ML 

Machine learning algorithms are designed to learn patterns and relationships from data, and 
then use that knowledge to make informed decisions or predictions. 
The fundamental concept behind machine learning is to build mathematical models that can 
automatically learn and improve from experience. These models are trained on labeled data, 
which consists of input examples along with their corresponding correct output or target 
values. During the training process, the machine learning algorithm analyzes the data, 
identifies patterns, and adjusts its internal parameters to optimize its performance in making 
predictions or decisions (Smola, 2008; Alpaydin, 2020). 
In ML, there are four used learning methods, each useful for solving different tasks: 
supervised, unsupervised, semisupervised, and reinforcement learning - see Figure 11 (Choi 
et al., 2020; James et al., 2013; Hastie et al., 2009; Badillo et al., 2020). 
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Figure 11: four used learning methods in ML 
 
Clustering can be considered the most important unsupervised learning problem. 
Clustering is a common technique for statistical data analysis, which is used in many fields, 
including machine learning, data mining, pattern recognition (Madhulatha, 2012). 
Clustering consists of a set of methods for grouping objects into homogeneous classes. A 
cluster is a set of objects that have similarities with each other but, conversely, have 
dissimilarities with objects in other clusters. The input of a clustering algorithm is a sample 
of items, while the output is given by a number of clusters into which the items in the sample 
are divided according to a measure of similarity. Clustering algorithms also provide as output 
a description of the characteristics of each cluster, which is crucial for then making strategic 
decisions about actions to be taken toward these clusters (targeted marketing, ad-hoc 
promotions, creation of new products/services) (Badillo et al., 2020; Alpaydin, 2020). 
Cluster analysis is used for numerous applications: 

- Market research 
- Pattern recognition 
- Clustering of customers based on buying behavior (market segmentation) 
- Product positioning 
- Social network analysis, for recognition of user communities 
- Identification of outliers. 

Data clustering algorithms can be of two types: hierarchical or partitional. Hierarchical 
algorithms find successive clusters using previously established clusters, while partitional 
algorithms determine all clusters at one moment in time. Hierarchical algorithms can be 
agglomerative (bottom-up) or divisive (top-down). Agglomerative algorithms start with each 
element as a separate cluster and join them into successively larger clusters. Divisive 
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algorithms start with the entire set and proceed to divide it into smaller clusters ((Madhulatha, 
2012; Milligan and Cooper, 1987). 
The regression is one of the most important supervised machine learning techniques. 
The supervised regression methodologies lead to numerical representation of output 
variables in order to predict a number. Regression is mainly used for market forecasting, 
growth prediction, and life expectancy calculation (Chang, 2020). 
The linear regression delineates the strength of the relationship between two continuous 
variables. The method for fitting a regression line in linear regression is the method of least 
squares with a correlation coefficient r. This regression is named “simple” when there is a 
single input variable and “multiple” when there are multiple input variables. 
The logistic regression is the adaptation of the aforementioned linear regression to a binary 
classification (via a logistic function to yeld maximum likelihood) (Chang, 2020).   
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CHAPTER 4. The experimental fields 

4.1. Knowledge Share 

In the framework of the online patent platforms born in order to enhance the transfer and 
exploitation of intellectual property, in the Italian landscape, in order to overcome the 
difficulties that many Italian universities face in effectively promoting their research results 
and their IP assets, the Knowledge-Share platform was developed as a joint project involving 
Politecnico di Torino, the Italian Patent and Trademark Office at Ministry of Enterprises and 
Made in Italy and Netval (the Italian Network for the Valorization of Public Research). KS 
is a platform designed for Italian Universities, Research Centers (PROs), Scientific Institute 
for Research, Hospitalization and Healthcare (IRCCS) to showcase their patented 
technologies and spin-off projects seeking commercialization opportunities, and for 
businesses to find solutions and expertise to overcome R&D&I challenges (Technology 
Transfer System Handbook, 2019). It is specifically aimed to “translate” the contents of 
academic patented inventions into a self-speaking language which anybody can understand 
(the so called “patent marketing annex”), thus obtaining three important results: i) to generate 
a real social and economic impact at national level, in accordance with the objectives of the 
Third Mission; ii) to provide a tangible support to (not only) Italian businesses to accelerate 
their innovation processes; iii) to drive economic return for Universities and PROs to be re-
invested in new technology transfer activities within the public research system. 
Particularly the platform’s key objectives are to: 

· become the touchpoint between corporations, SMEs and public research; 
· create a national standard to foster the exploitation of intellectual property; 
· create an innovation network for technological excellence at an international 

level; 
· provide industry scouting teams with an easy and effective way to tap into the 

Italian research landscape; 
· provide a service for technology transfer offices (market intelligence); 
· promote and foster events and initiatives related to innovation and exploitation of 

research; 
· generate spin-offs and innovative technology projects. 

Existing initiatives/platforms that are able to create matchmaking between supply and 
demand are classically open innovation platforms or marketplace of patents/technologies.  
Classically existing traditional open innovation platforms: 

- gather challenges from companies; 
- find and allow "solvers" to propose their own solutions; 
- solvers may be companies, start-ups and physical people (including researchers). 

Their main pain results in poor scalability. 
The patent or technology marketplaces offer paid or free solutions: paid services provide 
various quality and value-added solutions, such as "edited" content for more effective and 
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"user friendly" representation, while free offerings are characterized by low value-added 
offerings, often simply aggregation of patent content from public databases with little/no 
rework and quality control on content. Their main pain is "value for money" (high cost or 
low interest offerings). 
Among the existing initiatives, KS shows some critical success factors: 

- the "guarantee" of updating and feeding content; 
- the content quality assurance process (total quality approach); 
- the simplicity of language and description of patented technology; 
- the gratuitousness of all services for both technology providers and technology 

seekers; 
- the presence of an established community in Italy;  
- the organization of events with synergistic function to the promotion actions; 
- institutional collaboration and synergy with other initiatives launched by Ministries 

and other stakeholders at national and international level.  
Knowledge Share was recognized as best practice by the European Union - “Promoting IP 
valorization through the IP platform – Knowledge Share run by the national network 
NETVAL” and was chosen as one of 30 case studies presented in 'How did COVID-19 shape 
co-creation', the report published by the OECD on the crucial role of co-creation during the 
COVID-19 pandemic emergency. Industry, research, government and civil society worked 
together to reactively and prolifically initiate support for innovation and technology transfer 
(De Silva et al., 2022). 
The KS database we use as an experimental field in this research work includes patents 
registered from 12/28/1999 to 8/16/2021, consisting of 1694 patents. These documents are 
uploaded to the platform by 89 Italian Research Centers, both public and private 
(Universities, Research Centers, Scientific Institute for Research, Hospitalization and 
Healthcare, etc). The yearly number of patents is highly variable, depending on the filing 
date and the consequent policy about the protection of intellectual property at national and 
international level. This platform can be easily queried by users aiming at obtaining an 
overview on the state-of-the-art about particular technologies and ground-breaking startups 
in Italy. On one hand, this service lowers firms and investors’ entry barriers for innovations 
in fundamental and applied science, letting them overcome R&D&I challenges more easily 
(Technology Transfer System Handbook, 2019). On the other hand, this platform helps 
scientists and startups in achieving visibility, expressing their innovative potential and 
gaining interests from private and public investors. 
One or more labels can be assigned to each patent; these labels represent the following ten 
technological domains: 

· Aerospace and aviation;  
· Agrifood; 
· Architecture and design;  
· Chemistry, Physics, New materials and Workflows (Basic Science);  
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· Energy and Renewables (Green Energy);  
· Environment and Constructions (Environment);  
· Health and Biomedical (Biomed);  
· Informatics, Electronics and Communication System (Electronics);  
· Manufacturing and Packaging (Packaging);  
· Transports. 

The website allows the search for patents according to several criteria: the name, the 
organization it comes from (i.e. the patent owner), the area of application, the events at which 
they were shown and free full text research. 
The Figure 12 shows the platform homepage and the possibility to search patents starting 
from a keyword, the name of the Institution, the technological area. 

 

Figure 12: Knowledgeshare home page 
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For each patent, described in an informative and non-technical language, the technical 
features, the applications, uses and characteristics, and the benefits deriving from the 
adoption of the technology are illustrated. Furthermore, information about the inventors, the 
priority number, the priority date, the license, the commercial rights can be found, and it is 
possible to download a “marketing annex”, i.e., a sheet that contains the basic information 
on the patent, conceived to be a functional and brief communication tool to share and 
circulate outside the platform (Figure 13). 

 

Figure 13: Marketing annex of each patent uploaded on Knowledge-Share platform 

The process of uploading a new patent to the platform starts from the individual university, 
which invites inventors to fill out, with the support of technology transfer offices, the 
marketing annex in two languages (Italian and English), with the following logic: 
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- Describe what is the technical problem underlying the invention. Generally, describe 
the technology, its main functionalities, and what is the purpose for which it was 
designed and patented. 

- Highlight what the main limitations of current technologies are: give immediate 
evidence to the reader of issues they are sensitive to and index the content to be easily 
found in search engines. 

- Emphasize how the technology solves these limitations, creating value for the user: 
make the proposed solution clear and find a match with the search of the average user 
who, tends to be looking for a solution to a problem. 

- Make pointed references to Possible Applications and Benefits: often a user's search 
may start with a specific application specific or a topic. These fields must represent 
the most suitable match with respect to the user's search habits. 

- Choose two very explanatory and "talking" images of the patented technology that 
can easily capture the user's attention. 

Currently, there are more than 1520 registered users on the KS platform, including 
companies, investors, banks, stakeholders and so on, which make KS the largest patent 
platform in Italy, the most accessed platform for patent investigation and technological 
transfer in Italy. In recent years, more than 250 contacts have been initiated between 
universities and companies and some of them have already led to signed contracts and 
multiple forms of collaborations (co-development agreement, new research agreement 
leveraging on the same know-how of a particular invention, license or option agreements, 
etc.). 

KS data is not equally distributed among labels, a well-known phenomenon in patent analysis 
studies. In particular, the most populated area is “Health and Biomedical” which accounts 
for over 30% of the entire database, while the least one is “Aerospace and aviation” with less 
than 3%, see Figure 14. 

 

Figure 14: KS percentage distribution of patents across the different technological domains 
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KS was used as the experimental field during the research work. Its dataset was firstly pre-
processed in order to be used for the experimentation. Natural Language Processing (NLP) 
techniques have been applied on the “marketing annex” of the 1694 patents, and in particular 
the sections “introduction”, “technical features” and “application” were processed. These 
fields include all the relevant information about the patent without substantial redundancies. 

4.2. Healthcare 4.0  

According to the World Health Organization (WHO) in its Digital Health Strategy (2020-
2025), digital health is described as the application of digital technologies and data to 
enhance health outcomes, enhance the effectiveness of health systems, and empower 
individuals in making informed decisions regarding their health and overall well-being. 
Additionally, it underscores fundamental principles including transparency, accessibility, 
scalability, reproducibility, interoperability, privacy, security, and confidentiality. 
“Artificial intelligence has the potential to transform how care is delivered. It can support 
improvements in care outcomes, patient experience and access to healthcare services. 
It can increase productivity and the efficiency of care delivery and allow healthcare systems 
to provide more and better care to more people. 
AI can help improve the experience of healthcare practitioners, enabling them to spend more 
time in direct patient care and reducing burnout. Finally, it can support the faster delivery 
of care, mainly by accelerating diagnosis time, and help healthcare systems manage 
population health more proactively, allocating resources to where they can have the largest 
impact” (McKinsey & Company Report, 2020). 

AI is already making an impact in health care in six major areas, illustrated in Figure 15 
(McKinsey & Company Report, 2020): 

 

Figure 15: impact areas of AI 
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The success of this paradigm is reshaping modern healthcare, with promising technological, 
economic, and social prospects: IoT is arguably the main enabler for distributed healthcare 
applications, thus giving a significant contribute to the overall decrease of healthcare costs 
while increasing the health outcomes, although behavioral changes of the stakeholders in the 
system are needed (Couturier et al., 2012). 
Healthcare 4.0 (HC4.0) is a recently emerged term derived from Industry 4.0 (Sannino et al., 
2018; Thuemmler and Bai, 2017), used to describe the progressive emergence of typical 
Industry 4.0 technologies, such as Internet of Things (IoT), Industrial IoT (IIoT), cognitive 
computing, artificial intelligence, cloud computing, fog computing, and edge computing, 
applied to healthcare domain (Ayer et al., 2019). In the context of this new revolution, Cyber-
Physical Systems (CPS) are shaping digital health systems involving products, technologies, 
services, and businesses (Yang et al., 2020; Wan et al., 2018). HC4.0 must enable stepwise 
virtualization to support the near real-time personalization of healthcare for patients, 
workers, and formal and informal janitors. This personalization of health care requires the 
substantial use of CPS, cloud computing, extended specialized IoT, Internet of Everything 
(IoE), which includes devices, services, people, and 5G communication networks (Monteiro 
et al., 2018). 
Virtualization makes it possible to inspect small spatiotemporal windows of the real world 
in real time and, as a result, enables the theragnostics (Needham and Glasby, 2015; Jeelani 
et al., 2014) in personalized and precise medicine (Monteiro et al., 2018).  
Healthcare has emerged as one of the most interesting areas for the application of IoT (Islam 
et al., 2015; Botta et al., 2016). The IoT is probably the main enabler for distributed 
healthcare applications (Couturier et al., 2012) and is therefore helping to reshape modern 
healthcare, with hopeful technological, economic and social perspectives; it is thus 
contributing significantly to the overall reduction of healthcare costs and the increase of 
health outcomes, if combined, however, with necessary behavioural changes of system actors 
(Couturier et al., 2012; Osmani et al., 2008; Aceto et al., 2020). 
Market trends and scientific literature testify to the role of healthcare as a driver of the main 
I4.0 pillars. The IoT is being exploited for remote monitoring in all its facets, thus enabling 
the implementation of healthcare in various contexts, ranging from long-term elderly care 
and home surveillance to acute healthcare rehabilitation systems. The consequent production 
of large volumes of data, and thus high-speed acquisition, discovery and analysis, requires 
next-generation big-data technologies and architectures to extract value from them (need to 
move to cloud architectures) (Costa, 2014; Aceto et al., 2020). 
Globally, health care systems are facing multiple challenges: increasing burden of disease, 
multimorbidity and disability due to aging and epidemiological transition, increasing demand 
for health care services, higher societal expectations and rising health care expenditures 
(Atun, 2015), as well as inefficiency and low productivity (Panch et al., 2018; Kocher and 
Sahni, 2011). 
A radical transformation of health systems is essential to surmount these challenges and 
reach universal health coverage (UHC) by 2030. Machine learning, the most tangible 
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manifestation of artificial intelligence and the newest growth area of digital technology, 
promises to achieve more with less. It could be the enabler of this transformation (Jones et 
al., 2012; Panch et al., 2018).  
In recent years, health care costs have been rising constantly around the world. According to 
the World Health Organization (WHO) (2019), spending on health is growing faster than the 
rest of the global economy, accounting for 10 percent of the world's gross domestic product. 
In countries with developing economies, this upward trend is even more critical, with health 
spending growing at an average of 6 percent per year, compared to 4 percent in countries 
with developed economies (Tortorella et al., 2022). 
The increase in health spending in developing economies can be linked to several reasons 
and represents a combination of unstoppable forces (McKinsey & Company Report, 2020): 
- the increasing longevity of the population: 65 percent of the world's population aged 60 or 
older currently resides in developing countries; this percentage is expected to rise to 79 
percent by 2050 (United Nations) (Tortorella et al., 2022); 
- increase in chronic diseases, such as diabetes, heart disease, and neurological disorders, 
which drive up health care costs (Peltzer et al., 2014) and may be partly associated with 
lifestyle (Rtveladze et al., 2013) and living conditions (Arora et al., 2019); 
- increased utilization of medical services and related prices: increased health care spending 
is often accompanied by lower levels of efficiency and productivity of health care systems 
(Visconti et al., 2017; Tortorella et al., 2022). 
For these reasons, healthcare organizations are recapping new solutions and management 
approaches for the improvement of operational effectiveness and the reduction of costs 
(Tortorella et al., 2017; Tortorella et al., 2022). 
Health systems also need a larger workforce, but although the global economy may create 
40 million new health care jobs by 2030, a shortage of 9.9 million doctors, nurses and 
midwives is projected globally over the same period. So, there is a need not only to attract, 
train and retain more health care professionals, but also ensure that their time is used where 
it has added value, namely to care for patients (McKinsey & Company Report, 2020).  
HC4.0 represents a continuous but disruptive process of transforming the entire healthcare 
value chain, ranging from drug and medical equipment manufacturing, hospital care, out-of-
hospital care, healthcare logistics and healthy living environment, to financial and social 
systems. 
As technology has advanced, accelerated, and converged, massive new sources of data have 
emerged, ranging from wearable devices to personal genomics, to information contained in 
our electronic health records, including a wide range of "real world" data that increasingly 
comes from beyond the traditional four hospital walls. The way and place we obtain, analyze, 
and use these data, along with the growing capabilities of artificial intelligence and machine 
learning, have the potential to drastically shift the practice of medicine from a fundamentally 
reactive system of "patient care" based on intermittent data historically collected only in the 
clinical setting, to a continuous, proactive, personalized, information-rich, and increasingly 
crowd-sourced and truly "health care"- centered system (Chang, 2020). 
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The final aim is the so called “P4 Medicine” (Sobradillo et al., 2011), i.e. predictive, 
preventive, personalized and participatory, by means of the radical change in medicine 
enabled by these I4.0 new technologies (Aceto et al., 2020). 
The final goal is: Healthcare-as-a-Service mentality, understood in terms of offering 
healthcare services to patients, and testing, diagnostic and communication services to 
healthcare professionals. Healthcare professionals are able to provide front-office and remote 
consulting services to patients, thus creating a high impact in terms of time, transport and 
comfort for patients and being able to cover a much larger population at a fraction of the cost 
compared to in-person activities, resulting in an improved quality of life for patients (and 
some categories of professionals) and a competitive advantage for private-sector providers 
(Aceto et al., 2020). 
Parallel to the exponential growth of enabling technologies, patent production has grown, 
reflecting a convergence of the three main technologies: digital communication, medical 
technology, and computer technology (EPO, 2022). The rise of HC4.0 goes hand in hand 
with advances in AI, which have reshaped the healthcare sector. Between 2017 and 2021, 
there was more private investment in AI in the medical and healthcare sectors than any other 
globally. Contextually, the great growth in computer processing capacity has helped reduce 
the cost and time of AI training. This has facilitated the deployment of machine learning and 
image data processing in many sectors, helping to gather new insights from big data. This 
has resulted in a sharp increase in patent activity related to the use of AI, especially in 
diagnostic technologies, but also in areas such as digital surgery and novel therapies (EPO, 
2022). 
In the past ten years, the Food and Drug Administration (FDA) has evaluated and approved 
an increasing array of medical devices that incorporate machine learning techniques. These 
devices have been legally marketed through various pathways, covering a wide range of 
medical specialties. The FDA anticipates that this trend will persist and expand further in the 
future. 

Italy lands in 11th place in the Patent Index 2022-the annual global ranking compiled by 
Epo-with +2.5 percent of new patents, just a whisker behind Sweden, tenth with 2.6 percent, 
and the UK, ninth with 2.9 percent. In first place in the ranking of international patents is 
confirmed by the United States with 25 percent, out of a total of 193,460 applications filed. 
Italy, on the other hand, is fifth among the 27 countries of the European Union (EPO, 2023). 
For the purposes of this thesis, it is important to focus on patent production by Italian 
universities and research centers, and the PATIRIS platform helps to have a permanent 
observatory of patenting by universities and public research institutes in Italy (PATIRIS). 
It is also interesting to go and look at the main technological areas of Italy's patent assets, 
classified according to the IPC - International Patent Classification - which is based on an 
international agreement between 52 countries and 4 international organizations. The 
hierarchical system of patent document classification is operationally managed by WIPO 
(World Intellectual Property Organization) and is based on a taxonomy made of technology 
classes and subclasses. 
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The chart, in Figure 16, takes into account all patent families of Italian institutions by 
constructing a ranking of the most highly patented technology areas (according to IPC) 
(PATIRIS). The first class in the ranking is A61 - medical or veterinary science; hygiene – 
which included medical technologies. 

 

Figure 16: Ranking of the top 20 technology areas covered by the patent families of Italian 
research institutions. 

The next chart takes into account all patent families of Italian institutions by constructing a 
ranking of the technology areas that have been most heavily patented over the past ten years. 

Figure 17: Ranking of the top 20 technology areas covered by the patent families of Italian 
research institutions for the last ten years. 
 
It can be seen that 6 out of 20 classes are subclasses of A61: 

- the first A61K is: PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET 
PURPOSES (devices or methods specially adapted for bringing pharmaceutical 
products into particular physical or administering forms; chemical aspects of, or use 
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of materials for deodorisation of air, for disinfection or sterilisation, or for bandages, 
dressings, absorbent pads or surgical articles; soap compositions); 

- the second one is A61B: DIAGNOSIS; SURGERY; IDENTIFICATION – it includes 
medicinal methods (non-surgical), instruments for psycho-physical tests, medical 
instruments, surgical instruments, devices or methods, other instruments, implements 
or accessories for surgery or diagnosis; 

- the third one (A61L) is methods or apparatus for sterilising materials or objects in 
general; disinfection, sterilisation, or deodorisation of air; chemical aspects of 
bandages, dressings, absorbent pads, or surgical articles; materials for bandages, 
dressings, absorbent pads, or surgical articles; 

- the fourth is A61F: filters implantable into blood vessels; prostheses; devices 
providing patency to, or preventing collapsing of, tubular structures of the body, e.g. 
stents; orthopaedic, nursing or contraceptive devices; fomentation; treatment or 
protection of eyes or ears; bandages, dressings or absorbent pads; first-aid kits; 

- the fifth (A61H) is physical therapy apparatus, e.g. devices for locating or stimulating 
reflex points in the body; artificial respiration; massage; bathing devices for special 
therapeutic or hygienic purposes or specific parts of the body; 

- the last one, introduced last years ago, is A61M: devices for introducing media into, 
or onto, the body; devices for transducing body media or for taking media from the 
body; devices for producing or ending sleep or stupor; introducing media into or onto 
the bodies of animals; means for inserting tampons ; devices for administering food 
or medicines orally ; containers for collecting, storing or administering blood or 
medical fluids. 

This shows that the patent production of Italian research institutions is also focused on the 
HC4.0 sector. 
In this overall scenario, the effort of this research work focuses on the impactful field of 
healthcare. In synthesis the reasons of this choice are essentially the following: 

- the valorization of research results is even more important in this field where 
the advancement of research and technology can truly create an impact on 
society by improving people's lives, redesigning care services, implementing 
the capacity for emergency management, rapid information analysis, 
widespread archiving and future projection of diseases, increasing the 
monitoring of medication intake, personalization of medicine, home 
rehabilitation, etc; 

- HC4.0 is a multidisciplinary and complex context where the 
knowledge/technology transfer and the creation of networks are especially 
important in order to develop applied research and make it quickly "usable" 
innovation according to continuous open innovation schemes. In particular, 
the involvement of all actors in the innovation chain, which in the health 
sector becomes even more important, represents the emblem of the quadruple 
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helix model where, with stakeholders from the public and private sectors and 
academia, a strong emphasis is placed on citizens and their needs, especially 
in the development of health, social and other related services. This model 
brings greater social benefits and empowers citizens who are not only passive 
consumers of content / services but take on the role of creators of innovation; 

- the healthcare sector has been the first to face the impact of Industry 4.0 
revolution, where the Internet of Things, Cloud and Fog Computing, and Big 
Data technologies are revolutionizing eHealth and its whole ecosystem, also 
considering that Healthcare proved to be among the most attractive areas for 
IoT application, effectively moving eHealth towards HC4.0; 

- due to its multidisciplinary and particularly innovative nature, healthcare 
related patents represent generally a “monster class”, multidisciplinary 
categories containing a significant number of poorly characterized and 
classified patents. Monster categories are thus ineffective, not discriminating, 
and difficult to explore. 
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CHAPTER 5. How the world top universities, evaluated 
according to global university rankings, perform from KT point 
of view 
The research question addressed in this chapter is RQ1: according to global university 
rankings, how do the world's top universities perform from a knowledge transfer point of 
view? In other words, are the rankings currently most used able to characterize universities 
performance from third mission point of view? 
Accordingly, we: 

- identify and analyze three of the best-known global university rankings in 
order to identify the world top universities and, at the same time, evaluate the 
coherence between rankings; 

- search and select a set of specialized KT indicators for evaluating the world 
top universities from the KT point of view; 

- verify if the world top universities, according to the global rankings, continue 
to best perform from KT point of view. 

And after having answered to the RQ, the final goal is to identify the best practices in 
knowledge transfer that can be adopted by universities that want to improve their 
performances. 
 
The contents of this chapter were published on the articles: 

- Demarinis Loiotile, A., De Nicolò, F., Agrimi, A., Bellantuono, L., La Rocca, M., 
Monaco, A., ... & Bellotti, R. (2022). Best Practices in Knowledge Transfer: 
Insights from Top Universities. Sustainability, 14(22), 15427. 

- Bellantuono, L., Monaco, A., Amoroso, N., Aquaro, V., Bardoscia, M., 
Demarinis Loiotile, A., ... & Bellotti, R. (2022). Territorial bias in university 
rankings: a complex network approach. Scientific reports, 12(1), 4995. 

5.1 Proposed methodology  

In order to answer to RQ the methodology described in this section (Figure 18) was defined 
and followed. 
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Figure 18: flowchart of methodology 

The first step was to identify and analyze three of the best-known global university rankings 
in order to extract the world top universities and, at the same time, evaluate the coherence 
between rankings. 
The ranking selected, already described in the previous section, are: the Academic Ranking 
of World Universities (ARWU), the QS World University Rankings® (QSWUR) and the 
Times Higher Education World University Rankings (THEWUR). 
Each ranking has its own specificities; thus, to define “top universities”, we considered the 
union Tk of all three rankings in 2020, so that: 

                                                           
𝑇! = 𝑇!"#$% ∪ 𝑇!

&'$%# ∪ 𝑇!()*$%#  (1) 
 

where TkARWU , TkQSWUR and TkTHEWUR are the top k universities in the rankings ARWU, 
QSWUR and THEWUR. 

The sets T10 and T100 were then determined and furthermore the coherence between rankings 
was tested by using Spearman’s correlation among the top 100 positions in QRWU, QSWUR 
and THEWUR. 
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The second step was to search and select a set of specialized KT indicators for evaluating the 
world top universities from the KT point of view. For this aim the UMR2020 previously 
described was used. Among the 9 UMR2020 indicators the following 5 were selected for 
being used for the T10 and T100 elaboration, this is due to the fact that they had the minimum 
number (less than 8%) of null value: 
1) Co-publications with industrial partners 
2) Patents awarded (absolute numbers) 
3) Patents awarded (size-normalized) 
4) Industry co-patents 
5) Publications cited in patents 
The five indicators were quantified for all universities included in T10 and T100 and a 
composite indicator called Global Performance Indicator KT (GPI KT), obtained as the 
average of the 5 previous indicators, was also defined and used for determining the global 
performance in knowledge transfer for each university. Then a comparison was made 
between the T10 obtained from the global universities ranking and the top performer 
universities in KT included in T100, also by using radar plots for graphically expressing the 
macroscopic differences. 
The goal of this analysis is to verify if the world top universities, according to the global 
rankings, continue to best perform from KT point of view.  
The third step was to investigate the universities included in T100 in order to identify groups 
of similar universities, in terms of KT indicators, through a data-driven approach based on 
the hierarchical clustering. The goal is to understand from the natural aggregation in groups 
the presence of common characteristics capable of explaining the different levels of 
performance in knowledge transfer. Hierarchical clustering algorithms allow to group similar 
items in an unsupervised way (Roux, 2015). Compared with optimization-based clustering 
methods, such as K-means (Ahmed et al., 2020), this particular class of algorithms follows 
an alternative approach that entails the advantages of being deterministic and not requiring 
to fix the number of clusters a priori. An agglomerative hierarchy linkage algorithm was 
used, which starts by considering each point, corresponding to a data vector, as a cluster, and 
proceeds by iteratively merging the closest pairs of clusters, until ending up with one cluster 
that includes all data points. Vicinity of two points and is quantified by their Euclidean 
distance, while the distance between clusters and is evaluated as namely the minimum 
distance between points in the two clusters. The algorithm used allows to obtain 
dendrograms, which can help with the interpretation of the results. 
As last step, we tried to understand how the universities included in T10 perform if compared 
to the others in T100 for each of the 5 UMR2020 indicators. This is in order to understand 
from the KT perspective what are the strengths of those universities that the global rankings 
identify as the best performers. For all the universities in T100 and for each of the 5 UMR 
2020 indicators, the median absolute deviations (MAD) criterion (Robust Statistics, 2009) 
was used in order to compare each university in T10 with the distribution of the remaining 
universities in T100. In details, we computed the scaled MAD factor for each KT indicator as: 
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MAD = 	c · 	median	(|T100 − median(T100)|)	(2)  

where c = -1/(·erfcinv(3/2)); then we determined whether each university in T10 represented 
an outlier for the distribution of items in T100, considering three scaled median absolute 
deviations (MAD) away from the median as the threshold for outlier detection (Leys et al., 
2013; Simmons et al., 2011).  

5.2 Methodology application and results 

In this section the step by step application of the methodology presented in section 5.1 is 
described together with the obtained results.  

5.2.1 First step 

The first step of the methodology is to identify the set T10 and T100.  For k=10 the set T10 

results to be the union of the top ten universities included in each of the selected rankings: 
QRWU, QSWUR and THEWUR (Table 2). Similarly, the T100 was determined, according to 
eq. (1). 

Table 2: The University Ranking: World Top Ten Universities 

  ARWU  QSWUR  THEWUR 

Rank  University Country  University Country  University Country 

1 

 
Harvard 
University US 

 Massachusetts 
Institute of 
Technology 
(MIT) 

US 

 
University of 
Oxford UK 

2 

 
Stanford 
University US 

 
Stanford 
University US 

 California 
Institute of 
Technology 
(CALTECH) 

US 

3  University of 
Cambridge 

UK  Harvard 
University 

US  University of 
Cambridge 

UK 

4 

 Massachusetts 
Institute of 
Technology 
(MIT) 

US 

 
University of 
Oxford 

UK 

 
Stanford 
University 

US 
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Thus T10 = {California Institute of Technology (CALTECH), Columbia University, ETH 
Zurich – Swiss Federal Institute of Technology, Harvard University, Imperial College 
London, Massachusetts Institute of Technology (MIT), Princeton University, Stanford 
University, University College London (UCL), University of California, Berkeley, 
University of Cambridge, University of Chicago, University of Oxford, Yale University} 
included 14 universities. 
The consistency in rankings, indicating how closely they agree with each other, was assessed 
by calculating Spearman's correlation among the top 100 positions in each ranking. 
Spearman's rank correlation coefficient, also known as Spearman's ρ, is a nonparametric 
measure of rank correlation (Van de Wiel and Di Bucchianico, 2001). It helps us determine 
how well we can describe the relationship between two variables using a monotonically 
increasing or decreasing function. The resulting Spearman's correlation coefficients are as 
follows: 0.89 for the correlation between ARWU and QSWUR, 0.91 for ARWU and 
THEWUR, and 0.95 for QSWUR and THEWUR. These high correlation values indicate that 
all the rankings are strongly related to each other, demonstrating a fundamental consistency 
among them. 

5 

 University of 
California, 
Berkeley 

US 

 California 
Institute of 
Technology 
(CALTECH) 

US 

 Massachusetts 
Institute of 
Technology 
(MIT) 

US 

6 

 
Princeton 
University 

US 

 ETH Zurich – 
Swiss Federal 
Institute of 
Technology 

CH 

 
Princeton 
University 

US 

7  Columbia 
University 

US  University of 
Cambridge 

UK  Harvard 
University 

US 

8 

 California 
Institute of 
Technology 
(CALTECH) 

US 

 University 
College 
London (UCL) 

UK 

 
Yale 
University 

US 

9 
 University of 

Oxford UK 
 Imperial 

College 
London 

UK 
 University of 

Chicago US 

10 
 

University of 
Chicago US 

 
University of 
Chicago US 

 Imperial 
College 
London 

UK 
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5.2.2 Second Step 

In the second step we identified a set of specialized KT indicators for evaluating the world 
top universities from the KT point of view. Starting from UMR2020, 5 indicators were 
selected: 
1) Co-publications with industrial partners 
2) Patents awarded (absolute numbers) 
3) Patents awarded (size-normalized) 
4) Industry co-patents 
5) Publications cited in patents. 
The indicators are primarily represented as percentages, with the exceptions of two metrics: 
2) Patents awarded (measured in absolute numbers) and 3) Patents awarded (size-
normalized). These two metrics were converted into percentage scales to ensure 
comparability with the others and enable mathematical operations. Additionally, a composite 
index was introduced, calculated as the arithmetic mean of the five indicators from the 
UMR2020 dataset. This composite index, known as the KT GPI (Knowledge Transfer Global 
Performance Index), can be regarded as an overarching measure of universities' performance 
in knowledge transfer activities. 
Table 3 shows, in descending order, how the universities in T10 perform. 

Table 3: Summary of UMR2020 KT and GPI KT indicators for T10 Universities 

 Co-
publications 
with 
industrial 
partners 

Patents 
awarded 
(absolute 
number) 

Patents 
awarded 
(size-
normalized) 

Industry 
co-
patents 

Publications 
cited in 
patents 

 

GPI KT 

University of 
California, 
Berkeley (UCB) 

7.10% 98.94% 2.00% 10.02% 2.30% 24.07% 

Harvard 
University 

8.00% 66.12% 1.45% 8.26% 3.30% 17.43% 

Massachusetts 
Institute of 
Technology 
(MIT) 

10.50% 57.72% 4.04% 5.86% 4.90% 16.60% 

Standford 
University 

9.40% 40.63% 1.68% 11.13% 2.80% 13.13% 
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California 
Institute of 
Technology 
(CALTECH) 

7.60% 29.42% 10.88% 7.33% 2.10% 11.47% 

ETH Zurich – 
Swiss Federal 
Institute of 
Technology 

8.70% 6.94% 0.29% 38.91% 2.00% 11.37% 

University of 
Cambridge 

8.20% 4.86% 0.22% 25.59% 1.70% 8.11% 

University of 
Chicago 

6.80% 4.89% 0.24% 20.76% 2.00% 6.94% 

Columbia 
University 

7.80% 19.97% 0.54% 4.23% 1.70% 6.85% 

University 
College London 
(UCL) 

7.40% 8.30% 0.18% 14.88% 1.50% 6.45% 

Yale University 6.70% 8.20% 0.51% 11.97% 2.10% 5.90% 

University of 
Oxford 

7.10% 6.38% 0.22% 12.75% 1.80% 5.65% 

Imperial College 
London 

10.20% 4.17% 0.20% 10.95% 1.90% 5.48% 

Princeton 
University 

7.30% 5.88% 0.61% 11.11% 1.20% 5.22% 

 
The top-performing university is the University of California, Berkeley (UCB). Specifically, 
when looking at the first indicator, which measures co-publications with industrial partners, 
the Massachusetts Institute of Technology (MIT) and Imperial College London excel. When 
considering the indicator "Patents awarded as absolute numbers", the University of 
California, Berkeley is the leader, followed by Harvard University. On the other hand, if we 
examine the indicator "Patents awarded (size-normalized)", the top spot goes to the 
California Institute of Technology (CALTECH), followed by MIT. 
For "Industry co-patents" the ETH Zurich - Swiss Federal Institute of Technology ranks first, 
followed by the University of Cambridge. Lastly, in the indicator "Publications cited in 
patents" MIT and Harvard University emerge as the most influential. 
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It is also intriguing to assess how the 14 universities in the T10 group compare to other 
universities. Using equation (1), it is determined that the cardinality of T100 is 151. After 
eliminating entries with missing or null data, the cardinality of T100 becomes 123. For each 
of the universities in T100, the five UMR2020 indicators from Table 3 were computed, along 
with the composite indicator GPI KT. Subsequently, the list was sorted in descending order. 
At this point, it's noteworthy to examine how the universities in T10 are ranked in comparison 
to those in T100 and whether they maintain their high positions. The results are surprising. 
Only two of the universities from T10, namely Berkeley and Harvard, are placed in the top 
14 positions, while the others seem to experience a significant drop in the rankings (see Table 
4). The Massachusetts Institute of Technology (MIT) appears in the 15th position. Table 5 
provides detailed information on the five UMR2020 indicators and the GPI KT for the first 
14 universities included in T100. 

Table 4. Performance of universities in T10 according to GPI KT 

 Position in T10 Position in T100 

according to GPI KT 

University of California, Berkeley 
(UCB) 

1 6 

Harvard University 2 14 

Massachusetts Institute of 
Technology (MIT) 

3 15 

Stanford University 4 26 

California Institute of Technology 
(CALTECH) 

5 30 

ETH Zurich – Swiss Federal 
Institute of Technology 

6 31 

University of Cambridge 7 45 

University of Chicago 8 62 

Columbia University 9 65 

University College London (UCL) 10 71 

Yale University 11 79 
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University of Oxford 12 84 

Imperial College London 13 88 

Princeton University 14 93 

 

Table 5: Best performer universities in T100 according to GPI KT 

 Co-
publications 
with  

industrial  

partners 

Patents 
awarded 
(absolute 
number) 

Patents 
awarded  

(size-
normalized) 

Industry 

 co-
patents 

Publications 
cited in  

patents 

 

GPI KT 

Tsinghua 
University 

5.60% 42.18% 29.09% 82.28% 1.20% 32.07% 

University of 
California, San 
Diego (UCSD) 

10.60% 98.98% 2.34% 10.02% 2.70% 24.93% 

University of 
California, Santa 
Barbara 

8.20% 98.94% 3.30% 10.02% 2.30% 24.55% 

University of 
California, Los 
Angeles (UCLA) 

8.00% 100.00% 1.85% 10.15% 2.50% 24.50% 

Boston 
University 

7.90% 4.46% 100.00% 6.85% 1.80% 24.20% 

University of 
California, 
Berkeley (UCB) 

7.10% 98.94% 2.00% 10.02% 2.30% 24.07% 

University of 
California, Davis 

6.70% 98.94% 2.19% 10.02% 1.70% 23.91% 

The University 
of Tokyo 

8.30% 19.11% 19.36% 70.63% 1.90% 23.86% 
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Seoul National 
University 

8.10% 28.13% 28.27% 46.52% 1.80% 22.56% 

Weizmann 
Institute of 
Science 

4.90% 6.74% 89.68% 5.12% 3.50% 21.99% 

Kyoto 
University 

8.80% 12.93% 17.01% 57.71% 1.80% 19.65% 

Tokyo Institute 
of Technology 
(Tokyo Tech) 

11.10% 7.24% 3.62% 72.17% 1.70% 19.17% 

Tohoku 
University 

10.20% 13.98% 0.69% 68.89% 1.60% 19.07% 

Harvard 
University 

8.00% 66.12% 1.45% 8.26% 3.30% 17.43% 

We can see that the Californian universities and, to a lesser extent the Japanese and some 
Asian ones, stand out in the KT even though they are not among the best if we consider the 
traditional global university rankings. 

 

a)                                                                                               b) 

Figure 19: Radar plot for five UMR knowledge transfer indicators for a) the 14 universities 
in T10 b) the top performer in T100 according to GPI KT 
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The radar plot depicted in Figure 19 illustrates a notable distinction in Knowledge Transfer 
(KT) performance between the universities in the T10 group and the top universities in T100. 
The leading universities in KT exhibit a distinct technological orientation and capability. 

5.2.3 Third step 

In the third phase, an examination is carried out on the universities encompassed within T100. 
The aim is to uncover clusters of universities that exhibit similar patterns in their KT 
indicators through the application of the hierarchical clustering algorithm. This procedure 
results in the creation of four clusters, which are detailed in Table 6. 

Table 6: The clusters obtained on T100 

N. cluster Universities contained into the cluster 

1 

University of California, Santa Barbara 

University of California, Los Angeles (UCLA) 

University of California, Berkeley (UCB) 

 University of California, Davis 

University of California, San Diego (UCSD) 

Harvard University 

KAIST - Korea Advanced Institute of Science &Technology 

 

 

 

 

 

 

 

 

2 

KU Leuven 

University of Toronto 

Boston University 

Weizmann Institute of Science 

 The University of Queensland 

Université Grenoble Alpes 

  The University of New South Wales (UNSW Sydney) 

The University of Melbourne 

University of Copenhagen 

 Aarhus University 



 

 

 69 

The Hong Kong University of Science and Technology 

  Sungkyunkwan University (SKKU) 

The University of Tokyo 

 Korea University 

  Kyoto University 

Seoul National University 

Tsinghua University 

3 
Stanford University 

California Institute of Technology (CALTECH) 

4 Universities in the rest of the world 

In Figure 20 the dendrograms resulted by the analysis are reported. 

 

Figure 20: The dendrograms resulted by the hierarchical clustering on T100 

Among the top 14 universities found within the three identified clusters (excluding the fourth 
cluster, representing the rest of the world), only 4 out of 14, which amounts to 29%, fall into 
this category. Specifically, MIT and ETH are notably absent, as are institutions like Imperial 
College London, Cambridge University, Princeton University, University of Chicago, 
Columbia University, Yale University, University of Oxford, and University College 
London. Of particular interest is the formation of a distinct cluster (cluster n.3) comprising 
Stanford University and CALTECH. Furthermore, the emergence of another cluster (cluster 
n.1), consisting primarily of California-based universities, encompassing 71% of the cluster, 
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along with Harvard University and the Korean KAIST, is a noteworthy observation and 
aligns in part with the findings from section about second step. These clustering results are 
consistent with the rankings presented in Table 5, demonstrating alignment with the GPI KT. 
In fact, the highest-performing institutions are concentrated within clusters n.1 and n.2. The 
presence of California universities in both analyses suggests that the surrounding industrial, 
social, and economic environment can indeed influence the third mission activities of these 
institutions. 

5.2.4 Fourth step 

The objective of the fourth step, guided by the median absolute deviations (MAD) criterion 
as outlined in formula (2), is to assess the performance of universities within the T10 group 
in comparison to those in the broader T100 category across all five UMR2020 indicators. 
Figures 21, 22, 23, 24 and 25 help show the difference between the MAD value of each KT 
indicator for the 14 top universities in T10 and the outlier threshold: a positive difference is 
indicated with a red bar and denotes that the corresponding university is classified as an 
outlier with respect to the distribution of the specific KT indicator of the T100 universities. 
In Figure 21, with respect to the “Co-publication with industrial partners” indicator, 7 (bar 
in red) over 14 universities in T10, result to perform much better than the remaining ones. 
Figure 22, that refer to the indicator named “Patents awarded (absolute numbers)”, point out 
that only 3 universities result to outperform with respect to the remaining ones. Finally, figure 
25 illustrates the result for the “Publications cited in patents” indicator and points out that 
only 4 universities in T10 outperform. The figure 23 and 24 show that there are no 
outperformers universities. 
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Figure 21: Difference between the value of the indicator “Co-publication with industrial 
partners” for the 14 top universities in T10 and the outlier threshold 

 

Figure 22: Difference between the value of the indicator “Patents awarded (absolute 
numbers)” for the 14 top universities in T10 and the outlier threshold 
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Figure 23: Difference between the value of the indicator “Patents awarded (size 
normalized)” for the 14 top universities in T10 and the outlier threshold 

 

Figure 24: Difference between the value of the indicator “Industry co-patents” for the 14 
top universities in T10 and the outlier threshold 
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Figure 25: Difference between the value of the indicator “Publications cited in patents” for 
the 14 top universities in T10 and the outlier threshold 

5.3 Discussion  

The findings obtained are far from straightforward and, in certain instances, quite 
unexpected. The clustering analysis indicates that the top 14 universities globally, as 
determined by global university rankings, do not form an isolated or distinctive group when 
considering knowledge transfer and, more broadly, third mission activities. With the 
exception of Stanford University and CALTECH, which constitute a distinct cluster, and 
Harvard and Stanford presence within the California cluster, the remaining top universities 
do not exhibit a significant deviation from the others when examining the available KT 
indicators. 
The analysis based on the median absolute deviations (MAD) highlights that three indicators 
seem to be particularly effective in assessing universities' performance in KT activities: Co-
publications with industrial partners, Patents awarded (measured in absolute numbers), and 
Publications cited in patents. This discovery is particularly valuable since these aspects have 
received comparatively less attention in previous research (Rossi and Rosli, 2015). The 
significance of these findings should be understood within the context of similar observations 
made in the academic literature from a knowledge transfer perspective. 
Regarding "Co-publications with industrial partners," it is worth noting that in recent years, 
collaborations between academia and industry have seen significant growth. These 
collaborations, which play a pivotal role in research, development, and innovation within the 
framework of the third mission (Piirainen et al., 2016), have taken on diverse forms and 
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generated various outcomes that can sometimes be challenging to quantify (Kohus et al., 
2020). 
Several indicators can be used to measure the outputs of the university-industry 
collaboration, such as patents/intellectual property rights, publications, and learning metrics 
(Perkmann et al., 2011). Among these, the analysis of the co-publications with industrial 
partners is used as an explicit proxy for evaluating university-industry collaboration (Kohus 
et al., 2020;  Tijssen, 2011; Tijssen et al., 2009; Giunta et al., 2016; Levy et al., 2009) and 
for studying the university's entrepreneurial orientation (Tijssen, 2006). Collaborative 
publications between universities and industry, where researchers from both academia and 
business enterprises co-author papers, can play a crucial role in addressing the challenge of 
limited publicly accessible information. This challenge often relates to factors like the 
number of research contracts, the extent and nature of joint industry projects, and the count 
of licenses issued (Yegros-Yegros et al., 2016). Furthermore, some studies have 
demonstrated that these university-industry collaborative publications exert a significantly 
positive influence on universities' outcomes in terms of technology commercialization. This 
impact is observable in various aspects, including increased patenting activity, the 
establishment of spin-off companies, and enhanced technology licensing activities (Wong 
and Singh, 2013). 
Historically, there was a prevailing belief that research publications involving corporate 
collaboration held less significance compared to those involving academic partners. 
However, a global examination utilizing a field-weighted citation impact metric has 
convincingly debunked this notion. In fact, it has been established that publications resulting 
from collaborations with industry partners tend to have a higher citation impact, effectively 
dispelling the "urban myth" that such collaborations receive less respect ("The urban myth 
of less respect for collaborating with industry is busted") (University-industry collaboration, 
2021). 
However, co-publications with industrial partners, as well as other quantitative measures, are 
still a long way from being regarded as perfect measures of university-firm collaboration 
(Yegros-Yegros et al., 2016). Relying solely on the sheer number of publications is an 
insufficient and unreliable method for gauging the effectiveness of university-industry 
collaboration, as emphasized by Seppo and Lilles in 2012. It's important to acknowledge that 
not all research collaborations result in co-publications (Katz and Martin, 1997). Moreover, 
while co-publications with industrial partners do provide a valuable new source of data for 
assessing the interaction between industry and academia, it is crucial to apply this data 
judiciously. Tijssen et al. (2009) recommend using it primarily within non-evaluative, 
multidimensional benchmarking frameworks for the purpose of domestic and international 
comparisons of research universities. This approach is more appropriate than attempting to 
construct traditional university league tables based solely on these metrics. 
About “Patent awarded”, it has always been used as an indicator of invention (Finne et al., 
2009), a valuable estimator of technology development (Huang et al., 2003), an indicator of 
KT outputs or a signal of capability of exploitation and commercialization of research results 
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(Finne et al., 2011). Eurostat reports: “A count of patents is one measure of a country’s 
inventive activity and also shows its capacity to exploit knowledge and translate it into 
potential economic gains” (Archive: Patent statistics). Although patents have grown over 
time and are a tool to create economic profit, there is still a disproportionately small number 
of real cases of technology transfers (Choi et al., 2015). The universities that stand out for 
this indicator are generally small and private, like Harvard and MIT, or very specialized and 
home of numerous Nobel Prize winners as Berkeley. 
Lastly, regarding "Publications cited in patents," it's worth noting that several studies have 
highlighted their pivotal role in establishing a bridge between scientific knowledge and 
technological applications (Hammarfelt, 2021). In essence, they serve as a representation of 
the knowledge exchange between structured scientific information (scientific papers) and 
structured technological knowledge (as reflected in patents), as elucidated by Yamashita in 
2018. As a result, the indicator "Publications cited in patents" is gaining increasing 
prominence as a statistical parameter (as seen in the OECD Science, Technology, and 
Industry Scoreboard 2015). It can be interpreted as a valuable measure of Knowledge 
Transfer (KT) efficiency, essentially reflecting the pipeline from research to practical 
application and market exploitation. 
Excluding Patent awarded (size-normalized) that do not allow the distinction between the 14 
top universities and the others in the rankings, the other indicator, Industry co-patents, 
probably suggests that patenting in partnership between universities and businesses is not the 
most useful and efficient form of collaboration. The indicator "Industry co-patents" tends to 
spark debate and controversy. There are several reasons for which patenting is not considered 
an optimal KT indicator: the poor understanding of the needs of the market by academics, 
their need for publication (publish or perish), very cumbersome academic procedures for 
patenting, unrealistic royalties, the company’s necessity to take high risk and large 
investments to bring the technology to the market (Hamano, 2018). Li et al. stated that the 
co-ownership has a negative impact on patent commercialization: industry-academia patents 
are less probable to be commercialized (Li et al., 2021). Cerulli et al. focalized their attention 
on the impact of academic patents on firm’s performance and they stated that there is a 
positive impact on market power but a lower profitability (Cerulli et al., 2021). Certainly, 
academic scientific research is beneficial to industry because allows it to enlarge their 
capability to explore and develop new solutions and technological fields (Peeters et al., 
2020), however there is still dramatically limited empirical evidence on the impact of 
academic patents on business performance (Cerulli et al., 2021). 

In attempting to address the research question of "how do the world's top universities, as 
assessed by global university rankings, fare in terms of knowledge transfer," through an 
examination of the five knowledge transfer indicators sourced from the UMR2020 dataset 
and synthesizing the outcomes derived from GPI KT calculation, clustering analysis, and 
MAD-based analysis, it is feasible to assert that: 
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- only 4 universities in T10 are clearly present in the identified clusters: Stanford 
University, CALTECH, University of Berkeley (UCB) and Harvard 
University; 

- only 2 university over 14 (MIT, Harvard) result to be stand out with respect 
to the remaining ones if all the three indicators, “co-publications with 
industrial partners”, “patent awarded (as absolute number)” and “publications 
cited in patents”, are jointly used; 

- by combining the two previous results, it is possible to state that only 5 over 
14 universities in T10 (Berkeley, Stanford, MIT, Harvard, CALTECH) exhibit 
a high-level performance (they are included in the first 30 position over the 
123) in KT if compared with the remaining universities in T100; 

- a comprehensive analysis of the findings reveals a lack of a coherent and 
unequivocal interpretation. The third mission and the intricate process of 
knowledge transfer occurring within a region can manifest in diverse ways 
that defy straightforward quantification using simplistic indicators. The 
multifaceted nature and intricacy of knowledge transfer are such that they 
cannot be distilled into a limited set of significant elements, and it's 
conceivable that the quantitative data gathered may require supplementation 
with qualitative and contextual information. 

- it is evident that the most widely recognized global university rankings may 
fall short in adequately capturing the essence of third mission activities. While 
they excel in assessing other university missions, notably teaching and 
research, their effectiveness appears to wane when applied to the realm of 
third mission endeavors. 

To better grasp the key factors contributing to their success and to gain insights into best 
practices for enhancing knowledge transfer performance, we'll provide a brief overview of 
the five universities mentioned, specifically focusing on their technology transfer service 
organization, business relationships, entrepreneurship programs, and broader third mission 
activities. In a broader context, these universities demonstrate a remarkable ability to bridge 
the gap between research outcomes and the market. They effectively motivate businesses and 
stakeholders to engage in collaborative efforts with them. Essentially, as depicted in Figure 
26, they have established organizational structures, methodologies, and approaches that 
enable them to navigate the challenging terrain of the Valley of Death (Hudson and 
Khazragui, 2013; Hockaday, 2020). These universities serve as examples to emulate and 
offer an inspiring repository of best practices that others can adopt. 
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Figure 26: The steps on a bridge in order to cross the Valley of Death: the research towards 
the market (green steps) and the market towards the research (orange steps) 

Harvard University. At Harvard University, the Office of Technology Development (OTD) 
connects innovators with industry partners, giving support to researchers/innovators in the 
advancement of their research through corporate partnerships, collaborations, and accelerator 
programs; the Office helps with the protection of IP to create a clear path forward for 
commercial development, with business development strategies for licensing or for the 
creation of new companies. The Office also provides support for industry partners by offering 
a single point of entry for engaging with Harvard researchers, accelerators, technology 
licensing, and new ventures. In order to bridge development gaps, Harvard University offers 
Accelerator programs that combine funding strategies, technical support, and business 
expertise to help promising innovations make the leap from the lab to the commercial sphere. 
Regarding entrepreneurship, OTD’s Entrepreneurs in Residence (EIRs) engage directly with 
Harvard research groups to help advance technologies toward the launch of a startup. 
Finally, the section “Impact” reports the number of new startup companies with their impact 
on society in terms of education, health care, food and agriculture, energy, sustainability, 
high-tech goods, and much more. 
 
Massachusetts Institute of Technology. The Massachusetts Institute of Technology (MIT), 
one of the most vibrant hubs of innovation and entrepreneurship on Earth, dedicates a large 
part of its web site to the topic “Innovation”. MIT’s TLO (Technology Licensing Office) is 
engaged in the cultivation of an inclusive environment of scientific and entrepreneurial 
excellence and bridges connections from MIT's research community to industry and startups 
by strategically evaluating, protecting, and licensing technology. 
A separate website is dedicated to MIT’s Industrial Liaison Program (ILP) that is “industry’s 
most comprehensive portal to MIT, enabling companies world-wide to harness MIT 
resources to address current challenges and to anticipate future needs”. Nowadays more than 
800 of the world’s leading companies collaborate with MIT researchers and together bring 
knowledge to bear on the world’s great challenges. 
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MIT Corporate Relations, the organizational parent of the ILP at MIT, is dedicated to finding 
connections to MIT faculty, departments, labs, and centers. 
Great emphasis is placed on entrepreneurship with Martin Trust Center for MIT 
Entrepreneurship that seeks to advance knowledge and educate students in innovation-driven 
entrepreneurship by providing proven frameworks, courses, programs, facilities, and 
mentorship, and with the Program “Entrepreneur in Residence (EIR)”, a centerpiece of the 
Trust Center, where accomplished business leaders advise students on the challenges and 
benefits of startup life. MIT Startup Exchange is a program of MIT Corporate Relations that 
actively promotes collaborations and partnerships between MIT-connected startups and 
industry, principally ILP members. 
  
Stanford University. At Stanford University, the Office of Technology Licensing (OTL) 
receives invention disclosures from Stanford faculty, staff and students and evaluates them 
for their commercial possibilities, and when possible, license them to industry. The office 
supports researchers providing numerous guides, for instance the “Inventor’s Guide” or the 
“Researcher’s Guide to Working with Industry”. 
Great relevance is given to the concept of IMPACT; in fact, every year, OTL drafts an annual 
report where the number of issued patents, executed technology licenses, formed startups, 
and the amount of license income generated are reported. 
The office “University Corporate and Foundation Relations'' is a central university office that 
helps to foster relationships between Stanford University, companies and private 
professional foundations. For corporations, there are engagement opportunities to collaborate 
with Stanford University, to connect to and recruit students, and to get executive education. 
In the framework of Professional Education, Stanford University has the “Innovation and 
Entrepreneurship (SI&E) Certificate Program” to learn innovation and entrepreneurship as 
practiced at Stanford and in the Silicon Valley, and the “Stanford Idea-to-Market (I2M) 
course” to learn tools, techniques and real-world expertise to make a business idea a reality. 
 
University of California, Berkeley. The Office of Intellectual Property and Industry 
Research Alliances (IPIRA) provides a "one-stop shop" for industry research partners to 
interact with the campus. IPIRA's mission is to establish and maintain multifaceted 
relationships with private companies, and thereby enhance the research enterprise of 
Berkeley campus. IPIRA has promulgated technology transfer that generated billions of 
dollars in revenue and has created IP policies to promote social impact. Noticeably, the 
“Socially Responsible Licensing Program” serves as the gold standard for universities in the 
public health space. 
About entrepreneurship, UC Berkeley helps students, faculty, researchers, and other 
innovators access a deep, interconnected ecosystem of resources for educating entrepreneurs, 
commercializing research, and advancing startups. The office supports entrepreneurs looking 
for funding, legal services, start-up guidelines, connection with ventures and so on. The 
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section “Berkeley Startups” provides a partial list of companies born out of licensing UC 
Berkeley IP rights. 
 
CALTECH. In the California Institute of Technology, the Office of Technology Transfer 
and Corporate Partnerships (OTTCP) has the mission to drive the transfer of scientific and 
engineering knowledge created by the researchers to “maximize societal impact by 
developing partnerships with industry through the creation of new ventures, collaborations 
with corporations, and transfer of IP while nurturing an entrepreneurial environment” 
(https://innovation.caltech.edu/). The Istitute’s homepage showcases the following sections: 
“Corporate Partnerships” for productive collaborations and long-term partnerships with 
industry partners, in order to accelerate progress towards shared goals; “New Venture 
Creation & Entrepreneurship” illustrating the support to the formation of startup companies 
based on Caltech and JPL technologies by maintaining close relationships in the 
entrepreneurial community; “Patents & Licensing” whose goal is to make the technology 
transfer process and working with industry as easy as possible. 
In a section dedicated to start ups, the program ”Entrepreneurs in Residence” is illustrated, 
i.e., a path to Launching a Venture, the Caltech Funding Sources, the Entrepreneurship 
Resources and so on. 
Section “Impact”, with pay-off “Pushing interdisciplinary boundaries in the service of 
discovery”, described the inventions made by Caltech researchers since its founding. In the 
same page the “Impact Report” and the “CALTECH Impact” report the outsized impact on 
science, technology, and society: its numbers convey the extent of the impact generated by 
research innovations, commercialization activities, and overall output of invention 
disclosures, patents, licenses, and startup companies. OTTCP teams connect companies, 
industry leaders, and other financial partners to Caltech and to the Jet Propulsion Laboratory's 
research communities and help identify the types of strategic partnerships and opportunities 
that can advance business and investment goals. 

 5.4 Conclusion 

This research work proposes a four steps methodology for answering the following research 
question: “how do the world top universities, evaluated according to global university 
rankings, perform from a knowledge transfer point of view?” and, as direct effect, to point 
out the success factors and best practices that can be adopted for improving performances in 
knowledge transfer. 
Starting from the top universities in the most important global universities ranking (ARWU, 
QSWUR and THEWUR), this study delves into their performance from the perspective of 
third mission activities, knowledge transfer, business engagement, and entrepreneurship. To 
accomplish this, a set of specialized Knowledge Transfer (KT) indicators sourced from U-
multirank 2020 was carefully chosen and employed to assess the achievements of these top-
tier universities. The outcomes of this comparative analysis reveal that the prevailing global 



 

 

 80 

university rankings often fall short in adequately assessing knowledge transfer and third 
mission endeavors. In other words, the universities that consistently secure top positions in 
global rankings do not invariably exhibit equally outstanding performance from a third 
mission standpoint. Intriguingly, when evaluated against the specific U-multirank 2020 
knowledge transfer indicators, only three of the highest-ranked universities globally emerge 
as leaders in this domain. Among the top 30 universities excelling in Knowledge Transfer, a 
mere five belong to the elite T10 group of universities. 
The research work, in an attempt to discern potential attributes that distinguish top 
universities concerning KT, investigates the sample through a hierarchical clustering 
algorithm. The results obtained do not show a particular relationship between the clusters 
obtained and the top universities of global university rankings. On the other hand, the 
composition of the clusters is interesting. In some cases, it appears to be based on basis of 
geographical position (such as the presence of numerous Californian universities in the same 
cluster), thus suggesting that there are contextual factors that the purely quantitative analysis 
used by global university rankings fail to grasp or bring out. Finally, the analysis based on 
the MAD indicator helps to identify three indicators that best help assess the performance of 
universities in terms of KT activities: Co-publications with industrial partners, Patents 
awarded (absolute numbers), Publications cited in patents. The work also tries to explain, 
through a targeted bibliographic analysis, why these indicators are interesting and useful for 
interpreting the performances in the KT. 
This research endeavors to contribute a modest yet meaningful advancement in the academic 
exploration of university evaluations in terms of technology transfer and the third mission. 
This evaluation remains a complex task, given the limited tools and indicators currently 
available, as indicated by previous authors (Olcay and Bulu, 2017; Rossi and Rosli, 2015). 
In fact, KT indicators are poorly considered in the most popular global university rankings 
(the QS World University Rankings, the Academic Ranking of World Universities, and The 
Times Higher Education) except for U-multirank (Dip, 2021). 
Several attempts have been made to develop patterns of KT indicators at the European level 
(Campbell et al., 2020; Hockaday, 2020), as illustrated in Chapter 2. Often the difficulty lies 
in being able to measure only what is measurable, i.e. Numerous activities still elude 
measurement and quantification, especially those related to Knowledge Transfer (KT) that 
unfold through unintentional mechanisms (Azagra-Caro et al., 2017). For example, learning, 
contacts, friendship, networks, impact, reputation and publicity are "non-monetary 
currencies" (Hockaday, 2020). In this regard, there is also the scientific debate about the 
measurement of the impact and benefits of the KT activities on society (e.g. the UK REF 
Impact Case Studies). 
On the other hand, the challenge of evaluating universities from the third mission point of 
view is becoming increasingly relevant, since the topic of the impact of the third mission 
activities and research results on society and the territory is becoming more and more central, 
even in international policies. In general, governments and politicians are interested in 
evaluating outcomes of public investment in research and maximise the impact of R&I 
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investment (Council Recommendation (EU), 2022), university actors want to demonstrate 
their contribution to society and different types of stakeholders (Campbell et al., 2020), and 
industry uses university evaluation in order to assess who to partner with. 

In the following chapter, the attention and the analysis are focused on one of the KT 
indicators emerged: the number of granted patents, because of the availability of data and the 
richness of information contained. For these motivations, the research activity focused 
mainly on patent analysis and patent matchmaking platforms. 
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CHAPTER 6. Classification taxonomies used in patent platforms 
within the academic patent landscape 

In order to answer RQ2 - are the classification taxonomies used in the patent platforms 
effective in classifying the whole landscape of academic patents? - we performed the 
following steps: 

- pre-processing phase through NLP realized on the patents data contained in the 
Knowledge Share platform; 

- construction of the Matrix TF_IDF; 
- application of Singular Value Decomposition (SVD) for dimension’s reduction; 
- K-means clustering algorithm; 
- grid-search exploration of the parameters’ space; 
- Silhouette algorithm for optimization. 

The ultimate goal is to understand whether the classification proposed by KS in 10 
technological areas is sufficient to capture the whole landscape of Italian academic patents 
or the content of the patents suggests a different classification. 

The contents of this chapter were published in: 
Demarinis Loiotile, A., De Nicolò, F., Monaco, A., Tangaro, S., Loccisano, S., Conti, G., ... 
& Bellotti, R. (2023). Innovations and Emerging Technologies: A Study of the Italian 
Intellectual Property Knowledge Database. DOI: 10.5220/0011627000003393 In 
Proceedings of the 15th International Conference on Agents and Artificial Intelligence 
(ICAART 2023) - Volume 2, pages 75-86 ISBN: 978-989-758-623-1; ISSN: 2184-433X 
Copyright c 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC 
license (CC BY-NC-ND 4.0). 

6.1 Proposed methodology  

The proposed approach for patent analysis and its application to KS is illustrated in Figure 
27: 

 

Figure 27: proposed workflow for KS patent analysis 
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As already explained in section 3.3.1, we performed some of the main steps of NLP on the 
“marketing annex” of the 1694 patents, and in particular on the sections “introduction”, 
“technical features” and “application”, using python library NLTK, in the following order: 

· Tokenization. 
· Stop-words removal. 
· Stemming. 

NLTK is a leading platform for creating Python programs for working with human language 
data. It provides a suite of text processing libraries for classification, tokenization, stemming, 
tagging, parsing, semantic reasoning and more, as well as easy-to-use interfaces to over 50 
corpora and lexical resources. 

Once all of the above steps were completed and text had been cleaned up and processed, a 
final step was to combine it all into a simple, generalized function to be executed on the text. 
Thus, it was possible to reconstruct the treated text. The final result was a list of 1.694 texts 
“cleaned up and processed” of the Italian patents contained in the KS platform. 

6.2 Methodology application and results 

After the pre-processing phase through NLP performed on the patents data contained in the 
Knowledge Share platform, the Matrix TF_IDF was constructed in order to obtain a Term 
Frequency-Inverse Document Frequency matrix constructed in this way (Figure 28): 

Figure 28: Matrix TF_IDF 
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The generic element of this matrix is a product of two terms: 

(𝑇𝐹 − 𝐼𝐷𝐹)+, = (𝑇𝐹)+, × (𝐼𝐷𝐹)+,; 

where 

(𝑇𝐹)+, =
𝑓+,

∑ 𝑓+,!
; 

(𝐼𝐷𝐹)+, = 𝑙𝑜𝑔
𝑁

BC𝑑 ∈ 𝐷B𝑤, ∈ 𝑑GB
; 

where: 

- fij = frequency of word j in patent i; 
- N = total number of patents in the corpus; 
- D = set of patents, so that |D| = N; 
- wj = j – th word; 
- d = document in D. 

We obtained a matrix of 1.694 rows (patents) and 12.505 columns (words).  
The elements of this matrix indicate the frequency of occurrence of each term in each 
document. The rationale behind this approach can be summarized as follows: the first factor 
rewards words that appear frequently within a patent, signifying that words cited more often 
carry greater importance. Conversely, the second factor penalizes words that have high 
frequency across the entire set of patents because a word used in all patents would contribute 
little to discrimination. This emphasizes the significance of terms that occur infrequently. 
Generally, in this type of matrix there are two problems: too high a number of features 
because the size of the rows (terms) is greater than that of the columns (patents); sparseness 
problem due to the fact that many of the elements of the array have zero value (Jun et al., 
2014). Therefore, although the matrix is suitable for statistics and machine learning, it is 
difficult to analyze it because it has a very sparse data structure. 
Accordingly, in order to reduce the sparsity and make the clustering process less prone to the 
curse of dimensionality, we applied the Singular Value Decomposition (SVD) (Abdi, 2007) 
for dimension’s reduction. Finally, we used the K-means clustering algorithm (Trappey et 
al., 2017; Bock, 2007; Trappey et al., 2013) and we performed a grid-search exploration of 
the parameters’ space and used the Silhouette (Jun et al., 2014) for optimization. 
K-means is one of the most popular and best performing clustering algorithms. Despite this, 
it is a very simple algorithm to implement and use. K-means is based on so-called centroids. 
The centroid is a point belonging to the feature space that averages the distances between all 
the data belonging to the cluster associated with it. It therefore represents a sort of center of 
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gravity of the cluster and in general, due to its characteristics, it is not one of the points of 
the dataset. The K-means clustering algorithm is very simple: 

- Not knowing the classes present in the input dataset, the first thing to do is decide the 
number of classes (or rather clusters, in this case) into which you want to divide the 
dataset itself. This number is called K, hence the name of the K-means method (the 
term means implies the use of centroids, i.e. midpoints). 

- K centroids belonging to the feature space are randomly selected. The only condition 
is that they are not coincident, indeed usually we make sure that they are far enough 
from each other. Otherwise, the algorithm may have problems converging. 

- The distance of each point of the dataset with respect to each centroid is calculated. 
- Each point in the dataset is associated with the cluster connected to the closest 

centroid. 
- The position of each centroid is recalculated by averaging the positions of all the 

points of the associated cluster (only of these points!). 
- Iterates from step 3 until there are no more cluster-changing inputs. 

Since both SVD and K-means depend on user-defined parameters, optimal values for these 
parameters must be chosen. In particular, since SVD shrinks the dimension of matrices by 
using linear combinations of columns, it must be decided the optimal number of these linear 
combinations; for what concerns k-means, the most important parameter to choose is the 
number of clusters to retrieve. Accordingly, we performed a grid-search exploration of the 
parameters’ space and used the Silhouette (Jun et al., 2014) for optimization. 
Silhouette comprises two components: (1) the average distance of each point within a cluster 
to other points within the same cluster, and (2) the average distance of each point within a 
cluster to all the points in different clusters. However, given the various distance functions 
available for computing Silhouette, we opted to assess three different distance measures 
(Euclidean, Manhattan, and Cosine) and selected the function that maximizes Silhouette for 
a given set of SVD and K-means parameters. Therefore, the grid-search explored three 
quantities:  

(1) the number of linear combinations in SVD - word combinations interval between 10 
to 1694 (step of 10);  

(2) the number of clusters in K-MEANS - the number of clusters from 2 to 10;  
(3) the distance function in Silhouette - the most common distance metric among the 

Euclidean distance, the Manhattan distance and cosine distance. 
The combination having the maximum value of Silhouette was the following: 

- SVD - number of linear combinations 10, 
- K-means - number of clusters 8, 
- Silhouette - cosine distance. 

Thus, the results obtained are based on this configuration of parameters. 

Figure 29 shows that, according to Silhouette, 8 clusters should be considered. 
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Figure 29: The variation in Silhouette value as a function of the number of clusters (the 

second one shows a magnification) 

To fully answer the research question, we examined each cluster trying to evaluate whether 
there was a consistent overlap with the KS classification. Besides, we examined the 
keywords (in terms of frequency) for each cluster, and we assigned to each cluster a coherent 
although subjective classification. Table 7 shows the clustering results and Figure 30 
illustrates the wordcloud (Heimerl et al., 2014) for the 8 clusters A wordcloud is a visual 
representation of text data, where words from a body of text are displayed in varying sizes 
and colors. The size of each word in the cloud is typically determined by its frequency or 
importance in the original text. Words that appear more frequently in the source text are 
typically displayed in larger and bolder fonts in the wordcloud. 

Table 7: Clustering results 
 

CLUSTER N° patents 
1 Technologies 4.0 (mechanics and robotics) 271 

2 Material science 341 
3 Cancer treatment 108 
4 Optics - Image processing 179 
5 Sensor technology - ICT 288 
6 New molecules - new compounds - pharmacology 242 

7 Energy/green Technologies 114 
8 Biomedical 133 

Therefore, the available 1694 patents were finally grouped into 8 clusters. 
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Figure 30: Wordcloud for the 8 clusters 

6.3 Discussion  

The first cluster, characterized by the frequent occurrence of words such as "system," 
"robot", "device", "material", "biomedical", "sensor" and so on, appears to be associated with 
Industry 4.0 technologies. This encompasses various applications of mechanics and robotics 
in diverse sectors, including healthcare, transportation, design, manufacturing, and more. A 
closer examination of the patents within this cluster, coupled with the analysis of prevalent 
keywords, unveils a range of innovative developments spanning multiple research domains: 

- In the automotive and transportation realm, patents related to rail safety devices, 
underwater drones, advancements in cycling and motorcycling technologies are 
notable. 

- Within the aerospace sector, patents encompass anti-icing systems for aircraft, 
rotating aerodynamic components, drones, and intelligent structures for integrity 
testing, among others. 

- In the field of architecture and design, innovations extend to energy-efficient 
construction techniques, seismic isolation methods, complex structural monitoring, 
and applications within the fashion industry. 
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- Healthcare which is the main area of application of the innovations in this cluster. 
The patents present are truly varied, ranging from underwater guidance for the blind, 
innovative orthotics, endomedicular prostheses, sensorized heart valve prostheses to 
devices for radiotherapy, artificial bladders, and innovative brassieres and sheaths. 
But the bulk of innovations revolve around robotics leading the way: robotic 
exoskeletons, robotic platforms for laparoscopy, wearable robots, biomimetic robots, 
robotic surgical simulator, robotic limbs etc. 

The second cluster was primarily centered on the field of material sciences, with a particular 
emphasis on applications in agrifood, chemistry and physics, manufacturing, and 
environmental sectors. An in-depth examination of the patents within this cluster, along with 
an analysis of the prevailing keywords, uncovers a diverse range of innovative breakthroughs 
spanning various research domains. For example, we find patents that create new technology 
for the production of composite ceramic powders, biocompatible sandwich panel, invention 
employing supercritical carbon dioxide to pasteurize foods or the realization of a natural 
product from Rosa canina seeds obtained by CO2 extraction in supercritical phase. Other 
innovations concern the synthesis of a pesticide nano-formulation from environmentally 
friendly materials or high mechanical performance materials from stone processing waste, 
micro-algal photo-bioreactor, inhibitor preparation of unpleasant odors from household 
waste, an economical and effective method for treating wastewater in liquid form or a 
multifunctional hybrid material based on natural clays for environmental recovery and 
bioremediation. Many patents deal with the food sector: intelligent, active and biocompatible 
label; process for manufacturing additives for use in making antibacterial nanocomposites; 
innovative coating composed of a glassy matrix and metal nanoparticles with antiviral, 
antibacterial and antifungal properties; ready-made base for chocolate confectionery 
products; device for removing proteins, metals and other instability agents from wine and 
vegetable beverages; production of biopolymers, exploiting agro-industrial wastes, etc. 

Cluster number four was centered around optics and image processing, as it featured 
innovations related to: packaging of optical signals, automatic machine for real-time 
detection of contaminants, optoelectronic apparatus for measuring position and orientation 
of rigid bodies, x-ray concentrator, energy conversion device, solid-state photodetector, 
integrated optical device, automatic immersion ultrasonic system, new sensor for accurate 
pH measurements, multi-modal optical fiber communication system, fully automatic optical 
microscope for fast reading of samples consisting of a transparent dielectric with metal 
nanoparticles. In this cluster are also present some patents with medical application: textile 
electrode device for acquiring electrophysiological signals from the skin; video-assisted 
dentistry using intraoral video cameras; acquisition of surface electromyographic signals and 
ultrasound images from the same portion of muscle; measuring device for assessing the 
volume of a breast; treatment of tumors with ion beams (hadrontherapy). 
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Upon analyzing the most frequently occurring words within cluster number five, it becomes 
evident that this cluster is primarily centered on sensor technology and Information and 
Communication Technology (ICT) in a broader sense. In fact, the main innovations are: soft-
computing techniques for aerospace, anthropogenic noise control device; low-cost portable 
apparatus for characterizing sensor devices integrated with RFID transponders; RFID system 
developed for precise localization and tracking of objects equipped with low-cost tags; 
device prepared for analysis, simulation and prediction of slope instability phenomena; 
ground-based synthetic aperture radar capable of acquiring both three-dimensional and two-
dimensional images; virtual sensor organized with a trained neural network. There are also 
patents with healthcare application (such as  wearable haptic system to guide the cadence of 
steps in a person through vibrotactile stimuli), agricultural application (technology for 
disinfection of agricultural soil through the use of microwaves or radio frequency), 
architectural application (innovative IoT system to manage building cooling through 
advanced machine learning techniques), automotive application (logic control system for 
automotive; platform, and related method, for the identification, classification and 
subsequent removal of manufacturing defects present on vehicle components; innovative 
system that projects vehicle information and augmented reality elements to enhance the 
driving experience) and economic ones (dynamic and responsive computer model capable of 
representing economic interactions among financial institutions). 

Cluster n.7 is the one that best matches Knowledgeshare's classification; in fact, it is 
characterized by patents in energy and green technologies. Following are some examples: 
energy harvester device built into the stem of the paddles; energy converter, which uses 
gyroscopic effects to generate electricity from sea waves; energy conversion device, which 
allows electricity to be generated from wave motion; micro-wind generation system; 
enthalpy heat exchanger; solar-derived thermal energy storage and/or exchange device; 
motorized system with parallel kinematics that enables automatic cleaning of the surface of 
photovoltaic panels; spectrally selective solar absorber coatings with enhanced photo-
thermal performance and stability; device that produces water from the air; innovative 
portable device capable of ionizing water taken from environments outside the home; new 
method for the simultaneous treatment of polluted water and power generation; system to 
carry out air humidification and heat recovery in air conditioning systems; electric generator 
that statically converts heat into electricity without the use of moving parts or matter flows. 
Other innovations go towards the automotive application: new cooling solution applicable to 
electric machines; integrated system capable of transforming an internal combustion vehicle 
into an electric vehicle; hybrid-electric light aircraft and so on. 
Three clusters (clusters n. 3, 6, and 8) were entirely focused on the healthcare and biomedical 
sector, encompassing a broad range of related areas. 
The cluster n.3 was more related to cancer treatment with very relevant innovation in this 
field, such as: photodynamic therapy as a promising noninvasive treatment for cancer and 
nonmalignant tumors; method for early diagnosis and/or monitoring of Mucor infection; 
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tumor suppressor of malignant mesothelioma of the pleura; innovative theranostic system 
involving a multifunctional nanoconstruct and ultrasonic activation set-up capable of treating 
cancer cells; use of particular strawberry extracts for the prevention, treatment, and/or control 
of the progression of uterine fibroids; circulating bio-marker for diagnosis and prognosis of 
tumor progression; multi-modular and innovative system capable of isolating stem cells from 
small amounts of adipose tissue; molecular markers predictive of response to 
immunotherapy; novel method for cryopreservation of dental pulp to isolate mesenchymal 
stem cells; efficient targeted delivery system of molecules with therapeutic action (e.g., 
cytotoxic agents) based on adipose stromal stem cells;  method for identifying a biomarker 
of stemness in hepatocellular carcinoma cells. Some patents were focalized on regenerative 
medicine: non-erodible, sterilizable, biocompatible hydrogel scaffold for 3D cell cultures or 
recombinant protein scaffold for preparing cell culture plates for use in developing 
biomaterials for neuro-regenerative medicine. 

The cluster n.6 was more connected with the formulation of new compounds and the 
discovery of new molecules and therapies. Some examples: medicine designed to counteract 
the progression of acute and chronic neurodegenerative diseases; RNA interference-
mediated therapy for neurodegenerative diseases; synthesis of a leptin antagonist 
tetrapeptide; synthetic melanocortins with antimicrobial effects for the treatment of topical 
infectious diseases; pharmaceutical compound for the treatment of wounds for topical use; 
pharmaceutical composition, which contains bactericidal/permeability-increasing protein 
and hyaluronic acid with the purpose of treating different types of arthropathies; new peptide 
and its use for the treatment of Alzheimer's disease; nanostructures capable of delivering 
oxygen into hypoxic tissues, which are associated with various metabolic, ischemic, and 
infectious diseases; multifunctional biomaterial consisting of a hydrogel (hydrogel) that is 
administered through an injection directly into the tissue to be treated; use of irisin, a 
hormone secreted mainly from skeletal muscle and in smaller amounts from adipose tissue, 
as a drug/strategy for the preservation of the function and survival of pancreatic islets of 
Langerhans and, in particular, the beta-cells that are deputed to insulin production. Other 
innovations deal with: antiviral compounds that find application in the prevention and 
treatment of infections caused by coronaviruses; use of benzofurans as synthetic "natural-
like" herbicides, characterized by high phytotoxic and herbicidal activity; micro and 
nanocapsules tannins useful for the preparation of controlled-release pharmaceutical, 
nutraceutical or cosmetic compositions; new yeast strain that can be used to combat fungal 
infections in fungi of agronomic and commercial interest; lentil extract with cholesterol-
lowering and prebiotic activity, particularly useful in therapeutic applications and used as a 
nutraceutical; mixture of active ingredients from pomegranate seeds useful in the treatment 
and/or prevention of obesity and associated diseases, such as particularly insulin resistance 
and type 2 diabetes and hepatic steatosis. 

The last cluster (n.8) was named “biomedical” as it included mainly methods and techniques 
for disease diagnosis and monitoring. Some of these are very interesting: new diagnostic 
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marker for Paget's bone disease and associated bone tumors; new diagnostic test to identify 
the two most common mutations in chronic myeloid tumors; new test for early detection of 
colorectal cancer which assesses decreased expression of a protein; noninvasive method 
suitable for pancreatic cancer diagnosis at an early stage; fecal sample testing system able to 
diagnose major chronic inflammatory bowel diseases; innovative system for early diagnosis 
of acute renal failure; method of in vitro diagnosis of head and/or neck cancer in tissue and/or 
biological fluid samples; new reporter system that enables early detection of the occurrence 
of muscle atrophy; diagnostic for rapid and early differential diagnosis of ulcerative 
rectocolitis; next-generation sequencing techniques to detect specific molecular signatures 
of urinary miRNA, which can be used to distinguish bladder cancer cases from healthy 
controls; use of low field nuclear magnetic resonance for monitoring patients with cystic 
fibrosis; innovative method that allows separation of nucleated fetal cells from maternal 
peripheral blood at all gestational ages, etc. 

Next, we assessed the extent of overlap between the new classification and the one employed 
by the KS platform. This evaluation holds strategic importance when aiming to identify 
emerging technologies or cross-domain areas. To address this query, we constructed a 
"contingency table" for comparing KS classifications (represented in rows) with those 
derived from our analyses (presented in columns), as illustrated in Table 8. 

 
Table 8: Comparison between KS technological areas and clusters emerged by the 

proposed approach 
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Our research outcomes underscore a discrepancy between the technological domains defined 
in KS, which are established based on inventor self-assignments, and the clusters identified 
through the proposed approach. This discovery suggests that the patent analysis workflow 
we have outlined could potentially yield an alternative and likely more cohesive 
classification system, thereby enhancing the alignment between supply and demand. We are 
currently in discussions with our Netval partner (here is an NDA signed with Netval for the 
use of KS data) to explore the feasibility of adjusting the fixed patent 
categories/technological areas within KS and/or developing a recommender system to assist 
inventors in accurately categorizing their patents. 

6.4 Conclusion  

In this study, a distinct workflow for patent analysis was introduced, subsequently applied 
and tested on the Knowledge Share KS platform, where patents span across 10 technological 
areas. Leveraging NLP techniques and clustering analyses, we reorganized these 1694 
patents into eight clusters, namely: Technologies 4.0, Material Science, Cancer Treatment, 
Optics - Image Processing, Sensor Technology – ICT, New Molecules - New Compounds – 
Pharmacology, Energy/Green Technologies, and Biomedical. Our findings have brought to 
light a discrepancy between the technological categories defined within KS and the clusters 
generated through our proposed workflow. This mismatch likely stems from inventors' self-
assignments when uploading patents onto the platform. An automated classification 
approach could offer more coherence and potentially enhance performance in terms of 
aligning supply and demand. The potential advantages are manifold, ranging from enabling 
companies and investors to tap into innovations generated by research institutions through 
an improved matchmaking system to the prospect of introducing new technological domains 
aligned with the current innovation landscape. This could facilitate the development of cross-
disciplinary or emerging technologies. 
This study shows that Italian patents represent an extraordinary source of innovation that 
unfortunately is not yet fully "exploited" as all these inventions do not reach the market and 
the population. A great effort is still needed for a more intelligent management of intellectual 
assets that are the only factor that can foster innovation, creativity, knowledge sharing and 
improve the chances that knowledge reaches the market and brings faster benefits to society. 
This is especially true and strategic for the Healthcare sector that represents a main challenge 
in the Industry 4.0 for the final improvement of quality life and wellbeing of community and 
territory. 
 
Having analyzed the problem of classification in the patent platform, the focus in the next 
chapter is on user support through an automated recommendation system to improve 
matchmaking between supply and demand and on the main keywords characterizing the 
technological fields.  
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CHAPTER 7. An applied AI-based approach for an Italian 
patent multi-label classification system and keywords 
identification to support the innovation demand and supply 
matching 

In order to answer RQ3 - is it possible to support the user in correctly classifying a patent 
entered into the platforms in order to improve the matchmaking between demand and supply 
of innovation? - and RQ4 - is it possible to draw up an attempted vocabulary of technological 
fields from the keywords that emerged from an applied AI-based approach? - we performed 
the following steps: 

- a combined approach of Natural Language Processing (NLP) and machine learning 
(ML) to create an automated recommender system that can identify the most suitable 
and correct technological area(s) a patent must be assigned; 

- the same methodology allows for the identification of keywords characterizing a 
patent in an objective and human-independent way in order to create an initial 
vocabulary of words extracted from patents. 

 
The contents of this chapter are contained in the article: 
Nicola Amoroso#, Annamaria Demarinis Loiotile#, Francesco De Nicolò, Giuseppe Conti, 
Shiva Loccisano, Sabina Tangaro, Alfonso Monaco and Roberto Bellotti (2023) “An Italian 
patent multi-label classification system to support the innovation demand and supply 
matching”. Scientometrics (under review) (# These authors contributed equally to this work) 

The solution proposed for these RQs is an artificial intelligence-based system that accurately 
recognizes technological areas, thus classifying patents as correctly as possible, and 
recommends the right direction to the user, eliminating the "subjectivity" of choice. We use 
a combined approach of NLP and machine learning ML in order to propose an explainable 
patent classification system for multi-label classification of patents, supporting so the patent 
platforms by addressing two main aspects: on the one hand, it is of paramount importance to 
create an automated recommender system that can identify the most suitable and correct 
technological area(s) a patent must be assigned; this is both useful for users looking for 
specific technologies or patent owners who want to reach the largest fraction of potentially 
interested users. On the other hand, the methodology allows for the identification of 
keywords characterizing a patent in an objective and human-independent way; this aspect is 
particularly useful to create an initial vocabulary of words extracted from patents, thus 
eventually leading to redefine the available categories and supporting the portal management 
and, again, the matchmaking among users and patent-owners. This approach improves the 
user-friendliness of the platform and facilitates the selection of suitable patents by a company 
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or, in general, enhances the matchmaking of innovation leading to social and economic 
impact.  

The proposed approach has been implemented and tested on KS where the labels assigned to 
patents do not follow the International Patent Classification (IPC) and Cooperative Patent 
Classification (CPC) hierarchies but represent wide technological domains established by 
KS experts. Thus, an important question about the significance of this categorization 
naturally arises. Finally, the KS database is particularly appealing for classification purposes 
as, on the one hand it reduces the number of available categories and mitigates the curse of 
dimensionality problem; on the other hand, it does not require any arbitrarily set cut-off about 
the classification hierarchy (e.g. class, sub-class, group, sub-group), allowing to deal with 
clear and well established categories. 

7.1 Proposed methodology  

Our primary objectives revolve around two key aspects: (1) the classification of patents 
within the KS database as they are fed into Artificial Intelligence models, and (2) the 
identification of the most crucial keywords that define the labels, corresponding to 
technological areas. In pursuit of these goals, we have devised and put into action a structured 
approach consisting of three fundamental steps: (i) textual analysis, (ii) multi-class 
classification, and (iii) the identification of pivotal features that form the foundation for 
patent categorization. A visual representation of this approach is provided in Figure 31. 

 

Figure 31: Overall flowchart of the proposed methodology 
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7.2 Methodology application and results 

In the pre-processing phase, some technological domains of KS were excluded in the analysis 
as the number of patents was negligible with respect to other areas: “Aerospace and aviation”, 
“Architecture and design” and “Transports”. Moreover, patents associated with more than 
two labels, accounting for less than 5% percent of available data, were discarded. The final 
data consisted of 1.527 patents and 7 possible labels. As a final remark, KS patents (written 
in Italian) were translated into English using the deep_translator package in Python as NLP 
tools for English texts are more developed and consolidated than those for other languages 
(Chowdhary, 2020). 

In the first phase, NLP tools are used to transform patents’ textual data into matrix form, 
which is a necessary step in order to use them as input in an Artificial Intelligence pipeline. 
In the multiclass classification phase, we employ Machine Learning algorithms to allocate 
the appropriate labels (i.e., classes) to patents. Specifically, to execute these initial two phases 
and evaluate the performance of the classification algorithms, we adopt a zeroth-order 
approach, which involves disregarding the temporal information associated with patents. 
Instead, we implement a 5-fold cross-validation framework, repeating it 100 times (Schaffer, 
1993). A visual representation of this framework is presented in Figure 32 below. 

 

Figure 32: 5-fold cross validation framework. Schematic overview of a single repetition of 
a 5-fold cross-validation framework. At every iteration, four folds (the training folds) are 

used to train a model and the remaining one (the test fold) is used to validate it. The overall 
performance of the model is found averaging its performances on all the iterations. In order 

to have more robust results, this framework was repeated 100 times. 
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This approach was adopted to highlight the Italian innovation scene, as it is represented by 
the KS database, more than assessing the temporal evolution. This approach is justified by 
an ex-post validation: bad classification performances of all the algorithms would indicate 
the presence of a significant number of disruptive patented innovations during the considered 
time period, so that training algorithms on a set of patents (included in the training folds) 
would not be helpful in correctly classify the remaining patents (comprised in the test fold). 
Accordingly, we measure the performance of these algorithms using ranking-based 
evaluation indexes and find the most effective one in patent classification in the KS database 
(Wu and Zhou, 2017). 

Finally, in the third phase, we accomplish a feature importance task on the top-performer 
algorithm: the aim is to identify the words that primarily influence the classification of 
patents into the corresponding classes. In the following sections, these steps are explained in 
detail. 

7.2.1 From patents to feature representation   

In every cross-validation iteration, the set of patents contained in the training folds are 
transformed, using the appropriate NLP tools, into a suitable representation which can feed 
machine learning algorithms. First, patents’ words are lower-cased. In fact, it is worth noting 
that learning algorithms are sensitive to upper/lower-case differences, thus, lower-casing 
every single word is necessary (Ebert et al., 2016; Camacho-Collados and Pilehvar, 2018); 
the result of this first pre-processing phase is threefold: uniforming data, obtaining a 
substantial dimensionality reduction and yielding a correct and meaningful tokenization. 
Then, we removed stop-words, as they are useful in setting up phrases but meaningless for 
semantic purposes (Gerlach et al., 2019; Sarica and Luo, 2021). Finally, we performed 
lemmatization. Even in this case the objective is to facilitate the subsequent learning phase. 
By grouping words that share a common root, we can mitigate the sparsity of the data, 
resulting in a more concise representation that is less susceptible to the challenges posed by 
high dimensionality (Jivani, 2011; Hassani and Lee, 2016). This process ultimately yields a 
set of words that constitute the vocabulary associated with the patents within the training 
folds. 
All these pre-processing phases are propaedeutic for setting up the TF-IDF matrix (Baeza-
Yates and Ribeiro-Neto, 1999; Aizawa, 2003), as already explained. The result is a matrix 
with a number of columns equal to the patents in the training folds and a number of rows 
equivalent to the length of the respective vocabulary. In instances where a patent is assigned 
two categories, we replicate the corresponding column, associating one category with the 
original column and the other with its duplicate. As for patents in the test fold, a 
corresponding TF-IDF matrix is constructed using the vocabulary derived from the training 
folds. This choice is made to prevent data leakage between the training and testing phases, 
thereby ensuring that the generalization capabilities of the Machine Learning algorithms are 
assessed without over-optimistic biases. 
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7.2.2 Patent categorization as a multi-class classification problem 

The TF − IDF representation can be suitably exploited by any machine learning algorithm, 
with patents representing the available samples, words’ occurrences being the discriminating 
features and the target variable the labels associated with each patent. Since, according to the 
previous section, at most two out of seven labels are associated with every patent, we are 
faced with a non-standard multi-class classification problem. In fact, in a standard multi-
class classification problem, only one label (out of more than two labels) is associated with 
every sample. Nonetheless, since multiclass classification algorithms return a ranking of all 
the possible labels for every sample, we can safely use classical Machine Learning methods 
but we need performance measures different from those usually used in standard multiclass 
classification. Accordingly, we have to refer to measures usually adopted in Information 
Retrieval tasks to evaluate Recommendation Systems (Li et al., 2018; Jung et al., 2023). In 
particular, we first consider two common metrics in these fields, that are defined for each 
sample: 

- Precision-top-k (P@k): represents the rate of correct labels for the i-th sample in the 
top-k labels as predicted by the classification model. In formula: 

(𝑃@𝑘)+ = -./012	45	6422167	89018:	;-	74<	=	542	7>1	;?7>	:9/<81
!

  

- Recall-top-k (R@k): is the ratio between the number of corrected labels for the 
considered sample in the top-k labels as predicted by the classification model and the 
number of true labels for the sample. In mathematical terms: 
 

(𝑅@𝑘)+ = -./012	45	6422167	89018:	;-	74<	=	542	7>1	;?7>	:9/<81
-./012	45	72.1	89018:

 

Both these local metrics have values ranging from 0 to 1.  
It is feasible to derive two global metrics from the preceding local ones by computing the 
average of the individual local values obtained for each sample: 

𝑃@𝑘LLLLLL =
1
𝑁M

(𝑃@𝑘)+

@

+AB

 

𝑅@𝑘LLLLLL =
1
𝑁M

(𝑅@𝑘)+

@

+AB

 

where N is the number of samples under consideration. 
It seems wise to underline that the information carried by the average Precision-at-k and the 
average Recall-at-k can be condensed in just one metric: the averaged F1-top-k (𝐹1@𝑘%%%%%%%%). This 
metric is defined as the harmonic mean 𝑃@𝑘%%%%%% and 𝑅@𝑘%%%%%%: 



 

 

 98 

𝐹1@𝑘LLLLLLLL =
2 × 𝑃@𝑘LLLLLL × 𝑅@𝑘LLLLLL

𝑃@𝑘LLLLLL + 𝑅@𝑘LLLLLL  

F1@k ranges from 0 to 1 and is equal to 0 when at least one of the two metrics is 0, while it 
is equal to 1 when both of them are equal to 1. Since a precision value could be very high at 
the cost of a very low recall and viceversa, it seems wise to use F1@k as an unbiased 
performance measure (Hu et al., 2018; Zuva and Zuva, 2012). In particular, following the 
scientific literature on automatic patent classification (Lee and Hsiang, 2020) we consider 
F1@k with k=1 as our main performance metric. Accordingly, we can use this score to 
benchmark our work with the best F1 scores in other articles. 
We consider and evaluate five different models in order to evaluate the robustness of the 
defined pipeline: a Random Classifier (RC), serving as a performance baseline, Logistic 
Regression (LR) (Hosmer et al., 2013), Random Forest (RF) (Shi and Horvath, 2006), 
Support Vector Machine with linear kernel (SVM) (Rameshbhai and Paulose, 2019) and 
XGBoost (XGB) (Chen and Guestrin, 2016). We consider these Machine Learning models 
since they are all able to return a measure of features’ importance, although through different 
mechanisms (Bentéjac et al., 2021; Hastie et al., 2009). In fact, LR associates a coefficient 
to every input feature, while tree-based models define the importance of a feature according 
to its ability in increasing the purity of a node in the tree, as measured by the Gini index. 
Moreover, SVM with linear kernel, being a geometrical method that aims at finding a 
hyperplane in the feature space that separates classes, gives a weight to every dimension (i.e. 
to every feature). It seems wise to underline that, even though all the models can be used to 
accomplish a multi-class classification, not all of them natively support it (Hilbe, 2009; 
Chauhan et al., 2019). Actually, LR and SVM are able to carry out a binary classification 
task, not a multi-class one. Nonetheless, this problem can be circumvented by adopting a 
“One-versus-Rest” (O-v-R) or a “One-versus-all” (O-v-A) framework. In the first case, for 
each class, a binary model is trained in order to recognize the considered class against all the 
others. Accordingly, we end up with a model for each class. In the second case, models are 
trained to distinguish every class from each other, obtaining a much greater number of 
models with respect to the O-v-R case. In this work we adopt a O-v-R approach because we 
can obtain which features (i.e. words) characterize every category with respect to all the 
others.  

7.2.3 Mitigating class imbalance: SMOTE 

In the previous sections we describe how to transform textual data into a matrix form and 
how to set up a multi-class classification problem, together with presenting the appropriate 
performance metrics. However, it should be noted that there is an imbalance among classes 
that can severely impact algorithms' performance (Japkowicz and Stephen, 2002; Guo et al., 
2008). In order to mitigate this effect, we leverage the mathematical form of textual data and 
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use SMOTE (Synthetic Minority Oversampling TEchnique) in order to obtain a perfect 
balance among classes (Chawla et al., 2002; Blagus and Lusa, 2013). In particular, we apply 
this technique in the training folds of every iteration in our cross-validation framework. Then, 
for every iteration, we train our models on these class-balanced training folds and validate 
them on the test fold. We then replicate this workflow for every repetition of the cross-
validation framework. 
The results obtained applying our pipeline to the KS database are shown here. In particular, 
we will show (P@k) ̅, (R@k) ̅ and (F1@k) ̅ for k=1 for completeness, but we will use (F1@1) 
to determine the best model. Once the best classification model is identified, we deepen its 
performance analysis highlighting the most important words: those that mainly influence it 
in classifying patents. Moreover, we show how reliable it is in classifying patents in each of 
the seven categories of the KnowledgeShare database and which are the most error-prone.  

7.2.4 Top-k performance measures 

In table 9 we report, for each considered classification algorithm, the mean and standard 
deviation values (in brackets) of 𝑃@1%%%%%%, 𝑅@1%%%%%% and 𝐹1@1%%%%%%%% as determined by our 5-fold cross-
validation approach repeated 100 times.  

Table 9: Mean 𝑃@2$$$$$$, 𝑅@2$$$$$$ and 𝐹1@2$$$$$$$$ values for the classification algorithms. The 
corresponding standard deviations are reported in brackets. 𝐹1@2LLLLLLLL values are in bold. 

Metric RC LR RF SVM XGB 

𝑃@1LLLLLL 0.181 (0.022) 0.801 
(0.024) 0.755 (0.026) 0.793 

(0.023) 
0.764 (0.023) 

𝑅@1LLLLLL 0.139 (0.017) 0.679 
(0.022) 0.645 (0.024) 0.674 

(0.022) 
0.648 (0.021) 

𝐹1@1LLLLLLLL 0.157 (0.019) 0.735 
(0.022) 0.695 (0.024) 0.728 

(0.022) 
0.701 (0.021) 

Observing the 𝐹1@1%%%%%%%% values in Table 9, we can conclude that the Random Classifier is the 
least effective model, while all the other models significantly outperform it. This indicates 
that the latter models make effective use of word features for patent classification. 
Furthermore, it's worth noting that LR (Logistic Regression) and SVM (Support Vector 
Machine) demonstrate similar levels of performance. Accordingly, we decide to perform a 
Welch’s t-test to establish if the mean values of  𝐹1@1%%%%%%%%  of LR and SVM are equal or not in a 
statistically significant way. Considering a 5% significance level, we can reject the null 
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hypothesis that the mean values of  𝐹1@1%%%%%%%% of LR and SVM are identical; but, at a 1% 
significance level we cannot reject this null hypothesis. In order to remove this ambiguity, 
following the scientific literature, we consider the performances of LR and SVM as measured 
by 𝐹1@2%%%%%%%%. We obtain the results reported in Table 10, where, for the sake of completeness, we 
report the results for all the models. 

Table 10: 𝑃@2$$$$$$, 𝑅@2$$$$$$ and 𝐹1@2$$$$$$$$	 values for the classification algorithms. The corresponding 
standard deviations are reported in brackets.  values are in bold. 

Metric RC LR RF SVM XGB 

P@2 0.184 (0.013)) 0.544 
(0.013) 

0.503 (0.016) 0.518 
(0.016) 

0.508 (0.016) 

R@2 0.286 (0.022) 
0.867 

(0.016) 0.813 (0.022) 
0.830 

(0.018) 
0.818 (0.021) 

F1@2 0.224 (0.019) 0.669 
(0.013) 0.622 (0.018) 0.637 

(0.016) 
0.627 (0.017) 

Performing a Welch’s t-test at both 1% and 5% significance level, we can reject the null 
hypothesis and consider the mean performances of LR and SVM different in a statistically 
significant way. Accordingly, we can consider LR our top-performer model in classifying 
patents. 

7.2.5 How words influence patent classification  

According to the previous section, LR has proved to be the best model in classifying patents 
in the KS database. We can go deeper in analyzing LR performances considering how the 
words in the vocabulary (i.e. the features of the model) influence the classification task 
carried out by the LR model. To this aim, since in the O-v-R scheme a LR model is built for 
every category, we evaluate the corresponding coefficients, which can be seen as a measure 
of importance of the input features. Moreover, we also determine the words’ global 
importance ranking concatenating the words’ coefficients of every category. We end up with 
a global ranking of 88.144 words. For the sake of clarity, Figure 33 shows the average 
importance for the first 1.000 words in the global ranking. By utilizing the elbow method, 
we were able to quantitatively ascertain the number of the most significant words, resulting 
in a set of 260 words. For a more comprehensive list of these crucial words, along with their 
respective categories, please refer to Appendix A. 
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Figure 33: LR sorted importance for the first 1.000 words. Notably, the trend shows a 
steep decrease followed by a large plateau after 260 words. 

Figure 34 illustrates the distribution of the 260 words among the seven technological areas. 

 

Figure 34: The partition of the 260 words in the 7 technological areas 

As regards Green Energy, the top words include topics related to major renewable sources, 
heat, electricity, fuel and power. In the Agrifood area, the top words included specific 
products like wine, vegetable oil and milk. Interestingly, among the top words particular 
attention was given to the waste theme. In Electronics, the principal words were: user, 
network, circuit, software, signal, optical, device. In the Environment and Constructions area, 
the focus seems to be on buildings with seismic properties and energy- and water-saving 
solutions. The only 5 words in the area concerning the Packaging appear not so relevant: 
component, object, material, packaging and piece. On the contrary, the 5 words describing 
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Basic Science
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the Biomed sector are very meaningful because they seem to characterize the areas of greatest 
investment and innovation in recent years in the medical field: patient-centeredness, tissue 
engineering, treatment and diagnosis of cancerous and non-cancerous diseases, and stem 
cells and cell therapy. The last area, Basic Science, is described by only 2 words among the 
top 50: particle and solvent. 

7.2.6 Confounding categories for the best classifier 

In this section, we delve into the categories that pose the greatest challenge for the best-
performing model, namely LR. To accomplish this, Table 11 displays, for each category, the 
average frequencies at which it is misclassified with all other categories within our cross-
validation framework. Additionally, Table 11 presents the frequencies of correct 
classification for each category. 

Table 11: Mean frequencies of confusion among categories (in percentage). The 
frequencies of correct labelling, in bold, are reported in the main diagonal. The 

corresponding standard deviations are in brackets. 

Predicted Label Agrifood Environment Basic 
Science 

Green 
Energy   Electronics Packaging Biomed 

True Label 
  

     

Agrifood 68.1 (9.1) 6.2 (3.3) 7.2 (2.1) 2.1 (1.0) 5.1 (2.2) 1.1 (0.4) 10.2 (4.1) 

Environment 4.5 (3.2) 42.1 (8.2) 19.3 (6.2) 13.4 (4.4) 13.2 (4.1) 6.2 (2.2) 3.1 (1.0) 

Basic Science 6.2 (2.1) 6.7 (2.2) 51.1 (5.1) 6.2 (3.1) 7.6 (2.1) 3.1 (1.0) 20.4 (4.1) 

Green Energy 3.8 (1.1) 11.2 (2.3) 11.2 (3.2) 56.9 (8.2) 13.2 (5.3) 2.1 (0.5) 3.4 (1.1) 

Electronics 1.8 (0.2) 4.5 (0.8) 6.5 (1.9) 6.8 (1.8) 64.3 (5.2) 5.6 (1.2) 14.5 (2.2) 

Packaging 8.7 (1.3) 8.2 (1.2) 23.8 (3.2) 5.2 (1.4) 23.9 (8.4) 24.8 (2.1) 10.8 (2.1)) 

Biomed 1.1 (0.1) 1.8 (0.2) 8.8 (1.1) 1.6 (0.1) 9.7 (1.1) 2.8 (0.7) 77.8 (2.3) 

Observing these results, “Biomed” is the best-recognized category, meaning that it is a well-
established and self-contained research area, with its own keywords and concepts, being 
rarely confused with other research domains. On the other hand, it can be observed that 
“Packaging” is the worst-recognized category being mainly confused with “Electronics” and 
“Basic Science”. This indicates that “Packaging” cannot be considered a standalone research 
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area but, on the contrary, it may be seen as a cross-domain that benefits from innovations in 
Basic Science and Electronics. In fact, an invention may cover several technological areas or 
be cross-domain, and this is becoming increasingly true in emerging technologies that are 
becoming more and more "multi-disciplinary" and struggle to remain "confined" to a single 
technological area. This highlights the need to create new technological domains that are not 
strictly tied to a single area. 

7.3 Discussion 

7.3.1 Best method performance 

Patent Automatic Classification (PAC) algorithms have raised an increasing interest in recent 
years because of the ever-growing number of patents and the consequent need of high quality 
analysis (Li et al., 2018). Moreover, correctly classifying patents means understanding why 
a patent is labelled with some categories and not with others. Then, we can query the 
classifier algorithm to know which words mainly influence the classification of a patent 
considering the model’s feature importance. Since this is our work’s main aim, we have to 
compare our best classifier’s performance with the state-of-the-art found in the literature. It 
should be noted that there is no officially acknowledged database on which pipelines’ 
performances should be compared. Accordingly, there is neither a common set of patents nor 
a shared classification system of patents (e.g. CPC, IPC). Then, the significance of the 
following comparisons should consider this aspect. Moreover, it should be underlined that, 
as far as we know, our work is among the first in using a cross-validation approach, 
presenting mean and standard deviation values of 𝑃@𝑘%%%%%%, 𝑅@𝑘%%%%%% and 𝐹1@𝑘%%%%%%%%. 
Beginning from articles having a dataset size similar to ours, both Fall et al. (2003) and 
Hepburn (2018) consider SVM together with other classification algorithms (k-NN, Naive 
Bayes) to classify 75.250 patents in 8 categories (IPC section level). In particular Hepburn 
(2018) uses a 60/40 train-test split and a particular transfer learning technique reporting 𝐹1@1%%%%%%%% 
= 0.784, without standard deviation, which improves the result of Fall et al. (2003), which 
indicates 𝐹1@1%%%%%%%% = 55%. Hu et al. (2018) use Neural Networks (both Convolutional and 
Recursive) to capture semantic correlations among patents. The training, validation and test 
datasets contain respectively 72.532, 18.133, and 2.679 patents from the CLEF-IP 
competition dataset with 96 labels (CLEF-IP). Their best 𝐹1@1%%%%%%%% is 63.97%. Regarding the 
CLEF-IP competition itself, Verberne et al. (2010) have their best F1@1 equal to 70.59% 
considering a series of classification experiments with the Linguistic Classification System 
(LCS). The training dataset has 905.458 patents and the testing has 1.000 patents. Li et al. 
(2018) build a Deep Learning model to classify more than 2 millions patents in the USPTO-
2M dataset in 637 classes (the subclass level in IPC) reporting P@1=73,9% without 
disclosing F1@1. Haghighian Roudsari et al. (2022) compare different Deep Learning 
models on the USPTO-2M dataset, obtaining a maximum 𝐹1@1%%%%%%%%	= 63.33%, with  𝑃@1%%%%%%	= 
82,72% and 𝐹1@1%%%%%%%% = 55.89%. Lee and Hsiang (2020) improve this result by considering a 
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novel USPTO-3M dataset, comprising more than 3 millions patents and working both at the 
IPC subclass level and at the CPC subclass level (656 classes). It reports a maximum  𝐹1@1%%%%%%%%	= 
66.71% and, correspondingly, 𝑅@1%%%%%% = 54.92% and 𝑃@1%%%%%%	= 84.95%. 
Considering that our best model (LR) has 𝐹1@1%%%%%%%%	= 73.5% (2.2%), 𝑃@1%%%%%% = 80.1% (2.2%), 𝑅@1%%%%%% 
= 67.9% (2.2%), we can say that our results are in line with the state-of-the-art found in the 
literature, thus justifying the investigation of LR words’ importance and the most 
confounding categories. 

7.3.2 Categories’ keywords and how they explain the confusion frequencies 

A detailed examination of the words in each category reveals some trends in the Italian 
innovation scenario and can even explain the confusion frequencies reported in Section 
before. 

As concerns the “Green Energy” category, the innovations speak about automatic systems 
for cleaning solar photovoltaic modules, water production from the air with solar energy, 
systems for concentrating the solar power, energy-efficient systems for the use of solar 
thermal energy, micro turbo gas systems, thermodynamic solar systems and so on. Since 
these innovations deal with electronic devices and the exploitation of physical processes, it 
is not surprising that the main areas it is confused with are “Electronics” and “Basic Science”. 
Moreover, since green energy innovations aim at the protection of the environment, this 
strong relationship is reflected in the non-negligible confusion frequency of “Green Energy” 
with “Environment”. 

With reference to the “Agrifood” area, the main identified words suggest research 
investments in innovating the quality and production systems of wine, lab-on-chip devices 
for the improvement of olive oil protection, novel sustainable processes for milk production. 
The main innovations in this field involve biological processes and methodologies and this 
is reflected in the relatively high frequency of confusion of this area with Biomed. 

The “Electronics” research area reveals the presence of innovations about user-centred 
design methods, novel architectures of artificial neural networks and, above all, deployments 
of synthetic biological circuits. This relatively new research branch is increasingly growing 
and explains the high frequency of confusion between “Electronics” and “Biomed”, which 
mainly encompasses biological tools and methodologies. 

As regards the “Environment” category, the most frequent words concern innovations in: 
cleantech, automatic irrigation systems, water saving, energy production from water or wave, 
micro-geophysics, remediation of stone buildings, dehumidification processes, building 
maintenance services and seismic isolation methods, and so on. It should be noted that these 
innovations are strictly related to the use of novel electronic devices and sensors and the 
pioneering exploitation of thermodynamics processes. These observations explain why 
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“Environment” patents are mainly labelled as “Electronics” and “Basic Science”. Moreover, 
as noted in the previous discussion about the “Green Energy” category, there is a strong 
relationship between it and “Environment” innovations, which accounts for the relatively 
high level of confusion between them. 

In the “Packaging” area, a number of health-related innovations characterise the research 
effort in this field: Hybrid locomotion stair-lift wheelchair, artificial muscle, human-robot 
cooperation, wearable robot for lower limb, exoskeleton for upper limb rehabilitation, 
adaptive wearable robot, support frame for upper limb exoskeleton, biomimetic active foot 
and ankle prosthesis. The remaining innovations include 3D printing, multi-sensor 
dimensional measurements, conversion of traditional vehicles, and language learning 
devices. It can be seen that innovations registered in the “Packaging” area are mainly linked 
to the development of novel electronic devices for relieving heavy lifting and learning 
methods using ad-hoc Artificial Intelligence algorithms. This can be seen as the main reason 
behind the high confusion frequencies characterizing the “Packaging” area, already noted. In 
fact, it has the two highest confusion frequencies with “Electronics” and “Basic Science”. 
This clearly indicates that the “Packaging” category cannot be considered as a stand-alone 
research branch because it largely benefits from innovations both in electronics and in basic 
science research. 

The innovations in the “Biomed” technological area range from wearable devices, method 
for diagnosis and/or monitoring of infection, to new molecules for cancerous and chronic 
diseases, interventional radiotherapy, tests for early detection of tumors, theragnostic 
radiopharmaceuticals, cell therapies and selection of cell populations. It should be noted that 
these novel techniques and devices mainly rely on Artificial Intelligence methodologies. In 
fact, the greatest part of patents is about methods in tissue engineering, an interdisciplinary 
area concerned with the development of functional 3D tissues by mixing cells, and bioactive 
chemicals. Accordingly, we can see that this explains why the “Biomed” category has non-
negligible confusion frequencies with “Basic Science” and “Electronics”. Nonetheless, since 
the Biomed research is even highly characterized by biological-medical terms, the 
corresponding confusion frequencies are not as high as in all the other categories. 

Research efforts in the “Basic Science” category are multi-faceted: they range from 
innovative, recyclable and low-cost solvents to field-effect transistor sensor, 3D super 
resolution optical microscope, and magnetic resonance imaging using metamaterials. Since 
many patents deal with bio-materials or describe bio-medical innovations, it is not surprising 
that “Basic Science” has a 20.4% mean frequency of confusion with “Biomed”. 

In general, as regards the confusion frequencies, it seems evident that the technological areas 
so defined in KS are sometimes a bit "narrow" to categorise patents that are related to 
different technology domains, i.e., the 7 technology areas may not be sufficient to capture 
the entire landscape of academic patents. It would be interesting to use an unsupervised 
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clustering approach, based on the textual content of patents, to develop an alternative and 
probably more consistent classification, improving the matching of supply and demand for 
innovation. 

7.4 Conclusion  

In conclusion, we introduce a fully automated patent multi-classification system that 
leverages NLP techniques and ML to highlight the keywords defining classification 
categories. Patent platforms like Italy's KnowledgeShare were created to bridge the gap 
between patent buyers and providers, addressing issues of information asymmetry and 
distrust in traditional patent transactions. Tools like the one we've proposed are of paramount 
importance in enhancing their mission and effectiveness. We've demonstrated that our 
framework's accuracy is on par with state-of-the-art methods. By relying on an easily 
interpretable model like Logistic Regression (LR), it also allows us to identify the keywords 
associated with each technological domain. An important feature of our approach is its ability 
to assign patents to one or more categories simultaneously, recognizing the potential for 
emerging technologies to span multiple domains. 
Our method is open-access and serves both patent managers by offering reliable category 
recommendations for patents and their associated technologies, and end-users of 
technological platforms (e.g., investors, companies) by providing a quantitative evaluation 
of the similarity between the technologies they seek or wish to patent and the most suitable 
technological domains. Thus, our recommender system streamlines the matchmaking 
process between innovation supply and demand, a critical aspect of generating social and 
economic impact with new technologies. 
While our model is currently tailored to the Italian patent ecosystem, it possesses broad 
applicability and can be extended to patents from international research centers. As a future 
technical enhancement, we can explore the use of Artificial Neural Network architectures, 
coupled with appropriate explainability tools, to further enhance classification performance 
and deepen our understanding of innovation. Another pivotal step forward would involve 
implementing the model directly within the KnowledgeShare platform itself. 
 
In the following chapter, the analysis is concentrated on the frequent words inherent to health 
sector with the final aim of constructing a first draft of a HC4.0 vocabulary based on the 
contents of the Italian research institutions patents.  
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CHAPTER 8. A first draft of HC4.0 vocabulary for 
characterizing the innovative technologies in healthcare 4.0 

In order to answer RQ5 - is it possible to define a first draft of HC4.0 vocabulary for 
characterizing the innovations and innovative technologies in healthcare 4.0? - we performed 
the following steps: 

- NLP, clustering and complex network analysis on the most frequent words focusing 
on the clusters inherent to health sector; 

- identification and characterization of the technology trends in the cross-domain field 
of Healthcare 4.0. 

The contents of this chapter were published in the proceedings of the following conferences:  
- Annamaria Demarinis Loiotile, Francesco De Nicolò, Adriana Agrimi, Giuseppe 

Conti, Nicola Amoroso and Roberto Bellotti (2023). “Towards a Healthcare 4.0 
vocabulary: a Patent-based approach”. Proceeding of the 2023 World Conference on 
Information Systems & Technologies (WorldCIST'23) - Lecture Notes in Networks 
and Systems (LNNS, volume 799) - Series ISSN 2367-3370; Softcover ISBN 978-3-
031-45644-2; eBook ISBN 978-3-031-45645-9. 

- Annamaria Demarinis Loiotile, Davide Veneto, Adriana Agrimi, Gianfranco 
Semeraro and Nicola Amoroso (2023). “An AI-based approach for the improvement 
of university technology transfer processes in healthcare”. Proceeding of the 2023 
World Conference on Information Systems & Technologies (WorldCIST'23) - 
Lecture Notes in Networks and Systems (LNNS, volume 799) - Series ISSN 2367-
3370; Softcover ISBN 978-3-031-45644-2; eBook ISBN 978-3-031-45645-9. 

- Annamaria Demarinis Loiotile, Nicola Amoroso and Roberto Bellotti (2023). 
“Characterization of innovative technologies in healthcare 4.0 through the analysis 
of Italian patents”. Proceeding of the Ambient Assisted Living Forum 2023 - 
ForItAAL 2023 - Lecture Notes in Electrical Engineering (accepted and to be 
appeared). 

8.1 Proposed methodology 

First by using NLP and clustering techniques, and then, by means of a complex network 
analysis on the most frequent words, the analysis focuses on those clusters inherent to health 
in order to investigate the technologies used and their applications to the Healthcare 4.0 
domain. The final attempt is the construction of a first draft of a HC4.0 vocabulary based on 
the contents of the Italian research institutions patents (see Figure 35).  
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Figure 35: Overall flowchart of the proposed methodology 

8.2 Methodology application and results 

As already explained in Chapter n.6, each patent contained in KS was transformed by means 
of NLP techniques, then an unsupervised k-means cluster analysis was performed and, using 
a Silhouette score, the quality of clusters created using clustering algorithm was evaluated. 
This analysis outlined the presence of 8 clusters, that are again listed here for reading 
convenience:  

· Technologies 4.0 (mechanics and robotics) 
· Material science 
· Cancer treatment 
· Optics - Image processing 
· Sensor technology - ICT 
· New molecules - new compounds - pharmacology 
· Energy/green Technologies 
· Biomedical. 

It is interesting to underline that patents related to the health sector account for a large portion 
(about 30 percent of the total) and are enclosed in 4 out of 8 clusters. Accordingly, four 
clusters were further investigated because of their proximity to healthcare 4.0 applications: 
Technologies 4.0, Cancer treatment, New molecules - new compounds and Biomedical. 
These clusters were then considered for subsequent complex network analyses. 
For each cluster, we examined the occurrence frequency of each word to narrow the research 
field to the most representative words: in particular, the top 5% of words was selected within 
each cluster and, finally, an overall amount of 106 words was determined. At this point, to 
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highlight the relationships among these words we built a weighted complex network model 
whose nodes were the selected words, links were drawn between a pair of different words if 
they co-occurred in at least one patent and the number of co-occurrences represented the 
weight of an existing link. 
This model was adopted to explore if particular words, and therefore concepts, could be 
related in significant patterns. The underlying assumption is that these patterns provide a first 
step towards the definition of a healthcare 4.0 vocabulary with the opportunity to detect 
which are the basic assets defining healthcare 4.0 in an unsupervised way. There is not a 
univocal defined ontology for healthcare 4.0, yet. Therefore, we investigate here the adoption 
of network metrics to address this issue. 
In a complex network, by definition, the importance of nodes can be evaluated by means of 
centrality metrics (Boccaletti et al., 2006; Batool and Niazi, 2014); here three different 
options were considered: degree (d), eigenvector centrality (e) and betweenness (b) (Batool 
and Niazi, 2014). The degree measures the connections of a node; eigenvector centrality 
weighs this information according to the global degree distribution and it is a measure of the 
influence of a node in a network; betweenness evaluates the number of paths passing through 
each node, or in other words, betweenness centrality is a measure that quantifies how often 
a node serves as a crucial bridge along the shortest path connecting two other nodes. The 
reason for such choice is that, in general, three different perspectives can be used to measure 
centrality according to the local, global or dynamical flavour to be emphasized (Amoroso et 
al., 2021). Moreover, as these metrics do not take into account the links’ weights, we 
investigated the nodal strength (s). To this aim, we examined these four metrics and 
compared the ranking they returned in terms of Spearman correlation, see Figure 36.  

 

Figure 36: Spearman correlation p-values of degree(d), betweenness (b), eigenvector 
centrality (e) and strength(s) varying with the number of considered words. Statistical 

significance 0.05 is represented with a dash-dot line. 
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Our findings show that degree, betweenness and eigenvector centrality never show 
statistically significant differences, on the contrary the ranking provided by strength is 
significantly different independently from the number of words considered. Besides, we 
evaluated to which extent this result was affected by the number of considered words. We 
observed that, despite the varying number of words, no changes in correlation could be 
observed. This finding suggests that the information carried by network weights is far from 
being trivial and should not be neglected. 

In the following Table 12 the list of the first twenty words according to the importance 
evaluated by degree and strength is reported. 
 

Table 12: The top twenty words by Strength and Degree 
 

Ranking Degree Strength 
1  Control Gen 
2 Patient Treat 
3 Method Cellul 
4 Tissue Effect 
5 System Pharmac 
6 Gen Articul 
7 Articul System 
8 Treat Tumor 
9 Disease Effectiv 
10 Effectiv Patient 
11 Mechani Therap 
12 Therap Molecular 
13 Process Method 
14 Function Disease 
15 Technolog Tissue 
16 Model Tumor 
17 Cell Protein  
18 Compound Compound 
19 Protein  Diagnos 
20 Surger/Surgical Mechani 

While degree accounts for the number of patents using a specific word, nodal strength 
accounts for the number of times that word has been used, therefore normalized strength can 
be easily interpreted as the percentage of words’ co-occurrences. Top twenty words account 
for more than 30% of existing connections in both cases. The comparison between the two 
lists shows an agreement of about 60%. In the following, a possible interpretation of these 
lists is provided. 
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8.3 Discussion 

An analysis of the most frequent words in these 4 clusters and the patents contained in them 
reveals innovative technologies in the Healthcare 4.0 field developed by Italian universities 
and research centers. In the illustration of each cluster, the words shown in Table 12, i.e. 
those constituting the vocabulary, are highlighted in bold. 

The cluster n.1 “Technologies 4.0” contains new technologies including mechanics and 
robotics applied to different field: healthcare, transport, design, manufacturing, etc. 
Regarding healthcare, the technologies range from: 

- innovative wheelchairs for the disabled people, 
- underwater guidance for the blind, 
- active hip orthosis dedicated to assisting flexion-extension movement, as well as an 

exoskeleton that includes said actuation system, 
- active orthosis for shoulder and elbow assistance, with active and direct assistance on 

rotational degrees of freedom and with passive mechanisms for compensating 
shoulder movements that do not result in rotation, 

- haptic feedback dispositive that can be integrated into a prosthesis or a defective part 
of the human body, includes a sensory interface for the prosthesis or stump, equipped 
with a contact sensor capable of generating a signal upon contact with the object, 

- a wearable haptic device, in the form of a robotic thimble, that enables integrated 
simulation and perception of contact and temperature in virtual reality, augmented 
reality contexts under remote operating conditions, for example, in surgery and 
industrial maintenance tasks; this mechanism is integrated with a miniaturized 
thermal module, divided into two coplanar sectors, each equipped with an 
independent temperature control system, 

- innovative sensorized heart valve prosthesis for continuous monitoring of valve 
leaflet motion, 

- interventional radiotherapy applicator device, 
- artificial pneumatic muscles, capable of producing force and bi-directional motion 

with variable stiffness, 
- artificial brassiere for women who exhibit temporary/permanent breast asymmetry 

due to differences in volume, shape, or size after breast surgery, 
- easily transportable robotic exoskeleton designed for lower limb rehabilitation in 

patients with central nervous system injury outcomes, 
- wearable robotic device that has the function of aiding or extending grasping 

abilities, 
- wearable exoskeletons for robot-assisted neuro-motor and orthopedic rehabilitation 

and limb movement guidance during the performance of daily activities, 
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- single-body, sutureless heart valve using an innovative material and spray-robotized 
technology capable of coating a cast generated through 3D modeling and simulation 
with polymeric solutions, 

- a device and method that provides foot movement mobility that is highly compatible 
with the physiological movements of the ankle musculoskeletal system, 

- robotic platform for laparoscopy, an extremely useful tool for single-port surgery, 
- implantable artificial bladder, characterized by the ability both to vary its internal 

volume and to offer high resistance to urine and fouling, 
- cardiac simulator, which can be used to reproduce as closely as possible to reality the 

structural and functional behavior of the heart muscle and ventricles during the 
phases of systole and diastole, 

- assistance to patients with motor disabilities with a personalized modality, based on 
innovative machine learning techniques, with an automatic control scheme, based on 
model predictive control and thus such as to provide predictive support action. 

The cluster n.3 is more related to cancer treatment with very relevant innovation in this field, 
such as: 

- new three-dimensional co-culture method of podocytes and endothelial cells for the 
study of in vitro models of kidney disease, 

- novel method for cryopreservation of dental pulp to isolate mesenchymal stem cells, 
- use of a recombinant protein scaffold to prepare cell culture plates for use in the 

development of biomaterials for neuro-regenerative medicine, 
- arrays of organic transistors specifically designed for electrophysiological 

applications, 
- multifunctional metal oxide-based nanoconstruct capable of generating highly 

oxidizing and cytotoxic species when specifically activated by external pressor 
stimuli to induce targeted cytotoxicity in target cancer cells, 

- production of a nonerodable, sterilizable, biocompatible hydrogel scaffold for 3D cell 
culture, 

- method for directly measuring, via a low-cost, easy-to-use, high-throughput 
electronic device, the activity of an enzyme involved in the aging process of cells, 

- platform based on bacteriophages (i.e., viruses that infect bacteria), modified to 
selectively target and kill specific cell types of medical, veterinary, microbiological, 
industrial, and environmental interest, 

- stimulus-responsive and genetically controlled artificial cell biological system 
capable of producing proteins and releasing synthesized pharmacological molecules, 

- compound that inhibits cancer cell proliferation at nanomolar concentrations by 
reducing cell growth and inducing apoptosis, in experimental models of malignant 
peritoneal mesothelioma (DMPM); 

- efficient targeted delivery system of molecules with therapeutic action (e.g., 
cytotoxic agents) based on adipose stromal stem cells, 
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- multi-modular and innovative robotic system capable of isolating stem cells from 
small amounts of adipose tissue and automating all steps of isolation, manipulation, 
and cell expansion of adipose stem cells. 

The cluster n.6 is more connected with the formulation of new compounds and the discovery 
of new molecules and therapies. Some examples are: 

- innovative intranasal delivery modality through a device for the treatment of 
hypoxic-ischemic and traumatic brain injury of pediatric and neonatal age, 

- multifunctional biomaterial consisting of a hydrogel (hydrogel) that is administered 
through an injection directly into the tissue to be treated, 

- a microscale platform capable of generating 3D microtissues in vitro from human 
cells, 

- a modular device for automatic drug delivery, 
- oligosaccharide molecule capable of counteracting the motor symptomatology 

typical of neurodegenerative diseases, capable of counteracting the motor 
symptomatology typical of Parkinson's disease with biochemical and functional 
recovery of dopaminergic neurons, potentially resulting in improved clinical 
conditions of patients and in terms of quality of life, 

- polymer scaffold capable of mediating cardiac regeneration, 
- a compound, based on melanocortin agonists active on MC4 receptors, an effective 

treatment in counteracting the progression of acute (e.g., stroke) and chronic 
neurodegenerative diseases, 

- botulinum neurotoxin type A (BoNT/A), which is an effective therapeutic 
treatment in cases of spinal cord injury, 

- platform for the production of DNA vaccines that are safe and more effective against 
pathogen infections, based on the fusion of a plant protein signal sequence with that 
of a viral antigen, 

- mimetic peptides that, through a novel molecular mechanism, modulate the density 
and function of the L-type calcium channel and make it possible to treat those 
acquired or genetically-based human diseases associated with altered cellular 
calcium homeostasis, such as various cardiovascular, neurological and urological 
diseases, 

- by means of computational virtual screening techniques, a family of 
pharmacologically active molecules has been identified that have been shown to 
interfere with the mechanism underlying the development of rheumatoid arthritis 
pathology. The compounds identified here thus open up new possibilities in the 
treatment of this disease, 

- new pathogenic mechanism involving the p75NTR receptor, which reduces the 
production of inflammatory cytokines, promising their use for the treatment of 
chronic inflammatory diseases of auto-inflammatory or autoimmune origin, 

- innovative implantable device made for sustained release of multiple drugs. 
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The last cluster (n.8), named “biomedical”, includes mainly methods and techniques for 
disease diagnosis and monitoring: 

- instrument for automatic analysis and recognition of lung sounds acquired through 
an electronic stethoscope, 

- predictive kit for response to radio chemotherapy in patients with locally advanced 
cervical cancer, 

- development of an algorithm to standardize each decision-making process and 
provide the clinician with support for the diagnosis of oral health conditions, 

- patented diagnostic kit enables rapid and early differential diagnosis of ulcerative 
recto colitis, 

- computational methodology that allows the operator to perform a semi-quantitative 
analysis of MRI data, 

- software that performs post-processing analysis of DWI images and able to calculate 
the volume of the ventricles of the fetal brain, 

- method for simulating coronary changes and/or assessing the risk of myocardial 
ischemia, 

- device that measures the electrical characteristics of small areas of living tissue over 
a wide frequency range, with the aim of improving the accuracy of methods for 
cancer diagnosis; in fact, measuring tissue homogeneity and displaying impedance 
maps enables precise analysis of the region of interest by defining the margins of the 
neoplastic formation; this can help in many diagnostic procedures currently 
performed by surgical, endoscopic, and radiological techniques; 

- method to support planning of linear stereotactic trajectories for implantation of 
intracerebral devices, such as multi-contact recording and/or stimulating electrodes, 
biopsy probes, laser light applicators; applicable in the field of invasive diagnostics 
and surgical treatment of neurological diseases (Epilepsy, Parkinson's), 

- process of analyzing an individual's voice to investigate his or her health status, 
particularly to facilitate the diagnosis of diseases and/or disorders, both potential and 
overt. 

We attempt to give an interpretation to these twenty most frequent words in order to make 
them part of an HC4.0 vocabulary. 
Certainly, the goal of HC4.0 is to provide patients with better, value-added and cost-effective 
healthcare services (Al-Jaroodi et al., 2020) and improve the effectiveness and efficiency of 
the healthcare sector by trying to connect patients, physicians, hospitals, personal medical 
devices, pharmaceutical and medical supplier’s product and service providers in order to 
create a smart healthcare network along the entire healthcare value chain. There is a great 
control and monitoring (and prediction) of patient status thanks to the enabling 
technologies. 
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As in Industry 4.0, IoT, RFID, wearable devices, robotics, and blockchain technologies in 
cyber-physical systems create a mechanism for data collection, monitoring, analysis, 
intervention, and feedback (Li and Carayon, 2021). Linking these technologies to 
personalized medicine can help implement genetics-based approaches to diagnosis and 
treatment and improve the effectiveness of patient care. 
In healthcare, machine learning and artificial intelligence analyze huge amounts of 
information (big data) to provide accurate medical diagnosis before treatment is too late. 
Artificial intelligence technologies are increasingly being used to fight disease and save 
more lives by trying to diagnose diseases such as tumor early (Haleem et al., 2022). Big 
Data helps determine the effectiveness of medical treatments as well as identify effective, 
standardized therapies for specific disorders. Big data helps improve outcomes and reduce 
costs through improved disease management strategies and the development of better 
diagnosis and treatment processes (Haleem et al., 2022). Digital health tools promise to 
improve individual health care delivery and increase the ability to effectively detect and treat 
disease. In addition, technologies such as cell phones, Internet applications, social networks 
offer new methods for patients to monitor their health and access information. 
In the field of telepathology, telemedicine and disease monitoring, even surgery, with the 
use of AI, is being increasingly digitized (Surgery 4.0) (Feußner and Park, 2017; Jell et al., 
2019; Teber et al., 2020), with the ultimate aim of improving results and reducing costs. AI 
can indeed improve the speed of operations (Dahl and Kamel Boulos, 2013; Aceto et al., 
2020) and support doctors by reducing the risk of tremors or other unwanted or involuntary 
movements during surgery. Telesurgery represents the ultimate evolution in which the 
surgeon and his cockpit are physically distant from the operating room (Thuemmler and Bai, 
2017; Aceto et al., 2020). 
Through the application of communication tools to patients and medical teams, the transfer 
of treatment from the hospital to the home is intensified, without disruption in outpatient 
services. Through the use of technology, classical pharmacological therapies are replaced 
with the support of digital applications provided jointly to the patient and the physician, in a 
perspective of better and more integrated adherence to care. Nowadays, the techno-scientific 
evolution of medicine is essentially taking place along at least three main axes: 
restorative/integrative medicine, regenerative medicine and precision medicine. The three 
perspectives of development have several points in common, but above all they are closely 
linked to the possibilities offered by the information technology revolution, linked to 
artificial intelligence (Cappelletti, 2018). 
Integrative Medicine is originally "restorative" medicine, traditionally prosthetic (artificial 
devices designed to replace a missing body part) and more recently bionic, a branch of 
biomedical engineering that applies cybernetics to the reproduction of functions of living 
organisms. 
Tissue engineering is an interdisciplinary area concerned with the development of functional 
3D tissues by mixing scaffolds, cells, and bioactive chemicals. It is a subset of biomedical 
engineering in which cell biology, materials science, chemistry, molecular biology, and 



 

 

 116 

medicine converge. It applies to the repair, restoration, and preservation of damaged tissue, 
articulation or a whole organ (Haleem et al., 2022). 
Regenerative Medicine is based on the principles of genetic engineering-isolating a gene 
from the organism that possesses it and inserting it into a host even of a different species-and 
is developed as gene therapy (reconditioning of cells in vivo), use of stem cells (ex vivo and 
in vivo cell regeneration), and tissue engineering (combination of artificial cells and 
materials) for anatomo-functional restoration of tissues and organs (Jessop et al., 2016). The 
most promising regenerative medicine technique is that based on stem cells (SC) - 
embryonic, adult, and "induced" - with the ability to reproduce tissues and organisms. 
Precision Medicine tends to the treatment and prevention of disease based on individual 
variability of genes, environment and lifestyle (personalization) and is based on deterministic 
understanding of disease, diagnosis of causal factors, ability to treat root causes of disease, 
using tools such as genomic and post-genomic biological databases, characterization 
methods such as "omics," cellular analysis and "mobile" technology, and bioinformatics 
(Cappelletti, 2018). 
In HC4.0, the entire healthcare system and its management take on an even more key role; 
all stakeholders in the healthcare ecosystem are actively involved in supply chain logic. In 
healthcare 4.0, as automation and the use of technology increase, the participation and 
importance of people actually become more critical. Not only patients, physicians, and 
relevant support staff are included in the system, but also nurses, physician assistants, 
pharmacists, lab technicians etc (Li and Carayon, 2021). It is important to focus on system 
and process: team, team of teams, network of care, process spread across organizational 
boundaries, community involvement. 

8.4 Conclusion  

In conclusion, by using NLP, clustering and complex network techniques, an Italian patent 
platform, where the innovation of about 90 research centers and universities are collected, 
was analyzed in order to identify the innovative technologies in a particular research cross-
domain field such as the Healthcare 4.0. 
The analysis of the Italian patent heritage on the 4 healthcare-related clusters reveals a great 
deal of innovation focused on different areas, some of which are the most important 
healthcare sectors where artificial intelligence is identified to be having an impact, such as 
in robotic assisted surgery, personalized medicine, drug discovery, imaging&diagnostic, 
diseases monitoring, assisted living, automated clinical decision support, elderly care, and so 
on. Healthcare 4.0, in fact, is focused on patient management and care, with a key promise 
of the developing technology being the identification of patient-centric, data-driven tools to 
improve treatment regimens, hospital workflows and disease prevention. 
The intrinsic multi-disciplinary nature of HC4.0, including many technical fields and deeply 
involving non-technical areas as well, makes it harder and harder for the operators and 
stakeholders in this field to keep the pace with technological progress. Therefore, precisely 
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in HC4.0 area, the knowledge/technology transfer, the creation of networks and ensuring 
easier access to IP-protected assets are especially important in order to develop applied 
research and make it quickly "usable" innovation according to continuous open innovation 
schemes. In particular, the involvement of all actors in the innovation chain, which in the 
health sector becomes even more important, represents the emblem of the quadruple helix 
model where, with public and private stakeholders and university, great importance is laid 
on citizens and their needs, above all in the development of health, social and other related 
services. This model brings greater social benefits and empowers citizens/patients who are 
not only passive consumers of content/services but take on the role of creators of innovation, 
in a patient-centered perspective. 
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CHAPTER 9. Discussion and conclusion  

This research path revealed multiple weaknesses in the process of innovation diffusion, of 
the demand-supply intersection, mainly by espousing the perspective of those who produce 
innovation, i.e. the numerous research institutions and universities. 

It is interesting, however, to try to look at the problems also from the perspective of those 
who adopt innovation, thus attempting to arrive at a complete multi-perspective view. 

In an attempt to articulate the discussion in a coherent manner while clearly highlighting the 
problems and possible solutions available, this chapter is organised as follows: 

- section 9.1 discusses the work by looking at what has been done from the perspective 
of those producing the innovation; 

- section 9.2 provides a re-reading of the problems and solutions proposed during the 
thesis from the perspective of those who research and adopt innovations; 

- section 9.3 summarises the lessons learnt. 

9.1 The Producers' Perspective 

This section draws conclusions regarding the problems and possible solutions proposed in 
the research work from the point of view of those who produce the innovation. Figure 37 
describes and summarizes the logical path followed throughout the entire thesis work, as 
narrated in the context of the preceding 8 chapters, aimed at addressing the 5 research 
questions.  
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Figure 37: the logical path followed throughout the work 

 
The research work begins with its initial research question (RQ1): How do the world's top 
universities, as per global university rankings, perform in terms of knowledge transfer? In 
simpler terms, can the commonly used rankings adequately assess universities' third mission 
performance? To address this question, we conducted an analysis of the most well-known 
global university rankings, including The Academic Ranking of World Universities 
(ARWU), The QS World University Rankings® (QSWUR), and The Times Higher 
Education World University Rankings (THEWUR), to identify the world's leading 
universities. One notable observation that arises is the absence of specific Knowledge 
Transfer (KT) indicators in these rankings.   
The European Commission introduced U-Multirank (UMR), a ranking system that adopts a 
distinct approach in comparison to the established global university rankings. UMR 
incorporates a set of nine indicators specifically focused on Knowledge Transfer (KT). 
Consequently, during the research work, our initial analysis aimed to determine whether the 
universities identified as top performers in the global rankings also excel in terms of their 
third mission activities. When assessed using the dedicated Knowledge Transfer indicators 
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of U-Multirank 2020, it becomes evident that only three of the world's top-ranked universities 
manage to lead in this particular area. Out of the 30 universities that excel in Knowledge 
Transfer, a mere five are part of the prestigious T10 group of universities. 
The analysis utilizing the MAD (Median Absolute Deviations) indicator has aided in 
identifying three key indicators that effectively assess universities' performance in terms of 
KT activities: Co-publications with industrial partners, Patents awarded (in absolute 
numbers), and Publications cited in patents. Furthermore, the research endeavors to 
elucidate, through a focused bibliographic analysis, why these indicators are not only 
interesting but also valuable for interpreting KT performance. 
The evaluation of the third mission remains a complex task; the challenge often lies in our 
ability to measure only what can be quantified. Numerous activities, particularly those 
associated with KT, remain elusive to measurement and quantification, especially when they 
unfold through unintentional mechanisms. This issue has also sparked a scientific debate 
regarding the measurement of the impact and societal benefits stemming from KT activities. 
Of the three indicators that best discriminate the performance of universities in terms of 
knowledge transfer and third mission, the work focused on the number of patents granted, 
which offers a more accessible dataset, with numerous patent databases being freely 
accessible for consultation. Given that a significant portion, ranging from 70% to 90%, of 
technological information remains unpublished except in patent documents, patents 
represent one of the most valuable sources of information.  
Due to these reasons, the research primarily centered around patent analysis and patent 
matchmaking platforms. To achieve this, the methodologies of Intellectual Property 
Analytics were employed, representing a multidisciplinary approach aimed at extracting 
valuable insights from intellectual property data. 
University patents are too often not valued and transferred, so patent matchmaking platforms 
have sprung up over time. This thesis focused on Italy's largest and most significant patent 
platform, Knowledge Share (KS), offering unrestricted access to the public and containing a 
total of 1694 patents, uploaded by 89 Italian Research Centers, both public and private 
institutions such as Universities, Research Centers, Scientific Institutes for Research, 
Hospitalization, and Healthcare organizations. The patents in KS are classified in 10 
technological areas: 

• Aerospace and aviation;  

• Agrifood; 
• Architecture and design;  
• Chemistry, Physics, New materials and Workflows (Basic Science);  
• Energy and Renewables (Green Energy);  
• Environment and Constructions (Environment);  
• Health and Biomedical (Biomed);  
• Informatics, Electronics and Communication System (Electronics);  
• Manufacturing and Packaging (Packaging);  



 

 

 121 

• Transports. 

Using NLP, clustering and regression techniques, the research work tried to answer the 
following research questions: 

- are the classification taxonomies used in the patent platforms effective in classifying 
the whole landscape of academic patents (RQ2)? 

- is it possible to support the user in correctly classifying a patent entered into the 
platforms in order to improve the matchmaking between demand and supply of 
innovation (RQ3)?  

- is it possible to draw up an attempted vocabulary of technological fields from the 
keywords that emerged from an applied AI-based approach (RQ4)?  

The clustering analysis reveals the presence of 8 homogeneous clusters instead of the 10 
proposed by the KS platform:  

1. Technologies 4.0 (mechanics and robotics) 
2. Material science 
3. Cancer treatment 
4. Optics - Image processing 
5. Sensor technology - ICT 
6. New molecules - new compounds - pharmacology 
7. Energy/green Technologies 
8. Biomedical 

This result suggests that there might be potential inconsistencies within the conventional 
classifications used by Knowledge Share (KS). These inconsistencies are likely attributed to 
the emergence of new technologies or cross-domain areas, such as Technologies 4.0. 
Consequently, this implies that there is considerable margin for improvement in the 
taxonomy used by KS to more effectively capture and represent patent content. 

To assist users in the search and classification of patents, our research introduces a 
comprehensive automated patent multi-classification system. This system harnesses NLP 
techniques and Machine Learning to emphasize the keywords that define classification 
categories. An important feature of our methodology is its ability to assign patents to one or 
more labels simultaneously, acknowledging the potential for emerging technologies to 
transcend traditional domain boundaries. Our method, openly accessible, serves two primary 
purposes: firstly, it benefits patent managers by providing reliable category 
recommendations for patents and the associated technologies they encompass; secondly, it 
aids end-users of technological platforms, such as investors and companies, by offering a 
quantitative assessment of the similarity between the technologies they are searching for or 
intend to patent and the most appropriate technological domains. Consequently, our 
recommender system streamlines the process of matching innovation supply with demand, a 
critical factor in generating social and economic impact with emerging technologies. 
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Conversely, the methodology enables the identification of keywords that characterize a 
patent in an objective and independent manner, devoid of human subjectivity. This aspect 
proves highly valuable in forming an initial vocabulary composed of words extracted from 
patents. Ultimately, it can contribute to the redefinition of existing categories, thereby 
supporting portal management and enhancing the matchmaking process among users and 
patent owners. 
Among the 8 clusters emerged, 3 ones are dedicated to the healthcare sector, a research cross-
domain field. The patent analysis methods described have been employed within the 
particularly influential field of Healthcare 4.0 (HC4.0). This is a crucial sector characterized 
by ongoing evolution and by the application of cross-cutting and multidisciplinary 
technologies and innovations. HC4.0 is a relatively new concept that has evolved from 
Industry 4.0. It is used to depict the gradual integration of typical Industry 4.0 technologies, 
such as the Internet of Things (IoT), Industrial IoT (IIoT), cognitive computing, artificial 
intelligence, cloud computing, fog computing, and edge computing, into the healthcare 
domain. Within this emerging paradigm, Cyber-Physical Systems (CPS) play a pivotal role 
in shaping digital health systems that encompass products, technologies, services, and 
businesses. 
HC4.0 is a multidisciplinary and complex field where knowledge and technology transfer, 
as well as the establishment of networks and collaborations, play a pivotal role in advancing 
applied research and swiftly converting it into practical innovations. Nonetheless, owing to 
its multidisciplinary and highly innovative nature, healthcare-related patents frequently find 
themselves within what can be termed as "monster categories". These categories encompass 
a broad spectrum of multidisciplinary patents that are inadequately characterized and 
classified. Monster categories prove ineffective in distinguishing and categorizing patents, 
rendering them challenging to explore and utilize efficiently. 
In order to answer to RQ5: is it possible to define a first draft of HC4.0 vocabulary for 
characterizing the innovations and innovative technologies in healthcare 4.0?, by using NLP, 
clustering and complex network techniques, an analysis was conducted on KS patents with 
the aim to identify innovative technologies within the specific cross-domain field of 
Healthcare 4.0. 
The examination of the Italian patent repository, particularly within the four healthcare-
related clusters, revealed a wealth of innovation spanning various areas. Notably, these areas 
encompass some of the most critical sectors in healthcare where artificial intelligence is 
making a significant impact. These sectors include robotic-assisted surgery, personalized 
medicine, drug discovery, imaging and diagnostics, disease monitoring, assisted living, 
automated clinical decision support, elderly care, and more. 
Healthcare 4.0 primarily revolves around patient management and care. A fundamental 
aspect of this evolving technology is the development of patient-centric, data-driven tools 
aimed at enhancing treatment protocols, optimizing hospital workflows, and preventing 
diseases. 
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Through the complex network approach, a first attempt of HC4.0 vocabulary was drafted.  As 
described in Chapter 7, through the AI-based approach, keywords characterizing the 
innovation landscape in Italy were identified. Focusing the attention on Healthcare sector, 
the following compares the words that emerged from the AI-based approach and those that 
emerged from the complex network approach (in alphabetical order).  

 
Keywords from complex network 

approach 
Keywords from AI-based approach 

Disease Blood 
Protein Bone 
Tissue Brain 

Technolog Cancer 
Cell Cell 

Method Clinical 
Effectiv Diagnos 
Patient Diagnostic 

Diagnos Disease 
Gen Drug 

Surger/Surgical Gene 
Mechani Human 
Model Invasiv 
Tumor Molecul 
Process Phatologhy 
Articul Patient 
Treat Surgery 

Function Surgical 
Pharmac Therapeutic 
Therap Therapy 

Compound Tissue 
Molecular Treatment 

Control Tumor 
System Ultrasound 

 

The comparison shows that the difference consists of 8 words that enrich the initial 
vocabulary: 

• blood 
• bone 
• cancer (equal to tumor) 
• clinical 
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• drug 
• human 
• invasive 
• pathology 
• ultrasound 

Finally, the initial vocabulary of HC4.0 consists of 33 words that emerged from the content 
of Italian patents. 

The rapidly evolving field of digital health is revolutionizing conventional healthcare 
practices. Artificial Intelligence is emerging as a pervasive technology, with applications 
ranging from healthcare chatbots, diagnosis, care direction, medical image enhancement, to 
clinical data interpretation, among others. Smartphones are being adapted for various 
healthcare purposes, including self-monitoring, self-care, communication with healthcare 
professionals, health data recording, and clinical guidance. The future landscape of 
healthcare is undeniably shaped by digital technologies. 

9.2 The adopters' perspective 

This section provides a rereading of the conclusions reached following the research process 
from the perspective of those who adopt an innovation. 
To this end, it is interesting to look back to a reference system proposed years ago by the 
sociologist Rogers Everett (2003). The model allows us to approach the problem of 
innovation from the perspective of those who adopt it, thus giving us the opportunity to 
compare points of view.  
Everett identifies multiple factors that influence innovation: the innovation itself, the 
different categories of those who adopt an innovation, the communication, the time and the 
territorial context. We analyze the main ones below. 
 
With regard to innovation, the characteristics that are most conducive to its adoption are 
mainly the degree of compatibility with processes and tools already in use, the possibility of 
experimenting with it before finally adopting it, the availability of data and evidence on its 
effectiveness in relation to competing innovations, and the ease of adoption and learning. 
The research carried out in this PhD unfortunately shows that, for example, the patents, on 
which we have focused most, are often described in an overly technical and inadequate 
manner, thus making it impossible to assess the key aspects identified by Everett. The 
Knowledge Share platform, presented in Chapter 4, with the adoption of marketing sheets, 
represents an attempt to overcome these critical issues, although, as the analyses conducted 
have shown, it suffers from further classification problems that could make the contents 
sometimes more difficult to find with negative repercussions on the supply-demand matching 
of innovation. Analyses in this thesis have shown that the multidisciplinarity and complexity 
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of the today innovations sometimes escape the traditional channels of research and thus 
technology transfer. Universities engaged in research and development in unconventional 
scientific domains, such as cross-domain and emerging field, are seeking alternative 
technology transfer processes. These should be more tailored and realistic, avoiding the one-
size-fits-all approach often associated with traditional linear technology transfer models 
(Karanikic et al., 2019). Technology Transfer Offices should align with the evolving 
landscape of commercializing research outcomes in the digital economy era. They have to 
revise and implement their current policies for technology transfer, intellectual property 
protection, and management, along with commercialization strategies to effectively 
introduce their technologies to the market. 
A more powerful supply-demand matchmaking tools and strategies are needed in order to 
empower technology transfer. For these reasons, the use of support systems for users, 
companies and technology transfer experts, such as the recommender system proposed in 
Chapter 7, can be crucial in reducing the gap between demand and supply of innovation, 
especially in highly multidisciplinary domains as HC4.0. 
The transfer and commercialization of emerging and frontier technologies, such as those 
developed in HC4.0, may prove even more complicated. This thesis work has shown that it 
is also complex to monitor third mission activities, which, more broadly, involve actions and 
activities that are sometimes not easily quantifiable, measurable and monitorable. 
Further key elements according to Everett are communication and time. Nowadays, most 
of the communication is social, and in terms of timing and content, it is incompatible with 
the timing of empirical evidence production and the content of academic production. 
Unfortunately, academic production and the research results often appear slow in the 
diffusion of innovation and, as described in Chapter 1, succumbs to Death Valley. 
In knowledge transfer, communication is highly critical. In fact, studies conducted during 
the PhD revealed how IP management is not trivial and, specifically patents, are difficult to 
access and, therefore, poorly communicated and valorised. Not surprisingly, online patent 
platforms have emerged over time as convenient channels for patent transfer, with the joint 
effort of both academic, industrial and political partners. Unfortunately, existing 
initiatives/platform used for matchmaking between supply and demand for innovation are 
sometimes ineffective and not easily available: they often are paid services, not open, they 
report the patent document as such, without a usable "translation" for all that facilitates 
matching. The classification of the patents in a given technological area or sector is a 
challenging task. Often this classification and, therefore, the search and consultation method 
used, are based on taxonomies and keywords self-defined by users, experts or database 
managers and are not very effective.  
These problems became clear in Chapters 6 and 7. Chapter 6 highlights how the classification 
adopted by KnowledgeShare based on 10 categories differs from the classification with 8 
clusters obtained by applying NLP and clustering techniques. And in Chapter 7, methods are 
proposed to improve the classification of innovations, improving the classification 
taxonomies used and identifying more meaningful and discriminating keywords useful in the 



 

 

 126 

search for an innovation. The most striking case of misclassification, as shown in Chapters 
7 and 8, is certainly that of the health sector. It contains a significant number of poorly 
characterized and classified patents, and thus it represents the so called “monster category”. 
Healthcare related innovations, due to multidisciplinary and particularly innovative nature, 
tends to generate classes with a large number of patents. Also for this reason, during the 
research period, the healthcare sector was investigated with particular attention, given its 
strategic importance and the poorly accurate exploration techniques. Chapter 8 present a 
tentative vocabulary for better characterize this critical sector.  
Equally critical is the time factor. In fact, in the health sector, R&D activities are particularly 
complex as innovative clinical technologies are subjected to heavily regulated and supervised 
validation process, before they can obtain approval and placed on the market. For this reason, 
the development of innovation in this context can be characterised by a very long time-to-
market and a very high attrition rate. These elements are often synonymous with high 
investments for those wishing to realise innovative solutions in the clinical field and 
sometimes represent a barrier to innovating autonomously as far as clinical practice. 
In the past, players in the innovation ecosystems, especially in the healthcare sector, have 
pursued and experienced a predominantly closed innovation model, with the tendency of 
companies to conduct research and development internally to protect intellectual property, 
hoping to generate a competitive advantage. In recent years, however, it is evolving towards 
a digital, multi-channel paradigm, based on an increasingly patient-centred research and 
delivery models co-created in a multi-stakeholder perspective, part of an increasingly 
articulated and extended health chain. 
Coming back to the analysis of the keywords carried out in Chapter 7 and 8, it is interesting 
to note how digital technologies are pushing innovation for both academics and practitioners, 
especially in the health sector. HC4.0 lies at a unique crossover of disciplines, between 
medicine, psychology, sociology, engineering, business management, marketing, 
pharmaceuticals, IT, devices, Industry 4.0. It is necessary a comprehensive and 
interconnected perspective, providing an integrated analysis that encompasses different 
domains and involving different actors: practitioners, industries, universities and public 
institutions. It is indispensable to foster continuous dialogue and cooperation between 
regions, healthcare companies, patient associations, industry, business, technology and 
innovation managers. 
Digital technologies are improving several aspects, including diagnostic and therapeutic 
procedures through the use of artificial intelligence for diagnostics and surgical decision-
making, as well as the development of telemedicine tools for patient counselling and 
monitoring. In addition, they have facilitated the redesign of more efficient organisational 
and administrative processes aimed at delivering cost-effective healthcare services 
(Biancone et al., 2021; Cobianchi et al., 2022; Miceli et al., 2021). Digital technologies such 
as social media platforms have been shown to enhance public health education and 
communication efforts. New robotic systems and surgical tools are improving the safety and 
efficiency of surgeries, benefiting patients, surgeons, and society as a whole. Automation 
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and 3D printing are introducing innovative devices for patient care, while big data is 
facilitating the collection of valuable information for training healthcare professionals and 
optimizing healthcare techniques (Dal Mas et al., 2023).  
This transformation contributes to better overall health among the population. WHO Global 
strategy on digital health 2020-2025  states: “The vision of the global strategy is to improve 
health for everyone, everywhere by accelerating the development and adoption of 
appropriate, accessible, affordable, scalable and sustainable person-centric digital health 
solutions to prevent, detect and respond to epidemics and pandemics, developing 
infrastructure and applications that enable countries to use health data to promote health and 
well-being, and to achieve the health-related Sustainable Development Goals and the triple 
billion targets of WHO’s Thirteenth General Programme of Work, 2019–2023” (WHO 
Global strategy on digital health 2020-2025). 
How does intellectual property contribute to the advancement of Digital Health? With the 
ongoing expansion of the digital health sector, IP has gained significant relevance within the 
industry. IP plays a fundamental role in advancing Digital Health by providing essential 
protection for the innovations developed by scientists and entrepreneurs. Simultaneously, it 
ensures that users can readily access and benefit from these innovations. Whether it involves 
a groundbreaking software algorithm for remote patient monitoring or a mobile application 
offering personalized fitness plans and health tracking features, IP safeguards the 
development of unique and transformative digital health solutions. These solutions can then 
be disseminated widely to enhance healthcare outcomes for individuals worldwide. By 
preserving and fostering creativity and innovation within the digital health sector, IP also 
aligns with the United Nations Sustainable Development Goals (SDGs), particularly SDG3 
"Good Health and Well-being" and SDG9, which focuses on "Industry, innovation, and 
infrastructure". However, there is still much to be accomplished to make digital health 
solutions universally accessible, bridging the "digital divide" and ensuring equitable access 
for all. 
A further key factor for Everett is ultimately the context and the ecosystem in which 
innovation develops. And in this regard, it is interesting to note the composition of the 
clusters obtained in Chapter 5. It appears to take into account the geographical dimension, 
i.e. the industrial, social and economic environment itself can affect the KT and third mission 
activities, thus suggesting that there are contextual factors that the purely quantitative 
analysis used by global university rankings fail to grasp or bring out. In Chapter 5 it appears 
evident as the Californian universities and, to a lesser extent the Japanese and some Asian 
ones, stand out in the KT even though they are not among the best in the traditional global 
university rankings. 
Therefore, the particularly lively and innovation-friendly territorial context and the presence 
of an innovation ecosystem allow for the emergence and affirmation of universities and 
research centres that are particularly successful in knowledge transfer. 
Today collaboration patterns acquire an extraordinary enabling value for research and 
technology transfer and, in particular, innovation ecosystems, i.e. networks of highly 
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qualified and internationally recognized public and private actors that operate in synergy 
with the aim of fostering the interaction, creation and promotion of innovation in a specific 
area of common interest, consistent with the industrial and research vocations of the 
reference territory (Deloitte, 2023). Definitely, IP can serve as a catalyst for collaboration 
and innovation.   
Furthermore, we have highlighted how crucial is therefore the involvement of the entire value 
chain and the various actors that make it up. The Universities and Research Centers, in 
particular, among all the actors involved in this ecosystem, listed below, play a predominant 
role as a connection point and facilitator of interactions, like an enzyme in a reaction: 

- Universities and public and private research centres, in primis, have a decisive role 
in the generation, nurturing and development of technologies and research; 

- Enterprises, start-ups, SMEs and large companies in the pharma insurance, 
technology and medical devices, have the ask of integrating clinical and technological 
innovation into the productive context, thereby creating value for the territory and 
society; 

- Private hospital organisations, key players in the development of research and clinical 
innovation, are also configured as users of new technologies, with a connecting role 
between scientific knowledge and its application to clinical practice; 

- Incubators and accelerators act as a link between entrepreneurial realities, the state, 
public authorities and the private investor market and support start-ups with tools and 
dedicated assistance to facilitate start-up and growth phases; 

- Financial stakeholders - from venture capital actors to public financial institutions - 
are called upon to provide capital for the growth and development of innovations; 

- Public institutions, finally, have the task of defining policies to decline the process of 
transforming knowledge into economic benefits and direct it towards the aims of the 
country's industrial policy. 

 
In this direction, in Italy, the National Recovery and Resilience Plan (PNRR), as an 
accelerator of innovation in multistakeholder ecosystems, has open innovation and 
technology transfer as key elements to enable the country's innovation strategy, enable the 
transmission of results, resulting from research, to the market, economy and society, and 
facilitate the conversion of experimental ideas into products, services and entrepreneurial 
initiatives, making a decisive contribution to the development and competitiveness of the 
scientific-industrial ecosystem. 
The objectives of the PNRR are declined and implemented through six Missions, which 
constitute the fundamental pillars for the transition to economic development based on 
innovation, digitization, sustainability and social cohesion. In particular, Mission 6: Health 
has as its overall objective the strengthening of the health system through the creation of new 
infrastructures and modernization of existing ones, scientific research, technology transfer, 
digital and technological transition. Investments of 15.63 billion euro are planned for Mission 
6.  
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The PNRR stands as a truly transformative project, a tool for accelerating innovation, which 
aims to reform the entire supply chain, from basic research to technology transfer and the 
actual development of pilot projects; it incentivizes new governance models, opens up 
participation in funding also to private investors or to public-private partnerships. In fact, 
five Research National Centers, fourteen Extended Partnerships and up to thirty Research 
and Technological Innovation Infrastructures have been financed, in which projects 
technology transfer plays a key role. 
 
Focusing on the Apulian ecosystem, in this concluding section, it can be said that the Apulian 
research system is actively involved in all PNRR projects, with a funding of almost 300 
million euro in the only province of Bari.  
Apulia Region has always famously developed a growth strategy based on innovation and 
the valorization of young talent. Innovation is one of the pillars of regional industrial policy 
in the new SmartPuglia 2030 strategy, approved in 2022; Apulia ranks eighth in Italy in terms 
of the number of start-ups and innovative SMEs, and third and second respectively in the 
Mezzogiorno. In fact, it has 636 start-ups in addition to 111 innovative SMEs, both of which 
are registered in the relative categories of the Business Registry. 
Innovation, research, incentives and innovative finance: the Puglia ecosystem offers a series 
of tools and interventions to companies that decide to invest in the region. Renewable 
energies, the aeronautical and aerospace sector, technological start-ups, biotech, and 
collaboration between the university and business worlds, strategies for the ERDF and ESF 
2021-27 Funds: attractive drivers for those who choose entrepreneurial and scientific 
dynamism and quality of life 'made in Puglia'. 
Today, Apulia Region is developing an innovation ecosystem that has great potential for 
attracting major investors, both in Italy and abroad. In fact, Cassa Depositi e Prestiti (CDP), 
a publicly controlled joint-stock company, which has the Italian Ministry for the Economy 
and Finance as its majority shareholder, opened the first accelerators in Apulia and signed 
agreements with Apulia's leading universities for Tech Transfer Funds. CDP Venture Capital 
Sgr supports research results at different stages of maturity, offering different financial 
instruments depending on the TRL of the research results: from Proof of Concept (PoC) to 
acceleration.  
In recent months, the Apulia Region has launched a new instrument with the aim of fostering 
the growth of start-ups and innovative small and medium-sized enterprises, born from the 
research results, many of them from Apulia's universities and research institutions. It is called 
“Equity Puglia” and is the latest and most innovative financial instrument desired by the 
Apulia Region. The new instrument makes it possible to increase the level of capitalization 
and thus the equity strength of companies and does so with the collaboration of specialized 
investors. The initial budget is EUR 60 million and will make it possible to inject at least 
EUR 120 million in new capital into start-ups and innovative small and medium-sized 
enterprises. Co-investment funds will be provided for companies that, in line with the S3 
Strategy, can be traced back to the four cross-cutting themes that determine challenges and 
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opportunities for all sectors: environmental sustainability and the circular economy; 
information technologies for industry and society; life sciences and health technologies; blue 
growth and sea economy. 
 
All these efforts by the regional stakeholders, together with the Apulian research system, aim 
to reduce the gap that is the Valley of Death and that prevents so many research results from 
ever reaching the market.  
This effort must be even greater for the healthcare sector because without 
technology&knowledge transfer in this field, the innovations developed in research centers 
could never translate into improving people's lives and saving lives. 
 

9.3 Lessons Learned 

The lessons learned during this research work are the following: 
1. It is difficult to assess, monitor and compare the knowledge transfer and third mission 

activities carried out by research institutions because they are varied, complex and 
not always quantifiable (especially when they occur through unintentional 
mechanisms). 

2. Among the indicators that can best discriminate are patents granted, which today 
represent a mine of information on research results.  

3. Patents are still poorly valorized and remain stuck in the Valley of Death. Less than 
20 per cent of the technologies patented by research centers in Europe are exploited.  

4. To cope with this under-exploitation, numerous platforms for matching innovation 
supply and demand have sprung up. In Italy, the most important platform created by 
Ministry of Enterprises and Made in Italy is Knowledge Share, where currently 
almost 90 universities, IRCCS and research institutions upload their patents, 
translating them into a simple language that everyone can understand.  

5. Using the main techniques of Intellectual Property Analytics, we clustered Italian 
innovations and analyzed the main keywords emerging from the content of patents. 

6. We developed a recommendation system for users of the KS platform to support them 
in ranking patents and thus improve the matchmaking between supply and demand. 

7. The Healthcare sector has a strong presence in the innovations in KS; due to its 
multidisciplinary character, to its continuous evolution and the presence of emerging 
technologies, often gives rise to so-called monster classes because they are 
characterized by a high number of patents, which are difficult to classify. 

8. The focus is on HC4.0 or healthcare in which artificial intelligence is having a 
significant impact. These areas include robot-assisted surgery, personalized 
medicine, drug discovery, imaging, disease monitoring, assisted living, automated 
clinical decision support, elderly care and more. 
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9. Using a complex network approach, the main keywords featuring Italian innovations 
in this field were identified, trying to draw up a first draft of a vocabulary useful to 
better characterize HC4.0 innovations starting from the contents of Italian patenting. 

10. HC4.0 is a multidisciplinary and complex field in which knowledge and technology 
transfer, along with the establishment of networks and collaborations, play a crucial 
role in advancing applied research and rapidly translating it into practical innovations. 

11. In Italy and Apulia Region, great efforts are being made to allow excellent research 
results to go beyond the Valley of Death and, in particular, to allow innovations in 
the Healthcare sector to become products, processes and services that can be used by 
society to improve people's lives and save human lives. 
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Appendix A 

In this Appendix we report the 260 most important words, as determined by Logistic 
Regression (LR), our top-performer classification algorithm. In Table A1 we indicate these 
words in descending order of their corresponding coefficients in the LR model. Moreover, 
we also report the category at which words have these coefficients. 

Table A1: The 260 most important words for the LR model, together with the 
corresponding category. 

Word Category 

food Agrifood 

energy Green Energy 

building Environment 

solar Green Energy 

heat Green Energy 

product Agrifood 

plant Agrifood 

patient Biomed 

cell Biomed 

battery Green Energy 

wine Agrifood 

water Environment 

electricity Green Energy 

construction Environment 

component Packaging 

oil Agrifood 

animal Agrifood 

user Electronics 

object Packaging 

material Packaging 

particle Basic Science 
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extract Agrifood 

concrete Environment 

signal Electronics 

network Electronics 

information Electronics 

data Electronics 

photovoltaic Green Energy 

tissue Biomed 

power Green Energy 

thermal Green Energy 

fuel Green Energy 

packaging Packaging 

vegetable Agrifood 

gas Green Energy 

panel Environment 

milk Agrifood 

solvent Basic Science 

element Environment 

electrical Green Energy 

tumor Biomed 

seismic Environment 

communication Electronics 

circuit Electronics 

waste Agrifood 

piece Packaging 

optical Electronics 

machine Packaging 

olive Agrifood 

disease Biomed 
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steel Environment 

farm Agrifood 

software Electronics 

device Electronics 

edible Agrifood 

liquid Basic Science 

chemical Basic Science 

blood Biomed 

network Green Energy 

fruit Agrifood 

tool Packaging 

structure Environment 

process Basic Science 

structural Environment 

material Basic Science 

flow Green Energy 

mechanical Packaging 

joint Packaging 

stiffness Packaging 

diagnosis Biomed 

electromagnetic Electronics 

paper Packaging 

bottle Agrifood 

metal Basic Science 

detector Basic Science 

surgical Biomed 

system Green Energy 

acid Agrifood 

image Electronics 
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drug Biomed 

frame Packaging 

site Environment 

radar Environment 

human Biomed 

water Green Energy 

nanoparticles Basic Science 

polymer Basic Science 

package Packaging 

microorganism Agrifood 

environmental Environment 

air Environment 

wall Environment 

tag Packaging 

transmission Electronics 

pesticide Agrifood 

sensor Environment 

marine Environment 

content Agrifood 

generator Green Energy 

monitoring Environment 

sample Basic Science 

ion Basic Science 

exchanger Green Energy 

shaft Packaging 

reactor Green Energy 

stinger Packaging 

combustion Green Energy 

starch Agrifood 
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high Basic Science 

polymeric Packaging 

lithium Green Energy 

robot Packaging 

system Packaging 

efficiency Green Energy 

mortar Environment 

clinical Biomed 

anchor Environment 

integrate Packaging 

laser Packaging 

force Packaging 

industrial Packaging 

invasive Biomed 

random Electronics 

remote Electronics 

treatment Biomed 

quantum Electronics 

rfid Packaging 

property Basic Science 

chain Packaging 

hand Electronics 

compound Basic Science 

diagnostic Biomed 

therapeutic Biomed 

part Packaging 

coli Agrifood 

limb Packaging 

hydrogen Green Energy 
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defect Packaging 

microalgae Agrifood 

ph Basic Science 

code Electronics 

ceramic Basic Science 

grid Green Energy 

color Agrifood 

printing Packaging 

strain Agrifood 

maintenance Environment 

drone Electronics 

pathology Biomed 

screw Packaging 

bone Biomed 

antenna Electronics 

fiber Packaging 

mushroom Agrifood 

test Environment 

position Electronics 

gene Biomed 

composite Basic Science 

ultrasound Biomed 

cancer Biomed 

flight Packaging 

generation Green Energy 

wearable Environment 

sludge Environment 

manufacturing Packaging 

automotive Packaging 
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module Electronics 

orchard Agrifood 

fat Agrifood 

therapy Biomed 

tunnel Green Energy 

cycle Green Energy 

mode Electronics 

surface Basic Science 

inspection Environment 

field Basic Science 

brain Biomed 

load Environment 

electronic Electronics 

tanning Packaging 

cell Green Energy 

beam Basic Science 

air Green Energy 

event Electronics 

produce Green Energy 

fiber Basic Science 

enzyme Basic Science 

membrane Basic Science 

system Electronics 

precursor Basic Science 

surgery Biomed 

polymer Packaging 

conversion Green Energy 

biomass Green Energy 

oxygen Packaging 
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seed Agrifood 

syngas Green Energy 

gripping Packaging 

kinematic Packaging 

hot Packaging 

algorithm Electronics 

biomass Agrifood 

turbine Green Energy 

emission Environment 

material Environment 

virtual Electronics 

molecule Biomed 

production Agrifood 

cement Environment 

additive Packaging 

output Electronics 

good Agrifood 

risk Biomed 

environmental Agrifood 

cheese Agrifood 

natural Agrifood 

steam Green Energy 

biodegradable Packaging 

infection Biomed 

polyurethane Packaging 

graph Electronics 

bit Electroncis 

constraint Packaging 

connect Green Energy 
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heart Biomed 

recovery Environment 

area Electronics 

ground Environment 

critical Packaging 

receive Electronics 

model Electronics 

traditional Environment 

insert Packaging 

activity Biomed 

radio Electronics 

stereolithography Packaging 

mean Environment 

automatic Environment 

treatment Basic Science 

implement Electronics 

capable Packaging 

pack Green Energy 

hmd Packaging 

characteristic Agrifood 

foam Basic Science 

conductive Packaging 

reaction Basic Science 

electric Packaging 

specific Biomed 

voltage Green Energy 

reactor Basic Science 

vitro Biomed 

noise Electronics 
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soil Agrifood 

arm Packaging 

circular Packaging 

plenoptic Basic Science 

reinforcement Environment 

radiation Basic Science 

roof Environment 
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