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Abstract: Solar photovoltaic (SPV) arrays are crucial components of clean and sustainable energy in-
frastructure. However, SPV panels are susceptible to thermal degradation defects that can impact their
performance, thereby necessitating timely and accurate fault detection to maintain optimal energy
generation. The considered case study focuses on an intelligent fault detection and diagnosis (IFDD)
system for the analysis of radiometric infrared thermography (IRT) of SPV arrays in a predictive
maintenance setting, enabling remote inspection and diagnostic monitoring of the SPV power plant
sites. The proposed IFDD system employs a custom-developed deep learning approach which relies
on convolutional neural networks for effective multiclass classification of defect types. The diagnosis
of SPV panels is a challenging task for issues such as IRT data scarcity, defect-patterns’ complexity,
and low thermal image acquisition quality due to noise and calibration issues. Hence, this research
carefully prepares a customized high-quality but severely imbalanced six-class thermographic radio-
metric dataset of SPV panels. With respect to previous approaches, numerical temperature values
in floating-point are used to train and validate the predictive models. The trained models display
high accuracy for efficient thermal anomaly diagnosis. Finally, to create a trust in the IFDD system,
the process underlying the classification model is investigated with perceptive explainability, for
portraying the most discriminant image features, and mathematical-structure-based interpretability,
to achieve multiclass feature clustering.

Keywords: radiometric infrared thermography; solar photovoltaic panel; explainable artificial
intelligence; predictive maintenance; intelligent fault detection and diagnosis

1. Introduction

The worldwide renewables’ share accounted for 28.2% of the total final energy con-
sumption in 2020, which highlights the continuous growth and dominance of solar pho-
tovoltaics (SPV) in the global energy landscape. The cumulative installation capacity of
SPV arrays reached 1185 gigawatts globally in 2022, topping the 1-terawatt mark and con-
tributing approximately 6.2% to total electricity generation [1,2]. Moreover, the European
Union (EU 27) achieved around 198.3 gigawatts of SPV capacity in 2022 [3–5]. The global
solar energy transition in 2022 saw a dominant role, with a net additional generation of
362 gigawatts, SPV technology had a substantial grid-connecting share, contributing 66%
(239 gigawatts) of the total newly added capacity, surpassing other combined renewable
energy technologies. Considering the global solar tenders and records of 2021, the notable
mention was the Saudi Arabian solar auction (600 megawatts) setting a world record for
the lowest bid of 0.0104 USD/kWh. Later in Europe, Germany awarded a ground-mounted
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utility-scale SPV project of 1.952 gigawatts in March 2023 at an average bidding price of
0.0710 EUR/kWh [6,7].

Hence, ensuring the prolonged lifespan of an SPV energy plant, by monitoring its
desired generation output, has an important techno-economic impact. Periodical inspec-
tions and regular operational maintenance play a pivotal role in timely defect diagnosis, by
detecting thermal abnormalities and stresses appearing in SPV modules [8,9]. The degra-
dation state (BS EN 13306:2017) resulting from thermal stresses in SPV panels hampers
the plant’s ability to meet the targeted energy output [10]. This necessitates predictive
maintenance (PdM) for informed, strategic, and financial decision-making [11,12]. For
nondestructive testing, evaluation, supervision, monitoring, diagnostics, inspection, and
maintenance, the International Electrotechnical Commission (IEC TS 62446-3:2017) fur-
nishes technical specifications for outdoor infrared thermography (IRT) [13]. Moreover,
the training and certifications of personnel are imperative for conducting an IRT survey,
ensuring accurate data collection and precise information extraction [14–16].

1.1. Thermal Degradation and Aerial Thermographic Inspection

Given the fragile nature of SPV cells [17], temperature is a critical environmental
factor that significantly accelerates mechanisms associated with SPV module degradation,
particularly those linked to the rates of permeation, such as chemical reactions and diffusion.
Generally, the SPV module depends upon its cell material and components’ chemistry and
has a nominal operating cell temperature of 42–43 ± 2 ◦C [18–21]. Notably, the temperature
within the SPV module or cell may deviate from ambient temperature, primarily influenced
by incident solar irradiance and windy weather. Broadly speaking, there are three main
causes of thermal degradation. Firstly, there are deterioration processes, which include
thermo-chemical reactions [22,23] and thermo-mechanical stresses [24,25]. Secondly, there
are cyclic aging conditions [26,27], such as diurnal and seasonal temperature variations, as
well as general aging effects. Finally, there is the issue of semi-blockage or non-uniform
passage of sunlight through SPV glass, which can occur due to environmental factors [28,29]
like partial shadowing or soiling, glass damage like partial cracks or breakage, as well as
biological factors like bird droppings and vegetation debris. Heat dissipation from the cells
is influenced by factors such as the thermal conductivity and geometry of surrounding
materials, wind speed, and the installation configuration of the SPV module.

Additionally, discrepancies in thermal expansion coefficients among module materials
can lead to differential expansion and contraction, generating thermo-mechanical stresses
within the module structure. These stresses adversely impact the mechanical stability
of crucial electrical components, including cells, solder joints, and interconnect ribbons,
potentially causing issues such as deformation, delamination, and cell cracking. Further,
cyclic thermo-mechanical stresses from diurnal and seasonal temperature fluctuations may
lead to fatigue-induced failures among various module components [30–33]. Moreover,
thermal-caused failures are usually cascaded and irreversible, acting as a domino effect
resulting in a fait accompli. Hence, thermographic inspection plays a vital role in assessing
the heat signature and temperature profile of the SPV panel’s glass surface, aiding in the
classification, prediction, and mitigation of potential damage and defects.

The quantity of raw field data grows gradually as the surface area of the SPV arrays
enlarges, which makes periodical manual diagnostic monitoring relatively challenging,
laborious, and time-consuming. Here, fast remote supervision and aerial thermographic
inspections are performed periodically by deploying a drone-mounted (or unmanned aerial
vehicle—UAV) IRT camera to precisely locate and capture SPV panels’ thermal degradation
pattern for operational decision-making [34,35].
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1.2. Predictive Maintenance and Fault Diagnosis

PdM involves leveraging specialized skills in machine learning (ML) and artificial
intelligence (AI) tools to pinpoint and eliminate failure symptoms and anomalies. These
tools excel at identifying subtle patterns and deviations in data, providing insights into
anomalies and underperformance [11]. The effective maintenance process is initiated by
an accurate operational fault detection and diagnosis (FDD), which plays a critical role
in ensuring the efficiency, quality, and reliability of both modern industrial systems and
renewable energy systems. Traditional FDD methods, relying on human expertise and
diagnostic experience, face challenges as the factory and electric power plant scale expands
and the number of process variables increases [36]. In SPV systems, conventional FDD
methods, including overcurrent-protection devices and ground-fault detection interrupters,
encounter limitations in detecting specific faults due to factors such as low solar irradiance
conditions, nonlinear output characteristics, the presence of maximum power point trackers
(MPPT) in SPV inverters, and high fault impedances.

Consequently, there is a growing need to explore more intelligent fault detection
and diagnosis (IFDD) techniques, leveraging AI-based methods as promising alternatives
to conventional approaches [37]. Indeed, the adoption of ML and deep learning (DL)
algorithms has the potential to overcome the limitations of traditional FDD systems. Partic-
ularly, AI-based systems tailored for the diagnosis of SPV-IRT images can analyze complex
patterns, adapt to varying conditions, and accurately detect faults even in challenging
scenarios. The shift towards IFDD ensures improved efficiency in anomaly classification
tasks and opens the door to innovative advancements in PdM for renewable energy tech-
nology. In the broader context, traditional electricity-generating machines and renewable
energy equipment are expected to operate continuously under specific conditions and
environments to maintain the desired output. Functional safety and safety integrity levels
are specified from the IEC 61508 series, which provides consistent guidelines for risk-free
and fault-free smooth operations [38].

Hence, there is a low availability of faulty data instances for AI model training pur-
poses. Addressing imbalanced data in IFDD, especially within complex and uncertain
industrial environments, poses a significant challenge [39]. Current solutions often struggle
to effectively tackle these issues, somehow resulting in biased models and suboptimal
performance in diagnosing fault instances and abnormal behaviors. Proactive inspection
and maintenance approaches, supported by automatic predictive diagnostic monitoring
tools, contribute to enhancing operational efficiency, prolonging equipment lifespan, and
preventing costly disruptions [40,41].

Particularly, DL finds extensive applications in the localization, segmentation, detec-
tion, and diagnosis of SPV module images. However, it is accompanied by challenges
such as high memory requirements, computational expenses, and the need for substantial
quantities of image data for training [42].

1.3. Related Works

Different approaches have been recently proposed in the context of detecting and/or
classifying SPV panel defects, as can be seen from Table 1 [43–57].

The SPV-IRT image datasets generally consist of selected pseudo-color/false-color,
visible/RGB/converted true color (three-channel), and grayscale (one-channel) palettes
which are photographed by a visible-color and/or IRT camera mostly mounted on a drone
having various image sizes/dimensions (pixel resolution and quality), labeled classes,
and quantities.

The tools and frameworks applied for the preprocessing and analysis include
MATLAB/Simulink® [43], Adobe Photoshop® [44], C Sharp programming language, and
OpenCVSharp (v. 3.4.1) [55], among others.
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Table 1. Existing studies (solar PV image classification). Abbreviations: maximally stable external
regions (MSER); random sample consensus (RANSAC); Artificial Neural Network (ANN); Mean
squares error (MSE); Gray Level Co-occurrence Matrix (GLCM); Discrete Wavelet Transform (DWT);
Synthetic Minority Over-sampling Technique (SMOTE); Support Vector Machine (SVM); Neighbor-
hood Component Analysis (NCA); generative adversarial network (GAN); Red–Green Scale-Invariant
Feature Transform (rgSIFT); Transform Invariant Low-rank Textures (TILT); Robust Principal Compo-
nent Analysis (RPCA); transfer learning (TL).

Author Dataset and Classes Feature/Image
Processing Technique Algorithm/Tool Results

[43]

Color IR-thermal images,
6 classes (healthy solar PV
modules, shaded, partially

shaded, cracked,
hotspot-affected, and

delamination)

Mean, standard deviation,
entropy, and norm ANN, MATLAB® 92.3%

[56]
Visible and IR-thermal image

overlap/feature mapping,
2 classes

MSER using solar PV
blue-color, temperature

metrics (min, max, avg, high,
and low threshold),

abnormal area in %age,
RANSAC

Homography conversion
using

RANSAC algorithm
97%

[44]

IR-thermal image,
3 classes (healthy, hotspot, and

hot substring),
70 × 50 pixels

Median blurring, grayscale
conversion, Adobe

Photoshop®

VGG-16, dropout value =
0.15, learning rate = 0.001,

Only fully connected layers
set for training, Adam

optimizer moments = 0.9
and 0.999

98%

[45]
Grayscale image,

8 classes,
20 × 35 pixels

GLCM, 5 texture features
(correlation, contrast, energy,

entropy, and
homogeneity)

ANN (multi-layer
perceptron—MLP), 5-input

layers, 12-hidden layers,
8-output layers, MSE to
measure error, training

algorithm: scaled conjugate
gradient backpropagation,

91.7%

[58]
False-color RGB and grayscale

image, 2 balanced classes,
12,096 image size

Homogenization,
normalization, DWT,
thresholding, and a

combination of box blur and
Sobel Feldman filters,

augmentation: zoom, flip,
rotate

CNN (4 convolution layers
alternating with pooling,
flatten, 2 fully connected),
number of perceptrons at

fully connected layer = 20%
input size, dropout = 0.1,
batch size: 5, 10, kernel
size: 3, filter size: 32, 64,

128, 256

100%
(sectioned image)

[46]
Grayscale images,

12 classes,
24 × 40 pixels

Augmentation: horizontal
flip, vertical flip, ±20% size

translation, optional SMOTE,

ResNet, ensemble
(15 models using methods

combination), L2
regularization = 0.01

weight factor to all conv
layers to reduce overfitting,

stride = 1, 2 (decided by
conv layer), filters = 64,

parameters = 1.5 M

86%
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Table 1. Cont.

Author Dataset and Classes Feature/Image
Processing Technique Algorithm/Tool Results

[47]

Grayscale images,
12 classes

(selected 11-class classification),
24 × 40 pixels

Augmented oversampling
(brightness ± 30%, reverse ×

2, 180◦ rotation × 1)

AlexNet-based multi-scale
TL with 3-parallel branches,

parameters = 42 M
93.51%

[48]
Grayscale images,

12 classes,
24 × 40 pixels

Resize: 224 × 224,
exemplar patches: 56 × 56,

28 × 28,
NCA feature selector

Exemplar EfficientNet B0,
SVM classifier,

10-fold cross-validation
algorithm

93.93%

[49]
Grayscale images,

12 classes,
24 × 40 pixels

Augmentation: geometric
transformation and GAN

Lightweight coupled
UDenseNet,

parameters: 13.9 M
95.72%

[50]

Grayscale images,
12 classes

(selected 8-class classification),
24 × 40 pixels

Augmentation: geometric
transformations (vertical flip,
horizontal flip, and 0.2-width

shift)

CNN,
10-fold cross-validation 78.85%

[51]
Pseudo-color RGB IR-thermal,

3 classes,
71 × 71 pixels

rgSIFT k-Nearest Neighbor (k-NN)
ML algorithm 98.7%

[52]

Grayscale image,
5 classes (single cell hotspot,

multi-cell hotspot, diode fault,
PID defect, and dust and

shadow hotspot),
320 × 240 pixels

Histogram equalization,
data Augmentation,

normalization

Fault classifier: ResNet-50,
learning rate: 0.01,

RMSProp optimizer,
batch size: 32,

hotspot identifier with
bounding box: ResNet-101

(F-RCNN)

F1-score:
85.37%,

Mean Avg Precision
(mAP): 67%

[53]
Pseudo-color RGB IR-thermal,

4 classes,
224 × 224 pixels

Denoising: median filter,
augmentation: image data

generator,
zero-padding

CNN (16 layers): 4 Conv, 4
MaxPool, 1 AvgPool, 1

dropout, 1 flatten, 5 dense
(64, 32, 16, 8, 4)

95.55%

[57]

Converted
true-color thermal image,

4 classes (safety-glass cracks,
safety-glass pollution defects,
SPV power unit defects, and

healthy SPV panels),
320 × 240 pixels

Masked image,
augmentation: mirror, flip,

cropped zoom,
4-contour-shape combination

(perimeter, aspect ratio,
contour area, and ratio of
contour area to the area of
contour’s outer rectangle)

Combination of U-Net
segmentation and decision

tree (DT) classifier,
learning rate: 0.00001,

batch size: 10,

99.8%

[54] Grayscale thermal image,
2 classes

Perspective transformation:
TILT, image binarization:
Otsu’s method, median

filtering and thresholding

RPCA Accuracy: 93.68%,
F1-score: 78.23%

The methodologies used for image processing and image (texture) feature extrac-
tion/mapping/selection are comprised of geometrical/statistical parameters [43,45], fil-
tering techniques [44,53,54,58], temperature metrics [56], mathematical/perspective trans-
forms [51,54,58], thresholding [54,56,58], masking/image binarization [54,57], augmenta-
tion [43–57], synthetic/generative oversampling [46,49], among others.

The algorithms applied for classification include mathematical/statistical learning
techniques (random sample consensus—RANSAC [56], Robust Principal Component
Analysis—RPCA [54]), Artificial Neural Network (ANN) [43,45], convolutional neural
network (CNN) [50,58], pre-trained CNN (VGG16 [44], ResNet [46,52], AlexNet [47], Effi-
cientNet [48], Ensemble Learning [46], machine learning—ML (K-NN [51], SVM [48], K-fold
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cross-validation for fewer data [50]), CNN–ML combination (U-Net with decision tree) [57],
CNN–CNN combination (UDenseNet) [49], that have relatively resulted in a perfect binary
classification accuracy of 100% and a highest multiclass (four-class) diagnosis reaching
99.8% [57,58]. For georeferencing and precise localization, either aluminum identification
marks on SPV panel corners are used in IRT imaging due to less emissivity and better
pointing, or matching/overlapping IRT-RGB orthomosaic maps are considered [55,59].

By analyzing the existing studies reported in Table 1, it is revealed that various
representations of SPV infrared thermal images can be used for IFDD, including pseudo-
color/false color palette, visual/RGB/true color, masking/black and white, and
monochrome/grayscale images (pixel value: 0–255). However, these representative thermal
images mostly lack radiometric values.

1.4. Motivation and Contribution

The main contribution of this case study is twofold: (i) to further explore the prepara-
tion of a dataset that truly indicates an accurate temperature radiation representation of an
SPV panel, allowing the recognition of relevant details for IFDD; (ii) to train, validate, and
explain a reliable deep learning model for IFDD.

Indeed, the considered dataset comprises high-quality two-dimensional radiometric
data (having floating-point temperature numerical values in degrees Celsius) obtained
from publicly available raw aerial SPV array grayscale thermographic images. Then, a
customized deep learning algorithm with explainability mappings, based on a CNN, is
proposed to diagnose radiometric fault samples with high accuracy and efficiency.

The remainder of the paper is organized as follows: Section 2 describes the materials
and methods employed for this research, starting from the data gathering and preparation
to the training, validation, and explanation of the deep learning model. Then, the results
are presented in Section 3 and discussed in Section 4, where also the limitations of the
proposed methodology are considered. Finally, Section 5 draws the final remarks and
portrays directions for future research.

2. Materials and Methods
2.1. SPV Data Characteristics

The availability and accessibility of a large, varied, and quality dataset plays a pivotal
role in ANN-based diagnostic monitoring. Indeed, conducting effective thermographic
inspections of SPV arrays in the field requires compliance with technical guidelines, specific
conditions, and equipment calibration which includes a solar irradiance of 500 W/m2 or
higher for adequate thermal contrast, uncooled microbolometer detectors having a high
sensitivity in the 8–14 µm waveband (long wavelength infrared—LWIR), the camera’s
thermal sensitivity must be ≤0.08 K to distinguish small temperature differences on the
SPV panel’s glass surface, and adjusting the camera viewing angle to within 5–60◦ (where
0◦ is perpendicular) is an appropriate compromise to reduce glass reflections and relative
emissivity high [60].

Furthermore, some unique peculiarities and problems need to be dealt with in energy
systems IFDD: (a) the detection of anomalies also in the presence of noise [61]; (b) the
data distribution is highly skewed, as industrial equipment and energy-producing assets
primarily operate under healthy conditions, resulting in fewer instances of faults [39];
(c) specific defects, such as defective bypass diodes and PID effect by shunted cells (PID-
sc), which can lead to both open and short circuits that exhibit unique visual patchwork
patterns [62,63].



Smart Cities 2024, 7 1267

2.2. Dataset Preparation and Visualization

A customized highly imbalanced 6-class radiometric 2-dimensional IRT dataset of
SPV panels was prepared. The publicly available raw aerial IRT-grayscale image dataset of
an SPV array lacks the necessary sorting and labeling of the defective SPV panels [54,64].
The raw SPV array dataset was visually assessed to identify the defect pattern of each SPV
panel. Defective SPV panels were categorized and labeled according to IEC standards [13].
Sample defects are shown in Figure 1.
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Figure 1. Raw aerial IRT-grayscale images of the SPV array having a visually defective SPV panel
labeled as (a) hotspot effect, (b) patchwork pattern, (c) faulty substring.

The SPV panels were extracted and resized to dimensions of 60 × 100 pixels (radio-
metric data or thermal intensity points) from raw aerial grayscale IRT images of the SPV
array, and each SPV panel was represented by floating-point temperature numerical values
in degrees Celsius (temperature matrix) as shown in Figure 2. Then, the images were
zero-padded to 66 × 106 pixels, as portrayed in Figure 3.
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The dataset consisted of 2672 instances, with a significant class imbalance. The major-
ity of instances (2647) belonged to the “Good” class (or normal/no anomaly), while the
remaining 25 instances were equally distributed among five “Faulty” classes (or abnor-
mal/anomaly data samples having 5 instances of each minority class) as shown in Figure 4
with the pseudo-color visual depiction of the thermal values. The five faulty classes in-
cluded a faulty multistring, heated junction box, faulty substring, patchwork pattern, and
hotspot effect. Offline data augmentation, using horizontal and vertical flipping, was used
to enhance the visual diversity of the samples belonging to the minority class. Finally,
a min-max normalization was used to prepare the data for further processing stages by
rescaling them into the [0, 1] range.

Raincloud plots were used to represent the distribution of temperature intensity data
points across different classes as shown in Figures 5 and 6.

2.3. Experimental Workflow

The experimental workflow employed in this study is shown in Figure 7. First, a
drone-assisted IRT camera was deployed to remotely capture raw grayscale thermographic
images of SPV arrays to monitor their operational health status. Then, the 2-dimensional
radiometric dataset was prepared as described in Section 2.2.

Subsequently, an ensemble of 4 CNN models was obtained via a 4-fold cross-validation,
where each iteration was employed to train and validate a model of the ensemble. From
the original dataset, 20% of the data (534 samples, of which 5 with anomalies) were kept
as a final hold-out test set. Hence, during each cross-validation iteration, 60% of the data
(1604 samples, of which 15 with anomalies) were used for training and 20% (534 samples, of
which 5 with anomalies) for validation. An ensemble was created by averaging the output
of the four models and then tested on the hold-out set.

We also considered another experiment, in which we resampled the minority samples
with the Synthetic Minority Over-sampling Technique (SMOTE) to obtain a balanced
dataset. From the resampled dataset, 20% of the data (3182 samples) were kept as a
final hold-out test set. Hence, during each cross-validation iteration, 60% of the data
(9544 samples) were used for training and 20% (3181 samples) for validation. The classes
had an even distribution in the resampled dataset.

Finally, XAI methods are applied with two principal aims: (i) to provide mathematical
interpretability of the learned feature structures among the different classes; and (ii) to
highlight the most relevant regions considered for the classification via the adoption of
perceptive explanation mappings.
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Figure 7. Experimental workflow. First, the data are acquired with a drone-assisted IRT of SPV
arrays. Then, an ensemble of CNN models is realized via a stratified 4-fold cross-validation. Finally,
quantitative results are determined, and explainability techniques are used to unveil the mechanisms
underlying the diagnostic process. Heatmaps have a jet color map, with red representing higher
temperature (for radiometric images) or activation values (for CNN explanations), and blue depicting
lower temperature or activation values.

Overall, our approach aims not only to realize an end-to-end detection and diagnostic
pipeline for SPV panel defects but also provides a rationale for the decisions made by the
system, thanks to the aid of the employed XAI techniques.

2.4. Convolutional Neural Network Model

The architecture of the proposed CNN model, specifically designed for the multiclass
classification (diagnosis) of the radiometric 2-dimensional IRT dataset of SPV panels, is
portrayed in Figure 8. The number of trainable parameters is reported in Table 2. The
visual depiction of the row-wise pseudo-color feature map of the heated junction box of
each CNN layer (Conv2d, Batch Normalization, and MaxPooling2d) is shown in Figure 9.
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Table 2. View of layers and trainable parameters of the proposed CNN “Sequential” model.

Layer
(Type) Output Shape Number of

Parameters

conv2d
(Conv2D) (None, 104, 64, 32) 320

batch_normalization
(Batch Normalization) (None, 104, 64, 32) 128

max_pooling2d
(MaxPooling2D) (None, 52, 32, 32) 0

conv2d_1
(Conv2D) (None, 48, 28, 64) 51,264

batch_normalization_1
(Batch Normalization) (None, 48, 28, 64) 256

max_pooling2d_1
(MaxPooling2D) (None, 24, 14, 64) 0

conv2d_2
(Conv2D) (None, 18, 8, 128) 401,536

batch_normalization_2
(Batch Normalization) (None, 18, 8, 128) 512

max_pooling2d_2
(MaxPooling2D) (None, 9, 4, 128) 0

global_max_pooling2d
(GlobalMaxPooling2D) (None, 128) 0

Dense
(Dense) (None, 128) 16,512

Dropout
(Dropout) (None, 128) 0

dense_1
(Dense) (None, 6) 774

Total params: 471,302 (1.80 MB)

Trainable params: 470,854 (1.80 MB)

Non-trainable params: 448 (1.75 KB)
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The network was trained for a maximum of 1000 epochs, with an early stopping
criterion corresponding to a patience of 200, with the following hyperparameters: a leaky
ReLU activation function with an alpha of 0.6, a dropout at the rate of 0.25, a batch size set
to 64, the Lion optimizer with a learning rate of 0.0001, and categorical cross entropy as the
loss function. Class weights were employed to mitigate class imbalance for the experiment
without SMOTE.

2.5. Explainable Artificial Intelligence Methods

The pursuit of interpretability and explainability, via the adoption of XAI techniques [65],
particularly in DL models, is crucial for understanding how these models arrive at their
predictions [66–71]. Two broad categories of methods are commonly employed to achieve
explainability and interpretability [66,67]: perceptive explainability and mathematical in-
terpretability. These two families of XAI methods complement each other in providing a
comprehensive understanding of a DL model. The perceptive methods offer visual cues
that are more intuitive for human interpretation, while the mathematical methods attempt
to reveal the logic and mathematical structures underlying the model’s representation of the
original data points.

2.5.1. Perceptive Explainability

The objective of the XAI methods belonging to the realm of perceptive explainability
is to provide a straightforward visual representation of the top contributing features that
influence the final predictions. The approach is to visualize and highlight regions or
features in the input data that have the most significant impact on the model’s decision.
The methods are used to study feature-level classification behavior, helping to understand
the importance of specific regions or features in the input data for classification. The
perceptive explainability methods applied in this study are activation maximization [72,73],
SmoothGrad [74,75], and Grad-CAM (Gradient-weighted Class Activation Mapping) [69].

The activation maximization [72,73] method, introduced by Erhan et al. in 2009,
is targeted at maximizing the activation of a given neuron as an optimization problem.
Considering an input data point x (a radiometric image in our context), a neural network
with parameters θ (referring to both weights and biases), and hij(θ, x) the activation of a
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given neuron i from a given layer j in the network, activation maximization can be defined
as the following optimization problem:

x∗ = argmax
x

hij(θ, x)

When the specific i, j indexes can be removed for generality, the activation can be
denoted as h(·) instead of hij(·). A simple and straightforward way to find x∗ is to perform
gradient ascent using an update rule such as [72,73]:

xt+1 = xt + ϵ1
∂h(θ, xt)

∂xt

where ϵ1 is the step size. It is important to define the initialization data point x0, which can
be either random noise or a real data point. In this work, we used radiometric images as
initialization to ease the gradient ascent optimization process, avoiding finishing in local
optima which do not offer particularly meaningful representations.

Simonyan et al. [75] exploited the concept of activation maximization for CNNs and
introduced the image-specific class saliency visualization. The basic idea is that in a linear
model, higher values of the weights are associated with more important parameters. In a
highly nonlinear model, such as a deep CNN, the first-order Taylor expansion can be used
in place of the original model. While such techniques allowed them to portray saliency
maps on the original images for a given CNN, they tended to be fairly noisy. Hence,
Smilkov et al. [74] improved over the saliency method by considering the average of several
images perturbed with noise. The resulting saliency maps looked much smoother, and
hence they called their method SmoothGrad.

Grad-CAM [69] exploits the gradient information going through a specific convo-
lutional layer (in the original work, the authors focused on the last one, but it is not a
mandatory choice) of the CNN to retrieve importance scores for each neuron involved in
a particular classification. Hence, Grad-CAM allows one to generate a visual represen-
tation of the class activation of a model for a given input image and class, i.e., it creates
easy-to-understand visualizations showing how the network decides on a specific class by
highlighting important features in the form of a heatmap.

In our study, we exploited the activation maximization, the SmoothGrad, and the
Grad-CAM methods to realize perceptive explanation mappings highlighting the salient
regions to detect and diagnose the defective SPV panels. The conv2d_2 layer (Table 2) was
used to extract all the perceptive explainability plots. We used 25 smooth samples for
computing SmoothGrad.

2.5.2. Mathematical Interpretability

The methods belonging to the domain of mathematical interpretability aim to provide
insights into the internal workings of the models and reveal the features used in making
final predictions. In this case, the approach exploits mathematical structures to reveal the
underlying mechanisms of AI models and understand how the information is processed.
These methods are used to study the clustering capabilities of the networks, offering
insights into how the model groups or categorizes different types of data. Hence, they
can be used to assess if the learned features are meaningful to the considered task. The
mathematical interpretability methods applied in this research were t-distributed Stochastic
Neighbor Embedding (t-SNE) [76] and Uniform Manifold Approximation and Projection
(UMAP) [77].

The t-SNE [76] methodology is a variant of SNE that enables the visualization of data
with high-dimensionality by transforming each original data point in a low-dimensionality
space of two or three dimensions. With respect to the traditional SNE, it offers two main
advantages: (i) the optimization of the cost function and adoption of Student’s t distribution
for determining similarity between pairs of data points in the low-dimensionality space;
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(ii) the incorporation of a heavy-tailored distribution to face the “crowding problem” in the
low-dimensionality space.

The UMAP [77] methodology is a nonlinear approach for reducing dimensionality
that operates under the following three key assumptions: (i) data are uniformly distributed
across an existing manifold; (ii) the topological structure of the manifold is maintained;
(iii) the manifold is locally connected. UMAP consists of two principal stages: learning the
structure of the manifold in a high-dimensionality space and determining the corresponding
representation in a low-dimensionality space.

In our study, t-SNE and UMAP were used to unveil the mathematical structure of the
features, displaying clusters among the healthy panels and the different defective ones.
Particularly, t-SNE was exploited to perform dataset feature clustering starting from radio-
metric input test data, whereas UMAP was applied for achieving dataset feature clustering
from output feature data elaborated by the dense_1 layer (Table 2) of the CNN model.

2.6. Performance Evaluation Metrics

Confusion matrices were used for quantitative evaluation of the results of the pro-
posed workflow since they offer a clear representation of the model’s performance among
individual classes, so that errors in specific areas can be easily noted.

Learning curves were exploited to illustrate the model’s training progress over epochs
for the training and validation datasets. Examining these curves can help identify the
changes in the experience of learning performance over time to handle issues like overfitting
or underfitting and guide decisions on model training duration by making it a well-
fit model.

2.7. Experimental Resources

The experiments were performed on a computer server with 50 CPUs of Intel® (Santa
Clara, California, United States of America) Xeon® Gold 6130 Processors with 22 M Cache,
2.10 GHz. The server was equipped with 100 GB of memory (RAM). Further, the paid
version resources of Google Colab (available online at https://colab.research.google.com/,
last accessed 24 January 2024) were also utilized.

The software environment for the deep learning model took advantage of Python
(v. 3.10.11) and the Keras framework with Tensorflow (v. 2.15.0) at the backend. The visual-
izations provided by XAI techniques exploited the tf-keras-vis (v. 0.8.7) library. Other plots
and analyses were based on the scikit-learn (v. 1.3.1) library, whereas SMOTE resampling
exploited the imbalanced-learn (v. 0.10.1) library. For extracting and preprocessing floating-
point temperature data from radiometric JPG (rJPG) images of solar photovoltaic arrays,
the FLIR® Thermal Studio Suite thermography software (v. 2.0) was employed [78,79].

3. Results

This section presents the experimental findings of this research, encompassing the
classification accuracy of the proposed model, the insights coming from the application
of XAI techniques, and the trends observed during the training and validation of the
considered model. To consent to the comparison of the different perceptive explainability
techniques among the iterations of the cross-validation, the results concerning activation
maximization, SmoothGrad, and Grad-CAM are portrayed for each cross-validation model.

The results of applying activation maximization, considering as the starting point
the original images of our dataset, for the conv2d_2 layer, are portrayed in Figure 10. It is
possible to observe that the maximum saliency region is highlighted in different portions
of the image among various iterations of cross-validation models. This is not particularly
problematic since the CNNs are invariant to translation.

The outcomes from using SmoothGrad on the original radiometric images within our
dataset, specifically focusing on the conv2d_2 layer, are illustrated in Figure 11. Various
similarities can be discerned among the models trained throughout the cross-validation

https://colab.research.google.com/
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process. For instance, all the models correctly identified high saliency regions near the
areas with the highest temperature values in the junction box and hotspot cases.
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Figure 11. Explainable deep learning—SmoothGrad from the last convolutional layer (conv2d_2)
for the 6-class classification. Results for each iteration of the stratified 4-fold cross-validation are
presented. Pseudo-color (red corresponds to higher activation values, whereas blue to lower onesjet)
is used for visual depiction.

The depiction of applying Grad-CAM to the original radiometric images within our
dataset, extracted from the conv2d_2 layer, can be observed in Figure 12. It is possible to
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observe very activated regions of class activation maps nearby the hotspot points for all the
models. The pattern of such saliency regions is linked to the final classification performed
by the network, aiding in the understanding of how the deep model makes its decisions.
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Figure 12. Explainable deep learning—Grad-CAM from the last convolutional layer (conv2d_2) for the
6-class classification. Results for each iteration of the stratified 4-fold cross-validation are presented.
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visual depiction.
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The representation of the input features’ embedding of good and faulty classes is
visually depicted in Figure 13 by exploiting the t-SNE technique, while the CNN feature
predictions are visually portrayed in Figure 14, with the UMAP (Hellinger metric) technique.
It is possible to observe that in the original feature space, there is not a defined clustering
between the good samples and the anomaly ones. On the other hand, after the training is
performed, definite clusters appear for the different anomaly types and the good samples.
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The stratified 4-fold cross-validation confusion matrices are reported in Figure 15.
The models achieved an impressive 99.81 ± 0.15% (mean ± std) accuracy. On the other
hand, we should keep in mind that the current dataset had few anomaly samples, and
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hence the accuracy was skewed towards high values since our network almost perfectly
recognized good samples. The ensemble from the four cross-validation models achieved
100% accuracy, as shown in Figure 16.
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The learning curves are portrayed in Figure 17. It can be seen that the training
process was inherently noisy due to the severely imbalanced dataset, with skews appearing
throughout the curves for the stratified 4-fold cross-validation models.
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Figure 17. Categorical loss and accuracy of the training and validation of class-weighted test dataset
for a 6-class output, for each iteration of the stratified 4-fold cross-validation.

The outcome obtained in the experiment exploiting SMOTE for rebalancing the dataset
is presented in the next subsection.

Outcome of Resampling SPV Radiometric Dataset

The challenge of working with DL models when feeding an imbalanced dataset
concerns the risk of the model not properly taking into account the minority classes,
which, in PdM scenarios, are those concerning faults or anomalies. In the first experiment,
we successfully dealt with the imbalance by adopting the categorical cross-entropy with
class weights.

Here, the SMOTE algorithm was applied to enhance and balance the anomaly classes.
It is evident from Figures 18 and 19 that the confusion matrix of each model obtained
from the stratified 4-fold cross-validation displays excellent capacity to diagnose the faulty
samples. Indeed, the models from individual iterations of cross-validation achieved an
impressive 99.98 ± 0.03% (mean ± std) accuracy, whereas the ensembled model achieved
a 100% accuracy on the hold-out test data. However, model 2 in Figure 18 misclassified
only two samples of the majority (good) class on the test dataset. It is worth noting that
the models obtained from the cross-validation in Figure 15 (class-weighted) and Figure 18
(SMOTE) are different due to the adoption of oversampling in the second experiment.
The learning curves for models trained on the SMOTE-augmented dataset are portrayed
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in Figure 20, where it is possible to observe that model 2, despite the two misclassified
samples, exhibit stable learning curves.
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4. Discussion

World renewables, particularly SPV arrays, have an impactfully growing quota of
today’s clean and sustainable energy production. Thermal anomalies in SPV arrays can
reflect various deterioration processes due to thermo-mechanical stresses, thermo-chemical
reactions, aging and seasonal issues, and environmental and biological effects, resulting
in the loss of desired energy production. Hence, remote aerial diagnostic monitoring is
an integral part of the PdM process of large-scale SPV electric power plants. The correct
and timely detection and localized diagnosis of defects from radiometric IRT imaging has
played a pivotal role in its long-term techno-economic impact.

Our model is simple and adaptable, with low computational effort required for train-
ing and inference. Furthermore, it displays convincing performance on the considered
dataset. Indeed, an accuracy of 99.81 ± 0.15% was reached during the stratified 4-fold cross-
validation procedure for the class weight experiment, an accuracy of 99.98 ± 0.03% was
attained during the stratified 4-fold cross-validation procedure for the SMOTE experiment,
and an accuracy of 100% was achieved by the ensembled model on the hold-out test set for
both experiments.

Finally, the application of XAI techniques provided a rationale for the working of
the CNN model. The perceptive explainability methodologies displayed that the model
concentrated on the relevant regions of the input images, whereas the mathematical inter-
pretability techniques showed that the learned features were a meaningful representation
of the considered defective classes, allowing us to cluster the radiometric images in a
low-dimensional feature space.
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Limitations

SPV energy-producing assets are expected to operate under healthy conditions achiev-
ing targeted output continuously, resulting in fewer faulty instances in true thermal datasets
or two-dimensional radiometric representation. Due to the scarcity of available datasets
with labeled faulty instances, it is a challenging task to train DL models for the correct
multiclass classification (or diagnosis) of defects, which posed a limitation in conducting
this research. Hence, we focused on the objective of developing a customized lightweight
CNN model for a single-channel highly imbalanced radiometric dataset. Further studies
could be conducted to investigate the generalizability of such methods on larger and more
diverse datasets.

5. Conclusions

The results obtained in this research encourage the adoption of deep learning techniques
for PdM tasks. The broader implications on safety, energy production, and financial viability
further highlight the significance of accurate radiometric fault diagnosis in the field of SPV
energy systems. In the future, the collection of large, high-quality, and diverse datasets will
enhance the generalizability and robustness of DL models for predictive maintenance.
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Abbreviations

Acronym Meaning
AI Artificial intelligence
ANN Artificial Neural Network
CAM Class activation map
CNN Convolutional neural network
DL Deep learning
XAI Explainable Artificial Intelligence
FDD Fault detection and diagnosis
GLCM Gray Level Co-occurrence Matrix
IFDD Intelligent fault detection and diagnosis
IRT Infrared Radiated Thermographic
mAP Mean Average Precision
ML Machine learning
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PdM Predictive maintenance
PID Potential Induced Degradation
PID-sc PID effect by shunted cells
RANSAC Random sample consensus
rgSIFT Red-Green Scale-Invariant Feature Transform
RPCA Robust Principal Component Analysis
SMOTE Synthetic Minority Over-sampling Technique
SPV Solar photovoltaic
t-SNE t-Distributed Stochastic Neighbor Embedding
UMAP Uniform Manifold Approximation and Projection
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Advancing reliability assessments of photovoltaic modules and materials using combined-accelerated stress testing. Prog.
Photovolt. Res. Appl. 2021, 29, 64–82. [CrossRef]

23. Omazic, A.; Oreski, G.; Halwachs, M.; Eder, G.C.; Hirschl, C.; Neumaier, L.; Pinter, G.; Erceg, M. Relation between degradation of
polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Sol. Energy Mater. Sol. Cells
2019, 192, 123–133. [CrossRef]

24. Nivelle, P.; Tsanakas, J.A.; Poortmans, J.; Daenen, M. Stress and strain within photovoltaic modules using the finite element
method: A critical review. Renew. Sustain. Energy Rev. 2021, 145, 111022. [CrossRef]

25. Du, Y.; Wang, L.; Tao, W. Modeling, imaging and resistance analysis for crystalline silicon photovoltaic modules failure on thermal
cycle test. Eng. Fail. Anal. 2020, 118, 104818. [CrossRef]

26. Kim, J.; Rabelo, M.; Padi, S.P.; Yousuf, H.; Cho, E.C.; Yi, J. A review of the degradation of photovoltaic modules for life expectancy.
Energies 2021, 14, 4278. [CrossRef]

27. Eder, G.C.; Voronko, Y.; Dimitriadis, S.; Knöbl, K.; Újvári, G.; Berger, K.A.; Halwachs, M.; Neumaier, L.; Hirschl, C. Climate
specific accelerated ageing tests and evaluation of ageing induced electrical, physical, and chemical changes. Prog. Photovolt. Res.
Appl. 2019, 27, 934–949. [CrossRef]

28. Hasan, K.; Yousuf, S.B.; Tushar, M.S.H.K.; Das, B.K.; Das, P.; Islam, M.S. Effects of different environmental and operational factors
on the PV performance: A comprehensive review. Energy Sci. Eng. 2022, 10, 656–675. [CrossRef]

29. Santhakumari, M.; Sagar, N. A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic
modules: Failure detection methods and essential mitigation techniques. Renew. Sustain. Energy Rev. 2019, 110, 83–100. [CrossRef]

30. Aghaei, M.; Fairbrother, A.; Gok, A.; Ahmad, S.; Kazim, S.; Lobato, K.; Oreski, G.; Reinders, A.; Schmitz, J.; Theelen, M.; et al.
Review of degradation and failure phenomena in photovoltaic modules. Renew. Sustain. Energy Rev. 2022, 159, 112160. [CrossRef]

31. Dhimish, M.; Alrashidi, A. Photovoltaic Degradation Rate Affected by Different Weather Conditions: A Case Study Based on PV
Systems in the UK and Australia. Electronics 2020, 9, 650. [CrossRef]

32. Rahman, T.; Mansur, A.A.; Lipu, M.S.H.; Rahman, M.S.; Ashique, R.H.; Houran, M.A.; Elavarasan, R.M.; Hossain, E. Investigation
of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy
Management. Energies 2023, 16, 3706. [CrossRef]

33. Sun, C.; Zou, Y.; Qin, C.; Zhang, B.; Wu, X. Temperature effect of photovoltaic cells: A review. Adv. Compos. Hybrid Mater. 2022, 5,
2675–2699. [CrossRef]

34. Di Lorenzo, G.; Stracqualursi, E.; Micheli, L.; Celozzi, S.; Araneo, R. Prognostic Methods for Photovoltaic Systems’ Underperfor-
mance and Degradation: Status, Perspectives, and Challenges. Energies 2022, 15, 6413. [CrossRef]

35. Gonzalo, A.P.; Marugán, A.P.; Márquez, F.P.G. Survey of maintenance management for photovoltaic power systems. Renew.
Sustain. Energy Rev. 2020, 134, 110347. [CrossRef]

36. Yu, J.; Zhang, Y. Challenges and opportunities of deep learning-based process fault detection and diagnosis: A review. Neural
Comput. Appl. 2022, 35, 211–252. [CrossRef]

37. Abubakar, A.; Almeida, C.F.M.; Gemignani, M. Review of Artificial Intelligence-Based Failure Detection and Diagnosis Methods
for Solar Photovoltaic Systems. Machines 2021, 9, 328. [CrossRef]

38. IEC 61508-1:2010; Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems—Part 1: General
Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2010.

39. Li, W.; Huang, R.; Li, J.; Liao, Y.; Chen, Z.; He, G.; Yan, R.; Gryllias, K. A perspective survey on deep transfer learning for fault
diagnosis in industrial scenarios: Theories, applications and challenges. Mech. Syst. Signal. Process 2022, 167, 108487. [CrossRef]

40. Kaitouni, S.I.; Abdelmoula, I.A.; Es-sakali, N.; Mghazli, M.O.; Er-retby, H.; Zoubir, Z.; El Mansouri, F.; Ahachad, M.; Brigui, J.
Implementing a Digital Twin-based fault detection and diagnosis approach for optimal operation and maintenance of urban
distributed solar photovoltaics. Renew. Energy Focus 2024, 48, 100530. [CrossRef]

41. Afridi, Y.S.; Ahmad, K.; Hassan, L. Artificial intelligence based prognostic maintenance of renewable energy systems: A review of
techniques, challenges, and future research directions. Int. J. Energy Res. 2022, 46, 21619–21642. [CrossRef]

42. Akram, M.W.; Li, G.; Jin, Y.; Chen, X. Failures of Photovoltaic modules and their Detection: A Review. Appl. Energy 2022,
313, 118822. [CrossRef]

43. Alwar, S.; Samithas, D.; Boominathan, M.S.; Balachandran, P.K.; Mihet-Popa, L. Performance Analysis of Thermal Image
Processing-Based Photovoltaic Fault Detection and PV Array Reconfiguration—A Detailed Experimentation. Energies 2022,
15, 8450. [CrossRef]

44. Haidari, P.; Hajiahmad, A.; Jafari, A.; Nasiri, A. Deep learning-based model for fault classification in solar modules using infrared
images. Sustain. Energy Technol. Assess. 2022, 52, 102110. [CrossRef]

45. Kurukuru, V.S.B.; Haque, A.; Khan, M.A.; Tripathy, A.K. Fault Classification for Photovoltaic Modules Using Thermography
and Machine Learning Techniques. In Proceedings of the 2019 International Conference on Computer and Information Sciences
(ICCIS): Jouf University—Aljouf—Kingdom of Saudi Arabia, Sakaka, Saudi Arabia, 3–4 April 2019; Institute of Electrical and
Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019. [CrossRef]

https://static.trinasolar.com/sites/default/files/DT-M-0007%20E%20Datasheet_TallmaxM_DE15V(II)_NA_EN_2022_A_web.pdf
https://static.trinasolar.com/sites/default/files/DT-M-0007%20E%20Datasheet_TallmaxM_DE15V(II)_NA_EN_2022_A_web.pdf
https://doi.org/10.1002/pip.3342
https://doi.org/10.1016/J.SOLMAT.2018.12.027
https://doi.org/10.1016/J.RSER.2021.111022
https://doi.org/10.1016/J.ENGFAILANAL.2020.104818
https://doi.org/10.3390/en14144278
https://doi.org/10.1002/pip.3090
https://doi.org/10.1002/ESE3.1043
https://doi.org/10.1016/j.rser.2019.04.024
https://doi.org/10.1016/J.RSER.2022.112160
https://doi.org/10.3390/ELECTRONICS9040650
https://doi.org/10.3390/EN16093706
https://doi.org/10.1007/S42114-022-00533-Z
https://doi.org/10.3390/en15176413
https://doi.org/10.1016/J.RSER.2020.110347
https://doi.org/10.1007/S00521-022-08017-3
https://doi.org/10.3390/MACHINES9120328
https://doi.org/10.1016/J.YMSSP.2021.108487
https://doi.org/10.1016/J.REF.2023.100530
https://doi.org/10.1002/ER.7100
https://doi.org/10.1016/J.APENERGY.2022.118822
https://doi.org/10.3390/EN15228450
https://doi.org/10.1016/j.seta.2022.102110
https://doi.org/10.1109/ICCISci.2019.8716442


Smart Cities 2024, 7 1287

46. Le, M.; Van Su, L.; Khoa, N.D.; Dao, V.D.; Hung, V.N.; Thi, V.H.H. Remote anomaly detection and classification of solar
photovoltaic modules based on deep neural network. Sustain. Energy Technol. Assess. 2021, 48, 101545. [CrossRef]

47. Korkmaz, D.; Acikgoz, H. An efficient fault classification method in solar photovoltaic modules using transfer learning and
multi-scale convolutional neural network. Eng. Appl. Artif. Intell. 2022, 113, 104959. [CrossRef]

48. Duranay, Z.B. Fault Detection in Solar Energy Systems: A Deep Learning Approach. Electronics 2023, 12, 4397. [CrossRef]
49. Pamungkas, R.F.; Utama, I.B.K.Y.; Jang, Y.M. A Novel Approach for Efficient Solar Panel Fault Classification Using Coupled

UDenseNet. Sensors 2023, 23, 4918. [CrossRef]
50. Alves, R.H.F.; Júnior, G.A.D.D.; Marra, E.G.; Lemos, R.P. Automatic fault classification in photovoltaic modules using Convolu-

tional Neural Networks. Renew. Energy 2021, 179, 502–516. [CrossRef]
51. Ali, M.U.; Saleem, S.; Masood, H.; Kallu, K.D.; Masud, M.; Alvi, M.J.; Zafar, A. Early hotspot detection in photovoltaic modules

using color image descriptors: An infrared thermography study. Int. J. Energy Res. 2022, 46, 774–785. [CrossRef]
52. Pathak, S.P.; Patil, D.S.; Patel, S. Solar panel hotspot localization and fault classification using deep learning approach. Procedia

Comput. Sci. 2022, 204, 698–705. [CrossRef]
53. Mellit, A. An embedded solution for fault detection and diagnosis of photovoltaic modules using thermographic images and

deep convolutional neural networks. Eng. Appl. Artif. Intell. 2022, 116, 105459. [CrossRef]
54. Wang, Q.; Paynabar, K.; Pacella, M. Online automatic anomaly detection for photovoltaic systems using thermography imaging

and low rank matrix decomposition. J. Qual. Technol. 2021, 54, 503–516. [CrossRef]
55. Henry, C.; Poudel, S.; Lee, S.W.; Jeong, H. Automatic detection system of deteriorated PV modules using drone with thermal

camera. Appl. Sci. 2020, 10, 3802. [CrossRef]
56. Jeong, H.; Kwon, G.R.; Lee, S.W. Deterioration Diagnosis of Solar Module Using Thermal and Visible Image Processing. Energies

2020, 13, 2856. [CrossRef]
57. Wang, X.; Yang, W.; Qin, B.; Wei, K.; Ma, Y.; Zhang, D. Intelligent monitoring of photovoltaic panels based on infrared detection.

Energy Rep. 2022, 8, 5005–5015. [CrossRef]
58. Manno, D.; Cipriani, G.; Ciulla, G.; Di Dio, V.; Guarino, S.; Brano, V.L. Deep learning strategies for automatic fault diagnosis in

photovoltaic systems by thermographic images. Energy Convers. Manag. 2021, 241, 114315. [CrossRef]
59. Zefri, Y.; Elkettani, A.; Sebari, I.; Lamallam, S.A. Thermal Infrared and Visual Inspection of Photovoltaic Installations by UAV

Photogrammetry—Application Case: Morocco. Drones 2018, 2, 41. [CrossRef]
60. FLIR Commercial Systems B.V. Thermal Imaging Cameras: A Fast and Reliable Tool for Testing Solar Panels (Technical Note).

2018. Available online: http://support.flir.com/appstories/AppStories/Electrical&Mechanical/Testing_solar_panels_EN.pdf
(accessed on 9 November 2023).

61. Liu, Y.; Yu, W.; Rahayu, W.; Dillon, T. An Evaluative Study on IoT Ecosystem for Smart Predictive Maintenance (IoT-SPM) in
Manufacturing: Multiview Requirements and Data Quality. IEEE Internet Things J. 2023, 10, 11160–11184. [CrossRef]

62. Buerhop, C.; Jahn, U.; Hoyer, U.; Lerche, B.; Wittmann, S. Abschlussbericht der Machbarkeitsstudie zur Überprüfung der Qualität
von Photovoltaik-Modulen Mittels Infrarot-Aufnahmen (Final Report of the Feasibility Study to Quality Testing in Photovoltaic
Modules Using Infrared Imaging—Correlation of Infrared Measurement and Electrical Measurement—ZAE Bayern e.V. Dept. 3:
Thermal Sensors and Photovoltaics, Erlangen). 2007. Available online: https://demo.fp-werbung.com/projekt_sev-home/wp-
content/uploads/2018/12/IR-Handbuch.pdf (accessed on 9 November 2023).

63. International Energy Agency. Review on Infrared and Electroluminescence Imaging for PV Field Applications (Report IEA-PVPS
T13-10:2018). 2018. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/Review_on_IR_and_EL_Imaging_
for_PV_Field_Applications_by_Task_13.pdf (accessed on 9 November 2023).

64. Wang, Q.; Paynabar, K.; Pacella, M. Drone-Based Thermography Image Dataset of Photovoltaic Systems. Available on-
line: https://tandf.figshare.com/articles/dataset/Online_automatic_anomaly_detection_for_photovoltaic_systems_using_
thermography_imaging_and_low_rank_matrix_decomposition/15123655 (accessed on 15 November 2023).

65. Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2021, 55,
3503–3568. [CrossRef]

66. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods.
Entropy 2020, 23, 18. [CrossRef]

67. Tjoa, E.; Guan, C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans Neural Netw Learn Syst.
2021, 32, 4793–4813. [CrossRef]

68. Hussain, S.M.; Buongiorno, D.; Altini, N.; Berloco, F.; Prencipe, B.; Moschetta, M.; Bevilacqua, V.; Brunetti, A. Shape-Based Breast
Lesion Classification Using Digital Tomosynthesis Images: The Role of Explainable Artificial Intelligence. Appl. Sci. 2022, 12, 6230.
[CrossRef]

69. Altini, N.; Brunetti, A.; Puro, E.; Taccogna, M.G.; Saponaro, C.; Zito, F.A.; De Summa, S.; Bevilacqua, V. NDG-CAM: Nuclei
Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM. Bioengineering 2022, 9, 475. [CrossRef]

70. Altini, N.; Puro, E.; Taccogna, M.G.; Marino, F.; De Summa, S.; Saponaro, C.; Mattioli, E.; Zito, F.A.; Bevilacqua, V. Tumor
Cellularity Assessment of Breast Histopathological Slides via Instance Segmentation and Pathomic Features Explainability.
Bioengineering 2023, 10, 396. [CrossRef] [PubMed]

https://doi.org/10.1016/J.SETA.2021.101545
https://doi.org/10.1016/j.engappai.2022.104959
https://doi.org/10.3390/electronics12214397
https://doi.org/10.3390/S23104918
https://doi.org/10.1016/j.renene.2021.07.070
https://doi.org/10.1002/er.7201
https://doi.org/10.1016/j.procs.2022.08.084
https://doi.org/10.1016/j.engappai.2022.105459
https://doi.org/10.1080/00224065.2021.1948372
https://doi.org/10.3390/app10113802
https://doi.org/10.3390/EN13112856
https://doi.org/10.1016/J.EGYR.2022.03.173
https://doi.org/10.1016/j.enconman.2021.114315
https://doi.org/10.3390/DRONES2040041
http://support.flir.com/appstories/AppStories/Electrical&Mechanical/Testing_solar_panels_EN.pdf
https://doi.org/10.1109/JIOT.2023.3246100
https://demo.fp-werbung.com/projekt_sev-home/wp-content/uploads/2018/12/IR-Handbuch.pdf
https://demo.fp-werbung.com/projekt_sev-home/wp-content/uploads/2018/12/IR-Handbuch.pdf
https://iea-pvps.org/wp-content/uploads/2020/01/Review_on_IR_and_EL_Imaging_for_PV_Field_Applications_by_Task_13.pdf
https://iea-pvps.org/wp-content/uploads/2020/01/Review_on_IR_and_EL_Imaging_for_PV_Field_Applications_by_Task_13.pdf
https://tandf.figshare.com/articles/dataset/Online_automatic_anomaly_detection_for_photovoltaic_systems_using_thermography_imaging_and_low_rank_matrix_decomposition/15123655
https://tandf.figshare.com/articles/dataset/Online_automatic_anomaly_detection_for_photovoltaic_systems_using_thermography_imaging_and_low_rank_matrix_decomposition/15123655
https://doi.org/10.1007/S10462-021-10088-Y
https://doi.org/10.3390/E23010018
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.3390/APP12126230
https://doi.org/10.3390/BIOENGINEERING9090475
https://doi.org/10.3390/BIOENGINEERING10040396
https://www.ncbi.nlm.nih.gov/pubmed/37106583


Smart Cities 2024, 7 1288

71. Prencipe, B.; Delprete, C.; Garolla, E.; Corallo, F.; Gravina, M.; Natalicchio, M.I.; Buongiorno, D.; Bevilacqua, V.; Altini, N.;
Brunetti, A. An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma
Patients. Bioengineering 2023, 10, 747. [CrossRef] [PubMed]

72. Erhan, D.; Bengio, Y.; Courville, A.C.; Vincent, P. Visualizing Higher-Layer Features of a Deep Network. In Proceedings of the
ICML 2009 Workshop on Learning Feature Hierarchies, Montréal, QC, Canada, 14–18 June 2009.

73. Nguyen, A.; Yosinski, J.; Clune, J. Understanding Neural Networks via Feature Visualization: A Survey. arXiv 2019,
arXiv:1904.08939. [CrossRef]

74. Smilkov, D.; Thorat, N.; Kim, B.; Viégas, F.; Wattenberg, M. SmoothGrad: Removing Noise by Adding Noise. arXiv 2017,
arXiv:1706.03825. [CrossRef]

75. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps. arXiv 2014, arXiv:1312.6034. [CrossRef]

76. Van Der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
77. McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. February

2018. Available online: https://arxiv.org/abs/1802.03426v3 (accessed on 23 February 2024).
78. FLIR® Systems Inc. Radiometric JPEG Images. Available online: https://flir.custhelp.com/app/answers/detail/a_id/1729/~

/radiometric-jpeg-images (accessed on 31 October 2023).
79. Teledyne FLIR LLC. FLIR® Thermal Studio Suite (Analysis and Reporting Software). Available online: https://www.flir.com/

products/flir-thermal-studio-suite/?vertical=condition%20monitoring&segment=solutions (accessed on 31 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/BIOENGINEERING10070747
https://www.ncbi.nlm.nih.gov/pubmed/37508774
https://doi.org/10.48550/arXiv.1904.08939
https://doi.org/10.48550/arXiv.1706.03825
https://doi.org/10.48550/arXiv.1312.6034
https://arxiv.org/abs/1802.03426v3
https://flir.custhelp.com/app/answers/detail/a_id/1729/~/radiometric-jpeg-images
https://flir.custhelp.com/app/answers/detail/a_id/1729/~/radiometric-jpeg-images
https://www.flir.com/products/flir-thermal-studio-suite/?vertical=condition%20monitoring&segment=solutions
https://www.flir.com/products/flir-thermal-studio-suite/?vertical=condition%20monitoring&segment=solutions

	Introduction 
	Thermal Degradation and Aerial Thermographic Inspection 
	Predictive Maintenance and Fault Diagnosis 
	Related Works 
	Motivation and Contribution 

	Materials and Methods 
	SPV Data Characteristics 
	Dataset Preparation and Visualization 
	Experimental Workflow 
	Convolutional Neural Network Model 
	Explainable Artificial Intelligence Methods 
	Perceptive Explainability 
	Mathematical Interpretability 

	Performance Evaluation Metrics 
	Experimental Resources 

	Results 
	Discussion 
	Conclusions 
	References

