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Abstract: Condition monitoring and fault management approaches can help with timely maintenance
planning, assure industry-wide continuous production, and enhance both performance and safety in
complex industrial operations. At the moment, data-driven approaches for condition monitoring and
fault detection are the most attractive being conceived, developed, and applied with less of a need
for sophisticated expertise and detailed knowledge of the addressed plant. Among them, Gaussian
mixture model (GMM) methods can offer some advantages. However, conventional GMM solutions
need the number of Gaussian components to be defined in advance and suffer from the inability to
detect new types of faults and identify new operating modes. To address these issues, this paper
presents a novel data-driven method, based on automated GMM (AutoGMM) and decision trees
(DTree), for the online condition monitoring of electrical industrial loads. By leveraging the benefits
of the AutoGMM and the DTree, after the training phase, the proposed approach allows the clustering
and time allocation of nominal operating conditions, the identification of both already-classified and
new anomalous conditions, and the acknowledgment of new operating modes of the monitored
industrial asset. The proposed method, implemented on a commercial cloud-computing platform, is
validated on a real industrial plant with electrical loads, characterized by a daily periodic working
cycle, by using active power consumption data.

Keywords: anomaly and novelty detection; automated Gaussian mixture model; decision trees;
electrical industrial loads; Gaussian mixture model; online condition monitoring

1. Introduction

Proper fault management approaches on real engineering systems can support timely
maintenance planning, ensure industry-wide continuous production, and improve both
the performance and safety of complex industrial plants and systems [1–7]. In this regard,
condition monitoring (CM), that is to say, the process of monitoring specific parameters of
industrial machinery (vibration, temperature, power consumption, etc.) in order to identify
a significant change which may be indicative of a developing fault, has gained great
attention recently with the help of sensor monitoring and signal processing technologies.
Thanks to CM, it has become possible to plan maintenance activities, and to take actions to
guarantee operational continuity of industrial machinery and to prevent serious failures
which could shorten their lifespan [1,8].

CM approaches can be divided into two basic categories: physics-based methodologies
and data-driven methodologies [1,9]. In order to identify the corresponding defects, physics-
based approaches exploit explicit mathematical modeling and machinery/equipment spec-
ifications [10,11]. For instance, the estimation of parameters of the mathematical model of
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electrical motors can be useful to detect faults and monitor the health state [12,13]. How-
ever, such approaches can be complicated when used in practice because of the complexity
of real plants. In data-driven approaches, the training of the model is conducted using his-
toric data generated by the sensors installed on the machinery. At the moment, data-driven
approaches are more attractive [8,14–17], being conceived, developed, and applied with less
of a need for sophisticated expertise and detailed knowledge of the addressed plant. Data-
driven methodologies encompass both statistical solutions (e.g., Gaussian mixture model
(GMM), K-means, and Bayesian) and machine learning (ML) techniques; see, e.g., [18–21].
Among them, GMM methods can offer some advantages. In particular, they can provide
more classification information for maintenance engineers (to further investigate all pos-
sible faulty components), are more computationally efficient, and require fewer training
data [1,22]. Thus, they turn out to be more suitable for online CM applications [8]. However,
conventional GMM solutions are affected by the following main limitations, namely, the
need of defining in advance the number of Gaussian components before training and the
inability to detect new types of faults and identify new operating modes. The latter can be
a serious limitation since the operational setup and the environmental conditions of indus-
trial plants can vary over time, and this can lead to new functioning modes and unforeseen
anomalies [1]. Moreover, it is important to correctly classify both the normal and faulty
behavior of industrial machinery by considering their temporal occurrence [23,24], since
industrial plants can be subject to periodical working cycles [3].

To address the above issues from conventional GMMs, this paper presents a novel
method for the online CM of electrical industrial loads, which is able to identify their
regular/normal operating modes, detect anomalous working conditions, and determine
new operating modes by using an active power consumption data stream. The proposed
solution is essentially an online data-driven algorithm combining automated Gaussian
mixture model (AutoGMM) [25,26] and decision tree (DTree) [27,28].

To the best of our knowledge, this is the first study conceiving and applying a com-
bined AutoGMM-DTree approach to the online CM of industrial loads for both anomaly
and novelty detection. The AutoGMM is employed to identify the normal operating condi-
tions of the system by performing the online clustering of the measured power consumption
data stream into stochastic Gaussian distributions, which are associated with the normal
operating modes of the plant. Unlike the conventional GMM method where the number of
clusters is chosen in advance by the designer [29], the proposed AutoGMM automatically
determines the number of Gaussian distributions, and thus the number of the operating
modes of the plant. Then, a trained DTree is used to provide a time allocation for each nor-
mal operating condition detected by the AutoGMM, and thus predict the expected power
consumption level of each new sample based on its arrival time. As a result, anomalies are
detected when the measured power consumption does not belong to the predicted cluster.
As shown later in the paper, the resulting AutoGMM-Dtree approach is also able to merge
and remove clusters, as well as converting a cluster initially believed to be anomalous
into a new operating mode of the plant. To validate the proposed algorithm, an industrial
scenario with electrical loads characterized by a daily periodic working cycle is considered
as a case study.

To sum up, the contributions of this work are:

• The conception of a novel data-driven algorithm combining AutoGMM and decision
tree (DTree).

• The application of the proposed AutoGMM-Dtree algorithm to the condition monitor-
ing of real industrial loads, characterized by a daily periodic working cycle.

• The procedure to train the proposed algorithm in a real industrial context and its
subsequent validation.

• By leveraging the benefits of the AutoGMM and the DTree, the proposed approach
allows (i) the online clustering and time allocation of nominal operating conditions;
(ii) the online identification of already-classified and new anomalous conditions;
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(iii) the online acknowledgment of new operating modes of the monitored indus-
trial asset.

The rest of this paper is organized as follows. Section 2 presents the scenario addressed
in this study, that is to say, the condition monitoring of industrial loads via a single
centralized power meter. Section 3 describes the combined AutoGMM-DTree methodology,
which is then validated on the addressed industrial plant in Section 4. Finally, Section 5
concludes the paper.

2. Objective of the Work and Its Industrial Application

In this study, a typical scenario, shown in Figure 1, for condition monitoring of indus-
trial loads is considered. More specifically, in such a scenario, an industrial plant consisting
of electrical loads, e.g., machine tools, electrical motors, robots, or lights, characterized
by a periodical power consumption, is fed by a centralized power supply. The aggregate
power consumption of the electrical loads is measured by means of a single power meter,
which transmits the measured time-series data to a cloud-computing platform. Finally, a
software application implemented on the cloud-computing platform processes the collected
time series to perform both condition monitoring and anomaly/novelty detection of the
industrial plant.

Figure 1. Schematic of the considered industrial scenario.

It is worth highlighting that in this study, compared to other solutions based on
the monitoring of single loads by means of distributed power meters, the assumption of
using only a single centralized power meter allows for reducing costs and increasing the
simplicity of the proposed methodology. Also, note that the considered plant can be made
up of either homogeneous or heterogeneous electrical loads under the hypothesis that the
global power consumption is characterized by a daily periodical cycle.

Under these assumptions, the objective of this work is to design an automated algo-
rithm able to detect the regular operating modes of the plant and to distinguish them from
abnormal operating modes which may be symptomatic of failures or undesired working
conditions. Additionally, considering that in common industrial scenarios the normal
operating modes of the plant may be affected by variations over time, the algorithm must
be able to autonomously acknowledge new operating modes, which may be added into the
set of the existing ones or replace one of them.
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3. The Proposed AutoGMM-DTree Methodology

To achieve the objective stated in the previous section, in this work, an online algorithm
based on AutoGMM coupled with a trained DTree is designed. The AutoGMM is employed
to automatically model the probability distribution of active power measurement data
collected from the power meter using a combination of Gaussian distributions. Its main
task is to identify the normal operating conditions of the system by performing online
clustering of the data stream. Instead, the DTree is employed to provide a time allocation
for the normal operating conditions detected by the AutoGMM and to predict the expected
active power of each new sample based on its arrival time. In this way, anomalies are
automatically detected when a mismatch between the actual and the predicted active
power occurs.

3.1. AutoGMM-Based Method for Operating Mode Clustering

The GMM method is well-suited for clustering the collected data into distributions
that describe the normal operating modes of the plant. Subsequently, this method assigns
a probability to each data point to belong to the Gaussian clusters. All the same, an
AutoGMM is used because the number of regular operating modes of the plant might
not be known beforehand or might change over time. Differently from the conventional
GMM method, where the number of clusters is chosen in advance by the designer, the
proposed AutoGMM automatically determines online the optimal number of Gaussian
distributions which matches the operating modes of the plant. Before introducing the
iterative method adopted by the AutoGMM to determine the clusters, it is convenient to
define the following parameters which characterize each i-th Gaussian distribution in the
mixture:

• Mean (µi): It represents the center of the Gaussian distribution and defines the location
of the peak or center of the cluster.

• Variance (σ2
i ): It defines the width of the Gaussian distribution.

• Weight (wi): It determines the weight or importance of the Gaussian distribution.
It represents the probability of a data point belonging to the i-th cluster.

3.1.1. Procedure for the Cluster Update

Figure 2 represents the iterative online procedure of the AutoGMM triggered by the
arrival of each new active power measurement data point. This procedure is based on
clusters characterized by a time window of TW samples. In particular, the AutoGMM is
initialized with a single cluster with w0 = 1, µ0 = x(1) and with σ2

0 arbitrarily chosen.
The first step evaluates the new data point x(k) as an inlier or outlier. To perform this
evaluation, the z-score is computed for each i-th cluster as follows:

zi(k) = |(x(k)− µi(k− 1)|/σi(k− 1), (1)

The data point x(k) is identified as an inlier if there exists i such that zi(k) < 3,
according to the so-called three-sigma rule of thumb. If i is unique, x(k) belongs to the i-th
cluster. Otherwise, if i is not unique, x(k) belongs to the i-th cluster with the minimum
zi(k). Finally, if an i does not exists such that zi(k) < 3, x(k) is identified as an outlier.

After this step, the parameters of the clusters are updated. If x(k) belongs to the i-th
cluster, the mean, and variance of this cluster are updated as follows [25]:

δ(k) = x(k)− µi(k− 1), (2)

µi(k) = µi(k− 1) +
α

wi(k)
δ(k), (3)

σ2
i (k) = σ2

i (k− 1) +
α

wi(k)
(δ2(k)− σ2

i (k− 1)). (4)

where α = 1/TW represents the learning rate, µi(k− 1) is the mean of the cluster i at the
time instant k− 1, σ2

i is the variance of the cluster i, and wi is the weight of the cluster i.
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Instead, the Gaussian weights are updated according to the procedure depicted in
Figure 3. To each cluster, a time window of TW samples is associated. Thus, referring to
Figure 3, a matrix H of size Ncl · TW is constructed, where Ncl denotes the current number
of clusters. The last column of H is referred to as the current sample in time instant t(k).
When a new sample is acquired, if it belongs to the i-th cluster according to the z-score
(1), 1 is placed in the last column of the i-th row, while in the last column of all the other
rows is placed a 0. However, if the sample does not belong to any cluster, a new row is
added to the matrix H, defining a new cluster. In both cases, the other columns of H are
shifted by one position to the left, and the first columns are canceled. Note that, initially,
the matrix H is defined by a single row (Ncl = 1) with zero elements and each new row has
zero elements except for the last column. After this procedure, the weight of each cluster i
at the sample k, is calculated with the following formula:

wi(k) =
1

S(k)

TW

∑
j=0

hi,j (5)

with

S(k) =
Ncl

∑
i=1

TW

∑
j=0

hi,j (6)

where hi,j represents the element of the i-th row and j-th column of the matrix H. It is worth
remarking that in the defined AutoGMM algorithm, each cluster represents an operating
mode. When a measurement does not belong to any of the existing clusters, the newly
initialized cluster will have an initial weight dependent on the number of acquired samples,
which at steady-state, since TW observations have been collected, is equal to α. From that
moment on, each observation that falls into that cluster contributes to increasing its weight
at the expense of the other clusters, because the sum of the weights of all clusters must be
equal to 1.

Figure 2. The evolution of the GMM model upon the arrival of each new measurement.
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Figure 3. Evolution of the AutoGMM clusters.

3.1.2. Procedure for Cluster Removal and Mergers

After updating the weights, a procedure to merge or remove clusters is performed.
The first step of this procedure evaluates the possibility of merging clusters with similar
means. This evaluation is based on calculating the following z-score for each i, j, i 6= j:

zi,j(k) =
|µi(k)− µj(k)|

σj(k)
(7)

Clusters with i and j such that zi,j(k) < zmerge or zj,i(k) < zmerge , are merged, where
zmerge is a tuning positive parameter, equal to 3 (three-sigma rule of thumb). If this condition
is verified, the data flow is leading the cluster towards the same distribution as another
cluster. Therefore, these two clusters are merged into a single cluster as it is assumed that
they are representative of the same distribution. If two clusters i and j are merged at step k,
the cluster l obtained by the merging of the two clusters assumes the following parameters:

wl(k) = wi(k) + wj(k) (8)

µl(k) =
wi(k)µi(k) + wj(k)µj(k)

wl(k)
(9)

σl(k) =
wi(k)σi(k) + wj(k)σj(k)

wl(k)
(10)

Subsequently, a weight check is performed to evaluate the need for removing a cluster.
A parameter w− is defined, so any cluster with a weight lower than this value for r−

consecutive samples is removed, with r− < TW. In this study, w− is chosen to be equal
to 3/TW.

3.2. Anomaly and Novelty Detection Based on DTree

Once the parameters of AutoGMM have been updated, anomaly and novelty detection
are performed, as reported in Figure 4. A DTree is trained to predict the normal cluster of
membership, i.e., the cluster to which the sample k should belong based on its arrival time
t(k). The DTree is a classifier expressed as a recursive partition of the instance space. It is
based on a hierarchical tree structure, which consists of a root node, branches, and inner
and leaf nodes [30]. The latter represent the possible outcomes within the space. In this
work, the adopted training criteria for the DTree is the Gini index and the chosen value of
the complexity parameter which regulates the overfitting is 0.1. The DTree is trained only
using samples belonging to normal clusters, i.e., clusters that have a weight w > w+ > w−,
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where w+ is a user-defined threshold. By training the DTree using only samples belonging
to normal clusters, a correlation between the sample arrival time and the active power of
normal clusters is registered. For instance, a diagram of a trained DTree with three leaf
nodes (the predicted clusters) showing the time-based inference of the expected clusters is
reported in Figure 5. As can be seen, the input of the DTree is the arrival time of the new
sample while its output is the expected cluster of membership of the new sample. It is
worth highlighting that the training algorithm of the DTree also exploits the active power
measurements to adaptively change the expected clusters during the operation of the plant.

Note that not all the normal clusters are clusters expected by the DTree. Only the
clusters expected by the DTree can be considered representative of normal operating modes
of the plant. Hence, an anomaly is registered every time the current sample does not belong
to the cluster predicted by the DTree. In particular, any cluster that has never reached
the weight defined by the hyperparameter w+ represents a potential fault, and it requires
further investigation to determine whether it is a fault or simply a new operating mode
of the plant. Such a cluster is identified as a faulty cluster, meaning a cluster suspected of
being a system fault. If a faulty cluster reaches the threshold w+ and becomes a cluster
expected by the DTree, it is interpreted as a normal operating mode of the plant. So, the
weight calculation (5) is very important as it is the main discriminant for fault detection
and new operating mode identification.

Figure 4. DTree training and fault inference.

Figure 5. Example of a trained DTree for operating mode prediction.
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4. Experiments and Results
4.1. Case Study and Experimental Setup

The proposed algorithm has been developed and implemented in order to be easily
embedded and deployed within a specialized hardware setup (DIRAC monitor IoT system,
DMIS) for the monitoring and energy efficiency of industrial plants to the extent of the
industrial R&D project DIRAC (specifically its equipment modeling system module EqMS).

To validate the proposed algorithm, an industrial plant operated by Free Energy
Saving srl and characterized by a daily periodic working cycle is considered as a case
study. The same plant may be chosen in the future as a case study for the validation of
the hardware prototypes and the DMIS developed within the DIRAC project. A view
of the electrical cabinet which supplies the plant where the smart meter is installed is
shown in Figure 6. The power meter is a Siemens SENTRON, 7KM PAC2200, whose
measurements are collected by an IoT device and sent to a cloud platform, where the
proposed AutoGMM-DTree algorithm is implemented by adopting AWS Amazon EC2 C5
instances, model c5d.xlarge.

Figure 6. Electrical cabinet which supplies the plant operated by Free Energy Saving srl.

4.2. Performance Comparison with a Conventional 2D GMM

Before the analysis of the experimental results, a comparison between the proposed
algorithm and a more conventional approach based on a 2D GMM on a synthetic dataset
is presented. The 2D GMM, differently from the proposed AutoGMM, is trained using
two different inputs: the active power value and the hour of the day in which the sample
has been collected. The training of the 2D GMM is based on formulas similar to (1)–(4)
and modified for a two-dimensional case. In particular, the z-score is substituted by the
Mahalanobis distance [31]:

D2
i (k) = (x(k)− µi(k− 1))>Σ−1

i (x(k)− µi(k− 1)), (11)

where x(k) is the vector of the inputs of the k-th sample, µi(k− 1) is the mean vector of the
i-th cluster at the (k− 1)-th sample and Σi is the covariance matrix which substitutes the
variance defined in the one-dimensional case. A sample is considered an inlier for a cluster
when D2

i (k) < 3.
The left-hand side of Figure 7 shows the training dataset used to train the 2D GMM

and the centroids of five clusters defined a priori. The right-hand side of the figure shows
the results achieved on a testing set which includes anomalies with respect to the training
set. In this figure, the circles represent samples recognized as inliers while the squares
represent outliers. The color of the outliers is inherited from the cluster with the lowest
Mahalanobis distance. As can be seen, the algorithm fails in recognizing as outliers the blue
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samples collected in the time range 0–1.5 h. The same error occurs with the blue samples
collected in the time range 20–24 h. This can be explained by observing Figure 8, which
illustrates the 2D probability density functions of the clusters trained with the training
dataset. For each cluster, three ellipses denoting Mahalanobis distances from the centroid
equal to 1, 2, and 3 are drawn. In particular, the blue cluster spans the whole time range.
This is due to the intrinsic assumption that the GMM is dealing with normal distributions
of the inputs, while in this case the distribution of the time feature is strictly rectangular, as
shown in the training set. This incongruence leads all the clusters to over-range the time
intervals in which the samples have been collected, as can be observed by comparing the
time extension of the clusters in Figure 8 and the time ranges of the samples of the training
set shown in Figure 7.

Figure 7. Analysis of the 2D GMM on a synthetic dataset.

Figure 8. 2D probability density functions of the clusters of the 2D GMM.
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Figure 9 shows the results obtained by means of the proposed algorithm on the same
dataset and adopting a predefined number of clusters. Only three clusters are chosen since,
in this case, only the active power is used as an input for the GMM. The figure on the
right shows how the DTree correctly recognizes as outliers the samples collected in the
time ranges 0–1.5 h and 20–24 h, thus overcoming the performance of the conventional
2D GMM. In this case, the effectiveness of the proposed algorithm is ensured by the fact
that the DTree learns a relationship between the clusters of the GMM and the arrival time
of the samples, overcoming the assumption of the normal distribution of the time feature,
which is intrinsic in the 2D GMM.

Figure 9. Analysis of the proposed algorithm on a synthetic dataset.

4.3. Results on the Experimental Setup

The full capability of the proposed algorithm in detecting outliers and novel operating
modes is demonstrated by analyzing the results achieved on the experimental dataset.
In particular, active power time series collected for a year and a half with a sampling time
of 30 min have been collected and processed by the proposed algorithm. Figure 10 shows
the frequency distribution of the active power consumption of the whole dataset. Note that
different levels of active power over the observation period are registered. Figure 11 shows
the active power time series for 50 days. Note that at day 20 an anomaly in the power
consumption with respect to the previous and following days can be observed. Another
anomaly can be observed at day 55. It is also important to draw attention to the sudden
change in the plant’s operating modes starting on day 36. The zoomed figures shows the
daily periodic working cycles of the plant.

Figure 12 shows the output of the proposed algorithm at 31 d 6 h 30 min of the time
series. Above box A, the plant identification number and the values of the main parameters
of the algorithm are reported. Box A summarizes the parameters of all the active clusters
(weight, mean, and standard deviation). Additionally, for each cluster the number of
consecutive samples required to normalize or to suppress the cluster is reported. Normal
clusters are denoted with a continuous line and a green circle. Previously normalized
clusters with a weight lower than w+ are denoted with a continuous line and a yellow
circle. Clusters which have never been normal are denoted with a dotted line and a red
triangle. Box B reports the probability density functions with the related weights computed
according to the proposed AutoGMM reported on the left y-axis. Additionally, two different
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histograms are shown, equivalent to the histogram reported in Figure 10. The red histogram
is related to the whole data collected up to the current sample, while the blue histogram
refers to data collected in the last 24 h. Box C reports the cluster distributions. For each
cluster, the centered line denotes the cluster mean while the dotted lines delimit the inlier
range of the cluster according to its standard deviation. The orange triangle in the upper
part of the box denotes the active power of the current sample. The orange triangle in the
lower part of the box represents the relative percentage power of the actual sample with
respect to the maximum power ever registered. Finally, box D reports the active power
predictions over a day provided by the DTree.

Figure 10. Frequency distribution of active power consumption for the whole dataset.
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Figure 11. Active power time-series data for 50 days.

The colors of the dots of the figure reported in this box depend on the color of the
expected cluster, as in box A. The cross denotes the active power of the current sample. In
this case, there are only three expected clusters and the current active power matches the
predicted active power and no anomalies are claimed. Note also that even if cluster 3 is a
normal cluster, it is not an expected cluster from the DTree.

Figure 13 shows the output of the proposed algorithm at 20 d 3 h 30 min, when an
anomaly is detected. In fact, while the cluster predicted from the DTree is cluster 2, the
active power of the current sample is significantly lower and belongs to cluster 1, which is
not normal, i.e., it represents an abnormal operating condition. This figure clearly shows
that the algorithm was able to detect the anomaly visible in Figure 11 at day 20.

Figure 14 shows that two days after the detection of the anomaly, the faulty cluster is
not considered as an expected operating mode by the DTree. In fact, the figure shows that at
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hour 4:00 the expected cluster is still cluster 2, and this prediction is correct according to the
measured active power in this time instant. However, it can be noted that cluster 1 is still
an active cluster and has not been removed from the algorithm. This figure demonstrates
the effective combination of the AutoGMM with the DTree.

Figure 15 shows the output of the proposed algorithm at 55 d 3 h 0 min, when another
anomaly is detected. In fact, the cluster predicted from the DTree is cluster 5, while the
active power of the current sample is higher and belongs to cluster 4. This demonstrates
that the proposed method was able to recognize the anomaly at day 55 shown in Figure 11.
Figure 16 shows how after 19 days the faulty cluster 4 (cyan) in Figure 15 is definitely
removed from the sets of active clusters since it has not reached the normalization threshold.
This means that the sample collected at 55 d 3 h 0 min is symptomatic of an abnormal
operating condition. This analysis demonstrates the ability of the proposed algorithm to
detect anomalies in the plant.

Finally, Figures 17 and 18 report the outputs of the algorithm when a sample belonging
to a new operating mode is detected. In fact, these two figures show the results obtained
after day 36, when an abrupt variation in the operating modes is registered, as illustrated
in Figure 11. Initially, the algorithm claims an anomaly of the system that is placed in a
novel cluster (cluster 1, instead of the predicted cluster 7), as shown in Figure 17. Note
that this cluster is associated with measurements around 0 kW, which are handled by the
proposed algorithm as all the other power measurement values. Unlike the case shown
in Figure 16, such a cluster is normalized and recognized as a new operating mode of the
system; see box D of Figure 18. In fact, the DTree predicts cluster 1 as the expected cluster in
the time range 7:30–18:30. This outcome demonstrates the ability of the proposed algorithm
to perform novelty detection.

Figure 12. Output of the proposed algorithm at 31 d 6 h 30 min (nominal operating condition).
(A): active clusters and related parameters; (B): probability density functions and data frequency
distribution; (C): cluster distributions; (D): clusters predicted by DTree.
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Figure 13. Output of the proposed algorithm at 20 d 3 h 30 min (anomaly detection).

Figure 14. Output of the proposed algorithm at 22 d 3 h 30 min.
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Figure 15. Output of the proposed algorithm at 55 d 03 h 0 min (anomaly detection).

Figure 16. Output of the proposed algorithm at 74 d 12 h 0 min (faulty cluster removal).
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Figure 17. Output of the proposed algorithm at 35 d 14 h 0 min (first, condition detected as anomaly).

Figure 18. Output of the proposed algorithm at 38 d 17 h 0 min (then, recognized as new operating
condition).
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5. Conclusions

This article has presented a novel online method, called AutoGMM-DTree algorithm,
for the condition monitoring of electrical industrial loads. An automated Gaussian mixture
model (AutoGMM) has been designed to group the active power measurements in clusters
representative of the operating modes of the plant. Additionally, a decision tree (DTree)
has been paired with the AutoGMM to predict normal operating conditions and detect
anomalies. The method has been validated using data provided by a real industrial plant
with a daily periodic power consumption by adopting a cloud-computing implementation.
The results demonstrate the ability of the proposed method to automatically recognize
regular operating modes of the plant, detect abnormal operating modes, and acknowledge
new operating modes. As future work we plan to analyze the impact of hyperparameters
on the performance of the proposed method (e.g., the learning rate of the AutoGMM and
the parameters used by the cluster removal procedure) and its applicability/scalability to
other industrial plants characterized by different power levels and periodic patterns.
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