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Abstract In this work, we discuss important improve-
ments of asperity models. Specifically, we assess the
predictive capabilities of a recently developed multi-
asperity model, which differs from the original Green-
wood and Williamson model by (i) including the cou-
pling between the elastic fields generated by each con-
tact spot, and (ii) taking into account the coalescence
among the contact areas, occurring during the load-
ing process. Interaction of the elastic field is captured
by summing the contributions, which are analytically
known, of the elastic displacements in a given point of
the surface due to each Hertzian-like contact spot. The
coalescence is instead considered by defining an equiv-
alent contact spot in such a way to guarantee conser-
vation of contact area during coalescence.

To evaluate the accuracy of the model, a comparison
with fully numerical ‘exact’ calculations and Persson’s
contact mechanics theory of elastic rough surfaces is
proposed.

Results in terms of contact area vs. load and sep-
aration vs. load show that the three approaches gives
almost the same predictions, while traditional asperity
models neglecting coalescence and elastic coupling be-
tween contact regions are unable to correctly capture
the contact behavior. Finally, very good results are also
obtained when dealing with the probability distribution
of interfacial stresses and gaps.
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1 Introduction

Contact mechanics of rough surfaces is a widely inves-
tigated problem. In fact, in many engineering applica-
tions like gears, bearings, seals, thermal and electrical
contact actuators, micro- and nano-electromechanical
systems, etc..., we deal with contacting surfaces. More-
over, several tribological phenomena, like friction, wear,
percolation, lubrication, thermal and electrical interfa-
cial conductance can be understood and explained only
considering the roughness nature of the surfaces. For
this reason, several scientific studies have been devel-
oped in the last decades with the aim of capturing and
modeling their contact behavior. The first organized
works in this field are those of Archard [1] and Green-
wood&Williamson (GW) [2]. In such works, the orig-
inal surface is replaced by its asperities, the summits,
which are assumed spherical and independent. In this
way, the contact of rough surfaces is studied making use
of the main results of the Hertz theory. An improved
multiasperity model was presented by Bush, Gibson
and Thomas (BGT) [3], who modeled the asperities as
paraboloids with two different radii of curvature. Tak-
ing account of the precise joint probability distribution
of asperity heights and curvature they showed that the
existence of an asymptotic linear relation between con-
tact area and load in the limiting case of very small
loads. More recently, Greenwood [4], recalling calcula-
tions shown in Ref. [5], has demonstrated that almost
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the same results as in BGT can be obtained by replac-
ing the paraboloids with spheres with radius equal to
the geometric mean of the two principal radii of curva-
ture. Even more, in Ref. [6] it is shown that critical to
the achievement of the same asymptotic linear relation
as in BGT, is not to include in the model the fully joint
probability distribution of asperity heights and curva-
tures, but simply to consider that all asperities of a
given height possess a uniform height-dependent curva-
ture. This simplification strongly facilitates the calcula-
tions leading to the same asymptotic linear relation as
in BGT. Although the GW and similar multiasperity
models have represented really excellent contributions
to contact mechanics, for having strongly stimulated
the scientific community to deepen the understanding
of the contact mechanics of rough surfaces, they cannot
really explain the linearity between contact area and
load, as linearity is predicted for very low loads, ex-
tremely small contact areas and large separations [6,7].

Multiasperity model have long dominated the field
of contact mechanics of rough surfaces also with exten-
sion to adhesive contact problems [8], until 2000, when
the primitive consideration, developed by Archard in
1957 [1], were further developed and came on the scene.
One of the first multiscale approach was proposed by
Ciavarella et al. [9] (recently extended to the adhesive
case in Ref. [10]) to describe the elastic contact between
1D rough profiles. Here the solution for partial contact
of a sinusoidal profile is used to develop a relation be-
tween the pressures at different magnifications; then the
contact area is calculated in terms of the magnification
with a recursive formula. Calculations are presented for
fractal Weierstrass profiles, which are just the sum of
cosinusoidal components and had the drawback that all
spectral components have exactly zero phase. For this
reason, they cannot satisfy the translational invariance
(statistical homogeneity) generally found in real sur-
face [11–13]. Anyway, important aspects of the contact
behavior are correctly captured. In Ref. [10], for exam-
ple, it is shown that, for fractal dimension D < 1.5,
the contact area reaches a constant value as the mag-
nification is increased and full contact occurs at the
short length-scale structures of the surface, in agree-
ment with calculations performed in Ref. [14] on self-
affine 2D fractal surfaces (where the threshold fractal
dimension is obviously 2.5).

On the same multiscale way of approaching the prob-
lem, Persson in 2001 developed a new contact mechan-
ics theory [15]. He derived a diffusion equation for the
scale (magnification) dependent contact stress proba-
bility distribution, where the diffusivity is calculated
assuming full contact conditions. In later years, the
theory has been improved with the introduction of a

correction term for the interfacial elastic energy and
the ‘full contact’ assumption was relaxed at least par-
tially [16, 17, 19, 20]. It is worth noticing that the most
advanced version of Persson’s theory contains only one
empirical correction factor γ, whose value is almost uni-
versal (γ ≃ 0.45).

Coming back to asperity models, one of their more
important approximation is that the long range elas-
tic coupling between the contact regions is totally ne-
glected. This is a very strong assumption, as several
studies [19,21,22] show that the lateral interaction be-
tween the contact asperities strongly affects the contact
mechanics. Specifically, the elastic deformation field ex-
tends along distance away from the asperity in con-
tact [23] and lateral interaction cannot be neglected also
at large separation. In fact, when two rough surfaces
are brought in contact with a small load, the distance
between macro-asperities is expected to be large, but
the one between the micro-asperities within a macro-
asperity region will be in general very small. As a result,
neglecting the elastic coupling between micro-asperities
leads to errors in predictions of the contact mechanics
behavior also at small loads.

Moreover, another important limitation of asperity
models is they neglect coalescence of asperities. When
rough surfaces come in contact, coalescence of contact
regions needs to be considered, as observed in Ref. [24,
25]. In fact, as the surfaces approach to each other, the
number of contacts increases, but some of them can
also merge to form contact patches. This is one of the
main reasons why the asperity models prediction of the
area-load relation very quickly deviates from linearity.

A first partial attempt to improve the asperity mod-
els was done in Ref. [26], where a discretized version of
the GW model is proposed with the aim to take into
account the lateral interaction between asperities (we
denote this model as Interacting Hertzian Asperities
(IHA) model).

Only recently, a new multiasperity contact model
(the so called Interacting and Coalescing Hertzian As-
perity (ICHA) model) was proposed in Ref. [27]. In
this model both elastic coupling and coalescence be-
tween asperities in contact are taken into account. Re-
sults of such model were partially discussed in a very
recent Contact-Mechanics Challenge [28], where a well
defined contact mechanics problem is solved with dif-
ferent (theoretical, fully numerical and also experimen-
tal) strategies. The Challenge gives a complete picture
about strengths and weaknesses of some of the numer-
ous numerical methods that can be find in the litera-
ture [29–39], and provides researchers with benchmarks
to assess which method is the most appropriate for a
specific contact problem.
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Inspired by the surprisingly good results obtained
with the ICHA model in the Contact-Mechanics Chal-
lenge, in this paper we introduce further improvements
in the model and try to give a comprehensive picture
of asperity models with the aim of definitely identi-
fying their drawbacks and benefits. Specifically, results
obtained with the original GW model, in a discrete ver-
sion where each summit geometry is calculated without
using the statistics of asperity heights and curvatures,
are compared with the predictions of the improved ap-
proaches given in Ref. [26] (IHA model) and Ref. [27]
(ICHA model), respectively. Finally, results of the Pers-
son’s theory, also including finite-size effects, are shown
as well. A comparison with numerical calculations per-
formed with an ad hoc developed boundary-element
technique [31,32] is also reported.

2 Method

We consider a rigid randomly rough surface brought
in contact with a smooth deformable elastic half-space.
Next, the most important aspects of the contact models
considered in this work are briefly summarized.

2.1 Discrete version of the GW theory

The original versions of asperity theories make use of
the distribution of asperity heights and curvatures. A
discrete version of the GW model is instead here consid-
ered by determining the geometry of each single summit
rather than using the statistics of the asperities distri-
bution. In this case, once the summit heights are identi-
fied, the Hertzian equations are solved for each summit.
The total load and total area are obtained by summing
the contribution of each asperity. Moreover, non cir-
cular asperities are modeled as circular by taking the
radius of curvature equal to the geometric mean of the
principal radii of curvature, as suggested by Ref. [4].

In this way, the asperity theory is directly applied on
the effective rough surface under investigation, whose
statistics is usually slightly different with respect to the
ideal one, i.e., with respect to truly macroscopic systems
with a rolloff much smaller than system size.

2.2 Interacting Hertzian Asperities (IHA)

One of the main criticism received by the GW model is
it neglects lateral interaction between contact regions.
As above observed, this can lead to significant errors
also at very high separation (i.e. very low contact pres-
sure) since for the micro-asperities lying in a macro-
asperity region elastic coupling cannot be neglected. A

simple method to consider interaction effects is pro-
posed in Ref. [26], by using the Johnson formulas giv-
ing the surface displacements of an elastic half-space
(see Ref. [40]). In this approach, the elastic displace-
ment of each asperity is calculated as the sum of the lo-
cal Hertzian displacement plus the contribution of the
other asperities in contact. Specifically, if we denote
with ai the radius of the ith contact spot and with Ri

the geometric mean of its principal radii of curvature,
the normal displacement ui on the ith asperity becomes

ui =
a2i
Ri

+
1

π

nc∑
j=1,j ̸=i

(
2a2j − r2ij

Rj
arcsin

aj
rij

+
aj
Rj

√
r2ij − a2j

)
(1)

where nc is the total number of asperities in contact and
rij is the distance between the ith and jth asperity.

However, in this model, when a contact spot is formed,
it can grow independently of the other ones. This yields
an unrealistic superposition of the neighboring contact
spots (this problem is common to all asperity models).
Moreover, the function defined in eq. (1) is not real
when the contact radius aj exceeds the distance rij . In
such case, we need to describe differently the lateral
coupling. One possible alternative is to cunningly take
account of the interaction effect by calculating the nor-
mal displacement due to the spot j at a distance rij
from j. However, such ‘stratagem’ introduces an un-
controlled approximation that with the superposition
of the neighboring contact spots can lead to overesti-
mate the effective interfacial separation and to obtain
unrealistic values of the total contact area (larger than
the nominal one) at relatively high loads.

2.3 Interacting and Coalescing Hertzian Asperities
(ICHA)

A further and definitive improvement of the asperity
GW model is proposed in Ref. [27], where both lat-
eral interaction and coalescence of contact regions are
considered. In this respect, when two surfaces approach
contact spots can merge forming contact patches. In the
ICHA model the overlapping asperities are suppressed
and replaced by an equivalent one, which is defined in
order to maintain the same total contact area of the
suppressing spots (a2eq = a2i +a2j ) and the same geomet-
rical volume centroid. The last condition is required to
locate the new Hertzian asperity in the plane normal to
the approaching direction. Moreover, the radius of cur-
vature is empirically defined assuming R2

eq = R2
i +R2

j .
Finally, the height of the new equivalent asperity is
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taken so that the contact radius of the corresponding
contact spot is effectively aeq at the given separation.

In the present work, since a self-balanced load distri-
bution is applied to the system to zero the mean inter-
facial displacement of the elastic half-space, the mean
separation ū can be easily obtained by subtracting the
approach δ of the rigid rough surface to the initial sep-
aration ū0 (ū = ū0 − δ). Moreover, a new approach
is proposed to calculate the local gap. In particular,
in the Contact-Mechanics Challenge [28] we calculated
the gap only on the summit peaks and, consequently,
the mean separation was obtained by averaging these
values. Here, the gap is instead calculated on all the
points out of the contact spots, so obtaining a more ac-
curate local gap distribution whose mean is just equal
to ū0−δ. Notice this calculation is not computationally
expensive because the displacement of a generic point
P in a non-contact region can be analytically derived
by the expression

u (P ) =
1

π

nc∑
k=1

(
2a2k − r2Pk

Rk
arcsin

ak
rPk

+
ak
Rk

√
r2Pk − a2k

)
(2)

where rPk is the distance of the point P from the kth
asperity.

It is worth noticing that the correction for coupling
can be seen as the simplest one that can be obtained in
the framework of boundary element methods.

Finally, in this paper an improved methodology is
adopted to calculate more accurately the contact area.
Specifically, when an asperity gets into contact, a first
estimation of the contact radius is done by employ-
ing the Hertz relation. As the penetration is increased,
the contact radius is adjusted by the procedure de-
scribed in Ref. [27], where for each asperity the cor-
rection dai = Riδi/ (2ai) in the contact radius ai is in-
troduced (being δi the asperity indentation). However,
for relatively small contact spots, the above correction
may be too large (larger than 10% of the contact ra-
dius ai). In such case, the solution method is switched
to a Newton-Raphson based algorithm, which solves
the complete non linear system of equations giving the
contact radii of the asperities in contact. We observe
that such switch very seldom occurs, so efficiency of
the method is negligibly affected.

2.4 Persson’s theory: The fundamental equations

2.4.1 Contact area and stress distribution

The Persson’s theory [15] moves from the consideration
that, for a Gaussian surface, the stress probability dis-

tribution must satisfy a diffusion type equation and,
for partial contact, it must vanish when the contact
stress vanishes. The determination of the diffusion co-
efficient is made a priori by assuming that the power
spectral density of the deformed surface is the same as
that of the underlying rigid rough surface. This assump-
tion was, in later improvements of the theory, partially
relaxed. Persson’s theory suggest that, under partial
contact conditions, the contact area at the magnifica-
tion ζ obeys the relation

A

A0
= erf

(
σ0√

⟨∇h2⟩ /2E∗

)
(3)

where h (x) is the spatial distribution of the rough-
ness heights and ⟨·⟩ is the ensemble average operator.
The quantity E∗ = E/

(
1− ν2

)
is the composite elastic

modulus, with E being the Young modulus and ν the
Poisson ratio. σ0 = F/A0 is the average normal stress
at the interface. The quantity

⟨
∇h2

⟩
depends on the

magnification ζ and can be calculated in terms of the
power spectral density (PSD) of the surface C (q) by

⟨
∇h2

⟩
= 2m2 =

∫
D(ζ)

d2qq2C (q) (4)

where q =(qx, qy) is the wave vector, q = |q| =
√
q2x + q2y,

and D (ζ) = {q ∈ R2| q0 ≤ |q| ≤ ζq0}, being q0 the low
wavenumber cut-off.

The interfacial stress distribution P (σ) is given by
[16]

P (σ) =
1√

π ⟨∇h2⟩ /2E∗

[
exp

(
− (σ − σ0)

2

E∗ ⟨∇h2⟩ /2

)

− exp

(
− (σ + σ0)

2

E∗ ⟨∇h2⟩ /2

)]
, (5)

and will also depend on the magnification.

2.4.2 Average interfacial separation and distribution of
interfacial separations

Within Persson’ theory the mean separation ū is cal-
culated in terms of the squeezing pressure σ0 by (see
Ref. [17])

σ0 (ū) = − 1

A0

dUel

dū
(6)

where Uel is the elastic energy stored in the contact
regions given by

Uel ≈
A0E

∗

4

∫
D(ζs)

d2qqW (q)C (q) (7)
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Note ζs can be interpreted as the number of scale com-
ponents used to describe the surface roughness, and it is
equal to the ratio qs/q0, being qs the large wavenumber
cut-off.

In (7), W (q) is a corrective factor which accounts
for partial contact when calculating the elastic energy.
Originally Persson [42] derived the elastic energy in par-
tial contact assuming that the PSD of the deformed
profile was given by C (q)A (q) /A0, where A (q) is the
apparent contact area when all spatial frequencies larger
than q are smoothed out, i.e. W (q) ≈ A (q) /A0. How-
ever, this overestimates the term W (q) that was shown
later by Persson [17]

W (q) ≈
{
γ + (1− γ) [A (q) /A0]

2
}
A (q) /A0

= S (q)A (q) /A0 (8)

Notice at complete contact W (q) = 1, being A/A0 = 1,
while W (q) ≈ γA/A0 at small pressure. A good value
for the empirical parameter γ can be taken in the range
0.4− 0.5.

Substituting (7) in (6) and performing the required
calculations, the mean separation can be written as

ū =
1

2
√
π

∫
D(ζs)

d2qqC (q)w (q)

∫ ∞

σ0

dσ

σ

×
[
γ + 3 (1− γ) erf2

(
w (q)σ

E∗

)]
e−(

w(q)σ
E∗ )

2

(9)

where

w (q) =

(
1

2

∫
Dq

d2q′q′2C (q′)

)−1/2

(10)

being Dq = {q∈ R2| q0 ≤ |q| ≤ q}.
For large average interfacial separation (or low nom-

inal contact pressure), (9) takes the asymptotic form

σ0 = βE∗exp

(
− ū

u0

)
or

u ≈ −u0log[σ0/(βE
∗)]

where u0 = γhrms/α. The parameters α and β are de-
termined by the surface roughness power spectrum (see
Ref. [41], but note the difference in the definitions of β).

The correction factor S(q) also affects the contact
area and the contact stress distribution. Thus in Ref.
[19] it was shown that in the original formulas (3) and
(5), one should replace ⟨∇h2⟩ with ⟨∇u2⟩, where

⟨
∇u2

⟩
=

∫
D(ζ)

d2q q2C (q)S (q) , (11)

can be interpreted as the averaged square slope of the
deformed surface. Notice, at small loads, the area of
real contact is enhanced by a factor of (1/γ)1/2.

The distribution of interfacial separations, P (u),
was derived in Ref. [20], but the numerical results that
has been presented in the literature used a slightly more
accurate expression. Here we give the arguments for this
improved theory.

Let us first briefly review the theory presented in
Ref. [20]. In the contact mechanics theory of Persson
[17] the interface is studied at different magnification ζ.
As the magnification increases, new short length scale
roughness can be detected, and the area of (apparent)
contact A(ζ) therefore decreases with increasing magni-
fication. The (average) separation between the surfaces
in the surface area which (appears) to move out of con-
tact as the magnification increases from ζ to ζ + dζ, is
denoted by u1(ζ) and is predicted by the Persson theory
according to [17]

u1 (ζ) = ū (ζ) + ū′ (ζ)A (ζ) /A′ (ζ) (12)

where the apex symbol denotes the derivative with re-
spect to the magnification ζ.

The contact mechanics theory of Persson does not
directly predict P (u) but rather the probability distri-
bution of separation u1 (see Ref. [17]):

P1(u) =
1

A0

∫ ζs

1

dζ[−A′(ζ)] δ(u− u1(ζ)). (13)

Since u1(ζ) is already an average, the distribution func-
tion P1(u) will be more narrow than P (u), but the first
moment of both distributions coincides and is equal to
the average surface separation:

ū =

∫ ∞

0

du uP (u) =

∫ ∞

0

du uP1(u).

To derive an approximate expression for P (u) we write

P (u) =
1

A0

∫ ζs

1

dζ[−A′(ζ)] ⟨δ(u− u(x))⟩ζ . (14)

Here ⟨..⟩ζ stands for averaging over the surface area
which moves out of contact as the magnification in-
creases from ζ to ζ + dζ. Note that

⟨u(x)⟩ζ = u1(ζ). (15)

A surface which moves out of contact as the magni-
fication increases from ζ to ζ + dζ will have short-
wavelength roughness with wavevectors larger than q >

ζq0. Thus the separation between these surface areas
will not be exactly u1(ζ), but will fluctuate around this
value. One may take this into account by using

⟨(u(x)− u1(ζ))
2⟩ζ ≈ h2

rms(ζ), (16)
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where h2
rms(ζ) is the mean of the square of the surface

roughness amplitude including only roughness compo-
nents with the wavevector q > q0ζ

h2
rms(ζ) =

∫
q>q0ζ

d2q C(q). (17)

Using the definition δ(u) = (1/2π)
∫
dα eiαu, one can

rewrite eq. (14) as

P (u) =
1

A0

∫
dζ[−A′(ζ)]

1

2π

∫
dα ⟨eiα(u−u(x))⟩ζ

=
1

A0

∫
dζ[−A′(ζ)]

× 1

2π

∫
dαeiα(u−u1(ζ))⟨eiα(u1(ζ))−u(x))⟩ζ .

To second order in the cummulant expansion

P (u) ≈ 1

A0

∫
dζ [−A′(ζ)]

× 1

2π

∫
dα eiα(u−u1(ζ))−α2⟨(u1(ζ)−u(x))2⟩ζ/2,

or using eq. (16)

P (u) ≈ 1

A0

∫
dζ [−A′(ζ)]

1

(2πh2
rms(ζ))

1/2

×exp

(
− (u− u1(ζ))

2

2h2
rms(ζ)

)
.

The above expression does not satisfy the correct prob-
ability normalization condition. We will therefore use
instead

P (u) ≈ 1

A0

∫
dζ [−A′(ζ)]

1

(2πh2
rms(ζ))

1/2

×
[
exp

(
− (u− u1(ζ))

2

2h2
rms(ζ)

)
+ exp

(
− (u+ u1(ζ))

2

2h2
rms(ζ)

)]
. (18)

The added term in this expression can be considered as
resulting from the cummulant expansion of

1

A0

∫
A0

d2x δ(u+ u(x)).

Note that such a term vanishes for u > 0. From (18) we
get∫ ∞

0

du P (u) =
1

A0

∫ ζs

1

dζ [−A′(ζ)] = 1− As

A0

where A(1) = A0 is the nominal contact area and As =

A(ζs) the area of real contact. Thus, the integral of
P (u) gives the non-contact area A0−As divided by the
nominal contact area A0.

Eq. (18) assumes implicitly that the fluctuations in
the surface separation in the surface area dA(ζ) which

moves out of contact as the magnification increases
from ζ to ζ + dζ, is smaller than u1(ζ). If this would
not be the case the surface area dA(ζ) would not be
a non-contact area. However, in some applications we
find u1(ζ) < hrms(ζ). In these cases we expect the fluc-
tuations in the surface separation to be of order u1(ζ),
which is the maximum possible in order for dA(ζ) to
represent non-contact surface area. To take this into
account in (18) we replace hrms(ζ) with

heff
rms(ζ) =

[
h−2
rms(ζ) + u−2

1 (ζ)
]−1/2 (19)

Note that with this definition heff
rms(ζ) ≈ hrms(ζ) when

u1(ζ) >> hrms(ζ), and heff
rms(ζ) ≈ u1(ζ) for u1(ζ) <<

hrms(ζ).

2.4.3 Finite-size effects

The Persson theory implicitly assumes continuous sur-
face roughness PSD and a perfect Gaussian probability
distribution of the surface heights. This occurs for ex-
ample in surfaces with a power spectrum extending to
q = 0; in fact, in such case, the linear size L of the
system is infinite and continuity of the spectrum is pre-
served (being dq = qL = 2π/L = 0). This is in contrast
to the finite-size case where C(q) refers to a fractal sur-
face which is self-affine for all wavenumbers. In fact, in
this case, the PSD is not continuous and even assum-
ing spectral components with random phases uniformly
distributed in the range 0 < φ < 2π, the surface will be
not ergodic, and a single realization of the surface will
be in general highly non-Gaussian. However, the ensem-
ble averaged height distribution will be still a perfect
Gaussian.

From the discussion above, it follows that for sur-
faces without a low wavenumber roll-off (or cut-off) re-
gion, quantities which depend on the long wavelength
roughness, such as the average interfacial separation, or
the distribution of interfacial separations P (u) at low
contact pressures, will vary strongly from one realiza-
tion to another. In this case one should study ensemble
averaged quantities. On the other hand, the contact
area, and the distribution of contact pressures, depend
mainly on the short wavelength roughness, and since
there are a huge number of these roughness compo-
nents even without a low wavenumber roll-off region,
these quantities can be obtained accurately from a sin-
gle realization of the rough surface.

An infinite system with Gaussian height distribu-
tion will have some infinite height asperities. It follows
that in the Persson contact mechanics theory contact
will always occur between two solids even at arbitrary
large separation. Since systems used in numerical calcu-
lations have finite size, the relation between the average
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interfacial separation ū and the nominal contact pres-
sure p0 = σ0, as predicted by the Persson theory, will
not agree with numerical simulations for small contact
pressures. We will refer to this as a finite-size effect.
We note that most real systems of engineering interest
have relative large roll-off regions, and in these cases the
finite-size effect will only prevail at very low nominal
contact pressures. The large roll-off regions prevailing
in most engineering systems result from the fact that
most surfaces are smoothed by polishing (e.g., for a ball
in a ball bearing), or by other means (as e.g. for road
surfaces), and will exhibit smaller surface roughness at
large length scales than would result from extrapolating
the surface roughness at short length scales to longer
length scales. However, computer simulations are usu-
ally done on small systems with no roll-off region (as in
the present study), or a small roll-off region (as in the
contact mechanics challenge [28] and in Ref. [18]).

As mentioned above, the area of real contact, and
the stress distribution at the interface, depends only
weakly on the size of the roll-off (or cut-off) region,
while the average interfacial separation at low contact
pressure depends sensitively on the finite-size effect. In
Ref. [18] it was shown how the Persson contact me-
chanics theory can be extended in an approximate way
to include finite-size effects for the ū(σ0) relation. We
briefly review that theory here for the case of a surface
with isotropic roughness.

In Ref. [18] we calculated what we denoted as the
finite-size corrections to the contact stiffness. The (per-
pendicular) contact stiffness K is defined from the re-
lation σ0(ū) between the average interfacial separation
ū and the applied nominal contact pressure σ0 via

K = −dσ0

dū
.

Given K(σ0) we can calculate ū(σ0) using

ū =

∫ ∞

σ0

dσ

K(σ)
,

where we have used that ū = 0 when σ0 = ∞.
The K(σ0) relation in the finite-size region can be

obtained approximately using the theory presented in
Ref. [18], and we summarize here the basic equations.
The stiffness is determined by the elastic deformation
energy Uel using

K = σ0

(
dUel

dF

)−1

This equation follows from dUel = −σ0Adū, and the
definitions K = −dσ0/dū and F = σ0A0. In the finite-
size region we assume that the solids makes contact only
at the highest macroasperity. In this case there are two

contributions to Uel, namely one contribution U
(0)
el from

the Hertz-like deformations of the macroasperity, and
another contribution U

(1)
el from the deformations of the

microasperities within the macroasperity contact region
(with radius r0). We can estimate these elastic energy
terms as follows (see Ref. [18]):

The asperity radius of curvature R is obtained using

1

R2
=

16

3

∫ π/r0

q0

dq q5C(q), (20)

where r0 is the Hertz contact radius

r30 =
3

4

F

E∗R, (21)

where F is the normal force acting on the macroasperity
contact region, which we expect to be of order

F = σ0A0 ≈ σ0(ξ/q0)
2.

If one assume only one macroasperity contact region
ξ = 2π. Eq. (20) and (21) are two equations for two
unknown R and r0. Given R we can calculate the elastic
energy due to the Hertz-like deformation of the macro
asperity contact region:

U
(0)
el =

2

5

(
9F 2

16R(E∗)2

)1/3

In addition there will be elastic energy stored in the
microasperity contact regions within the macroasperity
contact region (with radius r0). This contribution can
be estimated using

U
(1)
el = (u0)redF

where (u0)red is the reduced u0-parameter obtained by
including only the roughness with wavelength smaller
than r0, i.e. (u0)red = γ(hrms)red/α with

[(hrms)red]
2 = 2π

∫ q1

π/r0

dq qC(q)

is the mean-square roughness, including only the rough-
ness components with wavelength less than r0.

To illustrate how the size of the roll-off region affect
the relation between the average surface separation and
the nominal contact pressure, in Fig. 1 we show the cal-
culated ū relation as obtained using the theory above
without the finite-size correction (red curve), and with
finite-size correction for the case of no roll-off (green
curve), and for one and two decades roll-off regions
(blue and pink curves, respectively). In all cases, in
the self-affine fractal wavenumber regions we have as-
sumed the power spectrum given by (24). Note that,
as expected, as the roll-off region increases the theory
without the finite-size correction (red curve) prevail to
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Fig. 1: The interfacial mean separation ū as a function
of the dimensionless contact pressure σ0/

(
E∗√2m2

)
according to the Persson’s theory with and without
finite-size corrections.

lower contact pressures. This is in agreement with exact
numerical simulations presented in the past (see Ref.
[18,28]), which included up to about one decade of roll-
off, and where the asymptotic ū = −u0log[σ0/(βE

∗)]

relation was found to holds to lower contact pressures
than in the present study, where we assume no roll-off
region (see below).

2.5 Boundary element method (BEM)

Fully numerical calculations are also performed to have
a reference for comparison. In particular, the boundary
element methodology developed in Ref. [31] is adopted.
In this method the contact domain D is discretized
with square cells by using a non uniform adaptive mesh
with a coarse mesh within each contact spot and a
fine mesh at the borders of contacts, where the gra-
dients of stresses and strains are larger. Moreover, a
periodic formulation is implemented to avoid border
effects. Since under periodic load conditions, the mean
displacement ū of the elastic body is unbounded, the
problem is formulated in terms of the relative displace-
ment v (x) = u (x)−ū, which is related to the interfacial
stresses by

v (x) =

∫
D

d2ξL (x− ξ)σ (ξ) (22)

where L (x) = G (x)−Gm, being G (x) the Green func-
tion and Gm its mean value (Gm = λ−2

∫
D
d2xG (x)).

Notice L (x) is the elastic displacement at the interface
due to a periodically applied self-balanced normal stress
distribution σ (x) = δ (x)−λ−2, being δ (x) the Dirac’s
delta function and λ the size of the square domain D.

Then eq. (22) is discretized on the non uniform mesh
of D as

vi = Lijσj (23)

where Lij are the terms of the compliance matrix L,
which can be calculated by recalling the Love solution,
as shown in Ref. [31]. Notice the matrix L needs to be
inverted only for the points inside the contact areas;
this allows to strongly reduce the computational effort.

3 Results and discussion

Results are presented for a rigid surface with roughness
described by a self-affine geometry, which is numeri-
cally generated by implementing the spectral method
given in Ref. [31]. The power spectral density (PSD)
of the surface is assumed to depend on the wave vector
q ≡ (qx, qy) according to a power law, which for surfaces
with isotropic roughness is given by

C (q) = C0

(
q

q0

)−2(1+H)

, (24)

where H is the Hurst exponent related to the fractal
dimension Df through the expression Df = 3−H, q is
the modulus of the wave vector (q = |q| =

√
q2x + q2y)

and q0 is the low wavenumber cut-off. Moreover, the
large wavenumber cut-off, above which no roughness is
considered, is qs = Nq0, being N the number of scale
components characterizing the surface. Most surfaces
of engineering interest have low-wavenumber roll-off re-
gions, but this was not included in this study (see also
Sec. 2.4.3 for a detailed discussion of this point).

3.1 Average contact quantities

Fig. 2 shows the relative contact area A/A0 as a func-
tion of the normalized load σ0/

(
E∗√2m2

)
for H = 0.4

(Fig. 2a) and H = 0.8 (Fig. 2b). Results are given for
a number of scale components N = 128 and are ob-
tained by averaging on seven different realizations of
the surface. In all cases, surfaces with root mean square
roughness hrms = 10 µm are considered. Similar plots
are given in Fig. 3 for H = 0.6 and different number
of scales: N = 32 (Fig. 3a) and N = 64 (Fig. 3b). In
all plots, Persson’s curves are obtained by considering
the actual value of m2 as calculated by the numerically
generated surfaces.

The proposed comparison makes clear that results
of ICHA model are in almost perfect agreement with
the numerical ones obtained with the BEM methodol-
ogy. The same agreement is also observed with Pers-
son’s theory [19]. Results of discrete GW model, which
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(a)

(b)

Fig. 2: The dependence of the relative contact area
A/A0 on the normalized load σ0/

(
E∗√2m2

)
for hrms =

10 µm, N = 128, H = 0.4 (Fig. 1a) and H = 0.8

(Fig. 1b). Results relative to BEM, ICHA, IHA and
GW models are obtained by averaging on seven differ-
ent realizations of the surface.

already include the same actual asperity heights and
radii as those in the BEM model, are less accurate
showing interaction between asperities is critically im-
portant. However, including the effect of lateral cou-
pling between contact regions is not enough to correctly
predict the area vs. load relation. In fact, the relative
contact area is underestimated by IHA model, whose
findings seem also to be slightly affected by fractal di-
mension and surface magnification. Such considerations
are almost independent of values of H and N , although
predictions of discrete GW model slightly improve re-
ducing H and N , i.e. for surfaces characterized by few
peaks with sharp slope.

Notice, at complete contact, predictions of ICHA
model are expected to deviate from the full numer-
ical ones. However, in the Contact Mechanics Chal-
lenge [28], we showed that results of ICHA model are in

(a)

(b)

Fig. 3: The dependence of the relative contact area
A/A0 on the normalized load σ0/

(
E∗√2m2

)
for hrms =

10 µm, H = 0.6, N = 32 (Fig. 2a) and N = 64 (Fig.
2b). Results relative to BEM, ICHA, IHA and GW
models are obtained by averaging on seven different
realizations of the surface.

almost perfect agreement with the numerical ones also
at relative contact areas of the order of 0.8.

The above conclusions are confirmed in Fig. 4, where
the mean contact pressure

[
σ0/

(
E∗√2m2

)]
/ (A/A0) is

plotted as a function of the normalized applied one
σ0/

(
E∗√2m2

)
, for N = 128, H = 0.4 (Fig. 4a) and

H = 0.8 (Fig. 4b). In these plots differences between
the various methods are better identified. Specifically,
BEM and ICHA models predict almost the same val-
ues, showing that the latter correctly captures the value
of the mean contact pressure in the limit of very small
loads. In this limit, good results are also obtained with
Persson’s theory. Notice that the asymptotic mean con-
tact pressure seems to be correctly predicted also by the
other models (discrete GW and IHA). However, an un-
expected small discrepancy occurs at low contact pres-
sures between IHA and ICHA models for surfaces with
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(a)

(b)

Fig. 4: The mean contact pressure[
σ0/

(
E∗√2m2

)]
/ (A/A0) as a function of the

normalized load σ0/
(
E∗√2m2

)
for hrms = 10 µm,

N = 128, H = 0.4 (Fig. 3a) and H = 0.8 (Fig.
3b). Results relative to BEM, ICHA, IHA and GW
models are obtained by averaging on seven different
realizations of the surface.

low fractal dimension (i.e. high Hurst exponent). This
can be justified by observing that high asperities tend to
be clustered because of the long wavelength content. As
a result, neglecting coalescence between contact spots
leads to ‘unphysical’ predictions of contact area even at
small contact pressures.

Fig. 5 shows a comparison between the various meth-
ods in terms of mean separation ū (normalized with
respect to the root mean square roughness amplitude
hrms) for N = 128, and H = 0.6 (Fig. 5a) and H = 0.8

(Fig. 5b). As expected, in such case larger fluctuations
in results are observed depending on the considered sur-
face realization. We have made clear this by introducing
in the figures bars showing the minimum and maximun
value of the mean separation obtained by BEM simu-
lations.

The good agreement between BEM, IHA and ICHA
models suggests that the fundamental ‘ingredient’ de-
terming the mean separation is the elastic coupling be-
tween contact regions. However, this is true provided
that the contact load is not too large. In fact, at high
loads, a correct description of the coalescence of con-
tact spots becomes crucial to capture the effective de-
pendence of ū on the applied pressure. In this respect,
notice ICHA and BEM data completely agree with the
Persson predictions at large contact loads. At low con-
tact pressure, Persson’s theory overestimates the mean
separation but this discrepancy can be easily justified
as a consequence of finite-size effects, as explained in
Sec. 2.4.3. In fact, Persson’s model is developed for an
ideal Gaussian distribution of surface heights, where be-
cause of the tails of the Gaussian distribution infinitely
high asperities and infinitely deep valleys affect the con-
tact. As a results, when the rough surface is squeezed
against the elastic half-space, there will be always some
regions where the separation is arbitrarily high. On the
contrary, calculations with the other models are per-
formed on numerically generated surfaces, which are
characterized by finite values of the highest peak and
deepest trough. Real systems are usually characterized
by small surface roughness at large length scales and, as
a result, have large roll-off regions. In such case, finite-
size effects occur only at very low contact pressures (see
Fig. 1).

The dashed lines in Fig. 5 shows the finite-size cor-
rections to the Persson theory as obtained from the
equations presented in Sec. 2.4.3. It is remarkable that
these equations gives a very good agreement with the
exact numerical results, since nowhere in this theory
occurs any information about the height of the highest
asperities.

Finally, notice the original asperity method fails to
correctly describe the dependence of the mean interfa-
cial separation on the applied pressure.

3.2 Local distributions of the contact quantities

Local quantities are calculated on a self-affine rough
surface with hrms = 10 µm, Hurst exponent 0.6, and
number of scales 128. Moreover, a resolution of 2048×
2048 grid points has been adopted for the space repre-
sentation.

The distribution of the interfacial normal stresses
σ is well described by a double Gaussian distribution
as shown by Persson [42] and hence must decrease lin-
early to zero as σ is decreased [21, 23, 43]. This is an
important point because a common problem of many
numerical approaches [44–47] is they are unable to cor-
rectly predict this trend as a result of insufficient mesh
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Fig. 5: The mean interfacial separation ū, normalized
with respect to hrms, as a fnction of the normalized
load σ0/

(
E∗√2m2

)
for N = 128, H = 0.6 (Fig. 4a) and

H = 0.8 (Fig. 4b). Results relative to BEM, ICHA, IHA
and GW models are obtained by averaging on seven dif-
ferent realizations of the surface. Error bars refer to the
minimum and maximun values of the mean separation
predicted by BEM model.

refinement in the contact regions, which prevents van-
ishing of the stress distribution with decreasing σ [48].

The full stress probability distribution is Pf (σ) =

(1−A/A0) δ(σ)+ (A/A0) p(σ), where δ(σ) is the Dirac
delta function, taking account of contribution in the
non-contact area, and p(σ) is the stress probability den-
sity function in the contact area.

Fig. 6 shows the stress distribution function P (σ) =

(A/A0) p(σ) for σ > 0. In the Contact-Mechanics Chal-
lenge [28], the ICHA model showed some discrepancy
with respect to the reference results. Here, instead, we
find the ICHA results are very close to the BEM ones,
as a result of the improved methodology adopted for the

Fig. 6: Probability distribution P
(
σ/
(
E∗√2m2

))
of the dimensionless interfacial normal stresses
σ/
(
E∗√2m2

)
for hrms = 10 µm, H = 0.6, and N =

128.

Fig. 7: Probability distribution function P (u/hrms) of
the dimensionless interfacial gap u/hrms (H = 0.6 and
N = 128). Results are given in a semi-log plot.

contact area calculation (see Sec. 2.3). Notice also pre-
dictions of the improved version of the Persson’s theory
are in very good agreement with the BEM and ICHA
data. Probably a closer agreement would be further ob-
tained by implementing the recent correction proposed
in Ref. [49], where new adjustable coefficients are intro-
duced with the most important aim of modifying “the
way in which the stress distribution broadens with in-
creasing resolution of random roughness features”.

The distribution of the interfacial separations u nor-
malized with respect to hrms is shown in Fig. 7. Persson
predictions are obtained according to the methodology
illustrated in Ref. [20] (solid line), and also with the
correction (19) here proposed (dashed line), which pro-
duces a great improvement in the prediction of P (u)

both at high and low gaps.
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Fig. 8: Power spectral densisty of the deformed half-
space. Results are given in a log-log plot and H = 0.6,
and N = 128. The PSD of the undeformed rough sur-
face is also plotted as reference.

In general, we notice a very good agreement between
the various methods even if some difference can be ob-
served with respect to the BEM calculations.

About the ICHA model, the agreement with fully
numerical calculations is perfect for u > hrms, while
some differences occur at the smallest values of u. How-
ever, considering that the method is very simple and
calculation of the gap in the non-contact regions is per-
formed through the analytical relation (2), results of
ICHA model can be considered sufficiently good.

We note that the BEM result in Fig. 7 is based
on a single realization of the rough surface, and since
the power spectrum has no roll-off, the P (u) function
will exhibit strong finite-size effects. Hence, some of the
differences observed between the Persson theory curve
and the exact numerical results may be due to the finite-
size effect.

Finally, Fig. 8 shows in a log-log diagram a compar-
ison in terms of the PSD of the deformed elastic half-
space. The PSD of the undeformed rough surface is also
plotted as reference. Notice non-vanishing values of the
PSD are also obtained for wavevectors larger than the
short-distance cut-off one (q > qs), i.e. at spatial fre-
quencies where the PSD of the rough surface vanishes.
This demonstrates that deformation occurring at the
various frequencies are not independent because of the
geometric non-linearity of the contact problem.

Furthermore, at high frequencies, the PSD of the
deformed half-space becomes nearly parallel to the PSD
C(q) of the rigid surface. As a result, we deduce that
at the smallest wavelengths the spectral content of the
deformed body is quite similar to the rigid substrate
one, and therefore full contact is expected in this range
of wavelengths.

Since the power spectral density (or equivalently the
autocorrelation function) is fundamental to completely
characterize a statistical phenomenon, the very good
results obtained in such sense with the ICHA model
prove that such approach correctly captures the physics
of the problem.

4 Conclusions

We assess the prediction abilities of a recently devel-
oped interacting and coalescing asperity model of con-
tact of elastic randomly rough surfaces, by carrying out
a critical comparison with accurate numerical calcu-
lations. Also the model prediction are compared with
those of the most advanced version of Persson’s theory,
which shows to correctly describe the contact mechan-
ics of elastic rough surfaces. The ICHA model, start-
ing from the idea of Hertzian-like behavior of each con-
tact spot, takes account of coupling among the elastic
fields generated by asperities in contact, and coales-
cence between contact spots. The latter is fundamental
to strongly increase the accuracy of the asperity model,
as demonstrated by a comparison with results of the
IHA model.

Specifically, the predictions of ICHA model are ex-
tremely accurate in terms of average quantities, e.g.
contact area, separation, load, as well as in terms of
local distributions of stresses and gaps. We stress that
such model runs very fast on a very common PC to
solve complex contact problems.
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