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Abstract: Among the different applications of TiO2, its use for the photocatalytic abatement of
organic pollutants has been demonstrated particularly relevant. However, the wide band gap (3.2 eV),
which requires UV irradiation for activation, and the fast electron-hole recombination rate of this
n-type semiconductor limit its photocatalytic performance. A strategy to overcome these limitations
relies on the realization of a nanocomposite that combines TiO2 nanoparticles with carbon-based
nanomaterials, such as rGO (reduced graphene oxide) and fullerene (C60). On the other hand, the
design and realization of coatings formed of such TiO2-based nanocomposite coatings are essential
to make them suitable for their technological applications, including those in the environmental
field. In this work, aerosol-assisted atmospheric pressure plasma deposition of nanocomposite
coatings containing both TiO2 nanoparticles and carbon-based nanomaterials, as rGO or C60, in a
siloxane matrix is reported. The chemical composition and morphology of the deposited films were
investigated for the different types of prepared nanocomposites by means of FT-IR, FEG-SEM, and
TEM analyses. The photocatalytic activity of the nanocomposite coatings was evaluated through
monitoring the photodegradation of methylene blue (MB) as a model organic pollutant. Results
demonstrate that the nanocomposite coatings embedding rGO or C60 show enhanced photocatalytic
performance with respect to the TiO2 counterpart. In particular, TiO2/C60 nanocomposites allow to
achieve 85% MB degradation upon 180 min of UV irradiation.

Keywords: plasma deposition; nanocomposite coating; TiO2; photocatalysis; aerosol-assisted plasma;
carbon nanomaterials

1. Introduction

The study of nanocomposite materials has received increasing attention in recent
decades because their properties arise from the combination of their components, thus
resulting superior to those of the single constituents. Nanomaterials such as metal nanopar-
ticles, quantum dots, and carbon based nanostructures can be used as fillers in different
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polymeric matrices, thus leading to an enhancement of the mechanical, electrical, thermal,
or chemical properties of the host matrix [1]. In particular, among inorganic nanomaterials,
semiconductor nanoparticles have been extensively investigated, as they exhibit character-
istics remarkably different from the corresponding bulk materials and, depending on the
size, i.e., large surface-area-to-volume ratio, higher reactivity and a characteristic response
to light irradiation that results in the photogeneration of charge carriers. Looking at the
ensemble of these properties, semiconductor nanomaterials based on TiO2 appear definitely
suitable for photocatalysis applications that include the degradation of organic pollutants
in different matrices and result in, for instance, effective water treatment. However, for con-
veniently addressing these kinds of applications, the technological issues of the separation
and subsequent reuse of the nanomaterials needs to be solved, thus highlighting the urge to
immobilize them on a solid support. In this perspective, the preparation of nanocomposites
featuring a polymeric matrix that serves as a host for immobilizing nanoparticles is found
to be highly advantageous. On the other hand, the judicious choice of such host matrix
plays an essential role, as it needs to be resistant to UV irradiation, durable, stable, and
chemically inert, but also able to guarantee an effective interaction between the molecules
of the organic pollutants to be degraded and the photocatalyst surface [2]. Deposition as
thin films of nanocomposites obtained either via bare mixing of the components or via in
situ polymerization, such as in the sol-gel method [3], can be achieved through various
conventional methods [4], including spin coating [5], solution casting, hot pressing, dip
coating, and melt intercalation [6].

Plasma technologies can be very convenient for fabricating functional nanocomposite
coatings [7]. Recently, aerosol-assisted plasma deposition (AAPD) has been demonstrated
achieve the successful deposition at atmospheric pressure of nanocomposite films onto solid
supports. This approach is particularly valuable because it also allows thermo-degradable
or scarcely volatile species to be embedded in a polymeric matrix starting from an aerosol
of their solution or dispersion. Further advantages of AAPD, in comparison to other
more conventional deposition techniques, can be identified in the reduced and controlled
production of chemical waste during the process and in the possibility of easily depositing
films virtually onto any kind of substrate; it is also heat sensitive, irrespective of its geometry
and morphology. Indeed, the deposition of homogeneous films can be achieved in a one-
step procedure, starting from a monomer or its solution, while nanocomposite coatings can
be obtained from a suspension/solution of the nanofiller and the use of an auxiliary feed
of the monomer as a gas or as an aerosol [8]. In particular, deposition onto different solid
supports of nanocomposite coatings containing TiO2 nanoparticles in an organic polymeric
matrix has been recently described for addressing photocatalytic applications [9].

Nowadays, TiO2 is one of the most commonly used semiconductor photocatalysts
because of its strong oxidizing activity, superhydrophilicity, chemical stability, long dura-
bility, low toxicity, cost effectiveness, and transparency to visible light. The band gap is
wide—3.2 eV for anatase, the most photoactive phase, and 3.0 eV for the rutile phase—and
it is even more blue-shifted when nanoparticles are considered. Thus, UV irradiation of this
material leads to the photogeneration of charge carriers (electron and holes), able to migrate
to the photocatalyst surface and take part in redox reactions [10,11]. However, photocat-
alytic activity is limited by charge recombination phenomena that take place competitively
inside the semiconductor material. The charge recombination rate can be reduced through
combining the photocatalyst with noble metals [12,13], though this strategy leads to a
consequent increase of the total cost of the system. A more feasible and convenient alterna-
tive is represented by coupling TiO2 with carbon nanomaterials (CNMs) such as carbon
nanotubes [14,15], fullerenes (C60) [16], graphene [17], reduced graphene oxide (rGO) [18],
carbon dots [19], carbon nanofibers [20], and graphene quantum dots [21]. Indeed, the
combination of TiO2 with carbon-based materials could improve the transportation of
photocarriers in the photocatalysis process via electronic interaction with TiO2, and, in
addition, the delocalized conjugated structure present in these materials can promote an
efficient photo-induced charge separation and limit charge recombination. Furthermore,
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TiO2-carbon based nanomaterial composites have been widely proven to exhibit photocat-
alytic activity under visible light, due to a possible band gap modification or sensitization
effect [22]. However, this aspect will not be investigated herein. This work is focused on
the preparation of TiO2-based nanocomposites coatings loaded, respectively, with rGO and
C60. Indeed, rGO is characterized by a honeycomb structure, similar to that of graphene,
also featuring domains with oxygenated functionalities able to enhance its dispersibility in
polar solvents. Thanks to its high work function (4.42 eV), rGO coupled to TiO2 results in
the transfer of photogenerated electrons from the conduction bands of TiO2 to rGO sheets.
Once there, these electrons can be effectively stabilized by the sp2 carbon network, thus
reducing charge recombination phenomena [23]. Similarly, C60, with its work function
of 4.70 eV [24], acts as an electron trap, increasing the lifespan of electron–hole pairs [25].
Also, the feeding mixture for the AAPD process has been defined so as to generate an
organic–inorganic hybrid matrix, suitable to the photocatalytic fillers and able to more
effectively sustain photochemically induced degradation.

To the best of our knowledge, this is the first time that hybrid TiO2/rGO and TiO2/C60
nanocomposites are deposited via AAPD and their morphological and chemical features are
correlated with their photocatalytic activity. Thus, we investigate their potential as a valu-
able option for water treatment technologies thanks to the great versatility of the deposition
method, which enables the integration of photocatalytic coatings in photoreactors.

2. Results and Discussion
2.1. Nanocomposite Coatings Characterization

Figure 1 reports the top and cross section SEM images of the TiO2 composite samples
containing rGO or C60, namely ncTiO2_rGO and ncTiO2_C60, respectively. Both samples are
characterized by agglomerates incorporated into or protruding from a polymeric matrix.
SEM images of rGO and C60 powders are reported for comparison in the Supplementary
Materials (Figure S1). It can be observed that the density of the nanoparticles in the coating
is higher for ncTiO2_rGO (1A) than for the ncTiO2_C60 nanocomposite (1C). In addition,
in Figure 1A, it is worth noting a ribbon-like structure, possibly ascribable to folded rGO
sheets. Cross section images (Figure 1B,D) highlight the occurrence of aggregates, consisting
of submicrometric cylindrical structures for both types of samples. Such aggregates appear
characterized by a more regular spheroidal shape in the case of ncTiO2_C60. Conversely,
the CNM-free nanocomposite coating, ncTiO2, do not exhibit such features, as it can be
observed in the SEM micrographs reported in Figure S2, in agreement with what was
previously reported [9]. Hence, such submicrometric cylindrical features can likely be
ascribed to the presence of CNM in the coating; however, further investigations would be
needed to account for the different morphology observed upon the addition of rGO or C60
as fillers, respectively.

In accordance with SEM side view images, profilometry analysis results, reported
in Table 1, confirm that the ncTiO2_C60 nanocomposite is thicker than the ncTiO2_rGO
one, and the thickness of the control sample (coating containing TiO2 without CNM) is
intermediate between the two.

FT-IR spectra of ncTiO2_rGO and ncTiO2_C60 samples, along with that of the TiO2-
based reference sample, are shown in Figure 2. The signals of TiO2 and of CNM are
likely hidden under the more intense signals of the matrix, thus preventing the retrieval
of any insight on the fillers in the nanocomposite. On the other hand, the analysis allows
us to elucidate the chemical composition of the matrix. The spectra of ncTiO2-(red line)
and ncTiO2_C60-containing coatings (blue line) are characterized by peaks at 2900 cm−1,
typical of C-H stretching (ν-CH) in sp3 hybridized carbon with corresponding bending
at around 1400 cm−1 (δ-CH). Furthermore, the presence of a sharp signal at 1666 cm−1,
ascribed to C=O stretching (ν-CO), could indicate the formation of coordination complexes
of Ti with carbonyl compounds, as reported in the literature [26]. On the contrary, the IR
spectrum of the ncTiO2_rGO nanocomposite sample (black line) points to the presence of
an inorganic siloxane matrix. Furthermore, the spectra of all the samples are characterized
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by a sharp signal at 1060 cm−1 due to Si-O-Si stretching mode (ν-Si-O-Si) [27], a band
at 800 cm−1 ascribed to Si-O-Si bending vibration (δ-Si-O-Si) likely superimposing the
vibrational modes of TiO2 network [28], and a weak signal at 3459 cm−1 accounting for the
-OH stretching (ν-OH) of polysiloxane spectra profiles.
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Figure 1. SEM images of ncTiO2_rGO and ncTiO2_C60 nanocomposites coatings. (A) Top view
of ncTiO2_rGO at 10 kx and 100 kx (inset) magnification and (B) corresponding cross section at
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Table 1. Thickness of the nanocomposite coatings deposited on Si wafer.

Sample Thickness

ncTiO2 1210 ± 280 nm
ncTiO2_rGO 870 ± 140 nm
ncTiO2_C60 1690 ± 90 nm

The FT-IR results on the organic/inorganic character of the matrix in the nanocom-
posite coatings are confirmed via the EDX analysis, reported in Table 2. Indeed, it is worth
noticing that the lowest C/Si value, accounting for a more inorganic nature of the coating,
is found for ncTiO2_rGO (0.07), increasing in the ncTiO2 control sample (0.85) and going up
to 1.82 for the ncTiO2_C60 nanocomposite. More information on the titanium content in
the nanocomposite is provided via evaluation of the Ti atomic percentage and Ti/Si values.
Higher Ti content is found in the sample ncTiO2_rGO (Ti = 3% and Ti/Si ratio = 0.05), while
it decreases in the bare TiO2 reference sample (Ti = 1.7% and Ti/Si ratio = 0.04) and further
reduces in ncTiO2_C60 nanocomposite (Ti = 0.5% and Ti/Si ratio = 0.02). These results are
also consistent with the features observed in the SEM micrographs of the sample, which
show a higher aggregate density in the ncTiO2_rGO nanocomposite than the ncTiO2_C60
sample.
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Figure 2. FT-IR spectra of ncTiO2 control (red line), ncTiO2_rGO (black line) and ncTiO2_C60 (blue
line) samples.

Table 2. EDX analysis results for ncTiO2, ncTiO2_rGO and ncTiO2_C60 nanocomposites.

Sample %Ti Ti/Si C/Si

ncTiO2 1.7 0.04 0.85
ncTiO2_rGO 3.0 0.05 0.07
ncTiO2_C60 0.5 0.02 1.82

TEM micrographs of the nanocomposite coatings are shown in Figure 3. TiO2 nanopar-
ticles are clearly evident in the images due to their high atomic number contrast and tend
to form aggregates of different sizes and shapes. In particular, Figure 3A reveals how TiO2
agglomerates are uniformly distributed in the polymeric matrix of the ncTiO2_rGO coating.
The rGO sheets are more difficult to identify in the image due to their lighter contrast with
respect the TiO2 particles; therefore, the features ascribed to these structures are pointed out
with arrows in the micrographs. The observations, performed at different magnifications,
indicate a homogeneous distribution of the rGO sheets that are found both in contact with
TiO2 nanoparticles (red arrows) and isolated in the polymeric matrix (green arrows), as
shown in Figure 3C. The distribution of TiO2 nanoparticles within the ncTiO2_C60 coating
is shown in Figure 3B and at higher magnification in Figure 3D. C60 gives rise to large
structures that can be identified in the TEM images more easily than the rGO sheets. As in
the ncTiO2_rGO coating, also in this sample, a uniform distribution of TiO2 and C60 agglom-
erates is clearly evident, although, interestingly, C60 nanomaterial appears, in general, to
share more contact area with the TiO2 nanoparticles. The nature of the TiO2 nanoparticles
and rGO/C60 carbon nanomaterials was further investigated via selected area electron
diffraction (SAED) and high-resolution (HR) TEM analyses (Figure S3). In particular, SAED
measurements indicate an anatase structure for the TiO2 nanoparticles and their good
crystallinity in the nanocomposite (Figure S3A,B), and HRTEM observations demonstrate
the effective presence of rGO sheets (Figure S3C) and C60 structures (Figure S3D) in the
deposited coatings.
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2.2. Photocatalytic Activity Evaluation

The photodegradation curves of MB are reported in Figure 4. The results highlight an
enhancement in photocatalytic activity in the nanocomposite incorporating CNM besides
TiO2 in the siloxane matrix, when compared to the TiO2-only-based counterpart. In the
experiment assisted by the ncTiO2_rGO film (black line), 68% degradation of the model
pollutant is observed after 180 min of irradiation, while in the case of the ncTiO2_C60
nanocomposite, an even better performance is recorded (blue line), reaching an MB degra-
dation value of 85%. The rate of MB photodegradation by the ncTiO2 control sample (red
line) is 47% after 180 min of irradiation, significantly lower than the result recorded for the
CNM-TiO2-based nanocomposites. Direct photolysis (green line) does not exceed 20% of
MB degradation, suggesting its negligible contribution to the degradation process assisted
by the prepared photocatalytic nanocomposites.
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Figure 4. Time course of MB photodegradation reaction assisted by ncTiO2_C60 nanocomposite, nc-
TiO2_rGO nanocomposite in siloxane matrix, and ncTiO2 nanocomposite coatings deposited on glass
and of bare glass (direct photolysis). The reported data are referred to as mean values ± standard
deviation obtained from the analysis of three replicates.

In Table 3, a summary of the highest degradation value obtained after irradiating
the dye solution for 180 min, the kinetic constant (k) of the process, and the related R2

are reported. Remarkably, reactions assisted by TiO2/CNM-based nanocomposites show
a kinetic constant higher than that observed when the reference sample, ncTiO2, is used.
In particular, the kinetic constant is twice as high when rGO is also present in the TiO2
nanocomposite coating, and is nearly three time higher in the C60-based counterpart. In
addition, two further control samples, prepared in the same deposition conditions, but
without TiO2, were also tested to evaluate the intrinsic photocatalytic activity of each CNM
nanocomposite coating. The results reported in Table 3 point out that the nanocompos-
ite sample embedding C60 alone achieved an MB photodegradation rate of 44%, a value
slightly lower that that achieved with the TiO2 control itself. Indeed, the intrinsic photo-
catalytic activity of C60 has already been demonstrated in the literature, though in water
suspension [29,30]. On the other hand, the rGO-based nanocomposite shows no intrinsic
photocatalytic activity. However, the enhancement in the photocatalytic activity of the
ncTiO2_C60 nanocomposite cannot be ascribed just to the presence of a higher amount of
photocatalytic species (TiO2 and C60) in the coating. Indeed, C60 has been reported to be
able not only to promote photocatalysis itself but also to act as an efficient co-catalyst when
combined in nanocomposites with TiO2, thus enhancing the performance of the whole
composite material.
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Table 3. MB degradation percentage (MB deg) at 180 min and kinetic constant (k) of the coatings.

Sample MB Deg (%) k (min−1) R2

ncTiO2 47 ± 2 0.0041 0.99
ncTiO2_rGO 68 ± 3 0.0078 0.99
ncTiO2_C60 85 ± 4 0.0109 0.98

rGO nanocomposite (TiO2-free) 23 ± 1 0.0021 0.99
C60 nanocomposite (TiO2-free) 44 ± 2 0.0060 0.99

Direct photolysis 19 ± 1 0.0029 0.99

C60 strongly absorbs in the visible range and moderately in the UV range (with a
band gap for solid C60 of 1.6–1.9 eV) and, under irradiation, can form two excited states:
a transient singlet (1C60*) and a longer-lasting triplet (3C60*) [21,30]. These excited states
can easily act as electron acceptors (forming the anion C60

−) and scavenge the electrons
photogenerated in TiO2, thus increasing the charge separation, lowering the occurrence of
recombination, and increasing the photocatalytic activity of pristine TiO2 (Figure 5). In fact,
they can also act as electron donors, sensitizing TiO2 injecting electrons in its CB. On the
other hand, the intrinsic photocatalytic activity of C60 can be accounted for by its ability to
photo-generate electrons. Such a two-fold role in transferring electrons is quite peculiar and
explains the strong increase in the activity of the composite nanomaterial [31]. On the other
hand, when RGO is combined with TiO2, it can limit the recombination of photogenerated
charges due to its electron mobility, thus acting as an electron sink (Figure 5).
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Figure 5. Sketches of the oxidation process assisted by TiO2/C60 (A) and TiO2/RGO (B).

The enhancement obtained for the nanocomposite containing C60, which is higher
than that observed for the ncTiO2_rGO, can be also accounted for through considering the
morphology of the nanocomposites and the interactions occurring among the nanofillers
therein. In ncTiO2_C60, the nanofiller aggregates are more exposed, being less immersed in
the matrix, and, thus, they present a larger surface available for interacting with the MB
molecules, which leads to a higher degradation extent.

Moreover, the morphological investigation of the prepared samples highlights that
interactions between TiO2 nanoparticles and C60 in ncTiO2_C60 are larger than that those
observed between TiO2 and RGO, thus suggesting a more efficient electron scavenging
effect [32] which limits charge recombination in the photocatalyst. Such a feature, along
with the more inorganic nature of the host matrix observed in this sample, could account
for the higher photocatalytic activity.

Furthermore, the different electronic properties of the two CNMs may play a role,
since rGO has high electric conductivity [33], while C60 shows high resistivity [34] that
could turn in a different oxidation extent of the matrix during the deposition process.

While these factors may account for the different performance of the rGO- and C60-
based TiO2-containing nanocomposites, their complex interplay and the complexity of the
plasma system, involving the concomitant participation of different compounds in the
deposition process, still deserves a deeper investigation to fully elucidate the structure–



Molecules 2023, 28, 5131 9 of 13

function relationship and, thus, entirely explain the photocatalytic behaviour of the pre-
pared nanocomposites.

3. Materials and Methods
3.1. Suspensions Preparation

TiO2 P25 Aeroxide (Evonik, Essen, Germany) was suspended in a mixture of hex-
amethyldisiloxane (HMDSO, ≥98% Sigma Aldrich, Darmstadt, Germany) and isopropyl
alcohol (IPA, Honeywell, ≥99.8% Charlotte, NC, USA) (10/90 v/v) at a concentration of
10 mg/mL. Reduced graphene oxide (highly porous rGO, Graphene Supermarket, New
York, NY, USA) and fullerene C60 (99.4%, Italy Nanocage S.R.L.) were individually dis-
persed at a concentration of 1 mg/mL in distilled deionized water. The suspensions were
sonicated in an ultrasonic bath (CEIA, mod. CP102) for 1 h.

3.2. Plasma Deposition of Nanocomposite Coatings

An in-house-built dielectric barrier discharge reactor was used in order to perform
AAPD, as in previous works [8,35]. Briefly, the core of the reactor was a plexiglass chamber
hosting two parallel silver-coated alumina electrodes (5 × 8 cm2 wide and 0.63 mm thick),
separated by a 2 mm gap. The reactor chamber was connected to two distinct pneumatic
atomizers (mod. 3076, TSI): the former was fed with the TiO2 suspension in IPA/HMDSO
(90/10 v/v), aerosol 1, supplying a 2.5 slm He flow, while the latter was fed with the
suspension of carbon nanomaterial (containing rGO or C60), aerosol 2, admitted with a
3.5 slm He flow. Also, a nanocomposite coating containing TiO2 only was deposited as a
reference (ncTiO2). The aerosol reached the electrodes area through a slit and was evacuated
by means of an aspirator located on the opposite side. The plasma discharge was ignited
between the two electrodes in continuous mode using a wideband AC power amplifier
(Al-1000-HF-A by AMP-LINE corp., West Nyack, NY, USA) driven by a function generator
(Model TG-1000 by TTi). The amplifier was connected to the high-voltage electrode with an
HV transformer (Model AL-T1000, AMP-LINE corp.). The electrical characteristics of the
plasma were investigated, measuring the voltage and the current delivered to the system
with a high-voltage (P6015A, Tektronix, Beaverton, OR, USA) probe and a resistance-type
current probe, both connected to an oscilloscope (TDS 2014C, Tektronix, Beaverton, OR,
USA). A peak-to-peak voltage of 6 kV and a frequency of 24 kHz were applied to generate
plasma (total power density 1.9 W/cm2), and the deposition time was set at 15 min. Slices
of P-doped Si wafer (1 cm × 1 cm) were used as solid substrates for the nanocomposite
coating characterization, while microscope glass slides (1.5 cm × 1.5 cm) were chosen for
the photocatalysis test. Deposition conditions are summarized in Table 4.

Table 4. Plasma deposition conditions.

Sample Aerosol 1 Aerosol 2

ncTiO2_rGO
TiO2 (10 mg/mL)

IPA/HMDSO (90/10 v/v)
He 2.5 slm

rGO (1 mg/mL)
DDW

He 3.5 slm

ncTiO2_C60

TiO2 (10 mg/mL)
IPA/HMDSO (90/10 v/v)

He 2.5 slm

C60 (1 mg/mL)
DDW

He 3.5 slm

ncTiO2
TiO2 (10 mg/mL)

IPA/HMDSO (90/10 v/v)
DDW

He 3.5 slm

3.3. Nanocomposite Coatings Characterization

The morphology of the coatings was investigated by means of field emission gun—
scanning electron microscopy (FEG-SEM) carried out with a Zeiss Supra 40 SEM equipped
with a Gemini field-effect emission gun. The extraction voltage was set to 3 kV, and the
brightness, contrast, and working distance (varying in the range of 2–4 mm) were optimized
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for each acquisition. Also, images of the bare rGO and C60 powders, gently pressed onto
conductive double-sided adhesive tape, were acquired preliminarily.

Energy-dispersive X-ray spectroscopy analysis (EDX) was carried out to determine the
chemical composition of the coating in terms of Ti atomic percentage (%Ti) and Ti/Si and
C/Si ratios in order to estimate, respectively, the content of Ti, its relative contribution with
respect to the matrix represented by the Si content, and the organic/inorganic character
of the polymeric matrix itself (C/Si). The analysis was carried out by means of an INCA
Oxford microanalysis probe mounted onto the Zeiss Supra 40 SEM.

Further chemical information was retrieved thanks to Fourier-transform infrared
spectroscopy (FT-IR): spectra (32 scans per analysis at a 4 cm−1 resolution) were recorded in
transmission mode with a Vertex 70v Bruker spectrometer. The spectrometer was evacuated
to less than 150 Pa for 5 min before each acquisition. The spectra were normalized to the
maximum intensity of the Si-O-Si stretching band at 1060 cm−1.

The thickness of the coatings was measured by means of a KLA-Tencor (Milpitas, CA,
USA) D-120 profilometer using polished silicon chips as substrates and scratching part of
the coating with a scalpel.

Finally, to confirm the embedding of carbon nanomaterials (rGO and C60 powders)
and TiO2 nanoparticles in the deposited coatings, to investigate their spatial distribution
within the matrix, and to determine possible occurrence of a contact interface between
TiO2 particles and CNM, transmission electron microscopy (TEM) analysis was performed
using a Philips CM200 microscope operating at 200 kV and equipped with a LaB6 filament.
For observations, the coatings were directly deposited on conventional carbon-coated
transmission electron microscopy (TEM) grids (Carbon covered copper grids, 300 µm mesh,
Electron Microscopy Sciences, Hatfield, PA, USA) using the same conditions described
in Table 1, except for the deposition time, which was shortened to 30 s in order to obtain
coatings with a thickness suitable for TEM analysis.

3.4. Photocatalytic Activity Evaluation

The photocatalytic activity of the nanocomposite coatings was evaluated through
monitoring the discoloration of a model pollutant solution by means of a UV-vis spec-
trophotometer (Cary 60 UV-Vis, by Agilent, Santa Clara, CA, USA). Spectra were collected
in slow mode in the 450–800 nm range in polystyrene semi-micro cuvettes: methylene blue
(MB) (Sigma Aldrich, Darmstadt, Germany) was chosen as the target molecule. Samples
prepared on microscope slide glasses were placed in the bottom of a 50 mL beaker. Next,
5 mL of MB 10−5 M solution was poured in the beaker under magnetic stirring and left in
the dark for 15 min as a conditioning step. Absorbance at 665 nm, corresponding to the
characteristic peak of MB, was measured for the prepared solution after the conditioning
step to isolate the contribution of the adsorption of MB on the photocatalyst surface due
to the discoloration process. Then, the system was irradiated from above by means of
two germicidal UV lamps (HNS 15 W G13, OSRAM, λ > 200 nm). Absorbance at 665 nm
was measured at defined intervals of time up to 180 min, and the degradation percentage,
that here is assumed to be correlated to the discoloration [36], was calculated using the
following equation:

%degradation o f MB =

[
100 −

(
Abst ∗ 100

Abst0

)]
where Abst0 is the absorbance measured after the conditioning step and Abst is the ab-
sorbance value at a given time. The absorbance values up to 40 min were used to calculate
the kinetic constant (k) as the slope of the linear fit of the ln(C0/Ct) vs. t graph. The R2 of
the linear fit was also calculated. The same procedure was then repeated in dark conditions,
and for all samples, the %degradation of MB was found to be negligible, thus indicating only
a limited adsorption of MB on the coatings.
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4. Conclusions

Aerosol-assisted atmospheric pressure plasma deposition is confirmed as a valuable
technique for the deposition of nanocomposite coatings. The aerosol-assisted plasma depo-
sition of nanocomposite coating containing two distinct nanofillers has been investigated
here for the first time, to the best of the authors’ knowledge. After depositing hybrid
nanocomposite siloxane-based films containing TiO2 and two different types of nanofillers,
rGO or C60, respectively, their thorough investigation has been performed. Nanocompos-
ites containing TiO2 and rGO are thinner (<1 µm thick) and are characterized by a more
inorganic matrix and a higher percentage of Ti than those loaded with TiO2/C60.

The morphology of the ncTiO2_rGO coatings presents a density of aggregates higher
than that found for ncTiO2_C60. In the case of ncTiO2_C60, the aggregates are more
spheroidal and less immersed in the polymeric matrix. Furthermore, the ncTiO2_C60
nanocomposite presents a higher contact interface between the TiO2 and C60, probably also
due to the geometrical characteristics of the carbon-based filler. As in ncTiO2_rGO, rGO
sheets have been found to interact with TiO2 to a much lower extent, being, instead, found
mostly isolated in the matrix.

Both the ncTiO2_rGO and ncTiO2_C60 nanocomposites have demonstrated enhanced
photocatalytic performance during MB photodegradation with respect to the TiO2-based
coatings. In particular, the ncTiO2_C60 nanocomposites already reach 85% MB degradation
after 180 min of UV irradiation.

The proposed approach appears promising for photocatalytic applications and shows
great potential in water remediation, as being able to plasma-deposit nanocomposite
coatings on any kind of substrates enables their integration in photoreactors and, in turn,
represents a technologically viable solution for water purification.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28135131/s1, Figure S1. SEM images at 10 kX of (A) rGO powder
and (B) C60 powder. Figure S2. SEM images of ncTiO2 nanocomposite in siloxane matrix 10 kX top.
Figure S3. (A) Bright field TEM image of TiO2 nanoparticles in the nanocomposite ncTiO2_rGO;
(B) corresponding selected area electron diffraction (SAED) pattern, all the diffraction spots can
be associated to the TiO2 anatase phase; (C) High Resolution TEM micrograph of rGO sheets in
the nanocomposite ncTiO2_rGO (atomic planes are visible and univocally associated to rGO, inset);
(D) High Resolution TEM micrograph of C60 structure in the nanocomposite ncTiO2_C60 (atomic
planes are visible and univocally associated to C60 structure, inset).
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