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Abstract

This thesis presents a novel general energy approach for adhesive contact mechan-
ics of viscoelastic materials. The proposed formulation relies on the virtual work
formalism: virtual variations of the contact domain must imply the precise bal-
ance between the work of the (external) adhesive forces and the work of internal
stresses. Importantly, the latter cannot be simply derived as the variation of a
potential energy: the intrinsic non-conservative behavior of viscoelastic materials
must be properly considered. For this reason, the mathematical and physical as-
pects of the energy formulation significantly deviate from equivalent elastic cases.
Moving from the assumption of infinitely short range adhesive forces, the proposed
approach, in fact, generalizes the Griffith’s fracture criterion to hysteretic mate-
rials. The closure equation of the steady or unsteady contact problem is derived
by enforcing the energy balance at the boundary of the contact area and exploit-
ing boundary formulations based on the Green’s function approach. This allows
to correctly model the viscoelastic dissipation involving the entire volume of the
material, thus overcoming limitations of many previous studies that approached
viscoelastic adhesive contacts by assuming that viscoelastic losses are localized at
the contact edges and vanish in the bulk of the material. The proposed theory
provides results in solid agreement with experimental evidence and insights into
the underlying physical mechanisms responsible for the experimentally observed
phenomena.
The first part of the thesis focuses on steady-state sliding contacts between rough
surfaces. Depending on the sliding velocity, the effective adhesive strength of the
system in terms of pull-off force, toughness, and contact area size is found highly
enhanced compared to corresponding purely elastic cases, in agreement with exper-
imental evidence. This is ascribable to viscoelastic losses localized at the contact
trailing edge, where the energy release rate is increased. This phenomenon also
highly affects the frictional response: the velocity-dependent friction coefficient is
found significantly increased compared to corresponding adhesiveless conditions.
At low velocity values, this behavior depends on local small-scale viscoelastic losses.
At intermediate velocity, it reflects a complex interplay between bulk viscoelastic-
ity, small-scale viscoelasticity, and adhesion. Importantly, summing up indepen-
dent estimations of small-scale and large-scale viscoelastic losses does not provide
a correct estimation of the friction coefficient. This is a key result, confirmed by
existing experimental studies.
The proposed energy formulation is then extended to general unsteady conditions
and applied to analyze the dynamic approach-retraction motion of a rigid sphere



in adhesive contact with a viscoelastic half-space. In this case, besides correctly
predicting the effects of local viscoelastic losses, the proposed theory identifies a
different fundamental mechanism, also experimentally observed, responsible for
adhesion enhancement. Specifically, when the retraction of the indenter begins
from a fully relaxed state, the enhancement of the pull-off force depends on a sort
of ”frozen” state, triggered by the material’s glassy response, during which the
contact area is almost constant. The different physical mechanisms responsible for
the increase of adhesion strength in unsteady conditions are investigated in detail
for different loading time-histories and by exploiting a novel approach to correctly
calculate the energy release rate for viscoelastic materials under general unsteady
conditions. Results clearly indicate that neglecting the viscoelastic response of the
bulk material while modeling adhesive contacts might lead to significative errors.
In the last part of the thesis, the proposed theory is applied to investigate crack
propagation and healing in viscoelastic solids. When steady-state conditions are
assumed, the approach provides results in perfect agreement with previous studies.
If this assumption is relaxed, the theory is able to correctly tackle complex un-
steady phenomena, as the so called delayed-fracture: under a given applied load,
the fracture of a viscoelastic solid may occur after a certain delay-time, whose
order of magnitude corresponds to that of the material’s relaxation time.
Overall, the proposed energy formulation might be of interest in several engineering
application, in which the effects of the interplay between viscoelasticity and adhe-
sion on the contact behavior must be properly controlled and designed, such as,
for instance, structural adhesives, pressure-sensitive adhesives, protective coatings,
bio-inspired adhesives, orthopedic applications, micro-electro-mechanical systems,
micro-manipulations and micro-assembly.
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Introduction

0.1 Research context and background

Understanding the effect of adhesion in contact mechanics of rubbery-like mate-
rials is a long standing problem. Scientific interest in the field is driven by the
relevance of the topic in several physical phenomena and engineering applications,
e.g., in structural adhesives used in aerospace [1] and automotive industries [22],
medical applications [2–5], pressure sensitive adhesives [6, 7], biological and bio-
inspired systems [8–13], touchscreens [14]. Controlling and tuning adhesion is a
fundamental engineering task. Often, the adhesive effect is desirable, e.g. it might
enhance the sliding friction in the tire–road contact thus improving the braking
and the handling performances [15]. In other cases, it might be detrimental or
require precise control, as in micro- and nano- scales electro-mechanical [16–20]
or photonic [21] systems. Indeed, as the size of these systems continues to de-
crease, their mechanical behavior is increasingly governed by adhesive forces due
to high surface-to-volume ratios. Therefore, avoiding permanent adhesion between
moving components is a crucial issue [22] and pick and place procedures must be
designed ad hoc to achieve the adhesion control required for grabbing and releasing
objects [18, 23, 24].
Over the last decades, countless theoretical, numerical and experimental stud-
ies have been devoted to investigating the effect of adhesion on the macroscopic
contact quantities. Overall, the adhesive contact behavior of rubbery like mate-
rials undergoing relative motion is highly affected by their intrinsic viscoelastic
response. E.g., in sliding contacts between rough surfaces the hysteretic losses
occurring during cyclic deformations eventually result into a lateral force opposing
the relative motion, commonly referred to as viscoelastic friction [25, 26]. Impor-
tantly, experimental evidences indicate that the overall frictional response depends
on a complex interplay between adhesion and viscoealsticity [27]. This eventually
results into a significative increase of the friction coefficient compared to adhesive-
less conditions, which has never been fully understood. Similar phenomena are
observed in rolling contacts. In this case, besides affecting the torque required
to sustain the rolling motion [28–31], viscoelasticity might cause a significative
increase of the effective adhesive strength under tensile loads, compared to static
conditions, which is found to depend on the rolling speed [32]. The viscoelastic-
induced adhesion enhancement has been widely experimentally observed and in-
vestigated in the presence of purely normal motion. Indentation-retraction tests
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performed with adhesive rubber substrates, the so called JKR-dynamics tests, are
often devoted to investigating how the pull-off force enhancement depends on the
retraction speed [33–36]. Importantly, the enforced loading time-history plays a
major role in determining the overall adhesive behavior.
However, a comprehensive theory of viscoelastic adhesion is currently lacking, and
many of the observed phenomena are not fully understood yet.
The pioneering theoretical study on adhesion between elastic solids dates back
to 1971, when Johnson, Kendall, and Roberts (JKR) presented their seminal pa-
per [38] on adhesive elastic spheres. Exploiting the Griffith’s energy balance under
the assumption of infinitely short-range adhesive forces, the JKR model provided
results in perfect agreement with experiments and is nowadays still considered a
cornerstone in the field. Indeed, the same energy balance approach has since been
shown to be highly versatile and effective, and has been applied in a wide class of
smooth [37,39] and rough [40–42] elastic contacts. Many of these studies included
variables that were not addressed in the original JKR model, such as the effect of
tangential stresses in sliding contacts [43,44], thickness of layered coatings [45,46],
and different geometries and boundary conditions [47–50]. In 1977 Tabor [51] sug-
gested that the assumption of infinitely short range adhesive forces is correct for
soft materials in the presence of high surface energy, as indeed confirmed by many
subsequent studies [52–54]. Among the several different approaches that have been
proposed over the decades to include adhesive interactions in contact mechanics,
many of them based on local force equilibrium [52–54], the energy balance approach
has fundamental advantages. Indeed, it can correctly model adhesive contacts only
requiring a few quantities as inputs: the Young modulus and Poisson ratio of the
isotropic elastic material, and the adhesion energy per unit area ∆µ. The lat-
ter, in particular, has a very simple definition in terms of macroscopic quantities
and can be easily measured through reliable experimental procedures, regardless
of the detailed interfacial gap dependence of the molecular interactions. Hence,
once the experimental data are acquired using, for instance, micro-scale optical
microscopy [55], scratch tests [56], peeling processes [57], or macro-scale spherical
indentation-retraction tests [58,59], ∆µ can be easily derived by fitting them with
the corresponding elastic contact model.
Nevertheless, the JKR contact theory falls short in tackling adhesive contact prob-
lems when quasi-static conditions are not ensured, as clearly indicated by exper-
imental evidences. Indeed, the non-conservative nature of viscoelastic materials
makes the Griffith energetic balance no longer valid. As a consequence, the most
common approach adopted to model adhesive contacts is to assume that viscoelas-
tic losses occur very locally at the boundary of the contact area, while in the bulk
the material response is governed by the soft elastic modulus. This assumption,
known as ”small-scale viscoelasticity” hypothesis, is often exploited both in slid-
ing [37], rolling [60–62] and JKR-like dynamic [33, 63–67] contacts. Within this
framework, the proper elastic contact model is exploited to relate the contact quan-
tities, with the adhesion energy ∆µ replaced by a velocity-dependent term [68–72]
accounting for local viscoelastic losses. However, neglecting viscoelasticity within
the bulk of the material might lead to significative errors, unless the characteristic
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size a of the system is a k V Ä , where V is a characteristic velocity and Ä the
relaxation time of the material. Indeed, in order to overcome this limitation, most
of the existing studies on adhesive viscoelastic contacts exploit local force equilib-
rium where the contacting surface are discretized in particles or elements which
interact with the corresponding particles/elements of the counter surface through
local forces, derived by gap-dependent potentials, e.g. m−n potentials [73], as the
Lennard-Jones (LJ) law [65,66,74–77,135], exponentially short-range laws [78,79],
and cohesive-zone models specifically designed for contact [80–83] and fracture
mechanics [68, 84] problems. However, as clearly observed by Persson [85] and
Greenwood [86], the contact behavior is weakly affected by the specific law im-
plemented to describe the interfacial adhesive interaction, provided that the range
of microscopic gap dependent law is much shorter than any other length scale in-
volved in the problem. This suggests that most of the phenomena in viscoelastic
contacts can be captured by general energy equilibrium.

0.2 The outline of the thesis

Aiming a filling this gap in the literature, this thesis presents a novel general energy
formulation to study steady and unsteady adhesive contact and fracture mechanics
of viscoelastic materials. The proposed approach, moving from the assumption of
infinitely short-range adhesive forces, generalizes the Griffith’s fracture criterion to
viscoelastic materials. The closure equation of the visoelastic-adhesive problem is
formulated by exploiting the virtual work formalism, both for steady and unsteady
conditions. This requires that the variation of adhesive energy caused by a virtual
variation of contact area is precisely balanced by the work of internal stresses.
The non-conservative nature of viscoelastic materials is properly considered. The
thesis is outlined as follows. Chapter 1 presents an overview of the energy ap-
proach in fracture mechanics and adhesive contact mechanics of elastic materials,
with specific focus on the Griffith’s fracture criterion and the JKR theory. In the
same chapter, pivotal arguments needed to extend the energy formulation to non-
conservative systems are introduced. Chapter 2 consists of a general overview of
the linear viscoelastic rheological behavior, with specific focus on the viscoelastic
Green’s functions for steady and unsteady conditions. These concepts and math-
ematical frameworks are widely invoked and applied in the subsequent chapters.
Chapter 3 focuses on steady-state sliding adhesive contacts between rough sur-
faces: the frictional and adhesive behavior is investigated over a wide range of
sliding velocity, spanning the entire viscoelastic spectrum of the material. Impor-
tantly, the proposed theory confirms aforementioned experimental evidences, as
the adhesion-induced enhancement of the viscoelastic friction coefficient, and the
viscoelastic-induced increase of adhesive strength, confirming that the interplay
between adhesion and viscelasticity plays a major role in determining the overall
contact behavior. In Chapter 4 the theoretical formulation presented in Chapter
3 is generalized to unsteady conditions, with specific focus on dynamic JKR-like
contacts. The enhancement of the effective adhesion is investigated for different
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time-histories loading, and results are in solid agreement with several experimental
evidences. Notably, the theory provides deep insights on the physical mechanisms
responsible for the overall contact behavior. In Chapter 5 the same approach is
applied to steady-state and unsteady crack propagation in viscoelastic solids. In
the steady-state case, the theory is compared with previous studies. The unsteady
case study focuses specifically on the so-called delayed fracture of viscoelastic ma-
terials.



Chapter 1

Energy approach in fracture and

contact mechanics

This chapter introduces the theoretical background of this thesis. In Secs. (1.1,
1.2) the main aspects of the Griffith’s fracture criterion are discussed. Based on
the energy formulation, the Griffith’s criterion establishes a versatile and effective
mathematical framework in the field of fracture and contact mechanics of elastic
solids. In Sec. 1.3, the JKR theory of adhesive elastic contacts is reviewed: the
mathematical formulation of the model is presented, alongside a brief discussion
on the so called DMT-JKR transition that defines the physical framework in which
the assumption of infinitely short range adhesive forces is valid. Sec. 1.4 clarifies
that the Griffith’s energy balance is, in fact, a specific case of the general principle
of virtual work applied to fracture mechanics of conservative materials. Indeed,
the equilibrium condition of minimum energy can be alternatively derived by bal-
ancing the work at the crack tip between internal stresses and adhesive forces.
This means that, for elastic materials, the work of internal stresses corresponds
to the change in elastic energy. On the other hand, for non-conservative mate-
rials, as for viscoelastic materials, the work of internal stresses can be split into
a conservative (i.e., path independent) term plus a non-conservative (i.e., path-
dependent) contribution. The latter is directly related to the asymmetric part of
the response matrix or, similarly, in continuum mechanics, to the asymmetric part
of the response function of the system. These concepts lay the mathematical and
theoretical foundation for the theory object of this dissertation: the closure equa-
tion for the viscoelastic contact or crack problem can be rigorously formulated
by exploiting the work balance at the contact edges (see Chapter 3 for steady
state conditions and Chapter 4 for unsteady contacts) or, similarly, at the tip
of a crack (see Chapter 5) in virtue of the virtual work principle. Importantly,
the non-conservative nature of the problem makes the physical and mathemati-
cal aspects of the equilibrium formulation significantly different compared to the
corresponding elastic contact or crack cases.
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6 Energy approach in fracture and contact mechanics

1.1 The Griffith’s fracture criterion

The empirical evidence that the rupture of solids occurs under applied stresses
significantly lower than the theoretical one required to break atomic bonds has
prompted scientific and engineering interest in crack propagation. Indeed, fracture
typically initiates from pre-existing cracks or nucleation of flaws, which cause a
significant amplification of local stress [87], leading to a continuous unzipping of
molecular bonds at the crack’s tip. Similar phenomena occur when two bodies in
contact are pulled apart or pressed together. In this case, molecular interactions
at the contact interface (e.g., Van der Waals forces) are involved in the continuous
breaking or creation of adhesive bonds as the contact area’s boundary recedes or
advances. The concept of surface energy was introduced in fracture mechanics
by Griffith [88] in 1921. In his seminal paper, Griffith observed that the crack
propagation can occur as long as the energy required to break molecular bonds
can be supplied, namely, when:

G g ∆µ (1.1)

where ∆µ is the surface energy per unit area and

G = −dΠ

da
(1.2)

is the energy release rate, quantifying the change of the system’s mechanical po-
tential energy Π per unit variation of the crack area a. In particular, Π depends on
two energy contributions: the elastic energy stored within the solid resulting from
the internal strain field, and the potential energy of external forces. Notably, the
same energy balance extends to contact mechanics, in which variations of contact
area locally resemble the propagation of a crack in the normal direction to the con-
tact boundary. Referring to the simple general schematic representation shown in

a

Figure 1.1: A simple schematic of the general crack or adhesive contact problem

Fig.1.1, the Griffith’s energy balance criterion can be exploited by relating the total
energy of the system, in particular its elastic energy, to its macroscopic mechani-
cal parameters, i.e., the remotely applied force F , the remote displacement ¶ and
the contact area A (or, analogously, the undamaged area of the cracked specimen).
However, according to the Gibbs phase rule, only two of the three quantities are in-
dependent, i.e., one can find a state equation in the form f(F, ¶, A) = 0. Therefore
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the elastic energy stored in the system can be differentiated as:

dUel =
∂Uel

∂A

∣∣∣∣
δ

dA+
∂Uel

∂¶

∣∣∣∣
A

d¶ (1.3)

Then, in writing the energy equilibrium, the controlled parameter must be speci-

fied. Assuming that imposed displacement is held constant, the work of the applied
force Fd¶ vanishes, and the only energy contribution driving the creation of free
surfaces is the elastic energy stored in the body. In this case, the variation of the
system’s total internal energy U = Π−∆µA resulting from virtual variations dA
of the contact area is :

dU =
∂Uel

∂A

∣∣∣∣
δ

dA−∆µdA = (G−∆µ) dA (1.4)

where the energy release rate G = G(A, ¶). On the other hand, when the applied
force is held constant, since ¶ changes, the associated potential energy −F¶ is
involved in the energy balance. In this case, according to Eq. (1.3), the variation
of the total energy is

dU = d(Uel − F¶ −∆µA) = (1.5)

=
∂Uel

∂A

∣∣∣∣
δ

dA+
∂Uel

∂¶

∣∣∣∣
A

∂¶

∂A

∣∣∣∣
F

dA+ (1.6)

− F
∂¶

∂A

∣∣∣∣
F

dA−∆µdA (1.7)

However, observing that ∂Uel/∂¶|A = F , we recover again Eq. (1.4). Thus both
for fixed displacement and force, the equilibrium condition is:

G =
∂Uel

∂A

∣∣∣∣
δ

= ∆µ (1.8)

Supposing that the initial contact area A and the imposed displacement or force
are such that G > ∆µ, the crack propagates, and the quantity G − ∆µ is the
generalized force driving the crack’s acceleration. On the contrary, if G < ∆µ the
adhesive interactions overcome the elastic response of the material and the contact
area increases. Thus, the contact area changes over non-equilibrium states as long
as the total energy U(A) decreases, i.e., until a minimum point of U(A) is reached.
Hence, the energy release rate is a fundamental quantity in fracture and contact
mechanics. For elastic materials, in order to solve the crack or contact problem one
must derive the dependence of the energy release rate from macroscopic quantities
(e.g., the remotely applied displacement and the crack’s length or the dimensions
of a notch). This has been done for different geometries by directly calculating the
strain elastic energy stored in the material volume (see [89–91] and Sec. 1.4), i.e.,

Uel =
1

2

∫
ÃijϵijdV (1.9)
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where Ãij and ϵij are the internal stress and strain tensors and we used the Einstein
notation of repeated index. However, in 1957, Irwin [91] demonstrated that the
general expression of the energy release rate for mode-I cracks is

G =
K2

I

2E∗
(1.10)

(see Sec. (1.4) for a demonstration). In Eq. (1.10), KI is the stress intensity factor
of the square-root stress singularity at the crack tip [91], E∗ = E/(1−¿2) in plane
strain and E∗ = E in plane stress, being E the elastic material’s Young modulus.
Therefore, the crack problem can be solved by relating the stress intensity factor
to the remotely applied loading condition depending on the specific problem’s
geometry [89–91].

1.2 Thermodynamical point of view

As shown in the previous section, a different potential is stationary at the equi-
librium depending on the specific physical ensemble of the problem. The proper
thermodynamic potential can be identified by exploiting the Legendre transform
formalism [90, 93]. Let us consider the so called fundamental equation of a ther-
modynamical system:

U = U(X1, X2, ...XN) (1.11)

where X1, ..., XN are the extensive parameters and U is the internal energy. The
partial derivatives of the internal energy Yi = ∂U/∂Xi are the intensive parameters.
E.g., the temperature T is the partial derivative with respect to the entropy and
the pressure is the partial derivative with respect to the volume.
A Legendre transform Φ of U is defined on a subset of n < N variables as

Φ = U −
n∑

i=1

YiXi (1.12)

Now, according to Eq. (1.11), we can write

dU = Y1dX1 + Y2dX2 + ...+ YNdXN (1.13)

Therefore, using Eqs. (1.11, 1.13) we get

dΦ = −X1dY1 − ...−XndYn + Yn+1dXn+1 + ...+ YNdX (1.14)

Hence, the potential Φ can be written as

Φ = Φ(Y1, ...Yn, Xn+1, ...XN) (1.15)

Assuming that our thermodynamic system is a body containing a pre-existing
crack, or similarly two bodies in adhesive contact, as in Fig.1, the fundamental
equation is:

U = U (S, ¶, A) (1.16)
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where S is the entropy. The differential form of Eq. (1.16) introduces the intensive
thermodynamical parameters:

dU = TdS + (G−∆µ) dA+ Fd¶ (1.17)

The meaning of Eq. (1.17) is that the variation of internal energy between two
states equates the work ¶L = (G−∆µ) dA+Fd¶ plus the heat ¶Q = TdS that are
supplied in reversible transformations. Of course the entropy cannot be controlled
in practical terms, and lab tests are usually carried out by keeping the force or the
displacement constant, and temperature variations are often negligible. Therefore,
it is convenient to move from the internal energy to the Helmholtz free energy or
to the Gibbs free energy by taking the Legendre transforms of U . The Helmholtz
free energy is the Legendre transform of the internal energy on the entropy, which
is replaced by the temperature T = ∂U/∂S:

F = U − TS = F(T, ¶, A) (1.18)

Instead, the Gibbs free energy G is the Legendre transform of the internal energy
on the entropy and the displacement, which are replaced by the temperature and
the force F = ∂U/∂¶:

G = U − TS − F¶ = G(T, F,A) (1.19)

These definitions imply that F and G are stationary at equilibrium under fixed
displacement and fixed force, respectively, and constant temperature. Indeed,
using Eqs. (1.17, 1.18, 1.19) and recalling dT = 0 we get:

dF = dU − TdS = (G−∆µ) dA (1.20)

for constant T and constant ¶ and

dG = dU − TdS − Fd¶ = (G−∆µ) dA (1.21)

for constant T and constant F . Moreover, the Second Law of Thermodynam-
ics entails that the equilibrium point is a minimum of the total energy. Indeed,
under fixed grips, when the contact area changes spontaneously (i.e., through
non-equilibrium configurations), the variation of internal energy in the irreversible
process is dU = ¶Q f TdS where ¶Q is the heat supplied to the system to ensure
that the temperature is held constant. Substituting into Eq. (1.20) leads to

dF f 0 (1.22)

Similarly, when the force is held constant it provides the amount of work Fd¶,
thus we get dU = ¶Q+ Fd¶, where ¶Q f TdS. Thus, using Eq. (1.21) yields

dG f 0 (1.23)
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Eqs. (1.22, 1.23) show that the contact area can change spontaneously as long as
the potential energy decreases, until its minimum is reached. This represents a
stability criterion of the equilibrium point that reads as

∂G

∂A

∣∣∣∣
δ

=
∂2F
∂A2

∣∣∣∣
δ,T

> 0 (1.24)

∂G

∂A

∣∣∣∣
F

=
∂2G
∂A2

∣∣∣∣
F,T

> 0 (1.25)

1.3 The JKR theory of adhesive contacts of elas-

tic solids

The first attempt to generalize the Griffith fracture criterion to the adhesive con-
tact mechanics of elastic solids was made by Johnson, Kendall, and Roberts (JKR).
Their seminal paper [38], published in 1971, is a milestone in the field. In this sec-
tion, we briefly review the general formulation of the JKR adhesive contact model.
We consider a rigid sphere of radius R in adhesive contact with a linear elastic

δ
u(x)

F

a

(a)

(b)

(c) (d)

A

B

Figure 1.2: The JKR theory’s results [38]. (a) the schematic of the contact prob-
lem between a rigid sphere and an elastic half-space. (b) The dimensionless con-
tact penetration vs. the dimensionless contact radius. (c) The dimensionless applied
force vs. the dimensionless contact radius. (d) The dimensionless force vs. the di-
mensionless contact penetration. Results are shown for dimensionless adhesion energy(
1− ν2

)
∆γ/ (πE0R) = 0.00016.

half-space, as shown in Fig. 1.2 (a). The JKR model relies on the assumption
of infinitely short range adhesive forces: the (local) normal tractive stress among
two interacting surface can be sustained as long as their normal separation ap-
proaches zero. Within this framework, the contact area can be precisely identified
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as the region in which a pressure distribution is developed and the gap between
the bodies in contact is assumed exactly equal to zero within the whole contact
region. In order to calculate the elastic energy stored in the system, the pressure
distribution within the contact area must be calculated as function of the contact
radius a and of the contact penetration ¶, and the value of a that satisfies the
global energy equilibrium has to be determined as a part of the solution. With
this regard, we observe that in the problem at hand, invoking linearity and transla-
tional invariance, the normal interfacial displacement field and the normal pressure
distribution are related each other as:

u(x) =

∫
d2x1G(x− x1)p(x1) (1.26)

Where x is the in-plane vector position and G(x) is the Green’s function:

G(x) = 1− ¿2

ÃE

1

|x|
where E and ¿ are the Young modulus and the Poisson ratio of the isotropic elastic
material. G(x) represents the surface displacement resulting from a Dirac Delta
pressure distribution, and was determined by Boussinesq in 1885 [94]. We notice
that, for a given value of the indentation of the sphere ¶ and a given contact radius
a, the displacement field is known within the contact area, where it must precisely
match the indenter’s shape, i.e., u(x) = ¶ − |x|2 /(2R), where x is the in-plane
vector position and the assumption that a j R has been made. Then, since p(x)
vanishes outside the contact domain Ω, writing Eq. (1.26) for x ∈ Ω allows to
solve it for the pressure distribution p(x). The general solution is:

p(x) = p0 (1− |x| /a)−1/2 + p1(1− |x| /a)1/2 (1.27)

where

p0 =
1

Ã

E

1− ¿2

(
¶

a
− a

R

)
(1.28)

p1 =
1

Ã

E

1− ¿2

2a

R
(1.29)

The term p1 is associated with a component of the pressure field that vanishes
at the boundary of the contact area whereas the term p0 reflects the presence of
the standard square-root singularity at the contact boundary, where the internal
stresses and deformations resemble those recovered at the tip of a crack. Moreover,
positive values of p0 would entail the interpenetration between solids and must be
discarded. In absence of adhesive forces only repulsive stresses are allowed, hence
p0 must vanish. Eqs. (1.27, 1.28) show that, in this case, the contact radius must
take the value

√
¶R, i.e., the solution obtained by Hertz in 1882 for adhesiveless

elastic contacts [95]. In the presence of adhesion, the energy equilibrium must
be enforced to determine the equilibrium value of the contact radius. With this
regard, the elastic energy

Uel =
1

2

∫
d2xp(x)u(x) (1.30)
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depends the contact quantities as:

Uel(¶, a) =
E

1− ¿2
¶2
(
a− 2

3

a3

¶R
+

1

5

a5

R2¶2

)
(1.31)

Eq. (1.31) is obtained by substituting Eq. (1.27) into Eq. (1.30). Hence, the
total energy U(¶, a) = Uel(¶, a) + Ua(a) of the system is the elastic energy plus
the adhesion energy Ua(a) = −∆µÃa2. The equilibrium value of a is then deter-
mined by enforcing that U is stationary under fixed grips, i.e., by enforcing that
∂U/∂a|δ = 0. This allows to derive the relation between the contact radius and
the penetration:

¶

R
=
( a
R

)2
−
( a
R

)1/2
√

2Ã(1− ¿2)∆µ

ER

and, in turn, between the total compressive force F =
∫
d2xp(x) and the contact

radius:
1− ¿2

ER2
F =

4

3

( a
R

)3
− 2

( a
R

)3/2
√

2Ã(1− ¿2)∆µ

ER

These relations are plotted in Fig. 1.2 (b) and (c) in terms of dimensionless
parameters. Fig. (d) shows the equilibrium curve of the dimensionless force vs.
the normalized displacement. In the figure, points A and B identify the pull-
off points for force-controlled and displacement-controlled conditions, respectively.
Importantly, the maximum tensile force (i.e., the pull-off force)

FJKR = 1.5ÃR∆µ (1.32)

is independent on the Young modulus.

1.3.1 The DMT-JKR transition

Over the last decades, several approaches have been proposed to include the in-
terfacial adhesion in contact mechanics of elastic solids. A common approach
is to exploit the detailed description of the adhesive interaction among the gap
between interacting surfaces and enforce the local force equilibrium. The gap-
dependent stress is usually derived from m − n potentials, as the Lennard-Jones
one [65, 66, 74–77,135], which leads to the following stress vs. gap expression:

Ã(g) =
8∆µ

3ε

[(
ε

g

)3

−
(
ε

g

)9
]

including a repulsive branch for g < ε and an adhesive (tensile) branch for g > ε,
where ε is the inter-molecular equilibrium distance and g the normal gap. Bradley
(1932) [96] and Derjaguin (1934) [97] computed the total force between a sphere
and an half-space by neglecting deformations of the bodies and exploiting L-J like
surface potentials, and obtained a pull-off force equal to 2ÃR∆µ. This value is in
apparent contradiction with the JKR theory [see Eq. (1.32)]. Indeed, since in the
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JKR model the pull-off force is independent on the Young modulus, one would
expect the same result to apply also for rigid bodies. Later, Derjaguin, Muller and
Toporov (DMT) proposed different approaches to take elastic deformations into
account, see [98] (1975) and [99] (1983). The DMT model assumes that in the
presence of adhesion the shape of deformed profiles is exactly the same predicted
by the Hertz theory and that adhesive forces act outside of the hertzian contact
area according to the gap-stress adhesive law. Under these assumptions, the pull-
off force is again equal to 2ÃR∆µ and again differs from the JKR prediction. This
contradiction was finally explained by Tabor [51] in 1976, who recognized that the
JKR and the DMT theories represent two limit physical conditions corresponding
to limits of a dimensionless parameter, usually referred to as Tabor parameter:

µ =

(
∆µ2R

E2ε3

)1/3

The JKR theory is valid for µ k 1. Under these conditions, the effect of short-
range adhesive stresses acting outside the contact area is not significant on the
overall contact behavior and the assumption of infinitely short range adhesive
forces is reasonable. On the other hand, the DMT theory applies when the effect of
deformations induced by long-range adhesive interactions outside the contact area
is negligible, i.e., when µ j 1. Overall, the adhesive contact behavior undergoes a
gradual transition among the two limit theories when µ spans its entire spectrum.
Tabor’s predictions were widely confirmed by subsequent studies and accurate
numerical simulations based on local force equilibrium [52–54]. Greenwood [54]
suggested that the JKR theory becomes exact for µ k 3. Hence, the JKR approach
can be correctly applied to model the adhesive contact behavior of a wide class of
soft materials. In this thesis we focus on soft rubbery-like materials for which the
assumption of infinitely short range adhesive force is reasonable.

1.4 Work and energy in non-conservative sys-

tems

The Griffith’s fracture criterion and the JKR model are limited to purely elastic
materials. On the other hand, in non-conservative systems, e.g., for solids ex-
hibiting a viscoelastic response, the work of internal stresses cannot be expressed
as the variation of potential energy. Therefore, the general theoretical framework
that allows to include non-conservative responses is the virtual work principle.
In order to define the theoretical framework of this thesis, in the first part of
this section we briefly review the virtual work principle according to the classical
D’Alembert’s formulation, highlighting concept that are pivotal in the energy for-
mulations presented in Chapters (3, 4, 5) for viscoelastic adhesive contacts and
crack propagation. In the second part, we elucidate how the non-conservative
nature of a mechanical system depends on the asymmetric nature of its response
function and how the work of internal stresses can be split in conservative and
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non-conservative contributions. These concept will be widely referenced in all of
the subsequent chapters.

1.4.1 Principle of Virtual Work

The D’Alembert’s Principle of Virtual Work [100, 101] states that the total work
of active forces plus inertial forces over virtual displacements is zero. The active
forces include all the internal and external forces, except for the reaction forces
associated with constraints that are postulated to not perform work under any
virtual displacement. By writing the principle of virtual work for a system com-
posed of N particles, the Euler-Lagrange equations of motion are immediately
derived. In general, the position vectors of the particles Pi = Pi(q1, q2, ..., qm, t)
explicitly depend on the Lagrangian coordinates q1, q2, ..., qm and on time, and a
virtual displacement ¶Pi is defined as:

¶Pi =
m∑

k=1

∂Pi

∂qk
¶qk (1.33)

where ¶qk are arbitrary virtual variations of the Lagrangian parameters. Eq. (1.33)
shows that a virtual displacement is a displacement admitted by constraints at
”frozen” time. This differs from the actual displacement, which instead is associ-
ated with the point velocity

Ṗi =
m∑

k=1

∂Pi

∂qk
q̇k +

∂Pi

∂t
(1.34)

t=t0

t=t0+dt

∂P
∂t
dt

P

i

i

Pd i

∂q
qδPδ i=

∂

Figure 1.3: A point constrained on a moving line: the virtual displacement (blue) and
the actual displacement (black).



Chapter 1 15

Note that the component ∂Pi/∂tmight depend, for instance, on the presence of
a time-dependent moving constraint, as shown in Fig. 1.3 , and is not included in
the virtual displacement ¶Pi. This concept will be recalled in Chapter 4 during the
derivation of the energy formulation of unsteady viscoelastic contacts. Then, the
total work of active forces Fi plus inertial forces −miai (being ai the acceleration
and mi the mass of the particles) reads as:

N∑

i=1

(Fi −miai) · ¶Pi =
m∑

k=1

(Qk − Äk) ¶qk = 0 (1.35)

where Qk =
∑N

i=1 Fi · ∂Pi/∂qk and Äk =
∑N

i=1 (miai) · ∂Pi/∂qk are usually called
generalized forces. Since Eq. (1.35) must hold for any virtual displacement ¶qk,
we obtain:

Qk − Äk = 0, k = 1, ...,m (1.36)

i.e, the m equations of motions, valid both for conservative and non-conservative
systems. In the presence of only conservative forces, the generalized force can
be written as Qk = −∂U/∂qk, where U(q1, q1, ..., qk) is the total potential energy.
The same arguments are immediately extendable to continuum mechanics. Let
us consider a deformable solid subjected to generic time dependent internal stress
tensor Ãij(x, t), surface stress vector Ã(x, t) and volume forces f(x, t). Let u∗(x)
and ε∗ij(x) be an admitted virtual displacement vectorial field and its associated
compatible virtual deformation field. This means that they are related each other
through the compatibility equations:

ε∗ij(x) =
1

2

(
∂u∗

i

∂xj

+
∂u∗

j

∂xi

)
(1.37)

Notably, a virtual displacement field is a regular field admitted by constraints
and is not (at least, not necessarily) related to the stress field by a constitutive
equation. Moreover, the stress state is equilibrated. Then, generalizing Eq. (1.35)
to continuum mechanics is equivalent at expressing that at a generic time instant
t, the work of the internal stress tensor over the internal deformations [Lint(t)] is
balanced by the work of all the external forces [Lext(t)]:

Lint(t) =

∫

V

Ãij(x,t)ε
∗

ij(x)dV =

∫

S

Ã(x, t)·u∗(x)dA+

∫

V

f(x, t)·u∗(x)dV = Lext(t)

(1.38)
where no assumptions have been made about the rheological behavior of the ma-
terial and inertial forces have been neglected. Eq. (1.38) follows straightforward
from the consideration that the sum of the works done by the internal stresses
acting on each side of the infinitesimal element of volume dV plus the work of
volume forces is

¶L = Ãij(x, t)ε
∗

ij(x)dV

as long as the equilibrium equation div[Ãij] + f = 0 and Eq. (1.37) hold. Then,
summing up all the elementary works over all the elements implies that, since the
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displacement field is regular, all the work terms resulting from stresses acting over
adjacent sides elide each other and Eq. (1.38) is recovered.
Moving back to fracture mechanics of elastic solids, the Griffith’s energy balance
equation [i.e., Eq. (1.8)] is equivalent at enforcing the virtual work balance ex-
pressed by Eq. (1.38) at the tip of a crack. This can be exploited if we consider

δaa

Δu(x)
Virtual process 

Crack shape

Figure 1.4: The local virtual process describing the variation of the crack’s length.

that the crack’s tip position (i.e., the Lagrangian parameter) is ”virtually” in-
creased of the arbitrarily small amount ¶a as shown in figure 1.4, while the remote
displacement ¶ is kept fixed. In this process, the work of the external adhesive
forces in Eq. (1.38) is due to the change of adhesive energy resulting from the vari-
ation of contact area, i.e., ¶Lext = −dUa = ¶a∆µ. In order to calculate the work
of internal stresses we observe that the virtual process corresponds to a change
of the the asymptotic displacement at the crack tip. This can be described as
¶u (x, ¸) = ∆u (x) ¶¸ where ¸ is a process parameter increasing from 0 to 1 during
the change of crack length and ∆u (x) is the displacement gap shown in the fig-
ure. Linearity between stresses and displacements then implies that the interfacial
stress during the ¸-governed process is Ã (x,¸) = ¸ Ã+ (x) for x ∈ [a, a+ ¶a] where
Ã+ (x) is the stress field recovered at the end of the process. The work ¶Lint done
by the internal stresses per unit thickness can then be calculated as:

¶Lint =

∫ a+δa

a

dx

∫ 1

0

Ã (x, ¸)∆u (x) ¶¸

=
1

2

∫ a+δa

a

dxÃ+ (x)∆u (x) (1.39)

Note that, under the assumption of infinitely short range adhesive forces, for a
linear elastic isotropic material the asymptotic stress and displacement fields for
x ∈ [a, a+ ¶a] are

Ã+(x) =
KI√

2Ã (x− a− ¶a)
(1.40)

∆u (x) = KI/E
∗
√

8/Ã(x− a)



Chapter 1 17

where E∗ = E/(1− ¿2) in plane strain and E∗ = E in plane stress. In Eq. (1.39),
the local process that describes the change of the asymptotic displacement field has
been specified by enforcing its specific ¸-dependence. However, since the behavior
of a purely elastic material is conservative, choosing any other path [i.e., any other
form of ¶u (x, ¸)] would lead to the same result. Indeed, in this case the internal
work is simply the variation of elastic energy between the two configurations, i.e.,
¶Lint = Uel(a + ¶a) − Uel(a). Therefore, substituting Eq. (1.40) into Eq. (1.39)
leads to:

¶Lint

¶a

∣∣∣∣
δ

=
∂Uel

∂a

∣∣∣∣
δ

=
K2

I

2E∗
(1.41)

which represents the standard expression of the energy release rate, derived for the
first time by Irwin [91] and often exploited in contact mechanics [37,90]. Notably, in
writing Eq. (1.39) the only assumption made on the material’s rheological behavior
is linearity. Indeed, importantly, this expression is formally identical to the one
that we derive for viscoelastic materials in steady-state sliding contacts (Chapter
3), unsteady contacts (Chapter 4) and crack propagation (Chapter 5). Similarly
to the present discussion, in each of the following chapters, the expression of the
(virtual) work of internal stresses is derived by applying the virtual work formalism
within the proper physical and mathematical framework of each crack or contact
problem. However, Eq. (1.41) is valid only for purely elastic materials. Indeed, in
order to express the internal work as variation of elastic energy, the response matrix
of the system must be symmetric, otherwise, path-dependent work contributions
must be considered. The next section delves deeper into this concept.

1.4.2 The elastic energy and the non-integrable part of the

work

In order to provide a physical framework to elucidate how the conservative or
non-conservative nature of a system is releated to its rheological behavior, we
consider the simple example shown in Fig. 1.5 where the free boundary of a
constrained deformable linear solid, is loaded with two forces F1 and F2. The
resulting displacement u1 and u2 are given by Fi = Kijuj (we use the Einstein
notation for the repeated index), where Kij is the generic response matrix, which
we assume to be asymmetric. Notably, Kij = KE

ij +KO
ij with KE

ij =
1
2
(Kij +KT

ij)
and KO

ij = 1
2
(Kij − KT

ij) being the symmetric and anti-symmetric parts of Kij

respectively. In this case, the work done by F1 and F2 can be written as ¶L =
Fi¶ui = KE

ijuj¶ui +KO
ijuj¶ui, with ¶ui being the point displacements infinitesimal

changes. With this regard, we observe that the symmetry of KE
ij implies that

KE
ijuj¶ui = KE

ijui¶uj, and KE
ijuj¶ui = ¶

(
1
2
KE

ijuiuj

)
. Thus, KE

ijuj¶ui = ¶U is a
conservative term, i.e. the change of the elastic energy U = 1

2
KE

ijuiuj. Similarly,
since KO

ij is anti-symmetric, we have that KO
ijuj¶ui = −KO

ijui¶uj, and KO
ijuj¶ui =

1
2
KO

ij (uj¶ui − ui¶uj) which cannot be derived by a potential energy. Therefore,
the quantity

¶LP = KO
ijuj¶ui (1.42)
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Figure 1.5: A constrained deformable solid, whose response matrix is non-symmetric,
loaded with two surface forces. Red arrows refer to displacements (u1 and u2), green
arrows refer to forces (F1 and F2).

is a non-conservative path-dependent contribution to ¶L. Moreover, sinceKO
ijujui =

−KO
ijuiuj = 0, the potential energy U can also be rewritten as

U =
1

2

(
KE

ij +KO
ij

)
ujui =

1

2
Fiui (1.43)

and
¶L = ¶U + ¶LP (1.44)

Now we consider the application of the two forces at the points 1 and 2, as shown
in Fig.1.6. Within path I, the force applied at the point 1 is first slowly increased
(i.e., through a quasi-static transformation) from zero to a final value F1, whereas
the force at the point 2 remains equal to zero. According to linearity, the work
done by the force moving from the configuration (a) to (b) is Lab = 1

2
u11F1, being

u11 the displacement of the point 1 in the direction of F1 in the state (b). Then,
moving from (b) to (d), the force applied at the point 2 is slowly increased from
zero to a final value F2, while the force F1 is held constant. At the state (d)
the value of the displacements of the points 1 and 2, in the direction of F1 and
F2, are respectively u1 and u2. Within the latter process, the work done by F2

can be calculated by relying on linearity, whereas the work done by the constant
force F1 is simply obtained by multiplying F1 by the relative displacement of
point 1 during the process, so that the overall work from (b) to (d) is Lbd =
1
2
(u2 − u21)F2 + (u1 − u11)F1, being u21 the displacement of the point 2 in the

configuration (b). Regarding the path II, the forces are applied with reverse order.
At the intermediate state (c), in which only F2 is applied, the displacement of
the point 1 is u12, whereas the displacement of the point 2 is u22. Observing that
linearity entails u1 = u11 + u12 and u2 = u21 + u22 we can compare the overall
work within the two paths:

LI = Lab + Lbd =
1

2
u11F1 +

1

2
u22F2 + u12F1 (1.45)

LII = Lac + Lcd =
1

2
u22F2 +

1

2
u11F1 + u21F2



Chapter 1 19

The system is conservative only if LI = LII, i.e. u12F1 = u21F2. This only occurs
if the system’s response matrix is symmetrical and can be easily shown expressing
F1 and F2 in terms of the displacements in configurations (b) and (c) respectively
and in terms of Kij:

u12F1 = K11u12u11 +K12u12u21 (1.46)

u21F2 = K21u21u12 +K22u21u22

Moreover, observing the configuration (c), we have F1 = K11u12 +K12u22 = 0
and similarly in configuration (b) F2 = K22u21 + K21u11 = 0. Solving for the
quantities K11u12 = −K12u22 and K22u21 = −K21u11 and replacing in Eq. (1.46)
we conclude that the system behaves conservatively if and only if K12 = K21.

Figure 1.6: Application of two forces at the free boundary of a constrained linear solid
with reverse order. Green arrows and red arrows refer, respectively, to forces and dis-
placements. The work done by the forces is path-independent only when the system
response matrix is symmetrical.

We consider now a quasi static change of the two displacements over a generic
path L between two states, 0 and 1 in the (u1, u2) plane [Fig. 1.7 (a)]. We aim at
finding a geometrical interpretation for the non-conservative work LP. Let us use
polar coordinates: u1 = r (¹) cos ¹ and u2 = r (¹) sin ¹. Observe that, according to
Eq. (1.42) and using KO

12 = −KO
21, the elementary non-conservative work is ¶LP =

KO
21 (u1¶u2 − u2¶u1). Recalling that u1¶u2 − u2¶u1 = r2¶¹, the non-conservative

work over the over the whole path is:

LP =

∫

L

¶LP = KO
21

∫ θ1

θ0

r2¶¹ = 2KO
21AL (1.47)

Where AL is the area of the sector limited by the curve L and the two straight lines
¹ = ¹0 and ¹ = ¹1 [Fig. 1.7 (a)]. If we now consider the inverse process over the
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same path, the work LP inverts its sign. Also note that when L lies on a straight
line through the origin of the plane the non-conservative term is zero. Moreover,
considering cyclic processes, if Kij is non-symmetrical the work done by the two
forces over the cycle equates the non-conservative work and is thus proportional
to the area ALC

of the cycle [Fig. 1.7 (b)] comprised by the closed curve LC. If
the the cycle is inverted, the work changes sign, leading to the conclusion that the
non-conservative system might also represent a source of energy for the observer
that applies the forces.

Figure 1.7: (a) In the (u1, u2) plane the non-conservative contribution to the work is
proportional to the area of the blue sector AL. (b) In cyclic processes the overall work is
proportional to the area ALC

comprised by the closed curve and might be both positive
or negative, depending on the direction the cycle is followed.

This mathematical framework can be extended to continuum mechanics: in
this case, the conservative or non-conservative nature of the system depends on
the symmetry properties of the Green’s function. We consider the general case in
which, under the assumptions of linearity and translational invariance, the relation
between the normal stress and displacement fields on the surface of a solid can be
expressed as:

u(x) =

∫
d2x1G(x− x1)Ã(x1) (1.48)

Where we assume that the Green’s function G(x) is a non-symmetric function
and therefore can be decomposed into its even (symmetric) and its odd (anti-
symmetric) parts:

G(x) = GE(x) + GO(x) (1.49)

being GE(x) = 1
2
(G(x) + G(−x)) and GO

V (x) = 1
2
(G(x)− G(−x)). Notably, this

framework describes the steady-state sliding contact between a viscoelastic funda-
tion and a rigid indenter: assuming a reference frame co-moving with the indenter
the time-dependecy of the moving fields is masked and the viscoelastic Green’s



Chapter 1 21

function in Eq. (1.48) is a non-symmetric function, parametrically depending on
the sliding velocity. The reader is referred to Chapter 2 for a detailed discussion
on the viscoelastic Green’s functions.
Let us calculate the work ¶L done by the stress field Ã(x) over a quasi-static vari-
ation ¶u(x) of the displacements field. Since Eq. (1.48) implies that ¶u(x) =∫
d2x1G(x− x1)¶Ã(x1), we obtain

¶L =

∫
d2xÃ(x)¶u(x) (1.50)

=

∫
d2xd2x1G(x− x1)Ã(x)¶Ã(x1) (1.51)

and substituting (1.49) into (1.50) yields:

¶L =

∫
d2xd2x1GE(x− x1)Ã(x)¶Ã(x1)

+

∫
d2xd2x1GO(x− x1)Ã(x)¶Ã(x1)

Moreover, we notice that, similarly to the discrete case, we can write
∫

d2xd2x1GE(x− x1)Ã(x)¶Ã(x1) =

∫
d2xd2x1GE(x− x1)Ã(x1)¶Ã(x)

And therefore we get:

∫
d2xd2x1GE(x− x1)Ã(x)¶Ã(x1) = ¶

(
1

2

∫
d2xd2x1GE(x− x1)Ã(x)Ã(x1)

)

We conclude that the latter is a conservative contribution, hence the overall work
can be expressed as

¶L = ¶U + ¶LP (1.52)

where the elastic energy is

U =
1

2

∫
d2xd2x1GE(x− x1)Ã(x)Ã(x1) (1.53)

=
1

2

∫
d2xÃ (x) u (x)

and the non conservative contribution is

¶LP=

∫
d2xd2x1GO(x− x1)Ã(x)¶Ã(x1) (1.54)

=
1

2

∫
d2xd2x1GO(x− x1) [Ã (x) ¶Ã (x1)− ¶Ã (x) Ã (x1)]

For purely elastic materials the Green’s function is symmetric (see, for instance,
[47]), so that ¶LP = 0. Not let us identify some other particular cases yielding
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¶LP = 0. Consider a perturbation of the displacements fields u (x), which keeps its
shape unchanged, i.e. u(x) = u0(x)¸ and ¶u(x) = u0(x)¶¸, where ¸ is a dimension-
less parameter governing the process. In this case, linearity yields Ã(x) = Ã0(x)¸
and ¶Ã(x) = Ã0(x)¶¸, where u0(x) and Ã0(x) are related through Eq. (1.48). Thus,
refferring to Eq. (1.54), we have Ã (x) ¶Ã (x1) = Ã0 (x) Ã0 (x1) ¸¶¸ = ¶Ã (x) Ã (x1)
leading to ¶LP = 0. This arguments applies of course to the case of a concentrated
load Ã(x) = ¸¶D(x− x0), being ¶D(x) the Dirac delta function. Indeed, we get
Ã (x) ¶Ã (x1) = ¶D(x−x0)¶D(x1−x0)¸¶¸ = ¶Ã (x) Ã (x1) leading again to ¶LP = 0.
Analogously to the discrete case, ¶LP might be either positive or negative, hence
an external observer could extract work by deforming the surface of the system
through cyclic processes. This is simply explained by noting that the observer
that applies the forces only has information about the mechanical response on the
system’s surface, while additional energy exchanges might occur elsewhere. For
instance, if Eq. (1.48) describes the response of the surface of a viscoelastic founda-
tion sliding under steady-state conditions, an additional energy source is required
to sustain the sliding motion. Therefore, although the observer modifying the
surface displacement field might cyclically extract work, a larger amount of work
must be supplied through a lateral force to ensure that the sliding velocity is held
constant, compensating for the internal viscoelastic losses. This means that, in this
type of systems, the quantity ¶LP does not quantify the viscoelastic dissipation of
energy. This is a fundamental observation for the subsequent chapters.
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Concepts of linear viscoelasticity

Over the last two decades, rubbery-like materials have been increasingly utilized
in a wide range of engineering applications. In addition to classical applications
such as tires, dampers, seals, and belts, they are nowadays widely employed in in-
novative contexts, such as micro-electromechanical systems, protective films, thin
gloves and suits, and bio-inspired mimicking skins. Their excellent mechanical
and chemical properties, including resilience, durability, and elasticity, have sig-
nificantly boosted scientific interest in this class of materials. However, the smart
design of these systems requires a detailed understanding of the intrinsic viscoelas-
tic response of rubbery-like materials.
The mechanical behavior of viscoelastic materials is intermediate between an elas-
tic solid and a Newtonian fluid. In the theory of linear elasticity, a deformation
field is uniquely determined by the instantaneous value of the stress field; in other
words, the material has no memory of the loading history, and its response is not
influenced by the rate at which the stress or the deformation is applied. On the
other hand, for a Newtonian fluid, the shear stresses is proportional to the time
derivative of the deformation. A viscoelastic material, when subjected to a certain
constant stress, initially responds like a elastic material with an instantaneous de-
formation. Over time, the deformation gradually increases (i.e., similarly to the
Newtonian fluid response) until a plateau is reached. Overall, the mechanical be-
havior is largely hysteretic due to the internal friction among polymeric chains:
the energy provided to deform the material is partially stored in the elastic defor-
mations of the polymeric chains and partially dissipated. This is a pivotal aspect
from the engineering perspective, as the amount of internal dissipation should be
properly designed, e.g., in applications like dampers or tire-road friction.
In this chapter, we present a brief overview of the rheological behavior of vis-
coelastic materials. In the first section, we describe commonly employed general
rheological models. In the second section, we present the Green’s function ap-
proach. This can be exploited to formulate the stress-displacement problem on
the surface of a viscoelastic half-space or layer, and will be widely employed in the
subsequent chapters.
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2.1 General aspects

The linear viscoelasticity is the rheological behavior of a solid whose linear response
depends on the entire time-history of applied stresses or strains and presents an
intermediate behavior between a Newtonian viscous fluid and a purely elastic solid.
In general, the constitutive relation between the time-dependent stress and the
time-dependent deformation for a viscoelastic material is expressed by a linear
operator:

Ã(t) = L[ε(t)] (2.1)

Of course, the linearity of L reads as:

L[c1ε(t)1 + c2ε(t)2] = c1L [ε(t)1] + c2L [ε(t)2]

where c1, c2 are real constants and ε(t)1, ε(t)2 are two different arbitrary input
time-histories. The constitutive relation also possesses the causality and time-
invariance properties. In a causal system the output depends on past events and
is not affected by the future. The time invariance property instead expresses that
a time-shifting of the input entails the same time-shifting of the output. Eq. (2.1)
represents the stress as ”output” generated by a certain deformation as ”input”
but the inverse relation has the same properties. A linear system that obeys
the causality and time-invariance requirements is completely characterized by its
response to the Heaviside unit-step input. Indeed, Eq. (2.1) is usually written as:

Ã(t) =

∫ t

−∞

dt1R(t− t1)ε̇(t1) (2.2)

or in the equivalent form obtained by applying the by part integration:

Ã(t) = R(0+)ε(t) +

∫ t

−∞

dt1Ṙ(t− t1)ε(t1)

In these expressions, R(t) is called the viscoelastic relaxation function and is the
time-dependent stress obtained in response to ε(t) = H(t), being H(t) the unit-
step function. Analogue expressions are

ε(t) =

∫ t

−∞

dt1J(t− t1)Ã̇(t1) (2.3)

ε(t) = J(0+)Ã(t) +

∫ t

−∞

dt1J̇(t− t1)Ã(t1)

where J(t) is called viscoelastic creep’s function and is the deformation recovered
when Ã(t) = H(t). Observe that the system’s causality implies that R(t < 0) = 0
and J(t < 0) = 0. R(t) and J(t) are usually derived from schematic representations
consisting of springs and dampers, as those shown in Fig. 2.1. In Fig. 2.1 (a), each
of the elements consisting of a spring and a damper connected in series is called
Maxwell element. In this case, the relation between stress and deformation can be
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derived more simply when stress is expressed as a function of strain. Indeed, the
total stress is the sum of the stresses acting on each element, and all the elements
are subjected to the same deformation. Note that the relaxation function Ri(t)
of the i-th maxwell element, i.e., its response to a step-function deformation, is
obtained as the solution of the differential equation

Ri(t)

ÄiEi

+
Ṙi(t)

Ei

= Ḣ(t) = ¶(t) (2.4)

where ¶(t) is the Dirac Delta and Äi is the ratio between the damping coefficient
and the stiffness of each element and is called relaxation time of the element. The
solution of Eq. (2.4) is

Ri(t) = Ei exp(−t/Ä)H(t)

and, in turn, the overall relaxation function is:

R(t) =

[
E0 +

N∑

i=1

Ei exp(−t/Ä)

]
H(t) (2.5)

where also the contribution of the spring element of stiffness E0 has been con-
sidered. Notably, for t → 0+, the material response resembles that of an elastic
stiff material whose modulus is R(0+) = E0 +

∑
i Ei = E∞. Then, after a long

time, the effective stiffness E(t) = Ã(t)/ε(t) decreases to the value E0. Note that
introducing the spring E0 is necessary to correctly model a viscoelastic material,
otherwise a constant stress would lead to a monotonically increasing deformation,
i.e., the material would (almost) behave like a Newtonian fluid.
On the other hand, the general model shown in Fig. 2.1 (b), allows a simpler
analysis when the strain is expressed as function of the stress. The overall strain
is indeed the sum of the strains of all the i-th Voigt models, each composed of
a damper and a spring connected in parallel. The creep function Ji(t) of each
element is the solution of the differential equation:

J̇i(t)ÄEi + Ji(t)Ei = H(t)

Therefore:

Ji(t) =
1

Ei

[1− exp(−t/Ä)]H(t)

and the overall creep function is

J(t) =

{
1

E∞

+
N∑

i=1

1

Ei

[1− exp[−t/Ä ]]

}
H(t) (2.6)

Observe that introducing the spring of stiffness E∞ is necessary, otherwise, one
would obtain J(0+) = 0, which does not represent the real behavior of a viscoelastic
material. Up to this point we have considered a single component of stress and
deformation, i.e., we analyzed an uniaxial loading case. In the general case, the
internal stress tensor and the deformation tensor are related each other as

Ãij(t) =

∫
dt1Rijkl(t− t1)ε̇kl(t1)
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Figure 2.1: General models for linear viscoelasticity. (a) The generalized Maxwell model.
(b) The generalized Voigt model

in which the previous arguments apply to the single components of Rijkl (see [104]).
Observe now that, since we are considering a linear system, its mechanical behavior
can be fully characterized by its response to a sinusoidal input. Hence, we take the
Fourier transform of Eqs. (2.3,2.2) and proceed with our analysis in the frequency
domain

Ã(É) = iÉR(É)ε(É) (2.7)

ε(É) = iÉJ(É)Ã(É)

Eqs. (2.7) show that the creep function and the relaxation function in the Fourier
domain must satisfy

−É2J(É)R(É) = 1 (2.8)

This means that, since R(t) and J(t) describe the same material, the rheological
constants appearing in Eq. (2.5) are not independent on those appearing in Eq.
(2.6). E.g., in the case in which the material’s behavior is described by a single
relaxation time, R(t) and J(t) satisfy Eq. (2.8) as long as the relaxation times of
the two functions scale of a factor E∞/E0. Now, we define the complex modulus
as E(É) = [iÉJ(É)]−1. Observe that taking the Fourier transform of Eq. (2.6)
leads to

1

E(É)
=

1

E∞

+
N∑

i=1

1

Ei

1

1 + iÉÄi
(2.9)

The complex modulus, and in particular the so-called loss tangent Im[E(É)]/Re[E(É)],
play a fundamental role in determining the frictional behavior of viscoelastic ma-
terials in sliding and rolling contacts (see Chapter 3). Typical forms of these
functions are plotted in Fig. 2.2. Observe that, according to Eq.2.9, we have
E(É → 0) = E0 and E(É → +∞) = E∞, which are usually referred to as low-
and high- frequency modulus, respectively. This means that, when excited at very
low frequency, the material behaves as a soft elastic solid with modulus E0. This
regime of excitation is usually referred to as rubbery region. Instead, at very
high frequency of excitation, the material behaves again elastically, but with a
way much stiffer response described by the modulus E∞. This regime is usually
referred to as glassy regime. The most peculiar behavior of a viscoelastic material
is recovered at intermediate frequencies of excitation, in which the material’s re-
sponse is highly hysteretic and the loss tangent takes its maximum. Note that Eqs.
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Figure 2.2: (a) The real and imaginary parts of the complex modulus E(ω) as function
of the exciting frequency. (b) The loss tangent Im[E(ω)]/Re[E(ω)] as function of the
exciting frequency

(2.7, 2.9) imply that when the material is subjected to an oscillating sinusoidal
loading, a phase between stress and deformation occurs. Therefore, the work of
internal stresses L =

∫
T
Ã(t)ε̇(t)dt doesn’t vanish over the period T . This means

that when a viscoelastic material is subjected to cyclic deformations whose main
frequency contributions correspond to the transition region shown in the figure, a
certain amount of work must be spent. Indeed, in sliding contacts between rough
surfaces and in rolling contacts, this eventually leads to a lateral force opposing
the relative motion, usually referred to as viscoelastic friction [25]. Importantly,
the maximum amount of dissipation occurs when the loss tangent is maximized
for a given frequency of excitation (see [103]).

2.2 The viscoelastic Green’s functions

2.2.1 General unsteady case

We consider the surface of a linear viscoelastic half-space. Under the condition
of translational invariance (i.e., the system is homogeneous) and linearity, the
relation between the interfacial normal stresses Ã (x, t) and the surface normal
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displacements u (x, t) can be written as a convolution product, i.e.

u (x, t) =

∫
d2x1dt1G (x− x1, t− t1) Ã (x1, t1) (2.10)

where x is the in-plane position vector. Taking the time and space Fourier trans-
form of Eq. (2.10) one obtains

u (q, É) = G (q, É) Ã (q, É) (2.11)

where the wave vector is q and É is the angular frequency, and G (q, É) is the
response function. The specific form of the response function G (q, É) depends
on the system geometry, on the material properties, and on how the system is
constrained. Dimensional arguments (see Ref. [102]) show that G (q,É) must have
the following general form

G (q,É) = −2 (1− ¿2)

E (É)

1

|q|S (|q| , É) (2.12)

where the term S (q, É) is a corrective factor that in the case of homogeneous half
space is equal to 1 and E (É) is the viscoelastic complex modulus. The corrective
factor S (q, É) has been found for different geometries and different boundary
conditions as well as for and also for layered materials (Ref. [30, 47, 102, 103]).
Notably, Eq. (2.12) is a general result that follows from the so called elastic-
viscoelastic correspondence principle. The latter arises from the observation that
the equations of the linear viscoelastic boundary value problem once expressed in
the Fourier domain take the same form of the equations of the corresponding linear
elastic problem, as long as the region in which boundary conditions are specified
do not change over time. Therefore, the viscoelastic solutions in the É-Fourier
domain have the same form of the corresponding elastic ones, provided that the
elastic moduli are replaced by the Fourier-transformed viscoelastic ones. Of course
when we consider the application of a concentrated load (i.e., when we analyze
the Green’s function of the system), the region in which boundary conditions are
specified do not change over time and the correspondence applies. The reader is
referred to [104] for additional details on the correspondence principle. Now we can
notice that, the meaning of Eq. (2.12) is that, when S (|q| , É) is É-independent (as
for a confined or free layer, see the next section) the viscoelastic Green’s function
G(x, t) in the time and space domain is factorized as

G(x, t) = J̇(t)G(x) (2.13)

where

G(x) = −2 (1− ¿2)

(2Ã)2

∫
dq2

S (qd)

|q| eiq·x

and J(t) is the viscoelastic creep’s function. Note that, in agreement with the
correspondence principle, G(x) is the Green’s function of the corresponding elastic
case for a material of unitary modulus. E.g., for the half-space case we get G(x) =



Chapter 2 29

2 (1− ¿2) / |x|, in agreement with the Bussinesq solution. Now observe that, using
Eq. (2.13), Eq. (2.10) can be rewritten as

u (x, t) =

∫ t

−∞

dt1J(t− t1)

∫
d2x1G(x− x1)Ã̇ (x1, t1) (2.14)

or in the equivalent form:

u (x, t) = J(0+)

∫
d2x1G(x− x1)Ã (x1, t)+

∫ t

−∞

dt1J̇(t−t1)

∫
d2x1G(x− x1)Ã (x1, t1)

2.2.2 1D+1D periodic steady case

A case of interest for the present thesis is the 1D+1D periodic contact in steady-
state sliding conditions. In order to apply the elastic-viscoelastic correspondence
principle and derive the viscoelastic Green’s function for this problem, we start our
discussion from the equivalent elastic problem. We consider the two configurations
shown in Fig. 2.3: a thick slab of thickness d sandwiched between a flat rigid plate
(upper part) and a rough substrate (bottom part), as shown in Fig. 2.3(a), and
a thick slab is subjected to a uniform applied pressure (Fig. 2.3(b)). We focus
on periodic problems of wavelength ¼. Following [47], we define the interfacial
displacement field v(x) = u(x)−um (note that um is the mean displacement of the
deformed surface), related to the stress distribution Ã(x) as

v(x) =

∫ λ/2

−λ/2

dx1
GE(x− x1)

E
Ã(x1) (2.15)

where E is the Young modulus and GE(x)/E is the elastic Green’s function of this
specific case, where:

GE(x) =
2 (1− ¿2)

Ã

(
√

log[2− 2 cos(kx)] +
∞∑

m=1

Am(kd)
cos(mkx)

m

)

where k = 2Ã/¼ and

Am(kd) =
2mkd− (3− 4¿) sinh(2dmk)

5 + 2 (mkd)2 − 4¿ (3− 2¿) + (3− 4¿) cosh (2mkd)
+ 1

for the confined layer, and

Am(kd) =
2mkd+ sinh(2dmk)

1 + 2 (mkd)2 − cosh (2mkd)
+ 1

for the free layer. Notably, the quantity
∑

∞

m=1 Am(kd) cos(mkx)/m is a fast-
converging series that vanishes in the half-plane case, i.e., for d → ∞. Moreover,
the mean displacement um can be expressed as:

um = −1 + ¿

1− ¿

1− 2¿

E
Ãmd (2.16)
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Figure 2.3: A deformable layer of thickness d in contact with a rough substrate. The
layer is assumed to be glued to the upper plate (a), or subjected to a uniform pressure
p (b).

where Ãm = 1/¼
∫ λ/2

−λ/2
Ã(x)dx is the mean stress (equal to Ã∞ in the case of free

layer). Observe that in the half-plane case both um and u(x) diverge, unless ¿ =
0.5. Therefore, formulating the problem on the interfacial displacement v = u−um

avoids dealing with infinite quantities. Now, let us move to the viscoelastic case.
Applying linearity and translational invariance and invoking the elastic-viscoelastic
correspondence principle, we can write

v (x, t) =

∫ t

−∞

dt1J(t− t1)

∫ λ/2

−λ/2

dx1GE(x− x1)Ã̇ (x1, t1) (2.17)

Now, assuming steady state sliding motion at velocity v, the moving steady fields
can be expressed as u(x, t) = u(x − vt) and Ã(x, t) = Ã(x − vt). Then, using the
replacement x → x + vt, i.e. changing the reference frame so that the observer
moves with velocity v, Eq. (2.17) can be rewritten as

v (x) =

∫ λ/2

−λ/2

d2xG1D
L (x− x1,v)Ã (x1)

where

G1D
L (x,v) = J(0+)GE(x) +

∫ +∞

0+
dtGE(x+ vt)J̇(t)
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˜

Figure 2.4: The dimensionless periodic Green’s function G̃1D
L (x) = G1D

L (x) πE0

2(1−ν2)
under

steady-state sliding conditions shown as function of the dimensionless coordinate kx for
different values of the dimensionless sliding velocity ζ = kvτ . Results are shown for
E∞/E0 = 10.

is the viscoelastic Green’s function for steady-state sliding periodic contacts, para-
metrically depending on the sliding velocity. In Fig. (2.4) G1D

L (x,v) is plotted
assuming the single relaxation time creep’s function

J(t) =

{
1

E∞

+

[
1

E0

− 1

E∞

]
[1− exp(−t/Ä)]

}
H(t)

and different values of the dimensionless velocity · = kvÄ . Notably, at very low
velocity values viscoelastic effects vanish and the material is fully relaxed, hence
G1D
L (x,v) = GE(x)/E0. At intermediate velocity, G1D

L (x,v) is a non-symmetric
function that reflects the viscoelastic relaxation. At very high velocity, the response
of the material is in the glassy region and therefore G1D

L (x,v) = GE(x)/E∞.

2.2.3 Alternative derivation

In what follows we propose an alternative derivation of the Green’s function for
steady sliding contacts at velocity v. Let us move back to Eq.(2.10) and observe
that, under these steady sliding conditions, assuming a reference frame moving
with velocity v, it can be rephrased as

u (x) =

∫
d2xGS(x− x′,v)Ã (x′) (2.18)

where the new Green function GS(x,v) parametrically depends on the velocity
v. Also observe that in steady sliding any physical quantities f depends on space
and time through the relation f (x, t) = f (x− vt). Hence, taking the Fourier
transform yields

f (q, É) =

∫
dtd2x f (x− vt) e−i(q·x−ωt) = 2Ã¶ (É − q · v) f (q) (2.19)
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Then, using Eq. (2.11), and integrating over the frequency real axis gives

u (q) = G (q,q · v) Ã (q) (2.20)

Taking the inverse Fourier transform, Eq. (2.20) shows that

GS(x,v) =
1

(2Ã)2

∫
d2qG (q,q · v) eiq·x (2.21)

We will show now how it is possible, moving from GS(q,v) = G (q,q · v) to calcu-
late the Green function for the case of periodic steady sliding contacts, where the
relation between the stress and displacement fields at the interface can be written
as

u (x, t) =

∫

D

d2x′GD (x− x′,v) Ã (x′, t′) (2.22)

where GD (x,v) is the periodic Green function with periodic square cell D of lateral
size L. Of course GD (x,v) is the interfacial displacement field resulting from a
stress distribution of concentrated unit loads distributed on a regular square lattice
of elementary cell D. This distribution of forces can be represented by the surface
stress field

¶D (x) =
+∞∑

k,h=−∞

¶

(
x− 2Ã

q0
k

)
(2.23)

where ¶ (x) is the two-dimensional Dirac delta function and k =(k, h) is the vec-
torial wave number. The fundamental frequency is q0 = 2Ã/L. Therefore we
get

GD (x,v) =

∫
d2x′G (x− x′,v) ¶D (x′) =

+∞∑

k,h=−∞

G
(
x− 2Ã

q0
k,v

)
(2.24)

Taking the Fourier transform of Eq. (2.24) gives

GD (q,v) =
+∞∑

k,h=−∞

∫
d2xe−iq·xG

(
x− 2Ã

q0
k,v

)
=

+∞∑

r,s=−∞

G (q,v) ¶

(
q

q0
− r

)

(2.25)
with r =(r, s). Moving back to the space domain we have

GD (x,v) =
1

(2Ã)2

∫
d2qGD (q,v) eiq·x =

( q0
2Ã

)2 +∞∑

r,s=−∞

G (q0r,v) e
iq0r·x (2.26)

The procedure just presented so far can easily exploited also for 1D+1D contact
problems with spatial periodicity L and fundamental spatial frequency q0 = 2Ã/L.
In this case the displacement and stress fields takes the form u (x) = u (x) and
Ã (x) = Ã (x). The corresponding 2D Fourier transform is

u (q) =

∫
dx2u (x) e−iq·x = 2Ã¶ (qy) u (qx) (2.27)
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and

Ã (q) =

∫
dx2Ã (x) e−iq·x = 2Ã¶ (qy) Ã (qx) (2.28)

Therefore, after integrating over qy, Eq. (2.20) gives

u (qx) = G1D (qx, v) Ã (qx) (2.29)

where G1D (qx, v) = G (qx, qy = 0, qxv), where v = vx. Then, following the same
approach leads to

G1D
L (x, v) =

+∞∑

k=−∞

q0
2Ã

G1D (kq0, v) e
ikq0x (2.30)
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Chapter 3

Adhesion and friction in steady

viscoelastic contacts

Experimental evidences clearly indicate that friction in sliding and rolling con-
tacts of rubber-like materials is highly affected by the presence of adhesive inter-
actions at the interface. Nonetheless, most of existing analytical and numerical
approaches [25,30,31,43,103,105–109] are only able to describe the adhesiveless vis-
coelastic contact behavior. In this class of contacts, viscoelastic relaxation strongly
affects the key contact quantities, such as the contact size, which are found to de-
pend on the relative velocity. Importantly, the frictional response is ascribable to
dissipative phenomena occurring in the bulk of the material, where viscoelasticity
entails a certain ratio of energy dissipation under the effect of cyclic deformations.
The resulting friction force is usually referred to as viscoelastic friction. On the
other hand, several experimental results [28,29,32] clearly indicate that interfacial
adhesion and viscoelasticity may interact in controlling the properties of mating
interfaces in many tribological systems. However, the concurrent effect of adhesion
and viscoelasticity on friction is still poorly understood. Indeed, in the presence of
adhesion, besides the usual large-scale energy dissipation occurring in the bulk vis-
coelastic material, local dissipation also takes place very close to the contact edges
(i.e., at the opening or closing crack tips). This latter phenomenon, also known
as small-scale viscoelasticity, is usually regarded as a primary cause of adhesive
hysteresis, as observed in [110, 111]. However, since the Griffith’s energy balance
equation G = ∆µ no longer holds for viscoelastic materials, the real value of the
energy release rate G at the contact edges is unknown, and a very few studies exist
focusing on such case. Most of them rely on scale separation [37, 60–62], thus as-
suming purely elastic conditions in the bulk material, and local crack propagation
criterion at the contact edges. In this class of models, a velocity-dependent energy
release rate is introduced as input parameter, often estimated via power-laws ac-
cording to theories of crack propagation in viscoelastic media [68–72, 84, 112, 113]
(see also Chapter 5). However, although very pioneering, these studies are limited
to the local viscoelastic regime and fall short in tackling real contact conditions
due to the neglected bulk visocelasticity. Indeed, Grosch’s experimental investi-
gations [27] clearly show that the interplay between viscoelasticity and adhesion
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leads to a friction increase which cannot be explained by simply summing-up the
single contributions of adhesion hysteresis and bulk viscoelastic losses [114, 115].
Such an experimental evidence is not fully understood. A possible explanation
is that, in the presence of adhesion, the contact area is enlarged, therefore the
volume of bulk material undergoing cyclic deformation is increased compared to
adhesiveless conditions.
Additionally, several experimental investigations have reported strongly enhanced
adhesive properties in rolling contacts against rubber (i.e., viscoelastic) substrates
[28,29,32]. Larger pull-off force and contact size are reported in rolling conditions,
compared to the static case, thus confirming that the effective adhesive behavior
depends on the interaction between small-scale viscoelasticity, interfacial adhesion,
and bulk viscoelasticity [116].
In this chapter, we introduce a novel theory to study the adhesive contact of vis-
coelastic materials in steady-sate sliding or rolling contact with a rigid substrate.
The theory provides the closure equations needed to determine the unknown con-
tact domain, which is expressed in terms of a local energy balance, thus generalizing
the Griffith’s criterion to the case of viscoelastic media. The theory covers a very
wide range of sliding velocities, thus providing insights and enlightening most of
the available experimental observations in the field.

3.1 Formulation

Let us consider a linear homogeneous viscoelastic slab sliding against a rough
surface in the presence of interfacial adhesion. We assume steady state motion at
constant velocity v under displacement controlled conditions assigning the contact
penetration ∆. Note that the contact penetration is ∆ = utot − um, being utot the
indenter’s displacement and um the mean displacement of the deformed profile
(see Fig. 3.1). We neglect the presence of tangential tractions at the interface.
As shown in Chapter 2, using a reference frame co-moving with the indenter,
the contact normal stress Ã(x) and the normal interfacial displacement v(x) (see
Sec. 2.2.2 for the definition of the interfacial displacement) are related each other
through the convolution product

v(x) =

∫
d2x1G(x− x1,v)Ã(x1) (3.1)

where x and x1 are the in-plane position vectors. Under the assumption of ex-
tremely short range adhesive interaction, out of the yet unknown contact domain
Ω of size |Ω| = A the normal stresses vanish, so that the integration domain of the
integral in Eq. (3.1) can be set equal to Ω . The kernel G(x,v) is the viscoelastic
Green function parametrically dependent on the sliding velocity v. As shown in
Chapter 2, G(x,v) has been determined for several geometric configurations (i.e.,
displacement or stress boundary conditions) both for periodic and non-periodic
contacts, as a function of the slab thickness. Now we recall that for a viscoelastic
material G(x,v) is an asymmetric function of x and can be decomposed into an



Chapter 3 37

even (symmetric) GE(x,v) part and odd (anti-symmetric) GO(x,v) one

G(x,v) = GE(x,v) + GO(x,v) (3.2)

with GE(x,v) = 1
2
[G(x,v) + G(−x,v)] and GO(x,v) = 1

2
[G(x,v)− G(−x,v)].

Notably, the problem at hand belongs to the class of mixed value problems. Indeed,
for a given penetration ∆ of the indenter, the interfacial displacement field v(x)
is prescribed within the contact domain Ω where the deformed slab shape must
match the rigid profile’s shape. Therefore, since Ã(x) = 0 out of the contact, Eq.
(3.1) can be inverted to calculate the stress field Ã(x) in the contact domain Ω. On
the other hand, out of the contact area the unknown is no longer the normal stress
distribution but the displacement field which can be simply calculated from Eq.
(3.1) for x /∈Ω once that the stress distribution has been determined. However,
the contact area A = |Ω| is not yet known, so that an additional equation (the
closure condition) needs to be found to completely solve the problem. In the case
of adhesiveless contacts, since the local contact pressure can only takes positive
values or vanish, it is enough to enforce the condition that the stress Ã(x) = 0 at
the boundary ∂Ω of the contact domain. In presence of adhesion instead, the local
pressure can also take negative values, i.e. the stress Ã(x) may change sign over the
contact area, therefore an energy closure equation must be enforced. In this case,
following the virtual work principle, we need to write a local energy balance which
consists in requiring that, at fixed penetration ∆, the work ¶LI done by internal
viscoelastic stresses equates the work ¶LE done by external adhesion forces when
the contact area is subjected to a small quasi-static perturbation ¶A:

¶LI = ¶LE (3.3)

Let us consider the case of a generic contact area increase from A to A+ ¶A (note,
¶A is a positive quantity). Under the assumption of infinitely short range adhesive
forces, no interactions occur out of the contact area. Under these conditions, the
contact area variation represents a mode I crack closure, and the work of internal
stresses only results from the interfacial stress acting in the small region ¶A. Then,
within ¶A, the v(x) undergoes a quasi-static change ∆v(x) from the initial shape
(out of contact) v−(x) = v(x,A), to final one (in contact) v+(x) = v(x,A + ¶A).
This zipping process can be described by introducing a dimensionless parameter
¸ that slowly increases from zero to one; therefore, within ¶A, we have v(x, ¸) =
¸∆v(x) + v−(x), where ∆v(x) = v+(x)− v−(x), and ¸ ∈ [0, 1]. Linearity entails a
similar trend for the stress in ¶A, thus Ã(x, ¸) = ¸Ã+(x), where Ã+(x) = Ã(x,A+
¶A). Observing that ¶v(x, ¸) = ∆v(x)¶¸, and that the elementary internal work
is ¶LI =

∫
d2xÃ(x)¶v(x), the total work of internal stresses over the ¸-governed

process can be calculated as

(¶LI)T =

∫

δA

d2x

∫ 1

0

∂v

∂¸
(x, ¸)Ã(x, ¸)¶¸ =

1

2

∫

δA

d2x∆v(x)Ã+(x) (3.4)

Since Ã−(x) = Ã(x,A) = 0 for x ∈ ¶A, Ã+(x) = Ã−(x) = 0 for x /∈ A + ¶A, and
∆v(x) = 0 for x ∈ A, the integral in Eq. (3.4) can be extended to the entire
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nominal contact area, thus yielding

(¶LI)T =
1

2

∫
d2x[v+(x)− v−(x)][Ã+(x) + Ã−(x)] (3.5)

Moreover, according to the discussion presented in Chapter 1 (Sec. 1.4.2), in this
case the work of internal stresses can be expressed as

(¶LI)T = ¶U + ¶LP (3.6)

where elastic energy is given by

U =
1

2

∫
d2xÃ (x) v (x)

Therefore, the increase of contact area corresponds to the following variation of
elastic energy

¶U =
1

2

∫
d2x[v+(x)Ã+(x)− v−(x)Ã−(x)] (3.7)

which only depends on the symmetric part GE(x,v) of the Green’s function. Using
Eqs. (3.7) and (3.5) in Eq. (3.6), the non-conservative term ¶LP in the entire
¸−governed process describing the increase of contact area can be then calculated
as

¶LP =
1

2

∫
d2x[v+(x)Ã−(x)− v−(x)Ã+(x)] (3.8)

and using Eqs. (3.1, 3.2) it can be also expressed as

¶LP =

∫
d2xd2x1GD

v
(x− x1) Ã

− (x) Ã+ (x1) (3.9)

Eqs. (3.9, 3.8) show that ¶LP is a non-conservative term, which vanishes in the case
of purely elastic material, i.e., when the Green’s function is a symmetric function
(GO(x,v) = 0) [47, 48].
The virtual work of external adhesive forces during the entire displacement process
is instead

(¶LE)T = ∆µ¶A (3.10)

Thus, exploiting Eq. (3.3) at each single step of the displacement process, the
energy balance gives

(¶LI)T = (¶LE)T (3.11)

Combining Eq. (3.11) with Eq. (3.6), the final expression for the energy balance
(i.e., the closure equation of the problem) reads as

∂U (v)

∂A

∣∣∣∣
∆

+
¶LP(v)

¶A

∣∣∣∣
∆

= ∆µ (3.12)
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which can be numerically computed based on contact stress and displacement fields
using Eqs. (3.7, 3.8). Also, recalling the usual definition of the energy release rate
G = (∂U/∂A)∆ at fixed displacement of the indenter, we get

G (v) = ∆µ − ¶LP(v)

¶A

∣∣∣∣
∆

(3.13)

Notably, we recall that the term ¶LP might be both positive or negative (as shown
in Chapter 1), therefore the energy release rate can be either larger or smaller
than ∆µ, and can even vanish or become negative. When this happens adhesion is
switched off, being totally masked by viscoelasticity. Also note that in this treat-
ment we do not take into account the influence of the highly non linear phenomena
occurring very close to the tip of the contact edges (in the so called process zone),
which may modify the effective energy of adhesion [117, 121–125]. These effects
can be included in the present theory by replacing ∆µ with an apparent energy of
adhesion G0 measured at very low sliding velocity. Moreover, in the present theory,
the quantity ¶A is a characteristic size of the problem, whose order of magnitude
should be the same of the process zone’s size. However, the specific value of ¶A
set in calculations doesn’t change the qualitative contact behavior, as shown in
Sec. 3.8 and in Chapter 5. Notably, in adhesiveless contacts, i.e. for ∆µ = 0, the
stress intensity factor at the edge of the contact vanishes so that the displacement
field does not present any discontinuous jump as the contact area changes of the
infinitesimally quantity ¶A, leading to ¶L = ¶U = ¶LP = 0 in Eq. (3.13).

3.2 The case of a sinusoidal rigid indenter

In this section we discuss the 1D+1D adhesive periodic contact of a viscoelas-
tic half-plane sliding at constant velocity v against a sinusoidal rigid indenter of
wavelength ¼, amplitude Λ and wave vector k = 2Ã/¼. All the geometrical pa-
rameters needed to define the problem are shown in Fig. 3.1. The contact domain
is defined by the positive quantities l1 and l2, which represent the distance of the
two contact edges (respectively trailing edge and leading edge ) from summit of
the sinusoidal indenter. The semi-width of the contact length is a = (l1 + l2) /2
and the eccentricity is e = (l2 − l1) /2. In this 1D+1D case [107] the viscoelastic
Green’s function (see Sec 2.2.2) is

G (x, v) = J(0)
2 (1− ¿2)

Ã
log

∣∣∣∣2 sin
kx

2

∣∣∣∣+
2 (1− ¿2)

Ã

∫ +∞

0+
dt log

∣∣∣∣2 sin
k (x+ vt)

2

∣∣∣∣ J̇(t)
(3.14)

The linear viscoelastic solid is modelled with one relaxation time Ä , and the creep
function is

J(t) = H (t)

[
1

E0

−
(

1

E0

− 1

E∞

)
exp

(
− t

Ä

)]
(3.15)

where E∞ and E0 are, respectively, the high and low frequency viscoelastic mod-
ulus, and H (t) is the Heaviside unit-step function. Although real viscoelastic
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materials are undoubtedly characterized by multiple relaxation times, qualitative
physical insights can still be obtained using a single relaxation time
Within the contact area, the interfacial displacement must match the indenter
shape; therefore, v (x) = Λ cos (kx) − Λ + ∆ and the contact stress distribution
can be found, at given ∆, by solving the equation

∫ l2

−l1

dx1G (x− x1, v) Ã(x1) = Λ cos (kx)− Λ +∆ (3.16)

In order to calculated the unknown contact parameters l1 and l2 we need to enforce
the energy balance Eq. (3.12) at each edge of the contact, i.e.

∂U (v)

∂l1

∣∣∣∣
∆,l2

+
¶LP1

(v)

¶l1

∣∣∣∣
∆,l2

= ∆µ (3.17)

∂U (v)

∂l2

∣∣∣∣
∆,l1

+
¶LP2

(v)

¶l2

∣∣∣∣
∆,l1

= ∆µ (3.18)

with ¶l1 and ¶l2 being, respectively, the infinitesimal independent variations of the
contact area at the trailing and leading edges. The displacement field and the
contact stresses are numerically calculated by relying on the numerical procedure
addressed in [47].

Figure 3.1: The schematic of the sliding contact between a viscoelastic solid and a rigid
wavy indenter. Geometric parameters are also shown.

Once the contact problem is solved [notably, the contact pressure is p (x) =
−Ã (x)], we can calculate the remote average pressure

p∞ =
1

¼

∫ l2

−l1

p(x)dx, (3.19)

as well as the friction coefficient

µ = − 1

¼p∞

∫ l2

−l1

dxp(x)u′(x), (3.20)
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and the strain energy release rates at the opening and closing cracks (trailing and
leading edges) respectively

G1 (v) = ∆µ − ¶LP1
(v)

¶l1

∣∣∣∣
∆,l2

(3.21)

G2 (v) = ∆µ − ¶LP2
(v)

¶l2

∣∣∣∣
∆,l1

(3.22)

3.2.1 Dimensionless parameters

The problem can be formulated in term of the following dimensionless parameters:
x̃ = kx; ã = ka; ẽ = ke; p̃ = 2 (1− ¿2) p/ (E0kΛ) ; µ̃ = (1− ¿2) k∆µ/(ÃE0);
· = kvÄ ; ũ = u/Λ; Λ̃ = kΛ; ṽ = v/Λ; ∆̃ = ∆/Λ; ´ = E∞/E0. Also we define the
dimensionless elastic energy as Ũ = 2(1−¿2)U/(E0Λ

2) and the dimensionless non-
conservative work of internal stresses as ¶L̃P = 2(1 − ¿2)¶LP/(E0Λ

2). Moreover,
regarding the assumption of JKR-like infinitely short-range adhesive interactions,
we observe that the Tabor parameter in the stiffer case of E = E∞ can be rewritten
according to our dimensionless quantities as µT = [(ÃΓ/´)2Λ̃3/(kZ0)

3]1/3 and still
gives µT k 1 even for low values of the reduced adhesion energy Γ (≈ 0.001) and
high values of ´ (k 10) provided that the periodic profile’s wavelength ¼ ≳ 10µm,
which is a reasonable value for our case of interest (also, we set Λ̃ ≈ 1 to enforce
linear elasticity and Z0 ≈ 1nm). Now observe that Eq. (3.16) can be rewritten as:

∫ l̃2

−l̃1

dx̃1G̃ (x̃− x̃1, ·) Ã̃(x1) = ṽ(x̃) = cos (x̃)− 1 + ∆̃ (3.23)

where

G̃ (x̃, ·) =
1

´

1

Ã
log

∣∣∣∣2 sin
x̃

2

∣∣∣∣+
1

Ã

(
1− 1

´

)∫ +∞

0+
dz log

∣∣∣∣2 sin
(x̃+ ·z)

2

∣∣∣∣ exp (−z)

(3.24)
And the closure equations written in dimensionless form read as

∂Ũ (·)

∂l̃1

∣∣∣∣∣
∆̃,l̃2

+
¶L̃P (·)

¶l̃1

∣∣∣∣∣
∆̃,l̃2

= µ̃
2Ã

Λ̃2
(3.25)

∂Ũ (·)

∂l̃2

∣∣∣∣∣
∆̃,l̃1

+
¶L̃P (·)

¶l̃2

∣∣∣∣∣
∆̃,l̃1

= µ̃
2Ã

Λ̃2

Equations (3.23, 3.24, 3.25) show that adhesion is governed by the parameter
Γ = µ̃/Λ̃2. More specifically, the contact solution is uniquely determined by the
parameters Γ, ·, ∆̃ or, analogously, by Γ, ·, p̃∞. In our calculations, unless
differently specified, we set ¶l̃1 = ¶l̃2 = 0.001 in Eqs. (3.25).
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3.3 Numerical implementation

Now, in order to solve numerically Eq. (3.23) we need to discretize the contact
domain. We rely on the numerical procedure addressed in [47] based on a non-
uniform adaptive mesh. A different grid of points has to be generated for every
single contact area. Thus, let us consider the generic contact area identified by the

interval [ãi, b̃i], define the quantities µi =
(
ãi + b̃i

)
/2 and ³i =

(
b̃i − ãi

)
/2 > 0,

and let us apply the following transformation rule ¸ = x̃− µi, so that the interval
[ãi, b̃i] is mapped onto the interval [−³i, ³i]. Now, let U be a uniform mesh of N+1
points ·l which contains the extreme points −³i and ³i of the contact region. We
have

·l = −³i + 2³i
l

N
; l = 0, ..., N (3.26)

Also, let us define the non uniform mesh P obtained by the above grid U by means
of the following transformation rule

zl = M (·l) ; l = 0, ..., N (3.27)

where the function M (·) will be defined below. We only require that −³i =
M (−³i) and ³i = M (³i). The solution of the integral equation will be sought
on a different mesh C, the points of which are defined as

Àl =
zl + zl−1

2
; l = 1, ..., N (3.28)

Observe that the C-mesh does not contain the stress singular points −³i and ³i.
Also define the mesh H constituted of N elements hl

hl = zl − zl−1; l = 1, ..., N (3.29)

In order to find an accurate numerical solution, and in particular to accurately
describe the singular behavior of the interfacial stress, the non uniform mesh P
has to be chosen in such a way that the point density diverges at the edges of
the contact areas. Therefore, the problem is to define a function M (·) [see Eq.
(3.27)] which fulfills these requirements. The point density Ä is defined as

Ä (·) =
1

M′ (·)
. (3.30)

with ∫ αi

−αi

M′ (·) d· = M (³i)−M (−³i) = 2³i (3.31)

Since the stress Ãyy has a square root singularity at the edge of the contact we
may choose

Ä (s) = C
1

[cos (s)− cos (³i)]
n (3.32)

with n g 1/2, where the constant quantity C can be calculated from Eq. (3.31)

C =
1

2³i

∫ αi

−αi

[cos (À)− cos (³i)]
n dÀ (3.33)
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Thus, the function M (·) becomes

M (·) =

∫ ζ

0

M′ (À) dÀ =
1

C

∫ ζ

0

[cos (À)− cos (³i)]
n dÀ (3.34)

Now, we can convert Eq. (3.23) into a system of linear equations by simply using
a numerical quadrature rule

N∑

q=1

∫ ξq+hq/2

ξq−hq/2

d¸G̃ (Àl − ¸, ·) Ã̃q = ṽ(Àl)

where Ã̃q is the uniform stress acting within the q − th element. Therefore, we
need to solve the following system of N unknowns and N equations

N∑

q=1

BlqÃ̃q = ṽ (Àl) ; l = 1, ..., N (3.35)

Thus, we can write

Blq =

∫ ξq+hq/2

ξq−hq/2

d¸G̃ (Àl − ¸, ·) =

∫ ξl−ξq+hq/2

ξl−ξq−hq/2

dεG̃ (ε, ·) (3.36)

Now note that the quantity

−
∫ θ

0

dε log
[
2
∣∣∣sin

(ε
2

)∣∣∣
]
= Cl2 (¹)

is the Clausen integral, related to the dilogarithm function L2(¹) =
∑+∞

m=1 (¹
m/m2)

by means of the formula Cl2 (¹) = Im[L2(e
iθ)]. Therefore, following Eq. (3.24), we

can define

K(¹, ·) =

∫ θ

0

dεG̃ (ε, ·) = − 1

´Ã

[
Cl2 (¹) + (´ − 1)

∫ +∞

0+
dz exp (−z) [Cl2 (¹ + ·z)− Cl2 (·z)]

]

and according to Eq. 3.36 we obtain

Blq = K(Àl − Àq + hq/2, ·)−K(Àl − Àq − hq/2, ·)

Note that the integral

I(x) =

∫ +∞

0+
dz exp (−z) [Cl2 (x+ ·z)]

can be easily numerically computed, since Cl2 (x) is a regular periodic function.
Moreover, also its analytical expression can be derived:

I(x) = Im[−·22F1

(
1,

i

·
,
1 + ·

·
, eix
)
+ ·

(
· − i log

[
1− eix

])
+ L2(e

ix)]

where 2F1(a, b, c, d) is the Gaussian Hypergeometric Function (see [126, 127] for
details on these types of functions).
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3.4 Contact solutions

Fig. 3.2 shows the dimensionless semi-width of the contact ã [see Figs. 3.2(a)
and (b)] and the dimensionless eccentricity ẽ [see Figs. 3.2(c) and (d)] as a func-
tion of the dimensionless sliding velocity · = kvÄ , under fixed penetration ∆̃ or
load p̃∞. The adhesiveless case [43,103,107] is also reported for reference (dashed
lines). Note that at very low or very high sliding velocity the system recovers
the elastic limit (wih vanishing eccentricity) and the contact solution corresponds
to that derived in [37] for elastic moduli E0 and E∞ respectively. Notably, the
high velocity solution exhibits a smaller contact area because of the larger stiffness
of the material. Noteworthy, as the sliding velocity · grows from zero, a very
significant increase of the contact area is observed [Figs. 3.2(a) and (b)] which
presents a maximum at a certain intermediate speed. This behavior is not ob-
served for adhesiveless viscoelastic contacts, and is very peculiar of viscoelastic
adhesion. Similar results have been fund by several experimentalists as in the case
of rolling contacts between rigid cylinders and rubbery-like substrates ( [28, 32]).
This behavior is ascribable to the local viscoelastic losses occurring very close to
the trailing (crack opening) edge of the contact, where the material is excited at
a frequency v/Ä, being Ä the radius of curvature at the tip of the crack. There-
fore, at sliding speed v ≈ Ä/Ä << ¼/Ä most of the energy dissipation occurs at the
opening crack whereas the bulk of material, being excited at frequency v/¼ j 1/Ä ,
behaves as an almost perfectly elastic material with low frequency elastic modulus
E0. This regime is know as the small-scale viscoelasticity regime and leads to what
is known as adhesive friction (see Sec. 3.6). In Figs. 3.2(c) and (d) we observe
that at dimensionless speed at which the contact size ã takes its maximum value,
the eccentricity ẽ is negative so that the whole contact is shifted backward. Since
in the adhesiveless case the opposite behavior occurs [43, 103, 107], we conclude
that in the range of velocity governed by the small-scale viscoelasticity the contact
area is strongly enlarged at the trailing edge. Indeed, the small-scale viscoelastic
losses are triggered by adhesion, i.e., they vanish in adhesiveless contacts. This is
confirmed by the deformed contact configurations reported in Fig. 3.4 (a), which
refers to v ≈ Ä/Ä << ¼/Ä in agreement with experimental observations [28, 32].
However, as the sliding velocity increases (i.e. for Ä/Ä < v < ¼/Ä as in Fig. 3.4(b)),
a large amount of energy is dissipated in the bulk of the material and large-scale
(bulk) viscoelastic losses take place in addition to local hysteresis at the trailing
and closing edges. In this case, the contact area and the eccentricity gradually
invert their trend (see Figs. 3.2). At higher velocity v ≈ ¼/Ä k Ä/Ä [see Fig. 3.4
(c)], the sliding speed is so high that the material at the edges of the contact is
in the glassy state and behaves as an elastic material with elastic modulus E∞.
Under this conditions the bulk viscoelasticity almost entirely governs the behavior
of the system, and therefore the qualitative contact behavior resembles that of the
viscoelastic adhesiveless case.
Fig. 3.3 investigates the asymmetric contact pressure distribution for a positive
(a) and a negative (b) value of the contact penetration and different values of the
sliding speed. Notably, a positive pressure peak is observed at the contact leading
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Figure 3.2: The dimensionless semi-width of the contact ã, and the dimensionless eccen-
tricity ẽ as functions of the dimensionless sliding velocity ζ, for different values of the
dimensionless remote pressure p̃∞, and the dimensionless penetration ∆̃. Results are
shown for β = 10 and Γ = 0.008.

b

Figure 3.3: The dimensionless contact pressure p̃ as function of the normalized contact
coordinate x/a for a positive (a) and a negative (b) value of the contact penetration ∆̃
and different values of the dimensionless sliding velocity ζ. Results are shown for β = 10
and Γ = 0.008.
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edge, in agreement with previous studies [30, 103, 107, 128]. Interestingly, at low
velocity, the peak is found highly pronounced and localized at small distances from
the contact edge (see · = 0.01). This behavior originates from the small-scale vis-
coelastic response of the material, in agreement with the discussion presented in
Chapter 5 (see Fig. 5.4). Fig. 3.5 more deeply investigates the shape of contact
for negative and positive penetrations. Notably, within the small-scale viscoelastic
regime, a magnification of the contact trailing edge at distance from the crack tip
of order vÄ reveals the typical trumpet shape of opening cracks, as predicted by
De Gennes [129] and in agreement with the discussion presented in Chapter 5 (see
Fig. 5.2).

Figure 3.4: The comparison between the deformed contact configurations predicted for
adhesive and adhesiveless conditions at different sliding velocity values. (a) small-scale
viscoelastic regime, ζ = 0.01. (b) coupled large and small scale viscoelastic regime
, ζ = 0.8. (c) bulk viscoelastic regime , ζ = 2. Results are shown for p̃∞ = 0.15,
Γ = 0.008, β = 10.

Figure 3.6 shows the effect of the dimensionless parameter Γ = µ̃/Λ̃2 on the semi-
width of the contact ã and eccentricity ẽ. As expected increasing Γ from zero
exacerbates the effect of adhesion hysteresis (i.e. the small scale viscoelasticity)
in determining the contact area size and eccentricity, thus larger value of · are re-
quired for the system to resemble the behavior of a purely viscoelastic adhesiveless
contact.
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b

v v

Figure 3.5: The deformed shape of contact for a positive (a) and a negative (b) value
of the contact penetration ∆̃ and different values of the dimensionless sliding velocity
ζ. The inset shows a magnification of the contact trailing edge for the small-scale
viscoelastic regime. Results are shown for β = 10 and Γ = 0.008.
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Figure 3.6: The effect of the reduced energy of adhesion Γ =γ̃/Λ̃2 on the dimensionless
semi-width ã (a) and the dimensionless eccentricity ẽ (b) shown as functions of the
dimensionless sliding velocity ζ. Results are shown for β = 10, p̃∞ = 0.1.
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3.5 The energy release rate

Fig. 3.7 reports the equilibrium values of the reduced strain energy release rates
G1/∆µ (at the opening crack) and G2/∆µ (at the closing crack) as a function
of the dimensionless sliding velocity ·, for different values of the dimensionless
remote pressure. The effect of the dimensionless parameter ´ = E∞/E0 on the
curves is also shown in Fig. 3.8 . It is worth noticing that in some previous
studies (see for instance [37, 60–62]), the value of G at the contact trailing and
leading edges represents an input parameter, usually quantified depending on the
relative velocity according to theories of viscoelastic crack opening [69–72,84,112]
or closing [68, 70, 113], or fitted from experimental data. In this class of models,
the contact parameters (e.g., the contact length and the eccentricity as in the
present case) can be therefore calculated by enforcing the value of G at the con-
tact edges [37]. On the contrary, in the present study, the equilibrium values of
G1 and G2 are calculated as part of the solution. As expected, at very low or
very high velocities, the ratios G1/∆µ and G2/∆µ approach the unit value as the
material behaves elastically, in agreement with Eqs. (3.21, 3.22). In such condi-
tions, the non-conservative contribution to the work of internal stresses vanishes.
Increasing · from zero, we observe an increase of the reduced strain energy release
rate G1/∆µ at the opening crack edge, and a decreases of the ratio G2/∆µ the
closing crack edge. As the velocity is increased G1/∆µ approaches a maximum
value G1max/∆µ not so far from ´ = E∞/E0, whereas G2/∆µ reaches a mini-
mum G2min/∆µ relatively close to ´−1 = E0/E∞. Therefore increasing ´ leads to
an increment of G1max/∆µ and to a decrement of G2min/∆µ as observed in Fig.
3.8. Importantly, within the small-scale viscoelastic regime, results are in perfect
agreement with the fact that in such conditions the local behavior at the contact
edges is analogue to that of a crack propagating within an infinitely extended solid
(see also Chapter 5). However, the overall non monotonic trend is a consequence
of the finite system size, the finite contact length, which causes the viscoelastic
stiffening of the bulk of the material, thus recovering the fully elastic solution at
high speed. A similar behavior has been predicted by Persson [85,130]. For infinite
systems, instead, this cannot be observed as the very majority of the material is
totally relaxed and behaves as an elastic soft solids with modulus E0. Therefore,
energy is dissipated only close to the crack tip hence the system is always in the
small-scale viscoelasticity regime. For infinite systems, at sufficiently high crack
propagation velocity, the material will behave as very stiff elastic solids at the tip
of the crack and as a very soft elastic solids into the bulk thus leading to values of
G1/∆µ = ´ = E∞/E0 and G2/∆µ = ´−1 = E0/E∞, as shown in Chapter 5 and
in [68–71,112,113].
Note that for negative value of the remote pressure p̃∞ the trend of G1/∆µ and
G2/∆µ is described by bell-shaped curves, with G1 being always greater than ∆µ
and G2 always smaller. However, when the remote pressure p̃∞ is positive, the
shape of the reduced energy release rates changes. In this case G1 may reach a
minimum value less than ∆µ and might also become negative, whereas G2 reaches
a maximum value greater than ∆µ. This happens because the viscoelastic stiff-
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ening of the bulk material tends to move the contact forward: a larger amount
of elastic energy is stored at the closing edge compared to the opening edge, thus
making G2 greater than G1 at sufficiently large velocity. When this happens ad-
hesion is switched off, being totally masked by viscoelasticity. Importantly, these
results reflect the fact that, in Eqs. (3.21, 3.22), the non-conservative work contri-
bution might take both positive or negative values depending on specific contact
conditions. Note that negative values of G would be physically unreasonable only
within the small-scale viscoelastic regime. Indeed the energy balance of a single
crack propagating in an infinite system reads as G = ∆µ + Pd/v where this time
Pd is a positive term representing the amount of energy dissipated per unit time
and unit thickness of the system and v is the crack velocity. This implies that
G > ∆µ for the opening crack (v > 0) and G < ∆µ for the closing crack (v < 0)
(see also Chapter 4 and [68–71, 112, 113]). Instead, in the present sliding contact
case, the energy balance of the system reads as

FLv = Pd (3.37)

where FL is the lateral force per unit system’s thickness acting over each periodic
cell (i.e., the frictional stress) and Pd is the amount of internal viscoelastic dissi-
pation occurring within the whole volume of the periodic cell per unit time, i.e.,
it includes both the local and bulk contributions. Notably, within the small-scale
viscoelastic regime, the quantity Pd only includes local losses and therefore can be
precisely split as Pd = Pd,1+Pd,2 where Pd,1 and Pd,2 are the amounts of dissipation
localized at the trailing and leading edges respectively. Therefore, at relatively low
velocity, since the two edges behave as two independent cracks, we can write that
G1 = ∆µ + Pd,1/v and G2 = ∆µ − Pd,2/v and thus substituting these expressions
into Eq. (3.37) while using that Pd = Pd,1 + Pd,2 we obtain

FL = G1 −G2 (3.38)

Eq. (3.38) shows that the adhesion hysteresis is importantly associated with the
frictional behavior of the contact (see the section 3.6). In fact, G1 and G2 can be
regarded as effective energies of adhesion, therefore Eq. (3.38) simply shows that
within the small-scale vsicoelastic regime the overall lateral force is ascribable to
the difference between the energy spent to separate the surfaces at the trailing edge
and the energy recovered when they come back into contact at the leading edge.
On the other hand, at higher velocity, there is no possibility to separate the small-
scale and the large-scale viscoelastic losses, therefore Eq. (3.37) cannot be directly
related to G1 and G2. Indeed, the overall contact behavior in general conditions
is described by the closure equations Eqs. (3.21, 3.22), which represents a virtual
work balance, in which this time the quantity ¶Lp is not a direct quantification of
the internal dissipation and might also be negative (as demonstrated in Chapter
1).
Importantly, in Figure 3.9 we show that, by increasing the size of our system (i.e.
the wavelength ¼), the response asymptotically approaches the one predicted for
the infinite case, and as expected G1max/∆µ and G2min/∆µ approach the values
of ´ and ´−1, respectively.
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Figure 3.7: The reduced energy realase rates G/∆γ as functions of the dimensionless
sliding velocity ζ, for different values of the dimensionless remote pressure p̃∞. (a)
G1/∆γ refers to the traling edge of the contact (opening crack), (b) G2/∆γ refers to the
leading edge (closing crack). Results are shown for Γ = 0.003, β = 10.
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Figure 3.9: The effect of the wavelength of the sinusoidal indenter λ on the trend ofG/∆γ
vs. ζ. Data are shown in log-log form. Solid line refers to the opening crack (G1/∆γ),
dashed line refers to the closing crack (G2/∆γ). Results are shown for β = 10, p̃∞ = 0.
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3.6 Friction

In this section, we investigate the frictional behavior of the system. Friction is orig-
inated by the cyclic deformations occurring during the relative motion between the
indenter and the solid and, in turn, by energy dissipation within the viscoelastic
material. As a consequence, the contact pressure distribution p(x) is asymmetric,
and the resulting contact force acting on the rigid asperity presents a tangential
component opposing the indenter sliding motion, which is usually referred to as
viscoelastic friction. According to Refs. [25, 30, 131], the viscoelastic friction co-
efficient can be calculated through Eq. (3.20). However using the dimensionless
quatities define so far one obtains that

µ = − Λ̃

2Ã

1

p̃∞

∫ l̃2

−̃l1

dx̃p̃ (x̃) ũ′ (x̃) (3.39)

It follows that the friction coefficient is proportional to Λ̃ = kΛ. Therefore we
will refer to the reduce coefficient of friction as µ̃ = µ/Λ̃. Notably, as already
mentioned in the previous section, the reduced friction coefficient µ̃ takes into
account the energy dissipation occurring in the whole viscoelastic solid, i.e. both
large- and small-scale viscoelastic hysteresis, according to Eq. (3.37). In order to
provide a rough estimate of the contribution to the overall friction ascribable to
adhesion hysteresis (i.e., to local viscoelastic losses close to the contact edges), we
define the reduced adhesive friction coefficient as

µ̃a =
1

Λ̃

G1 −G2

¼p∞
(3.40)

Similarly, we also refer to µ̃0 as to the reduced friction coefficient calculated in
adhesiveless viscoelastic contacts. Notice that, since small-scale viscoealstic losses
vanish when ∆µ = 0, µ̃0 entirely originates from bulk viscoelastic hysteresis. Fig-
ure 3.10 reports, at given remote pressure p̃∞, the reduced friction coefficients µ̃,
µ̃a and µ̃0 as functions of the dimensionless sliding velocity ·, for different values
of the reduced energy of adhesion Γ. At low velocity (i.e., for · < 10−2), the
system is in the small-scale viscoelasticity regime; indeed, friction is governed by
the adhesion hysteresis, therefore µ̃ ≃ µ̃a, in agreement with Eq. (3.38). As ex-
pected, increasing Γ leads to significantly higher values of µ̃, as the term G1 −G2

in Eq. (3.40) increases. At intermediate velocities (i.e., for 10−2 < · < 1), also
bulk dissipation occurs; importantly, the figure clearly indicates that µ̃ k µ̃a+ µ̃0,
i.e., that the contributions to friction of the small-scale and of the bulk (i.e. large-
scale) viscoelasticity cannot be linearly separated. This is a key result: adhesion
increases the contact area, hence, the volume where viscoelastic losses take place,
and, in turn, increases the bulk viscoelastic dissipation [see also Fig. 3.2(a)]. At
higher velocity (i.e., for 1 < · < 10), this effect is even clearer, as µ̃a < 0 while
µ̃ > µ̃0 > 0. Indeed, when bulk dissipation is involved in the frictional response, µ̃a

is a qualitative estimation of the sole contribution to friction ascribable to the con-
tact edges, which can also become negative when more energy is recovered during



52 Chapter 3

sliding in closing the leading edge compared to that required to open the trailing
one (i.e., G2 > G1). At very high velocity, the contact edges behave almost elasti-
cally (glassy region), thus the small-scale viscoelastic energy dissipation vanishes,
and the great majority of energy dissipation occurs in the bulk of the material.
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Figure 3.10: The reduced viscoelastic friction coefficient µ̃ = µ/Λ̃ (solid lines) as a
function of the dimensionless sliding velocity ζ, for different values of the reduced energy
of adhesion Γ under load controlled conditions. In the same figure, we also show the
reduced adhesive friction coefficient µ̃a (dashed line), and the reduced friction coefficient
µ̃0 corresponding to adhesiveless conditions (solid black line).

Fig. 3.12(a, b) shows the reduced friction coefficient µ̃ versus the sliding di-
mensionless speed · for different values of the dimensionless remote pressure p̃∞
and the dimensionless penetration ∆̃, respectively. The specific dependence of
the friction coefficient on ∆̃ and p̃∞ is affected by different mechanisms, related
to both the adhesion hysteresis and the bulk viscoelasticity. At relatively high
velocity (i.e., for · > 1), friction is mostly governed by bulk dissipation, and the
curve µ vs. · roughly depends on the size of the contact area a, as discussed in
Refs. [43, 103, 131]. The first effect is that, since the excitation frequency in the
bulk material can be estimated as É ≈ 2Ãv/a = 2Ã·/ (ãÄ), and the viscoelastic
dissipation takes its maximum at É ≈ 1/Ä , the dimensionless sliding velocity ·0
associated to the µ peak roughly depends on the value of a as ·0 ≈ ã/2Ã. In-
deed, Figs. 3.12(a, b) show that increasing ∆̃ or p̃∞ (i.e., increasing a) has the
effect of shifting the friction peak location ·0 at higher values, for both adhesive
and adhesiveless contacts. Secondly, dimensional arguments [103] show that the
friction coefficient can be roughly estimated as µ ≈ (¶/2a) Im[E(É)]/ |E(É)|, with
¶ = Λ (1− cos ka) ≈ Λ(ka)2/2 being the local indenter penetration. Figs. 3.12(a,
b) show, indeed, that increasing ∆̃ or p̃∞ (i.e., increasing a) leads to higher peak
values for µ. However, these arguments only consider the bulk dissipation. On the
contrary, at low velocities (i.e., for · < 10−2), most of the contribution to friction
arises from adhesion hysteresis (µ ≈ µa). Therefore, the reduction of µ reported
under these condition as ∆̃ and p̃∞ are increased is immediately explained recall-
ing that, in Eq. (3.40), the term G1 − G2 only depends on · (see also Fig. 3.7
and Chapter 5). Hence, given the value of ·, the adhesive friction coefficient must
decrease as p̃∞ is increased, in agreement with Refs. [120] and [37]. Moreover, it is
worth noticing, that under load controlled conditions [Fig. 3.10 and Fig. 3.12(a)],
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the µ vs. · curves present a hump localized at the value of · corresponding to
the maximum of µa, followed by a peak at higher velocity, where maximum bulk
dissipation occurs.

Figure 3.11: The measured friction coefficient µ as a function of the dimensionless sliding
velocity taken from Ref [27] for styrene-butadiene rubber sliding against three surfaces:
smooth clean (dashed); rough clean (solid); rough dusted (dot-dashed). See [27] for
further details.

In Figure 3.11, we report the experimental measurements provided by Grosch
in [27] for sliding friction of rubber samples. Regardless of the numerical values,
which depend on the specific rubber property and surface roughness parameters,
Grosch’s trends are in very good agreement with our numerical predictions. No-
tably, using a clean smooth surface (dashed line) as sliding counterpart, only ad-
hesive friction occurs. Dealing with a clean rough surface (continuum line), both
adhesive hysteresys and bulk viscoelasticity play a key role on µ; whereas, ad-
hesion can be completely masked by introducing a fine poweder at the interface
(dot-dashed line).
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Figure 3.12: The reduced viscoelastic friction coefficient µ̃ = µ/Λ̃ (solid lines) as func-
tion of the dimensionless sliding velocity ζ, under load controlled conditions (a) and
displacement controlled conditions (b). In the same figure, we also show the reduced
friction coefficient µ̃0 corresponding to adhesiveless conditions (dashed line).

Under displacement controlled conditions (i.e., fixed ∆), the behavior is slightly
different and curves might, instead, exhibit ad adhesive friction peak followed by
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a hump as the velocity is increased (see curves at ∆̃ = 0.3 and ∆̃ = 0.4). This
follows from the fact that when the penetration is prescribed the contact area
is much less dependent on the effective bulk stiffness and in turn on the sliding
velocity. Moreover, the contact length is much closer to what is found in the case
of adhesiveless viscoelastic contact [see also Fig. 3.2(a)]. Therefore, in this case,
at high velocity (i.e., for · > 1), the effect of adhesion is very poor, and µ̃ ≈ µ̃0.
Nonetheless, at low velocity, adhesion plays a key role as µ ≈ µa. Note that under
fixed penetration the friction coefficient tends to diverge at intermediate velocity
(for ∆̃ ≲ 0.3) since the remote pressure tends to vanish and even become negative
(as shown in the next section) while the lateral stress remains finite.

The overall frictional behavior under negative p̃∞ is shown in Fig. 3.13, where
the trends of the dimensionless lateral remote stress Ã̃fr and of the associated

adhesive contribution Ã̃a = 2 (G1 −G2) /
(

¼Λ̃E∗

0

)

are shown as function of ·. In

this case, the effect of the bulk viscoelasticity on the lateral force is less significant
and the adhesive friction stress provides a good estimation of the actual lateral
stress (observe that at negative loads we always observe G1 −G2 > 0, as shown in
Fig. (3.7)). At low velocity, the lateral stress Ã̃fr ≃ Ã̃a and is therefore independent
on p̃∞, in agreement with the previous discussion. At quite high velocity velocity
instead, increasing the tensile normal stress |p∞| implies a slight decrease of Ã̃fr,
ascribable to the smaller size of contact area leading in turn to a smaller amount
of bulk dissipation.
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Figure 3.13: The frictional behavior under negative dimensionless normal remote pres-
sure p̃∞ as function of the dimensionless sliding velocity ζ. Solid lines represent the
dimensionless remote lateral stress σ̃fr . Dashed lines represent the dimensionless adhe-

sive lateral stress σ̃a = 2 (G1 −G2) /
(

λΛ̃E∗
0

)

.

3.7 Adhesive properties of the contact

In this section the adhesive properties of the contact are investigated in terms of
toughness T (i.e. amount of work required to separate the contacting bodies) and
adhesive strength (i.e. pull-off remote pressure pout) of the contact interface. In
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dimensionless terms the toughness T̃ = 2 (1− ¿2)T/ (Λ2E0) is defined as

T̃ = 2Ã

∫ ∆̃out

∆̃0

p̃∞(∆̃)d∆̃ (3.41)

where ∆̃out is the dimensionless penetration at which pull-off occurs, ∆̃0 is the
dimensionless penetration corresponding to p̃∞ = 0. Notably, both ∆̃out and ∆̃0

depend on the dimensionless sliding velocity ·. In Fig. 3.14(a) the quantity T̃
is plotted against · for different values of the dimensionless adhesive parameter
Γ. Instead, Fig. 3.14(b) provides a complete adhesion-strength map: the iso-
· and iso-Γ curves are shown in the |p̃out| vs. |∆̃out| plane. In agreement with
the experimental observations reported in Ref. [32], we note that in the range of
velocity where small-scale viscoelasticity effects governs the contact behavior (i.e.,
10−2 < · < 10−1), both the adhesive toughness and the adhesive strength take
their maximum values. Interestingly, the trend of |p̃out| vs. · is non-monotonic;
notably, at very high velocity, due to the glassy stiff behavior of the material,
the contact interface is able to withstand high tensile loads (i.e. large pull-off
pressures). However, in the same conditions the system’s toughness T̃ is very low as
∆̃out drops. Interestingly, a similar limiting behavior is reported in the case of thin
elastic adhesives, where the material confinement induced by the rigid substrate
leads very high contact stiffness [47,48]. In order to provide deeper insights on the
origin of adhesion enhancement, Fig. 3.14 (c) compares the pull-off remote stress
|p̃out| with the quantity

∣

∣(p̃off )0
∣

∣, i.e., the pull-off pressure calculated for a purely
elastic material with elastic modulus |E (É = ·/Ä)|. We observe that |(p̃out)0|
monotonically increases because of the monotonic material stiffening occurring as
· is increased. However, the pull-off load |p̃out| rises up well above |(p̃out)0|, already
at very low velocity, confirming that at low velocity the pull-off enhancement is
triggered by the small-scale viscoelastic losses.
In Fig. 3.15 the equilibrium diagrams p̃∞ vs. ã and p̃∞ vs. ∆̃ are shown, for
different values of ·. The curves presents a qualitatively similar shape compared
to the elastic adhesive case [37]. We observe that, for a fixed value of ∆̃, p̃∞
non-monotonically depends on · (see also Fig. 3.16). Moreover, at low velocities
(i.e., for · < 0.1 = 0.001, · = 0.01, · = 0.1) the maximum positve load, i.e., the so
called snap into full-contact pressure, decreases as · is increased, as a consequence
of the viscoelasticity-induced enhanced adhesion. The overall dependence of the
snap into full-contact pressure pIN from the sliding velocity is shown in Fig.
3.14(d). Note that the scenario is reversed at high velocities, as larger values of
· entail a strong viscoelastic material stiffening, leading to very large values of
pIN . The diagrams in Fig. 3.15 also report unstable branches. Specifically, for
∆̃ → 1 the slope of the p̃∞ vs. ∆̃ curve is negative, i.e., under these conditions the
system is unstable and jumps into full-contact, analogously to the elastic case, as
discussed in [37]. Notably, a contact solutions is stable when the second variation
of the virtual work of internal stresses with respect to the contact coordinates
at the equilibrium point is positive at both contact edges (see Chapter 1). This
condition is not satisfied in points on the dashed lines in Fig. 3.15 (c).
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Figure 3.14: (a): The dimensionless work needed to cause detachment T̃ as a function
of the dimensionless sliding velocity ζ, for different values of the reduced energy of ad-
hesion Γ. (b): iso-ζ (dashed lines) and iso-Γ (solid lines) curves in the |∆̃out| vs |p̃out|
plane, being p̃out the dimensionless pull-off remote pressure and ∆̃out the dimensionless
penetration at which the pull-off occurs. (c) The dimensionless pull-off remote pressure
|p̃out| and the elastic dimensionless pull-off remote pressure |(p̃out)0| calculated assuming
a velocity dependent Young modulus |E (ω = ζ/τ)|, as function of ζ. (d) The dimen-
sionless snap into full-contact remote pressure p̃IN as function of ζ for different values
of Γ. Results are shown for β = 10.
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Figure 3.15: Equilibrium diagrams including stable (solid line) and unstable (dashed
line) branches, for different values of the dimensionless sliding velocity ζ. (a) The di-
mensionless contact half-length ã as function of dimensionless remote pressure p̃∞. (b)
The dimensionless remote pressure p̃∞ as a function of the dimensionless penetration ∆̃.
(c) Magnification of (b). Results are shown for β = 10, Γ = 0.008.

In Fig.3.16 (a) we report the overall dependence of p̃∞ from · under fixed
(positive) penetration. The specular curve of ∆̃ vs. · under constant (positive) p̃∞
is presented in Fig. 3.16 (b). The trends clearly reflect the adhesion enhancement
occurring at low and intermediate velocity: under constant load the indenter sinks
inside the rubber substrate (i.e., ∆̃ increases) and, analogously, under constant
displacement the indenter is pulled by a tensile force despite the penetration is
positive for intermediate values of ·. The reported behavior at the low and high
velocity limits instead depends on the different effective stiffness of the material.
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Figure 3.16: (a): The dimensionless remote pressure p̃∞ as function of the dimensionless
velocity ζ under constant penetration ∆̃ for different values of the reduced energy of ad-
hesion Γ. (b) The dimensionless penetration ∆̃ as function of the dimensionless velocity
ζ under constant dimensionless remote pressure p̃∞ for different values of the reduced
energy of adhesion Γ.

3.8 The effect of the process zone’s length

As mentioned in Sec. 3.1 the quantity ¶A in Eq. (3.12) represents a characteris-
tic size of the problem. Fig. 3.17 investigates its effect on the predicted contact
solutions. Specifically, the reduced energy release rates G1/∆µ and G2/∆µ at
the contact trailing and leading edges are reported as function of the dimension-
less speed, for different values of ¶l̃1 and ¶l̃2 set in Eqs. (3.25). A more detailed
discussion on how these result are related to the asymptotic local stress and dis-
placement fields in the small-scale viscoelastic regime and on the physical meaning
of the characteristic length is provided in Chapter 5. Importantly, the figure shows
that the contact solution is not affected by the value of the parameter for a wide
range of sliding velocities (i.e., for · ≳ 0.1), and only the small-scale viscoealstic
regime is affected. A qualitative explanation is that the assumption of infinitely
short range adhesive forces results into a paradox, i.e., that the material is excited
at infinitely high frequencies close to the crack tip, no matter how low the velocity
is. Therefore small-scale viscoealstic effects are always present at distance from
the crack’s tip of order ∼ vÄ (as shown in Chapter 5). As a consequence, if, for
instance, one sets ¶l ≃ vÄ , the low velocity limit elastic solution can never be
recovered. Consistently, the figure indicates that, given a fixed value of ¶l̃, the low
velocity limit, i.e., G = ∆µ, is obtained for · ≲ 0.01¶l̃. Notably, close to the open-
ing and closing crack tips, the materials response is elastic (glassy), and therefore
the crack opening or closing displacement gap at small distance d from the tip can
be written as

∆u(x) = KI/E
∗

∞

√

8/Ãd (3.42)

and the local stress presents the square root singularity

Ã(x) =
KI√
2Ãd

(3.43)
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Therefore, taking the limit ¶A → 0, Eqs. (3.42, 3.43) can be used in the closure
equation (3.12), which therefore in this case reads as

K2
I

2E∗
∞

= ∆µ (3.44)

In the small-scale viscoelastic regime, this leads to an incorrect result, i.e., that
the energy release rates are velocity-independent and G1 = (E∞/E0)∆µ and G2 =
(E0/E∞)∆µ. This corresponds to the black lines shown in Fig. 3.17. Indeed, the
real response of the system is correctly predicted when ¶l̃1 and ¶l̃2 are small but
finite quantities, whose order of magnitude resembles that of the so-called process
zone [69, 132, 133]. When the parameters ¶l̃1 and ¶l̃2 are correctly set in this way,
Eqs. (3.42, 3.43) no longer apply in the small-scale viscoelastic regime for distances
from the crack tips of order ¶l̃1 and ¶l̃2. This is due to the presence of the pressure
peak shown in Fig.3.3 at the leading edge and to the trumpet displacement shape
shown in Fig. 3.5 at the trailing edge, which are localized very close to the crack
tips. Therefore, Eq. (3.44) only applies at relatively high velocity.
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Figure 3.17: The reduced energy release rates at the trailing (solid lines) and leading
(dashed lines) contact edges as function of the dimensionless sliding velocity ζ predicted
by setting different values of the dimensionless parameters δl̃1 and δl̃2 in Eq. (3.25).
Taking the limit δl̃1 → 0 and δl̃2 → 0 (black line) is equivalent to enforce the closure
equation in the form expressed by Eq. (3.44). Results refer to β = 10, ∆̃ = 0.4,
Γ = 0.003.

3.9 Conclusion

In this chapter, we presented a novel theory of adhesive viscoelastic contact me-
chanics in the presence of relative sliding or rolling motion between the viscoelas-
tic solid and the rigid rough indenter. We found that close to the contact edges,
the viscoelastic behavior is governed by small-scale viscoelasticity. In this case,
the local excitation frequency depends on the ratio between the sliding speed at
the leading and trailing edges (closing and opening cracks) and the correspond-
ing crack tip radii. In the bulk of the material, instead, viscoelastic hysteresis
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occurs at an excitation frequency given by the ratio between the sliding speed
and the macroscopic contact size. As a consequence, the overall contact response
can be governed by either the small- and large-scale viscoelasticity, depending on
the specific value of the sliding velocity. Indeed, in agreement with the experi-
ments [28, 32], we have shown that at relatively low sliding velocity the bulk of
the material behaves as a soft elastic body, and the interaction between interfacial
adhesion and small-scale viscoelasticity leads to an increase of the contact area,
mostly localized at the trailing edge of the contact, and to a strong enhancement of
the pull-off load. Small-scale viscoelasticity induces a different adhesive response of
the trailing and leading edges, whose difference is mostly responsible of the overall
frictional response of the contact. At intermediate velocities, bulk viscoelasticity
and local viscoelasticity coexist, leading to a strong increase of friction compared
to the corresponding adhesiveless contact case. This peculiar result is in perfect
agreement with the observations made by Grosch on rubber adhesive friction [27].
The present theory also allows to quantify the energy release rates G1 and G2 (at
the trailing and leading edge, respectively) as functions of the sliding velocity. A
detailed analysis of these trends has shown that, because of the finiteness of the
contact area, G1 and G2 follow a non-monotonic trend, which may also differ from
the simple bell-shaped curve depending on load conditions and on the relative
interplay between small-scale and bulk viscoelasticity.



Chapter 4

Enhancement of adhesion

strength in viscoelastic unsteady

contacts

The viscoelastic response of rubbery-like material is often identified as a major
source of adhesion enhancement. Chapter 3 clearly demonstrated that this is a
pivotal aspect of steady-state sliding contacts, in which the increase of the pull-off
force and the contact area enlargement result from viscoelastic losses localized at
the contact trailing edge. Importantly, this phenomenon also governs unsteady
contacts when the relative motion consists of dynamic normal loading. Count-
less experimental studies (see for instance [33–36]) have shown that detaching a
rigid indenter from a viscoelastic substrate by applying a finite normal velocity
might require a force significantly higher compared to predictions of theoretical
elastic models (e.g., the JKR model). Viscoelasticity allows, in fact, to properly
tune and regulate adhesion, with fundamental implications in all those engineer-
ing applications in which objects must be picked, moved, and released through
adhesive forces. However, the overall contact behavior and, in turn, the pull-off
force value, are affected by the entire loading time-history and the overall ef-
fect of viscoelasticity on the effective adhesion in unsteady contacts is a complex
phenomenon, not fully understood yet. Indeed, lab tests are often devoted at
investigating the effect of different physical variables and enforced time loading
histories. For instance, loading-unloading cycles are carried at different velocities
and by changing the amplitude of the cycle [36, 134, 136]. Similarly, the effect of
the dwell time before retraction is investigated [137, 138], as well as the effect of
the applied preload [34,139]. Dynamic analyses are often devoted to investigating
the contact quantities under oscillating force or displacement as function of the
applied frequency [140,141], or by superimposing micro-vibrations and a mean ve-
locity of retraction [119]. In all of these experimental investigations, the observed
contact behavior significantly deviate from the JKR predictions: the aforemen-
tioned increase of the effective adhesion strength is associated with significative
hysteresis in cyclic oscillations and in some cases adhesion can be even masked
(see for instance [119]). Also in this class of unsteady contacts, most of existing
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theoretical and numerical studies are based on the small-scale viscoelasticity as-
sumption. The latter is often exploited by replacing the adhesive energy ∆µ in
the JKR equilibrium relations with a velocity-dependent term, which is fitted from
experimental data [36, 67] or assumed as input parameter in order to account for
local viscoelastic losses [63,64]. However, neglecting the bulk viscoelasticity might
prevent to tackle many of the characteristic phenomena. In the present Chapter,
the energy formulation presented in Chapter 3 is generalized to general unsteady
conditions (dynamic loading). Hence, in the present analysis, we formally derive
a general Griffith-like criterion for viscoelastic contacts and unsteady crack prop-
agation in hysteretic materials. We derive the energy balance by relying on the
D’Alembert virtual work principle: the variation of adhesion energy due to a vir-
tual change of the contact radius (the Lagrangian coordinate) must be precisely
balanced by the virtual work of internal stresses. Notably, in unsteady conditions,
the virtual work formulation must properly account for the time dependency of
all the contact quantities. Our findings are in perfect agreement with experimen-
tal results and Lennard-Jones based numerical calculations [65, 66, 135, 142], and
clearly indicate that viscoelasticity plays a major role in affecting the adhesion
enhancement depending on the specific loading-history. Our theoretical approach
also provides very profound insights into the physical mechanisms governing ex-
perimentally observed phenomena such as the enhancement of pull-off force during
fast retraction [33–36], the hysteresis during the approach-retraction cycle [36,136],
and effective contact stiffness during high frequency oscillations [140,141].

4.1 Formulation

We consider the adhesive contact between a linear viscoelastic half-space and a
rigid sphere of radius R subjected to a time-varying rigid normal displacement
u0(t), as shown in Fig 4.1. According to [30, 128] and to the discussion presented
in Chapter 2, under general unsteady conditions the normal displacement field
u(x, t) of the viscoelastic half-space surface is given by

u(x, t) = J(0)

∫

dx2
1G(x− x1)Ã(x1, t) +

∫ t

−∞

dt1J̇(t− t1)

∫

dx2
1G(x− x1)Ã(x1, t1)

(4.1)
where x is the in-plane position vector (see Fig (4.1)), t is the time variable, Ã(x, t)
is the interfacial normal stress distribution, J(t) is the viscoelastic creep function,
and G(x) = (1−¿2)|x|−1/Ã. Since we only consider the normal approach/retraction
of the sphere, the problem at hand is axisymmetric, i.e., at each time step t all
quantities depend only on the distance r = |x| from the contact center (see Fig.
4.1). This is of course a mixed boundary value problem: under the assumption of
infinitely short range interfacial adhesive interactions, outside the circular contact
region of radius a(t) the surface stresses must vanish, i.e. Ã(r, t) = 0 for r > a(t),
whilst within the contact region the surface displacement field is prescribed, i.e.
u(r, t) = s(r, t) for r f a(t), with s(r, t) = u0(t) + r2/(2R) being the spherical
indenter surface at time t. We also define the local interfacial gap as g (r, t) =
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Figure 4.1: The schematic of the adhesive contact between a viscoelastic half-space and
a rigid sphere, with time-varying normal rigid displacement u0(t). The inset represents
the virtual component v of the local displacement v + du0 close to the contact edge
associated with the contact area variation δa and indenter rigid displacement du0.
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s (r, t) − u (r, t), so that g (r, t) = 0 for r f a(t). Note that, given a time-history
of the rigid normal displacement u0(t), Eq. (4.1) cannot be solved as the time-
dependent contact radius a(t) is unknown, and an additional closure equation is
needed to solve the problem. Of course also in this class of unsteady contacts, in
adhesiveless conditions the closure condition is simply that the interfacial contact
stress must vanish at the boundary of the contact area; for adhesive contacts
instead, an energy based condition should be identified. In virtue of the principle
of virtual works, the equilibrium configuration at time t requires that the work of
external forces δLE due to an admissible virtual displacements field equates the
work of internal stresses δLI due to the corresponding compatible virtual strain
field. Since the virtual displacements field δv(r, z, t) must satisfy the boundary
conditions at time t (i.e., the kinematic constraints), we have δv(x, z, t) = 0 within
the contact region, i.e. where the time-dependent constraint u (r, t) = s (r, t) is
prescribed. Then, neglecting body forces, at equilibrium we have

δLI =

∫

W

σijδεijdV =

∫

∂W

σ · δvdA = δLE (4.2)

for any admissible virtual displacement δv and its associated internal strain tensor
δεij, where σ is the surface stress field, and σij is the internal stress tensor.

For the contact problem represented in Fig. 4.1, we assume a virtual varia-
tion (i.e., at fixed time t) of the contact configuration so that the contact radius
increases from a (t) to a (t) + δa. Consequently, the asymptotic surface displace-
ments at the contact edge [i.e., for |r − a (t)| j a (t)] changes by the quantity
v− (r) = g [r g a (t) , t]. This can be described by the virtual displacement process
v(r, η) = v−(r)H(η), where H(η) is the unit step function, and η is the process
parameter spanning the entire real axis. Therefore, at each step of the process,
the virtual normal displacement δv(r, η) obeys the equation

δv(r, η) =
∂v

∂η
dη = v−(r)δ(η)dη (4.3)

where δ(η) is the Dirac delta function. Similarly the asymptotic stress distribution
σa close to the boundary of the contact area [i.e., for |a (t)− r| j a (t)] has the
form σa [a (t)− r, t] = σ [r < a (t) , t]. Therefore, during the virtual displacement
process governed by the parameter η, the corresponding asymptotic surface stresses
are given by

σ(r, η) = σ+(r)H(η) (4.4)

where σ+(r) = σa [a (t) + δa− r, t]. It follows that during the entire η-governed
process, the total virtual work (δLI)T of internal stresses due to the contact radius
virtual variation from a (t) to a (t) + δa can be calculated as

(δLI)T = 2π

∫ a+δa

a

rdr

∫

∞

−∞

dησ(r, η)
∂v

∂η
= 2π

∫ a+δa

a

rdrσ+ (r) v− (r)

∫

∞

−∞

dηH (η) δ (η)

(4.5)
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and, recalling that
∫

∞

−∞
dηH (η) δ (η) = 1/2, we finally get

(δLI)T = πa

∫ a+δa

a

drσ+ (r) v− (r) (4.6)

The virtual (external) work of adhesive forces during the entire displacement pro-
cess is instead

(δLE)T = 2π∆γaδa (4.7)

Thus, exploiting Eq. (4.2) at each single step of the displacement process, the
energy balance gives

(δLI)T = (δLE)T (4.8)

which, using Eqs. (4.6,4.7), can be rewritten as

1

2δa

∫ a+δa

a

drσ+(r)v−(r) = ∆γ (4.9)

Eq. (4.9) represents the generalization of the Griffith fracture criterion for un-
steady contacts and holds true for both elastic and viscoelastic materials. The
positive quantity δa should be chosen of the same order of magnitude of the the
so-called ‘process zone’ at the contact edges [129]. Specific cases, such as thin
pressure-sensitive membrane [143, 144], might require replacing in Eq. (4.9) the
adhesion energy ∆γ with a modified energy of adhesion which depends on both
the propagation speed of the crack tip and temperature of the process zone. The
quantity δa or equivalently the length of the process zone is an additional (short)
length scale, whose choice does not affects the physical qualitative behavior of the
viscoelastic contact problem at hand, as it only shifts the frequency of the local
excitation occurring close to the boundary of the contact, as shown in Chapter
3. Notably, Eq. 4.9 is formally the same as that derived in Chapter 3 for steady
sliding contacts following a different argument.

4.2 Numerical implementation

In this section, we describe the numerical procedure employed to solve Eq. (4.1).
We refer to the viscoelastic creep’s function with single relaxation time given by
Eq. (4.20). In this case, taking the time derivative of Eq. (4.1) leads to

u̇(x, t) =
1

E∞

∫

dx2
1G(x− x1)σ̇(x1, t) (4.10)

−
1

τ 2E1

exp

(

−
t

τ

)
∫ t

−∞

dt1 exp

(

t1
τ

)
∫

dx2
1G(x− x1)σ(x1, t1) (4.11)

+
1

τE1

∫

dx2
1G(x− x1)σ(x1, t)

Using again Eqs. (4.1, 4.20) yields the following time-differential equation:
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u̇(x, t) =
1

E∞

∫

dx2
1G(x− x1)σ̇(x1, t) +

1

τE0

∫

dx2
1G(x− x1)σ(x1, t)−

u(x, t)

τ
(4.12)

Figure 4.2: The discretization of spatial domain for the numerical resolution of Eq. 4.1

which can be solved avoiding integration over the whole time history. Using a
numerical quadrature rule and exploiting the axisymmetric nature of the problem,
the spatial domain is discretized as shown in Fig. 4.2 into N circular annulus Cq of
constant width λ (with λ/a j 1) placed at radii rq = qλ+ λ/2, and a circle C0 of
radius λ placed at r0 = 0. Each area is subjected to uniform stress σq (t) = σ(rq, t),
q = 0, 1, ...N , and Eq.4.12 can be rewritten as

u̇h (t) = u̇ (rh, t) =
1

E∞

N
∑

q=0

σ̇q (t)

∫

Cq

dx2
1G (x− x1) + (4.13)

+
1

τE0

N
∑

q=0

σq (t)

∫

Cq

dx2
1G (x− x1)−

uh (t)

τ
(4.14)

where
∫

Cq

dx2
1G(x− x1) = G̃(rh, rq) = G̃hq is an axisymmetric field that represents

the surface displacement at radius rh induced on an elastic half-space of unit
modulus by a uniform unit stress acting over Cq. G̃hq can be easily calculated.
Indeed, following [145,146], the quantity

K(rh, rq) =

{

(1− ν2) π−14rqE(rh/rq), rh f rq

(1− ν2) π−14rh
[

E(rq/rh) − (1− (rq/rh)
2)K(rq/rh)

]

, rh > rq

∣

∣

∣

∣

(4.15)
is the surface displacement at radius rh resulting from a uniform unit stress field
acting over a circle of radius rq in the elastic problem (notably, a similar solution
is given in Ref. [147] for uniform tangential stresses). In Eq. (4.15), K(ρ) =
∫ π/2

0
dξ(1 − ρ2 sin2(ξ))−1/2 and E(ρ) =

∫ π/2

0
dξ(1 − ρ2 sin2(ξ))1/2 are the complete

elliptic integrals of the first and second kind, respectively. Thus, according to Fig.
4.2, G̃h0 = K(rh, λ) and, using the superposition of effects:
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G̃hq = K(rh, rq + λ/2)−K(rh, rq − λ/2), q ̸= 0 (4.16)

The time domain is discretized with small steps ε, with ε/τ j 1 and the
discrete form of Eq. 4.12 can be written at time tk = kε with k = 1, 2, ......Note
that we define uk

h (rh, tk) and σk
h = σ (rh, tk) and write

(

1 +
ε

τ

)

uk
h =

(

1

E∞

+
ε

τE0

) N
∑

q=0

G̃hqσ
k
q + Ak−1

h (4.17)

where the quantity

Ak
h = uk

h −
1

E∞

N
∑

q=0

G̃hqσ
k
q (4.18)

has already been determined up to time tk−1. The linear system of equations Eq.

(4.17) allows to calculate, for any given value of the contact radius a, the stress
distribution in the contact area and the displacement and gap distributions out
of the contact area. Then, enforcing the energy balance condition Eq. (4.9) the
equilibrium value ak = a

(

tk
)

of the contact radius can be determined.

4.3 Contact parameters

Results are shown in terms of the following dimensionless quantities: p̃ = (1− ν2) p/ (πE0),
ũ = u/R, γ̃ = (1− ν2)∆γ/ (πE0R), F̃ = (1− ν2)F/ (πE0R

2), Ṽ = V τ/R,
ũ0 = u0/R, ∆̃ = ∆/R, t̃ = t/τ , r̃ = r/R, x̃ = x/R, J̃ = E0J, ã = a/R, with
p (r, t) = −σ (r, t) being the contact pressure, ∆ = −u0 the contact penetration,
and F =

∫

d2xp (r, t) the normal compressive applied force. In our calculations, we
set δã = 0.013, γ̃ = 1.6× 10−4 (unless differently specified), and E∞/E0 = 10. We

also define the normal approach-retraction speed of the sphere as V = |u̇0| =
∣

∣

∣
∆̇
∣

∣

∣
,

where the superposed dot ‘·’ stands for the time derivative. Unless differently
specified, V is the controlled parameter in our calculations. Moreover, the linear
viscoelasticity of the material is modeled assuming a single relaxation-time τ and
relaxation function given by

G(t) = H(t)

{

E∞ + (E0 − E∞)

[

1− exp

(

−
t

τ

)]}

(4.19)

also corresponding to the creep function given by

J(t) = H(t)

{

1

E∞

+

(

1

E0

−
1

E∞

)[

1− exp

(

−
E0

E∞

t

τ

)]}

(4.20)

where E0, and E∞ are the low-frequency and very high-frequency viscoelastic
moduli of the material respectively.

4.4 Approach-retraction cycles
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Figure 4.3: Approach-retraction cycles at different dimensionless sphere velocity Ṽ .
Dashed and solid lines refer, respectively, to indentation and retraction, until pull-off
occurs. (a) The dimensionless applied load F̃ vs. the dimensionless indentation depth
∆̃. (b) The dimensionless contact radius ã vs. the dimensionless applied load F̃ . The
JKR elastic curves corresponding to moduli E0 and E∞ are reported for comparison.
(c) The amplification ratio between the pull-off force Foff and the corresponding pull-off
force FJKR predicted by the JKR theory, shown as function of the dimensionless sphere
velocity. (d) process schematic and the qualitative dimensionless penetration ∆̃ time-
history. Results are shown for γ̃ = 0.00016, E∞/E0 = 10.
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Firstly, we focus on the effect of the imposed indenter dimensionless speed Ṽ
in approach–retraction (A-R) cycles with vanishing dwell time t̃d = td/τ → 0,
as reported in Fig. 4.3. Calculations are initialized assuming that the unloaded
half-space instantaneously jumps into contact at ∆̃ = 0. Since this represent an
instantaneous loading condition, regardless of Ṽ , at the very initial stage of the
loading history the system’s response is purely elastic and therefore follows the ad-
hesive JKR solution with the elastic modulus given by E∞. At very low A-R speed
(see results for Ṽ = 2× 10−5), the loading process is sufficiently slow to allow for
full relaxation of the viscoelastic material, and hence the soft elastic JKR response
with low frequency modulus E0 is recovered during both approach and retraction.
Therefore, in this case, the only source of hysteresis is the fact that the jump into

contact solution differs from the pull-off one. Similarly, at very high speed (i.e.,
Ṽ k 1), the material behaves as a stiff elastic body and the glassy elastic JKR
response occurs, again with vanishing hysteresis during the loading-unloading cy-
cles. As expected, in both cases the maximum tensile load (i.e. the pull-off force)
takes the same value, independently of the effective elastic modulus, in agreement
with the JKR theory (see Chapter 1). Nonetheless, results in Fig. 4.3 clearly show
that viscoelastic dissipation induces large adhesive hysteresis in A-R cycles over a
large range of intermediate values of Ṽ . Qualitatively similar experimental results
have been obtained [33, 34, 36, 139]. Importantly, during retraction, the system is
able to withstand significantly larger tensile loads compared to the elastic case, as
also clearly experimentally observed in [34,67,136,139,148]. A closer look at Fig.
4.3(a) reveals that the maximum tensile force can either occur at larger retrac-
tion distances compared to the elastic JKR and, for relatively large A-R speeds,
even at positive penetration ∆ > 0, in agreement with experimental results shown
in [33,35]. In the latter case, at the end of the approach stage, the material has not
reached the viscoelastic glassy response yet. However, when the indenter motion
is reversed (i.e., the speed jumps from ∆̇ = V to ∆̇ = −V ), the glassy behavior is
triggered (with elastic modulus E∞) and, since retraction occurs sufficiently fast,
viscoelastic dissipation prevents the material from relaxing and detachment occurs
at positive values of penetration ∆, with contact area and tensile load much larger
than the elastic case.

Fig. 4.4 reports the surface displacement and the pressure distributions during
an approach-retraction cycle at the given dimensionless speed Ṽ = 0.002. Focusing
on the approach stage, beside the expected adhesion-induced square root singu-
larity at the contact boundary, the interfacial pressure distribution also presents
a positive annular peak close to the advancing circular perimeter of the contact
area. A similar trend has been reported for viscoelastic adhesiveless approach-
ing contacts in Ref. [128], at the leading edge of rolling (or frictionless sliding)
viscoelastic contacts [30, 103, 107] (see also Chapters 3) and is predicted by the
viscoelastic crack closing analysis (see Chapter 5). Moreover, during the early
stages of the retraction process, the size of the contact area is almost unchanged,
and it drops only once the maximum tensile load is reached. This prediction is
supported by experimental observation [34, 36, 67, 148]. Notice that, during the
retraction stage, the annular pressure peak disappears. Coherently, the pressure
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Figure 4.4: The deformed contact configuration during indentation (a-c) and retraction
(d-f) at dimensionless sphere speed Ṽ = 0.002 (i.e, blue line in Fig.4.3) for different values
of the dimensionless penetration ∆̃. The inset shows the corresponding dimensionless
contact pressure distribution p̃. Results are shown for γ̃ = 0.00016, E∞/E0 = 10.

peak is not predicted by the viscoelastic crack opening analysis (see Chapter 5).
In this case instead, the adhesion-induced pressure singularity is associated with
a trumpet-like opening crack shape, as predicted by De Gennes [129], as also ob-
served in steady state sliding contacts (Chapters 3) and in agreement with Chapter
5.

4.5 Retraction from fully relaxed state

Results in Fig. 4.3 have shown that a viscoelastic-induced enhancement of the pull-
off force can be observed at intermediate approach-retraction speeds, i.e. when
the material has not yet fully entered the glassy state during the approach stage.
Hence, one may guess that the enhancement of pull-off force or, equivalently, of
the adhesion strength should be even more amplified if the retraction stage is
allowed to begin, at finite speed, immediately after an extremely slow approach
stage. This correspond to retraction from fully relaxed conditions at fixed positive
penetration ∆ > 0 (dwell time td → +∞), which is what we report in Fig. 4.5
for different dimensionless retraction speeds Ṽ . Specifically, retraction starts from
point B at given dimensionless penetration ∆̃B = 0.032 which coincides with the
elastic JKR solution (i.e., with elastic modulus E0) with dimensionless contact
radius ãB = 0.245 and dimensionless normal load F̃B = 1.87 × 10−3. During
retraction, given a finite speed V , the contact penetration can be expressed as
∆ = ∆B−H (t)V t, where H (t) is the unit step function, and the retraction speed
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    Initial state

(relaxed contact

    condition B)

V

V

>>1

B (relaxed state)

Figure 4.5: Sphere retraction at different dimensionless speed Ṽ from fully relaxed con-
ditions (point B, with ∆̃B = 0.032). (a) The dimensionless applied load F̃ vs. the
dimensionless indentation depth ∆̃. (b) The dimensionless contact radius ã vs. the
dimensionless applied load F̃ . (c) The pull-off force amplification ratio Foff/FJKR vs.
the initial dimensionless penetration ∆̃B for different values of dimensionless retraction
speed. (d) The process qualitative time-history. Results are shown for γ̃ = 0.00016,
E∞/E0 = 10.



72 Chapter 4

instantaneously jumps from 0 to −V at t = 0 (notice, ∆̇ = −H (t)V ). Therefore,
at the early stages of the retraction process (i.e., for t j τ), the material response
is elastic, with modulus E∞. Importantly, Fig. 4.5 shows that in this case the
asymptotic response at very high velocity of retraction is no-longer described by
the JKR curve, as instead observed in Fig. 4.3 . Now, some considerations can be
made to explain the reported results: (i) a decrease of the contact area can only
occur if the condition g (r, t) g 0 is fulfilled, (ii) a certain time or, equivalently, a
certain retraction distance is required before enough elastic energy is stored into
the system, (iii) a reduction of the contact area can only take place if the release
of mechanical plus elastic energy is enough to compensate the change of adhesion
energy. One concludes that during the initial stages of the retraction process
the contact area will remain almost constant in a, say, ‘frozen’ state. When this
happens the relation between the applied load F and the penetration ∆ must obey
the flat-punch linear relation [53,149]

F = FB − 2aB
E∞

1− ν2
(∆B −∆) = FB − 2aB

E∞

1− ν2
V t (4.21)

Interestingly, a similar behavior is also observed in temperature controlled sys-
tems [150], when the deformed material is cooled below the glass transition tem-
perature Tg resulting in an almost ‘frozen’ contact shape. Provided that the ma-
terial relaxation process has not yet started at detachment (i.e., the retraction
velocity is sufficiently high), the pull-off force Foff is much larger that the JKR
prediction FJKR, i.e. Foff > FJKR = 3∆γπR/2. As a consequence, we conclude
that during fast retraction: (i) the material is in the glassy state hence, att pull-off
the energy release rate G = K2

I / (2E
∗

∞
) with E∗

∞
= E∞ (1− ν2) must be necessar-

ily equal to the adhesion energy per unit area, i.e. G = ∆γ (i.e., no enhancement
of the effective energy of adhesion occurs- see also Secs. 4.9 and 4.10), (ii) the
force - penetration and the force - area curves are significantly different from JKR
predictions (see Chapter 1), (iii) the pull-off force cannot be predicted by JKR the-
ory. Therefore, any experimental/numerical estimation of the effective adhesion
energy at high speed pull-off through JKR is inappropriate [33,63–67]. Conversely,
during slow retraction the material has enough time to partially relax. As a con-
sequence, the maximum tensile force decreases compared to the value predicted
by the aforementioned arguments and monotonically diminishes with decreasing
V , eventually reaching the elastic JKR value for extremely slow retraction speed.
Contact stickiness and toughness are related to the minimum (negative) value of
∆ before pull-off, as described in [45, 48]. In this regard, we note that for very
small values of V the soft elastic JKR limit is recovered, but, at intermediate
values of V (see curves for Ṽ = 6.6 ∗ 10−4) , a significantly larger elongations
before pull-off is observed, compared to the elastic case. This happens when hys-
teretic viscoelastic losses occur only close to the circular boundary of the contact
(small-scale viscoelasticity), where the material is excited on a time scale of order
ρ/ |ȧ| ≈ ρ/V ≈ τ , where ρ j R is the radius of curvature of the contact adhesive
neck. In such conditions, the bulk of the material is instead excited on time scales
of order R/V > τ , thus behaving as a soft elastic material with modulus E0. In
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such small-scale viscoelasticity regime the energy release rate increases with the
retraction speed (as better reported in Sec. 4.9), and the load-penetration and
load-area curves are well approximated by the JKR predictions, provided that the
adhesion energy ∆γ is replaced by an effective value ∆γeff = G (where G is the
energy release rate). Note that only in this case the pull-off force can be correctly
estimated by using the adapted JKR theory, i.e. Foff = (FJKR)eff = 3π∆γeffR/2.
Fig. 4.5 also reports the effect of the initial contact penetration ∆̃B on the normal-
ized pull-off force Foff/FJKR and shows that the maximum pull-off enhancement
reaches a plateau at high penetration (i.e., high preload), with Foff/FJKR ≈ E∞/E0

at very high retraction speed. Interestingly, at smaller speeds the ratio Foff/FJKR is
less dependent on the initial condition, in agreement with numerical results shown
in [66]. In Fig. 4.6 we report the surface displacement and the pressure distribu-
tions during the fast retraction from the relaxed state B at dimensionless speed
value Ṽ = 0.2. The contact area is almost unchanged from the initial value in (a)
and (b) and rapidly drops (c) close to the pull-off condition. Interestingly, Fig. 4.6
(c) shows that the fast detaching mechanism results into a deformed surface shape
that perfectly preserves the memory of the initial deformation, and only an ”elastic
component” of the displacement is instantaneusly recovered for a < |x| < aB as
the contact boundary’s radius recedes from aB to a. Indeed, for a < |x| < a

B
the

displacement gap present the standard shape associated with the high frequency
modulus

∆u(|x|) = KI/E
∗

∞

√

8/π(|x| − a) (4.22)

whereas for for |x| > a
B
the shape function discontinuously switches to

∆u(|x|) ≃ ∆u(a
B
) +KI/E

∗

0

√

8/π(|x| − a
B
). (4.23)

in agreement with the discussion presented in Sec. 4.10.

F

(a) (b) (c)

-0.005 -0.0072F
-0.0053F

Figure 4.6: The progressive evolution [from (a) to (c)] of the pressure and displacement
fields during the fast retraction at constant velocity, starting from the fully relaxed state
at point B. Reults are shown for Ṽ = 0.2, γ̃ = 0.00016, β = 10 and refer to three different
values of the applied force.



74 Chapter 4

4.6 The effect of the dwell time

V

td

Partial relaxation

    Approach at 

constant velocity

Figure 4.7: Approach-retraction cycles with non-vanishing dimensionless dwell time t̃d,
allowing for partial material relaxation. The dimensionless sphere speeed is Ṽ = 0.1.
(a) The F̃ vs. ∆̃ and (b) the ã vs. F̃ equilibrium diagrams for different values of t̃d.
(c) and (d) are the process schematic and the qualitative dimensionless penetration ∆̃
time-history, respectively. Results are shown for γ̃ = 0.00016, E∞/E0 = 10.

In Fig.4.7 we report the effect on the adhesive contact behavior of the dimen-
sionless dwell time t̃d, i.e. the time delay between the end of the approaching stage
and the initiation of the retraction process. Since the value t̃d physically alters the
stress-strain history, it necessarily affects the system response during retraction,
while the approach stage is unaffected. We present results for dimensionless speed
Ṽ = 0.1, and show that increasing t̃d above 1 yields larger pull-off forces. To un-
derstand this peculiar behavior, we observe that the material relaxation increases
with t̃d and, for t̃d k 1, the retraction behavior approaches the flat punch with
very large pull off forces, as discussed above. Moreover, the A-R speed Ṽ plays
a central role, as increasing Ṽ require larger t̃d values to achieve relaxation and,
in turn, enter the flat-punch regime. For Ṽ = 0.1 the sphere’s velocity is quite
high, hence the material’s response during the approach stage is almost elastic
and follows the (glassy) elastic JKR curve. Hence, according to results shown in
Sec. 4.4, the pull-off force value tends to the JKR one for t̃d j 1. Under these
conditions, the adhesive behavior is therefore highly affected by the presence of a
finite dwell time.
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4.7 The contact behavior under constant force

Figs. 4.8 reports the retraction behavior under load-controlled conditions assuming
the same fully relaxed initial conditions (point B in the figure) as in Figs. 4.5.
This time the tensile force is instantaneously applied following a step change to
the negative value F0 < −FJKR, i.e. F (t) = FB+(F0 − FB)H (t). The application
of this step change in the applied load leads to an initial high frequency glassy
response of the system with modulus E∞ so that the linear flat punch behavior is
again recovered at the initial stages of the load controlled retraction. Then, the
penetration also jumps to ∆0 following the relation F0 = FB − 2aBE

∗

∞
(∆B −∆0),

where E∗

∞
= E∞/ (1− ν2). After this step change, the contact area and the

penetration ∆ monotonically decrease with time, as well as the retraction speed,
and eventually becomes unstable and detach [see Fig. 4.8(b)]. This happens at
significantly larger elongations (i.e., larger contact toughness) compared to V -
controlled (dashed) curves associated with the same pull-off forces F0.

JKR, E0

(c)
(d)

td

    Initial state

(relaxed contact 

    condition B)

   Retraction at

constant applied

          force (relaxed state)

Figure 4.8: The contact behavior under constant tensile force F̃ instantaneously applied
once the fully relaxed elastic condition is recovered (point B, with ∆̃B = 0.032). (a) The
F̃ vs. ∆̃ equilibrium diagram for different values of the applied tensile force F̃ (solid
lines); in the same figure, the dashed line is the behavior at constant retraction velocity
corresponding the same pull-off force. (b) The dimensionless indentation depth ∆̃ shown
as function of the dimensionless time t̃ for different values of the applied tensile force F̃ .
(c) and (d) are the process schematic and the qualitative dimensionless penetration ∆̃
time-history, respectively. Results are shown for µ̃ = 0.00016, E∞/E0 = 10.
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4.8 Oscillations

Figure 4.9: Results for normal oscillations: (a,b,c) frequency (up-)sweep around a given
dimensionless penetration ∆̃0 with ∆̃

(

t̃
)

= ∆̃0 + ∆̃1 sin
[

É̃
(

t̃
)

t̃/2
]

and É̃(t̃) = ³t̃; (d)

constant frequency oscillation superimposed to steady retraction at Ṽ = 10−7 from ∆̃0

with ∆̃
(

t̃
)

= ∆̃0 − Ṽ t̃ + ∆̃2 sin
[

É̃t̃
]

. Specifically, (a,b) are the equilibrium diagram

for F̃ vs. ∆̃(t), (c) is the dimensionless energy L̃ = (1 − ¿2)L/(ÃE0R
3) dissipated per

cycle vs. the dimensionless frequency É̃a averaged per cycle, and (d) are the equilibrium
diagrams F̃ vs. ∆̃(t) for É̃ = 0.35 (orange line) and É̃ = 1.4 (blue line). Results refer to
µ̃ = 5 × 10−8, E∞/E0 = 10, ∆̃0 = 5.7 × 10−5, ∆̃1 = −1.7 × 10−5, ∆̃2 = −8.5 × 10−6,
and ³ = 0.006.

Fig. 4.9 reports the contact behavior of the contact when the penetration os-
cillates and refers to µ̃ = 5×10−8 and ¶ã = 8.5×10−4. Specifically, Fig. 4.9(a,b,c)
presents results for a linear frequency sweep, i.e. ∆̃

(

t̃
)

= ∆̃0 + ∆̃1 sin
[

É̃
(

t̃
)

t̃/2
]

,

with É̃ = Ä (d¹/dt) = ³t̃, ³ = 0.006, ∆̃1 = −1.7×10−5. The the initial penetration
∆̃0 = 5.7 × 10−5 corresponds to the fully-relaxed (modulus E0) JKR solution for
F̃ = 0. As the frequency is increased [see Fig.4.9(a,b)] the slope of the F vs. ∆
curve increases because of the material stiffening, see also [65, 103, 140, 141]. The
amount of energy dissipated per cycle L̃ = (1 − ¿2)L/(ÃE0R

3) roughly equates
the area of the cycle in the ∆̃ vs. F̃ diagram and is reported in Fig. 4.9(c)
as a function of the external excitation frequency É̃. The observed bell-shaped
behavior is expected, as at very low and very high excitation frequencies the ma-
terial behaves elastically, with vanishing hysteresis. At intermediate frequency
(i.e., É̃ ≈ 1) the material response is in the transition region of the viscoelastic
spectrum, and the viscoelastic energy dissipation takes its maximum value. More
interestingly, Fig. 4.9(d) refers to the case of constant frequency oscillations (at
different frequencies) superimposed to steady retraction at speed Ṽ = 10−7, so
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that ∆̃
(

t̃
)

= ∆̃0 − Ṽ t̃ + ∆̃2 sin
(

É̃t̃
)

with ∆̃2 = −8.5 × 10−6, É̃ = 0.35 (orange
line) and É̃ = 1.4 (blue line). Noteworthy, the envelopes of the maximum tensile
loads (dashed lines) reached during the oscillating retraction stage significantly in-
crease compared to the case of steady retraction (black curve, with no oscillations),
thus paving the way to possible vibration based techniques to control interfacial
adhesive strength, as experimentally observed by Shui et al. [119].

4.9 The energy release rate, the elastic energy,

and viscoelastic energy dissipation

In viscoelastic materials undergoing deformations, the work of internal stresses
is partially stored as elastic potential energy and partially dissipated, leading to
viscoelastic hysteresis. Neglecting kinetic energy or inertia forces, energy balance
requires the work per unit time of external and internal forces to be equal, i.e.

F ∆̇ + ∆µȦ = U̇ + Pd (4.24)

where U̇ and Pd are the time-derivative of the stored elastic energy and the hys-
teretic energy losses per unit time, respectively. Most importantly, the energy
release rate G can be defined also for non conservative materials (see also Chapter
3), as the change in the total mechanical energy per unit change in the contact
area. Therefore, from Eq. (4.24), we have

G =
U̇

Ȧ
− F

∆̇

Ȧ
=

dU

dA
− F

d∆

dA
, (4.25)

and
G = ∆µ − Pd/Ȧ (4.26)

which shows that G is a key quantity in adhesive contact mechanics, sometimes
referred to as the effective energy of adhesion or, in other words, the generalized
driving force inducing the contact area change. Consequently, calculating G is a
crucial (and usually tough) task, which requires to determine either U̇ or Pd as
functions of the interfacial stress distribution Ã(x, t). Aiming at accomplishing this
task, we calculate the work per unit time P done by the internal stresses which,
at equilibrium is only related to the stress and displacement distributions on the
half-space surface. In the most general case (i.e., neglecting axial symmetry), we
have

P (t) =

∫

d2xÃ (x, t) u̇ (x, t)

=

∫

d2xd2x1G (x− x1) Ã (x, t) ε̇ (x1, t) (4.27)

where

ε(x, t) =

∫ t

−∞

dt1J(t− t1)Ã̇(x, t1) = ε0(x, t) +
n
∑

k=1

εk(x, t) (4.28)
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is an apparent local surface strain, J(t) = E−1
∞ +

∑n
k=1

E−1

k [1− exp (−t/Äk)] is the
creep function for a generic linear viscoelastic material with an arbitrary number
n of relaxation times Äk, and

ε0(x, t) =
Ã(x, t)

E∞

(4.29)

εk(x, t) =

∫ t

−∞

dt1
1

Ek

[

1− exp

(

−t− t1
Äk

)]

Ã̇(x, t1)

are, respectively, the elastic contribution to ε associated with the high-frequency
modulus E∞, and the viscoelastic contributions associated with each single k-th
Voigt element. We then have

Ã (x, t) = E∞ε0 (x, t) = Ekεk (x, t) + ÄkEkε̇k (x, t) , k = 1, ..., n (4.30)

where Ekεk(x, t) and ÄkEkε̇k(x, t) represent, respectively, the elastic and viscous
stress components associated with the k-th Voigt element. Combining Eqs. (4.27,
4.28, 4.29,4.30) gives the expression of the elastic U̇ and dissipative Pd contribu-
tions to P (i.e., P = U̇ + Pd). In particular,

U̇(t) =

∫

dx2dx2
1G (x− x1)

[

E∞ε0 (x, t) ε̇0 (x1, t) +
n
∑

k=1

Ekεk (x, t) ε̇k (x1, t)

]

(4.31)
and

Pd(t) =
n
∑

k=1

∫

dx2dx2
1G(x− x1)ÄkEkεk (x, t) ε̇k (x1, t) (4.32)

Note that in Eq. (4.31) the quantity G (x) is a symmetric function so that it is
possible to find the expression of the elastic energy as

U (t) =
1

2

∫

dx2dx2
1G (x− x1)

[

E∞ε0 (x, t) ε0 (x1, t) +
n
∑

k=1

Ekεk (x, t) εk (x1, t)

]

(4.33)
The energy release rate G can be calculated using Eqs. (4.25, 4.31) at any given
time t once solved the viscoelastic problem, i.e. for known values of Ã (x, t), u (x, t),
and the contact domain Ω (t).

Recalling that G = ∆µ − Pd/Ȧ and considering that Pd > 0 , we find that
during the approach stage (i.e., Ȧ > 0) the energy release rate G < ∆µ and can
be even negative, whereas during retraction (i.e., Ȧ < 0) the energy release rate
G > ∆µ. Figure 4.10 reports the trends of the normalized energy release rate
G/∆µ vs. speed, during (a) retraction and (b) approach stages. More specifi-
cally, Pd/Ȧ vanishes at very-low and very-large A-R speeds, so that in these two
limiting cases G(t) → ∆µ. At intermediate speed it increases up to a maxi-
mum value, with the resulting bell-shaped behavior being related to the presence
of a reference length scale, i.e., finite contact size (see [85, 130] and Chapter 3).
For comparison, we recall that the propagation of a opening semi-infinite crack
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Figure 4.10: The normalized energy release rate G/∆µ (a) at pull-off (blue line) and
(b) during indentation (for different dimensionless penetrations ∆̃) as functions of the
dimensionless retraction velocity (blue line). The viscoelastic-elastic pull-off force ratio
Foff/FJKR is also shown in (a) as red line. Initial condition for calculation is fully relaxed
state. Results are shown for µ̃ = 0.00016, E∞/E0 = 10.

in an infinite systems represents a very different scenario, as in this case Pd/Ȧ
must monotonically increase with crack speed and eventually reach a plateau (for
isothermal conditions), as shown in [68–72] and in Chapter 5. Noteworthy, since
Pd accounts for the energy dissipation in the whole viscoelastic material, it can
also take values such that Pd/Ȧ > ∆µ, thus entailing G(t) < 0 when the sphere
is pressed against the viscoelastic half-space [see Fig. 4.10(b)]. Fig. 4.10(a) also
reports the normalized maximum tensile load (i.e. the pull-off force) as a function
of the retraction speed. It is very important to notice that, despite the bell-shaped
rate G (t) vs. Ṽ trend, the ratio Foff/FJKR continuously increases until a limiting
value is reached (Foff/FJKR ≈ E∞/E0). A deeper look at the retraction behavior
[Fig. 4.10(a)] also shows that G/∆µ ≈ Foff/FJKR only at relatively low retraction
speeds, i.e. for Ṽ ≲ 5 × 10−4. This is the limit where small-scale viscoelasticity
(i.e., localized non-conservative phenomena close to the edge of the contact) govern
the adhesion enhancement (see [37] and Chapter 3), and JKR pull-off approxima-
tion Foff = (FJKR)eff = 3Ã∆µeffR/2 holds true (allowing for a rough estimation of
G = ∆µeff). Differently, at large retraction speeds, both the small- and large-scale
viscoelasticity vanish (e.g., G → ∆µ), and the pull-off is governed by the glassy flat
punch behavior, as discussed in Sec. 4.5. To the best of authors knowledge, this
is a novel finding, as previous numerical studies on viscoelastic adhesive contacts
(with gap-dependent adhesion) [65, 66, 78, 142] relied on JKR pull-off equation to
estimate the energy release rate G even at high retraction speed.

4.10 A closer look into fast retraction

In this section we investigate in deeper detail the contact behavior during a very
fast retraction starting from a general fully relaxed state B. Specifically, we present
an analytic model that describes the entire equilibrium curves in the high velocity
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limit (see Fig.4.5 for Ṽ > 0.2). Observe that, in agreement with the surface
deformation shown in Fig. 4.6 (c), the crack opening gap close to the perimeter
of contact is

∆u(x) = KI/E
∗
∞

√

8/Ã(|x| − a) (4.34)

Therefore, since the asymptotic stress field has the standard square-root form, one
might expect the closure equation Eq. 4.9 to read as

K2
I

2E∗
∞

= ∆µ (4.35)

However, the crack displacement gap for a < |x| < a+ ¶a is correctly described by
Eq. (4.35) only if the contact radius has decreased of a certain amount, at least
larger than the quantity ¶a appearing in Eq. (4.9) which estimates the process
zone’s length. Therefore, only in this case Eq. (4.34) holds. Indeed, note that the
stress intensity factor in the initial state B is

KI,B = (2∆µE∗
0)

1/2 j (2∆µE∗
∞)1/2 (4.36)

Therefore, since during the whole retraction KI(∆(t)) must be a continuous func-
tion, we conclude that the flat punch-like response reflects the fact that a certain
time (or analogously a certain distance) is needed for the stress intensity factor
to (linearly) increase to the value provided by Eq. (4.35). This occurs when the
contact penetration ∆ has decreased to a certain value ∆C. Then, for ∆ < ∆C, the
fast decrease of contact radius occurs (see Fig.4.5 for Ṽ > 0.2), and the contact
behavior is determined by Eq. (4.35).
Aiming at deriving the general relation between the stress intensity factor, the
contact penetration, and the contact radius during the fast retraction, we define
the following quantities:

Ã1(x, t) = Ã(x, t)− Ã0,B(x) (4.37)

u1(x, t) = u(x, t)− u0,B(x)

where Ã(x, t) and u(x, t) are the actual stress and displacement fields at time t,
related each other through Eq. (4.1), whilst Ã0,B(x) and u0,B(x) are the stress and
displacement fields recovered in the fully relaxed configuration B. Therefore, they
are related each other as

u0,B(x) =
1

E0

∫

dx2
1G(x− x1)Ã0,B(x1) (4.38)

(note that u1(x, t < 0) = 0 and Ã1(x, t < 0) = 0). Than, the superposition of
effects implies that

u1(x, t) =

∫ t

−∞

dt1J(t− t1)

∫

dx2
1G(x− x1)Ã̇1(x1, t1) (4.39)

=
1

E∞

∫

dx2
1G(x− x1)Ã1(x1, t) (4.40)
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where we assumed that, since we focus on the extremely fast retraction, the time
scale of the process is j Ä . We conclude that under these conditions the vis-
coelastic problem corresponds to the superposition between two elastic problems
with different moduli. Moreover, since the contact area during retraction only
decreases, Eq. (4.37) shows that Ã1(r, t) and u1(r, t) must satisfy the following
boundary conditions

u1(x, t) = ∆B −∆(t), |x| < a < a
B

(4.41)

Ã1(x, t) = −Ã0,B(x), a < |x| < a
B

Ã1(x, t) = 0, |x| > aB

Then, as long as ∆(t) > ∆
C
, solving the mixed boundary value problem expressed

by Eqs. (4.37, 4.38 , 4.40, 4.41) is quite trivial. In this case, neglecting the small
variations of contact radius observed in Fig. 4.5 (b) we can use a = aB and
therefore Eqs. (4.40, 4.41) describe a flat-punch problem [149] that depends on
the elastic modulus E∞. Hence, the stress intensity factor and the force linearly
depend on ∆ as:

KI(∆(t),∆B) = KI,JKR(∆B, aB) + (∆B −∆(t))
E∗

∞√
ÃaB

, ∆(t) > ∆C (4.42)

F (∆(t),∆B) = FJKR(∆B, aB)− 2aBE
∗
∞ (∆B −∆(t)) , ∆(t) > ∆C (4.43)

where

KI,JKR(∆, a) =
E∗

0√
Ãa

(
a2

R
−∆)

FJKR(∆, a) = E∗
0R

1/2∆3/2

(

a

(R∆)1/2
− 2

3

a3

(R∆)3/2

)

are relations provided by [38, 145] for the sphere contact case, and provide the
initial values (i.e., at point B) of the stress intensity factor and of the applied
force as function of the initial contact penetration and contact radius (i.e., the
solution of the elastic problem ’0’ with modulus E0). The other terms appearing
in Eqs. 4.43 that depend on E∞ are instead solutions of the flat-punch problem
(i.e., problem ’1’). Then, ∆C is obtained by solving

KI(∆C,∆B) =
√

2E∗
∞∆µ (4.44)

However, once that ∆(t) < ∆C the same mixed boundary value problem is less
trivial and must be solved considering that the contact area changes and is un-
known. However, an additional equation is now available, i.e., the energy closure
equation expressed as in Eq. (4.35). In this case, using that a < aB, one can
demonstrate that Eqs. (4.37 , 4.38, 4.40, 4.41) imply that the stress intensity
factor and the applied force depend on the (yet unknown) contact radius and on
the contact penetration as
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KI(a,∆(t),∆B) = KI,JKR(∆B, a) + (∆B −∆(t))
E∗

∞√
Ãa

, ∆(t) < ∆C (4.45)

F (a,∆(t),∆B) = FJKR(∆B, a)− 2aE∗
∞ (∆B −∆(t)) , ∆(t) < ∆C (4.46)

Eq. 4.46 follows from the fact that, since the problem expressed by Eqs. (4.40,
4.41) is an elastic problem (i.e., path-independent) the actual stress and displace-
ment fields Ã(x, t) and u(x, t) in the contact condition ∆(t) with contact radius
a are the same that would be obtained by considering a first decrease of contact
radius from aB to a at constant penetration ∆B, followed by a retraction from ∆B

to ∆(t) at constant contact radius a (this path of course differs from the real one).
Moreover, it can be demonstrated that in the first stage of this process, i.e., when
∆=∆B and the contact radius is a, the (actual) viscoelastic pressure distribution
is exactly the same recovered in the elastic (JKR) case with modulus E0 assuming
penetration ∆B and contact radius a. In turn, the latter result is analogue to that
presented in chapter 5 for steady-state crack opening in viscoelastic solids and
follows form similar arguments. The equilibrium curves KI(∆(t)) and F (∆(t)) are
then derived by solving

KI(a,∆(t),∆B) =
√

2E∗
∞∆µ (4.47)

for a at every instant. Fig. 4.11 (a),(b) shows equilibrium diagrams of F̃ vs. ∆̃
and ã vs F̃ for different initial points B. Notably, numerical results (dashed lines,
corresponding to dimensionless retraction speed Ṽ = 0.2, see Fig. 4.5) perfectly
overlap with the analytical model (solid line) proposed in this section, with small
differences ascribable to neglected variations of contact area during the ’flat-punch’
stage. Notably, Fig. 4.11 (c) shows that the pull-off force estimation based on the
purely elastic flat punch model equation with the high frequency modulus, i.e.
(see [149]):

Foff,FP =
√

8ÃE∗
∞∆µa3

B
(4.48)

leads to large overestimation, especially for large values of ∆B.
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Analytical model

Numerical (BEM) results

JKR V=0.2

c

Analytical model

Numerical (BEM) results

V=0.2

V=0.2

Complete analytical model

Numerical (BEM) results

, E
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JKR, E
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Figure 4.11: The contact behavior under fast retraction from fully relaxed state: com-
parison between numerical results (dashed line) and results predicted by the analytical
proposed in Sec. 4.10 (solid line) for different initial conditions. (a) The dimensionless
applied force F̃ vs. the dimensionless penetration ∆̃ (b) the dimensionless contact ra-
dius ã vs. the dimensionless applied force F̃ . (c) The viscoelastic-elastic pull-off force
ratio Foff/FJKR as function of the initial penetration ∆̃B. The green line is the pull-off
force in the purely elastic flat punch model assuming a Young modulus equal to E∞ (see
Eq.4.48). Results refer to µ̃ = 0.00016, E∞/E0 = 10.
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4.11 Conclusion

In this chapter, the energy approach presented in Chapter 3 has been extended to
general unsteady conditions. The problem of the unsteady normal indentation of
a rigid sphere into a viscoelastic half-space, in the presence of interfacial adhesion,
has been addressed. Additionally, a rigorous procedure to accurately calculate the
time evolution of the elastic energy, the viscoelastic energy dissipation, and energy
release rate G by relying only on the interfacial stress and displacement distribu-
tions has been presented. We found that, depending on the specific time-history
of the contact process, the effective adhesion may be significantly enhanced by
viscoelasticity. At intermediate approach-retraction speeds, strong adhesive hys-
teresis is observed because of small-scale viscoelastic dissipation localized close to
the perimeter of the contact area, which also entails the ability of the system to
withstand very high tensile loads. Hysteresis vanishes at very high and very low
approach-retraction speed as the material response falls, respectively, in the high
frequency (stiff) or low frequency (soft) elastic regimes. More importantly, our
theory predicts the extremely large pull-off forces observed experimentally when
retraction starts from a completely relaxed loaded state, with sufficiently high
retraction speed. In this case, the material has no time to relax and exhibits a
‘frozen’ glassy elastic state, thus resembling the behavior of a flat-punch with a
linear force-penetration relation. Moreover, we found that at sufficiently large re-
traction speed V, the energy release rate reduces with the increasing V down to the
thermodynamic surface energy value ∆µ. However, in such conditions the contact
behavior significantly deviates from JKR theory as small-scale viscoelasticity can-
not be invoked in this case. This implies that the JKR model cannot be employed
to estimate the energy release from pull-off force at high retraction speeds, as this
procedure significantly overestimates G.
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Steady and unsteady crack

propagation in viscoelastic solids

In Chapter 1 we clarified that crack equilibrium and propagation in elastic ma-
terials are governed by the balance between the surface energy per unit area ∆µ
and the energy release rate G. Since in linear elasticity G depends on the exter-
nally applied loading condition only through the stress intensity factor KI and the
material’s elastic constants, the critical condition for fracture G > ∆µ is easily
solved as long as the dipendence of KI from the applied load or displacement is
determined for the specific problem’s geometry. However, the intrinsic viscoelastic
response of rubbery-like materials might result into much more complex phenom-
ena, as shown in Chapters (3, 4). Indeed, in the presence of non-conservative
behaviors the Griffth energy balance has to be properly modified. Overall, vis-
coelastic fracture mechanics is a topic of large interest. Several theoretical models
of viscoelastic crack propagation have been proposed over the last decades, and
we refer the reader to [154, 164] for a detailed review of the topic. Many of the
existing studies are based on cohesive zone models [68, 70, 84, 153]. In this class
of approaches, the stress singularity at the crack tip is removed by exploiting a
stress-gap adhesive law within the failure zone. Other studies are based energetic
arguments, firstly introduced qualitatively by De Gennes [156] and subsequently
formalized by Persson [69]. Although steady-state propagation has been widely
investigated, very less has been done for unsteady fracture. Additionally, also the
experimental literature is far more limited. This discrepancy can be (at least par-
tially) explained observing that when a crack propagates in steady-state regime
within a widely extended medium theoretical formulations are significantly sempli-
fied. Indeed, as the material is fully relaxed in the majority of its volume, elastic
models can be exploited to derive the dependence of G from the applied load or
displacement, as shown in [89, 158] for different geometries. Hence, G can be ex-
perimentally measured and compared with theoretical predictions. In this case,
the steady crack opening speed resulting from a certain applied load is the one
ensuring that the energy equilibrium G = ∆µ + Ed is satisfied, where Ed is the
internally dissipated energy for each unit advance of the crack’s tip position, and
only depends on the crack velocity [157]. As result, G is velocity dependent and for
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an opening crack the energy balance implies G > ∆µ [157], whereas for a closing
crack one obtains G < ∆µ [155] (note that for a closing crack G = ∆µ − Ed).
Anyway, if the aforementioned assumptions are relaxed, the calculation of G and
Ed in unsteady conditions is much more complex, as they depend on the entire
time-history of the internal strain and stress fields, as shown in Chapter 4. These
arguments have fundamental implications when a viscoelastic sheet containing a
pre-existing crack initially unloaded is subjected to a step-function force. In this
case, the instantaneous initial response of the viscoelastic material is purely elastic
everywhere within the solid with the high frequency modulus E∞. Thus, the crack
equilibrium in the earliest stage of the loading history is described by the Griffith
fracture criterion, hence if the applied load is such that ∆µ > G = K2

I / (2E∞)
crack cannot propagate. However, in this case, after showing an instantaneous
glassy response the material undergoes viscoelastic creep within its whole volume
and the magnitude of the strain field monotonically increases over time and, in
turn, also the elastic energy stored in the polymeric chains. This suggests that
fracture might occur after a certain time, once a certain threshold of elastic energy
needed for propagating the crack is stored. This phenomenon, usually referred to
as delayed fracture, has been experimentally observed in lab tests carried on poly-
meric [159,160] and colloidal [162,163] gels and Homalite polymers [161] exhibiting
viscoelastic relological behavior.
In this chapter the energy approach object of this dissertation is applied to study
the steady and unsteady crack propagation in viscoelastic media. In the first
three sections, we study the crack propagation and healing in infinitely extended
systems. In this case, the crack behavior resembles the local response at the con-
tact edges in steady-state sliding contacts in the small-scale viscoelastic regime
(Chapter 3). In this chapter, the features of displacement and stress fields and the
overall effect of the process zone’s length are deeply investigated. Results are also
compared in detail with previous studies. In the fourth section, the energy closure
equation derived in unsteady contacts in Chapter 4 is applied to the unsteady
crack propagation problem, with particular focus on the delayed fracture.

5.1 Steady crack opening and closing behavior

Let us consider a single crack opening or closing at constant velocity v in an
infinite viscoelastic media. This guarantees that infinitely far from the crack tip
the material is fully relaxed so that it behaves as an elastic material with low
frequency Young’s modulus E0. We also assume that the velocity is sufficiently
high or the process zone sufficiently small to assume that the entire viscoelastic
energy dissipation occurs far from the crack tip. This means that at the crack tip
the material is the glassy state and its response is governed by the high frequency
Young’s modulus E∞. Of course this hypothesis is questionable in ligth of the
findings by Creton et al [133]. We assume steady state conditions and we assume
a reference frame co-moving with the crack tip (see Fig. 5.1). Therefore, the
explicit time-dependence of the moving displacement and stress field is masked
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and we can write: u(x, t) = u(x−vt) = u(x) and Ã(x, t) = Ã(x−vt) = Ã(x) where
we used the substitution x → x+vt. Then, the elastic-viscoelastic correspondence
principle (see Chapter 2) implies that:

u (x) = J (0)

∫

dx′G (x− x′) Ã (x′) +

∫ +∞

0+

dtJ̇ (t)

∫

dx′G (x+ vt− x′) Ã (x′)

(5.1)
where J (t) is the creep function and G(x) is the elastic Green’s function for a
material of unit modulus for the plain strain or plane stress problem. Now let us
call the reference displacement u1 (x, t) the quantity

u1 (x) =

∫

dx′G (x− x′) Ã (x′) (5.2)

Notably, it represents the elastic displacement that would be obtained because of
the real stress distribution Ã (x) assuming a unitary Young modulus. Therefore
we also note that

u1 (x+ vt) =

∫

dx′G (x+ vt− x′) Ã (x′)

so that we can write

u (x) = J (0) u1 (x) +

∫ +∞

0+

dtJ̇ (t) u1 (x+ vt) (5.3)

In very similar way it is easy to show that by defining the reference stress distri-
bution Ã1 (x) such that

u (x) =

∫

dx′G (x− x′) Ã1 (x
′) (5.4)

Ã1 (x) represent the elastic stress that would be obtained in corrispondence of the
real displacement distribution u (x) assuming a unitary Young modulus. In such
a case one can also write the dual formulation of Eq. (5.3) that is:

Ã (x) = R (0) Ã1 (x) +

∫ +∞

0+

dtṘ (t) Ã1 (x+ vt) (5.5)

where R (t) is the relaxation function.

Notably, these expressions apply for the asymptotic stress and displacement
fields at the contact edges in the small-scale viscoelastic regime of sliding contacts
(Chapter 3). In what follows, the displacement and stress fields in the visocoelastic
crack opening and closing problems are calculated as function of the applied stress
intensity factor and of the crack’s velocity. The problem is than closed by enforcing
the energy equilibrium, allowing to derive the energy release rate vs. crack’s speed
curve.
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Figure 5.1: The schematic of the steady-state crack propagation problem in a reference
frame co-moving with the crack tip for (left) opening crack and (right) closing crack.

5.2 Crack opening in steady-state conditions

We assume that the crack is opening with the crack tip advancing at constant
velocity v > 0 in an infinitely extended medium under steady state conditions.
As shown in Fig. 5.1, using a reference frame co-moving with the crack tip the
boundary conditions of the mixed boundary value problem are

u (x) = u0; x g 0 (5.6)

Ã (x) = 0; x < 0

Where u0 is a remotely enforced displacement. To solve the problem of the opening
viscoelastic crack let first us assume that

u1 (x) = »u0; x g 0

and let us calculate the quantity » such the real (for the viscoelastic material)
boundary conditions Eq. (5.6) are satisfied. For x g 0, using Eq. (5.3) and
recalling that u (x g 0) = u0 and that the time integration is made for t > 0 so
that u (x+ vt) = u0 we get

» = 1/J (∞) = E0 (5.7)

where E0 is the low frequency modulus of the viscoelastic material. Now in order
to calculate the stress distribution for x > 0 let us use Eq. (5.2) by enforcing the
condition that Ã (x < 0) = 0, so we obtain

u1 (x > 0) = E0u0 =

∫

dx′G (x− x′) Ã (x′) =

∫ +∞

0+

dx′G (x− x′) Ã (x′) (5.8)

that can be rephrased as

u0 = J (∞)

∫ +∞

0+

dx′G (x− x′) Ã (x′) (5.9)

which allow to calculate the stress distribution for x > 0. We can then calculate

u1 (x < 0) =

∫ +∞

0+

dx′G (x− x′) Ã (x′) (5.10)
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and

u (x < 0) = J (0) u1 (x) +

∫ +∞

0+

dtJ̇ (t) u1 (x+ vt) (5.11)

Note that the calculated displacement field u (x) and Ã (x) satisfy Eq. (5.1) and
the boundary conditions Eq. (5.6) and therefore represent the unique solution of
the viscoelastic state. From this treatment we immediately conclude that for the
opening crack the viscoelastic stress distribution Ã (x) coincides with the stress
distribution that would be obtained for the perfectly elastic case with elastic mod-
ulus E0 as follows from Eq. (5.9). The displacement, instead, for x < 0 will differ
from that of the perfectly elastic case as follows from Eq. (5.10). Note that, in
this case, we cannot apply the inverse argument i.e. moving from the condition
Ã (x < 0) = 0 and using Eq. (5.5), (as done in the next section for the closing
crack) since we need to integrate for positive times and then the quantity x + vt
becomes positive for t > −x/v thus preventing us from moving further. Now let
us calculate the energy release rate. We move from the consideration that the
singular behavior of the stresses close to the crack tip is given by

Ã (x) =
KI√
2Ãx

(5.12)

where KI is stress intensity factor of the corresponding elastic case and is equal
to the stress intensity factor of the viscoelastic case i.e.

(KI)1 = KI

Since in the problem at hand the system is infinitely extended, i.e., the viscoelastic
material is fully relaxed within the majority of its volume, the energy release rate
has the same expression of the reference elastic problem:

G =
K2

I

2E0

(5.13)

Now we note that from Eq. (5.10) it follows that:

u1 (x < 0) ≈ E0u0 +KI

√

8 |x|
Ã

(5.14)

Notably, in Eq. (5.11), the corrective term is eventually responsible for the classical
trumpet shape of the viscoelastic deformed profile shown in Fig. 5.2. Indeed, its
contribution tends to vanish very close to the crack’s tip, specifically for |x| j vÄ ,
where we obtain

u (x < 0) ≈ u0 +
KI

E∞

√

8 |x|
Ã

, |x| j vÄ (5.15)

Using this expression, the radius of curvature of the crack is:

Ä1 =
4

Ã

(

KI

E∞

)2

=
8

Ã

E0

E2
∞

K2
I

2E0

=
8G

Ã´E∞

(5.16)
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Instead, for |x| k vÄ the material is fully relaxed, indeed Eq. (5.11) gives

u (x < 0) ≈ u1 (x < 0)

E0

= u0 +
KI

E0

√

8 |x|
Ã

, |x| k vÄ (5.17)

which allows to identify a remote (much larger) crack tip radius (see Fig. 5.2),
consistently with the overall trumpet shape:

Ä2 =
4

Ã

(

KI

E0

)2

=
8G

ÃE0

(5.18)

Notably, both radii are proportional to the energy release rate and the ratio Ä2/Ä1 =
(E∞/E0)

2 is extremely large if one considers that E∞/E0 might be larger than 103.
However, for a given value of the stress intensity factor KI (i.e., for a given value
of the energy release rate) the steady crack velocity must be determined as part
of the solution. At this aim, we enforce that at virtual variations of the crack’s
length the work of internal stresses must be balanced by the work of (external)
adhesive forces. The mathematical and physical framework is exactly analogue to
that presented for steady state sliding contacts (Chapter 3) and Eq. (3.4) also
applies to the present opening crack problem. Therefore, the (virtual) work of
internal stresses over a small virtual variation ¶a of the crack tip position is

(¶LI)T =
1

2

∫ δa

0

Ã (x) [u (x− ¶a)− u0] dx (5.19)

and is exactly balanced by the (virtual) work of external adhesive forces

(¶LE)T = ∆µ¶a (5.20)

so that at equilibrium we can write

(¶LI)T = (¶LE)T (5.21)

Now note that taking the limit ¶a → 0 and substituting Eqs. (5.12, 5.15) into Eq.
(5.19) leads to

(¶LI)T =
K2

I

2E∞

¶a (5.22)

Therefore, using Eqs. (5.21, 5.20, 5.13), we obtain

G =
E∞

E0

∆µ (5.23)

This velocity-independent expression would be in significant contrast with experi-
mental evidences. This apparent contradiction follows from the fact that exploiting
the energy balance in the limit ¶a → 0 might be a not proper physical assump-
tion. Indeed, in real fracture processes, the standard square root law expressed
by Eq. (5.12) only applies up to some finite distance from the crack tip, below
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which the local behavior is governed by complex phenomena not included in linear
models, such as formation of cavities, plastic deformations and large deformations
in non-linear regime [69,132,133]. The zone in which these phenomena come into
play and Eq. (5.12) is no longer valid is usually referred to as process-zone. Eq.
(5.23) suggests that not introducing this characteristic length in the model leads
to unreasonable predictions. This is a well-known issue in viscoelastic fracture me-
chanics, as observed in [69, 164]. In our theory, ¶a should take the same order of
magnitude as the characteristic length of the problem, i.e., the size of the process
zone. Observe now that since Eq. (5.23) is recovered as long as the displacement
gap has the square root expression given by Eq. (5.15), this result is obtained
as long as ¶a j Äv. One might expect that if the crack’s velocity is extremely
high the quantity Äv is reasonably very much higher than the process zone length.
Therefore, in the high velocity limit Eq. (5.23) is recovered. On the other hand,
in the limit of infinitely slow crack growth, one might expect that the process zone
length is ¶a k Äv. Therefore, in this case, within the very major part of the
integration domain in Eq. (5.19) the displacement field is now given by Eq. (5.17)
(i.e., the material is fully relaxed). Hence, in this case we obtain

(¶LI)T =
K2

I

2E0

¶a (5.24)

and, using again Eqs. (5.21, 5.13), we finally recover G = ∆µ. This represents
the correct limit result for low crack propagation speed. Hence, we conclude the
overall G vs. v trend is correctly predicted when ¶a is set to small but finite values,
whose order of magnitude is the same of the process zone’s length. Similarly, in
the energy approach proposed by Persson and Brener (PB) for viscoelastic crack
opening [69], the viscoelastic dissipation within the bulk of the material can be
correctly calculated only if a cut-off length is introduced in the model. The latter is
estimated as the distance a∗ from the crack tip at which the square root singularity
of the stress distribution takes some critical value Ãc, i.e., a

∗ =
[

KI/(
√
2ÃÃc)

2
]

.

Therefore, the quantity a0 =
[

2∆µ/(
√
2ÃÃc)

2
]

, i.e. the cut-off length in the limit
of slowly moving crack, is an input parameter of the Persson-Brener theory. Note
that, also in this case, we neglect the effect of local non-liner phenomena that would
require to substitute ∆µ with an effective adhesion term, representing the energy
release rate in the limit of slow moving crack. Notably, Eq. (5.13) shows that
a∗(v) = a0G(v)/∆µ. In our discussion, we exploit the Persson-Brener estimation
of the process zone’s length and we assume that the velocity-dependent process-
zone’s length is

¶a(v) = ³

(

KI(v)√
2ÃÃc

)2

(5.25)

where ³ is an arbitrary real constant. Fig. 5.3. Shows the G vs. v trend ob-
tained by enforcing the energy closure equation Eq. (5.21), in which the velocity-
dependent displacement gap is calculated according to Eqs. (5.3, 5.14), the stress
field Ã (x) is given by Eq. (5.12), the stress-intensity factor is related to G accord-
ing to Eq. (5.13) and parameter ¶a is velocity-dependent and set as shown in Eq.
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(5.25). In the figure, results of the Persson-Brener theory are also reported. The
almost perfect overlap among the two theories is obtained when ³ ≃ 0.3. More-
over, changing the parameter ³ only shifts the curve and does not affect its shape.
Following other studies, as those of Schapery and Greenwood based on a cohesive
zone model [40, 84], the characteristic length of the system, i.e., the unbonding
zone’s length in which the internal stress assumes a constant value Ã0, takes the
value ¶a = ÃK2

I /(8Ã
2
0). This is equivalent at setting ³ ≃ 2.5 (see the red curve in

figure) if we assume that in Eq. (5.25) the critical stress Ãc has the same meaning
as the quantity Ã0 of the Greenwood’s model. In a recent study [85], Persson ob-
served that the best overlapp among the PB theory and the Greenwood’s results
is obtained by setting Ã0 ≃ 3Ãc. Interestingly, assuming that ¶a = ÃK2

I /(8Ã
2
0) as in

the Greenwood model and that Ã0 ≃ 3Ãc, is therefore equivalent at setting ³ ≃ 0.3
in Eq. (5.25). The remarkable result is that the qualitative trend is in any case not
affected by of the detailed description of debonding processes at the crack tip, and
both the PB theory, the Greenwood-Schapery model and the theory object of this
thesis provide consistent results by relying on significantly different approaches.

ρ

(a) (b)

ρ
1

Figure 5.2: (a) The viscoelastic trumpet shape of the opening crack’s deformed profile in

terms of dimensionless displacement gap ∆u/a0, where a0 = 2∆µ/
(√

2ÃÃc
)2

represents
the estimation of the process-zone’s length in the limit of slowly moving crack. Ä2, given
by Eq. (5.18), is the curvature radius describing the fully relaxed region at distance
from the crack tip |x| k vÄ . (b) shows the magnification at the crack tip (|x| j vÄ)
where the shape of the profile reflects a glassy response described by a smaller radius of
curvature Ä1 given by Eq. (5.16). Results refer to v/v0 = 3 × 103 with v0 = a0/Ä and
E∞/E0 = 103 and single relaxation time creep’s function.
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Figure 5.3: The normalized energy release rate G/∆µ as function of the dimensionless
opening crack’s velocity v/v0 in a log-log diagram, where v0 = a0/Ä , being Ä the single

relaxation time of the viscoelastic material and a0 = 2∆µ/
(√

2ÃÃc
)2

represents the
estimation of the process-zone’s length in the limit of slowly moving crack. The solid
lines refer to the present theory’s predictions, for different values of the real constant ³
in Eq. (5.25). The dashed line refers to the Persson-Brener theory’s predictions [69].
Results are given for E∞/E0 = 103 and single relaxation time creep’s function

.

5.3 Crack closing in steady-state conditions

We assume that the crack is closing with the crack tip advancing at constant
velocity v > 0. Assuming the reference frame co-moving with the crack’s tip, as
shown in Fig. 5.1, the boundary conditions are

Ã (x) = 0; x > 0 (5.26)

u (x) = u0; x f 0

This time for x > 0 the stress Ã (x+ vt) = 0 and we can proceed all the other way
around, so let us assume that Ã1 (x > 0) = 0 and let us check that this condition
leads to the right solution. Indeed, using Eq. (5.5)

Ã (x) = R (0) Ã1 (x) +

∫ +∞

0+

dtṘ (t) Ã1 (x+ vt) = 0; x > 0 (5.27)

Hence, the first of the two boundary conditions Eq. (5.26) is already satisfied.
Now let us calculate the Ã1 (x < 0) by inverting Eq. (5.4) for x < 0, i.e. by solving
the following equation

u (x < 0) = u0 =

∫ 0−

−∞

dx′G (x− x′) Ã1 (x
′) (5.28)

Then, we use Eq. (5.4) to calculate

u (x > 0) =

∫ 0−

−∞

dx′G (x− x′) Ã1 (x
′) (5.29)
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and Eq. (5.5) to calculate the stress for x < 0

Ã (x) = R (0) Ã1 (x) +

∫ |x|/v

0+

dtṘ (t) Ã1 (x+ vt) (5.30)

The determined solution [u(x) and Ã(x)] satisfies Eq. (5.1) and the boundary
conditions given in Eq. (5.26), and therefore represents the unique solution of the
viscoelastic state. Now we define the reference elastic analogue stress field Ãe(x)

Ãe (x < 0) =
(KI)1√
2Ãx

that satisfies

u (x > 0) = J (∞)

∫ 0−

−∞

dx′G (x− x′) Ãe (x
′) (5.31)

where u(x) is the displacement of the viscoelastic problem. Moreover, Ã1(x) and
Ãe(x) are related each other as

Ã1 (x) = J (∞) Ãel (x) =
1

E0

Ãe (x)

Then, following Eq. (5.29) the displacement field of the viscoelastic problem is:

u (x > 0) = u0 +
(KI)1
E0

√

8x

Ã
(5.32)

This discussion shows that the displacement-stress behavior of the viscoelastic
closing crack is specular to that of the opening crack. Indeed, in this case the the
viscoelastic displacement field u (x) coincides with the one that would be obtained
for the perfectly elastic case with elastic modulus E0 as follows from Eqs. (5.28,
5.29, 5.31). The stress instead differs, as follows from Eq. (5.30). This is in
agreement with Schapery’s analysis [68, 84]. Notably, Eq. (5.30) shows that very
close to the crack tip, for |x| j vÄ , we have

Ã (x < 0) ≈ R
(

0+
)

Ã1 (x < 0) ≈ E∞

E0

(KI)1
√

2Ã|x|
, |x| j vÄ (5.33)

which means that the stress intensity factor KI of the viscoelastic case is related
to that of the elastic analogue (KI)1 as

KI ≈
E∞

E0

(KI)1 (5.34)

Instead, as expected, sufficiently far from the crack tip, i.e., for |x| k vÄ , the stress
viscoelastic distribution recovers the one of the elastic case since the material is
fully relaxed:

Ã (x < 0) ≈ (KI)1
√

2Ã|x|
, |x| k vÄ (5.35)
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Hence the energy release rate of the viscoelastic problem is

G =
(KI)

2

1

2E0

(5.36)

And, therefore, according to the crack shape provided by Eq. (5.32) the crack tip
radius for a viscoelastic crack closing is again proportional to the energy release
rate:

Ä2 =
4

Ã

(

(KI)1
E0

)2

=
8G

ÃE0

Observe that the profile trumpet shape is not predicted for the closing crack and
is specific of the opening case. In Fig. 5.4 we show the overall stress distribution
for a closing crack. Notably, at distance of order Äv from the crack’s tip, the stress
distribution presents a negative (i.e., compressive) peak. A similar result has been
shown in Chapter 3 at the contact leading edge in sliding contacts, in Chapter 4
during normal indentation, and by Greenwood [70] using a cohesive-zone model
for crack closing, and is not predicted for opening crack cases. Once the energy
equilibrium is enforced, this behavior entails a completely different scenario from
the opening crack case.
The energy balance at the crack tip reads as:

(¶LI)T =
1

2

∫ δa

0

Ã (−x) [u (¶a− x)− u0] dx = (¶LE)T = ∆µ¶a (5.37)

Also in this case, taking the limit ¶a → 0 and using Eqs. (5.32, 5.33) gives again

(¶LI)T =
K2

I

2E∞

¶a (5.38)

However, since now the energy release rate is related to the ’remote’ stress intensity
factor (KI)1 ̸= KI , using Eqs. (5.34, 5.36, 5.37, 5.38) this time yields:

G =
E0

E∞

∆µ (5.39)

i.e., the effective energy of adhesion would be velocity-independent and very much
smaller than ∆µ. However, also for the closing crack, the actual G vs. v curve can
be predicted by assuming that ¶a is a small but finite quantity and, analogously to
the opening crack case, Eq. (5.39) represents the result for extremely high crack
speed, corresponding to ¶a j vÄ . On the other hand, at very low velocity, since
¶a k vÄ , in Eq. (5.37) the stress field is this time almost entirely represented by
Eq. (5.35), therefore we obtain

(¶LI)T =
K2

I

2E0

¶a (5.40)

and in turn, using Eqs. (5.36, 5.37), we get G = ∆µ. In [151], Persson adapted
the PB theory to the closing crack case [see Fig. 5.5(a)]. However, he observed
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that assuming again that the cut-off length a∗ =
[

KI/(
√
2ÃÃc)

]2
might lead to

a physically unreasonable scenario. Indeed, in the limit of high velocity, the cut-
off length would be a∗ = G(v → ∞)/∆µa0 = E0/E∞a0, i.e., well below atomic
distances considered that typically a0 is of order 1 nm and that E0/E∞ ≃ 10−3.
Therefore, he also presented a modified theory in which the cut-off length is as-
sumed constant and equal to a0 (see Fig. 5.5 (a)). In Fig. 5.5 (a) we report the
G vs. v trend predicted by the present theory, adopting the two approaches pro-
posed by Persson for the characteristic length estimation. First (solid pink lines),
we exploit the same velocity dependent expression of the parameter ¶a, as already
done for the opening crack:

¶a(v) = ³

(

(KI)1 (v)√
2ÃÃc

)2

(5.41)

where we remind that (KI)1 (v) =
√

2E0G(v) is the stress intensity factor recov-
ered at distance |x| k vÄ . Then, we assume that ¶a is constant (solid blue line)
and equal to

¶a = ³a0 = ³

(

2∆µ√
2ÃÃc

)2

(5.42)

Results indicate consistency between the proposed theory and the Persson’s ap-
proach, as long as the assumptions made while estimating the characteristic cut
off-length are the same. The almost perfect overlap is obtained when ³ ≃ 0.5.
Data shown in Fig. 5.5 (b) instead are based on the Schapery’s model of the cohe-
sive zone for a viscoelastic closing crack. According to Schapery [68], the remote
stress intensity factor (KI)1 and the characteristic cohesive zone’s length ¶a for a
crack closing in a viscoelastic media must satisfy the following equation:

(KI)1 = ³Ã0E0

(

2

Ã

)1/2 ∫ δa

0

J

(

· − ¶a

v

)

·−1/2d· (5.43)

where ³ is an arbitrary dimensionless real constant that we set in our calculation.
The resulting energy release rate vs. the crack velocity trend is reported in Fig.
5.5(b). The figure also reports the results obtained by Greenwood [70] based on the
Schapery’s model. The overlap among the two theories is obtained by setting ³ =
0.5. We conclude that, despite the description of the process zone is still a partially
unsolved problem, the theory object of this thesis provides consistent results with
previous studies as long as the same assumptions are made while estimating the
characteristic length scale associated with local non-linear phenomena at the crack
tip.
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(a) (b)

(c)

Figure 5.4: The dimensionless stress distribution for a steady closing crack at distance
from the crack’s tip j vÄ (a), ≃ vÄ (b) and k vÄ (c). Note that Ãc is a critical value of
the stress in the process-zone, whose order of magnitude is ∆µ/ϵ, being ϵ the range of
adhesive interactions. The asymptotic limits recovered close to the crack tip (red line)
and far from the crack tip (blue line) described by the standard square root expression
are reported. Note that the stress-intensity factor close to the tip is E∞/E0 times larger
than that recovered far from the tip. Results are given for E∞/E0 = 102 and single
relaxation time creep’s function.
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3

α=0.5
α=1

α=0.5
α=1

(a) α=0.5 α=1

(b)

Figure 5.5: (a) Comparison between the present theory (solid lines) and the Persson’s
model (dashed lines, adapted from Fig. 8 in [151]) for the steady state closing crack. The
normalized energy release rate G/∆µ is shown as function of the dimensionless closing

crack’s velocity vÄ/a0 in a log-log diagram, where a0 = 2∆µ/
(√

2ÃÃc
)2

represents the
estimation of the cut-off length in the limit of slowly moving crack according to the PB
theory. Pink lines refer to calculations performed assuming that the parameter ¶a in
Eq. (5.37) is velocity-dependent as given by Eq. (5.41). Blue lines refer to calculations
performed assuming velocity-independent ¶a given by Eq. (5.42). The reported data
from [151] refer to the same assumptions with ³ = 1. (b) Comparison between the
present theory (solid lines) and the Greenwood’s model (dashed line, adapted from Fig.
6 in [70]) for the steady state closing crack. Calculations are performed assuming that
the parameter ¶a in Eq. (5.37) is velocity-dependent and given by Eq. (5.43), which
represents the Schapery’s estimation of the cohesive-zone length [68] when ³ = 1. The
normalized energy release rate G/∆µ is shown as function of the dimensionless closing
crack’s velocity vÄÃ0/(E0∆µ) in a log-log diagram, where Ã0 is the constant stress acting
within the cohesive-zone. All results are given for E∞/E0 = 102 and single relaxation
time creep’s function.
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5.4 Unsteady crack propagation: the delayed frac-

ture

In this section, we apply the general energy closure equation of unsteady contacts
( Chapter 4) to study the unsteady propagation of a crack in a viscoelastic solid,
with specific focus on the so called delayed fracture. As shown in Secs. (5.2,
5.3), the virtual work balance expressed at the tip of the crack allows to write
the equilibrium equation given a certain value of the stress intensity factor KI . In
unsteady conditions, KI is generally time-dependent and is related to the time-
history of the remotely applied displacements or forces depending on the system’s
geometry. In this section, we consider a linear viscoelastic sheet of length L and
heigth 2h containing a pre-existing crack, whose initial length is a0. We assume
that a0 > h and L k h, as shown in Fig. 5.6. The specimen is subjected
to a generic time-dependent normal force F (t) and associated time-dependent
displacement u∞(t) of the upper and lower rigid surfaces as shown in the figure.
In our study, the controlled parameter is the force and the resulting time-dependent
crack tip position in the considered reference frame and crack’s length are x0(t)
and a(t). Note that, due to the specimen geometry, very far from the crack tip, for
x1 → +∞, the material is subjected to uniaxial uniform stress Ã∞(t) and to the
corresponding uniform deformation ε∞(t) = u∞(t)/h, related each other through
to the linear viscoelastic constitutive equation:

ε∞(t) =

∫ t

−∞

dt1J(t− t1)Ã̇∞(t1) (5.44)

where J(t) is the viscoelastic creep’s function. Let us focus on a discontinuously
applied constant stress, i.e., we consider

Ã∞(t) = Ã0H(t) (5.45)

where H(t) is the unit-step function. Notably, in this pure-shear geometry [89,90],
the stress intensity factor is related to the remote stress as

KI(t) = Ã∞(t)
√
h (5.46)

Therefore, also the stress intensity factor undergoes the step function

KI(t) = KI,0H(t) (5.47)

where KI,0 = Ã0

√
h. Also observe that, according to Eq. (5.44) and following the

same arguments introduced in Sec. 4.9, the elastic energy density as function of
time is

W =
1

2
Ã2
0

{

1

E∞

+
N
∑

j=1

[1− exp(−t/Äj)]
2

Ej

}

(5.48)

i.e., W is the total elastic energy stored in the N Voigt elements of the viscoelastic
linear model. Now observe that, for t → 0+ the response of the material is purely
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elastic everywhere within the solid, with the high frequency modulus E∞. There-
fore, within the very initial stage of the loading time-history, the crack equilibrium
and propagation are governed by the balance between the energy release rate and
the intrinsic surface energy ∆µ of the material. Now let us suppose that

G(t = 0+) =
1

2
h
Ã2
0

E∞

=
K2

I,0

2E∞

< ∆µ (5.49)

Under these conditions, crack propagation is energetically prevented. However,
crack cannot heal either, as the molecular bonds at the interface are irreversibly
broken. We conclude that the crack’s length remains unchanged for a certain
amount of time. Now, let us observe that, after a certain time has passed: (I)
the crack propagation can occur if the release of mechanical plus elastic energy is
enough to compensate the change of adhesion energy plus the internally dissipated
energy (see Sec. 4.9); (II) the elastic energy is a monotonically increasing function
of time [see Eq. (5.48)]. Therefore, one might expect that the propagation of
the crack can occur with a certain delay, once the material’s creep has allowed
for a sufficient amount of elastic to be stored within the solid. However, during
the creep response, the crack equilibrium is no longer described by the Griffith
equation due to the presence of internal dissipation. Therefore, in order to tackle
the delayed fracture, we need to include the non-conservative work contribution in
the equilibrium equation, i.e., we need to enforce the virtual work balance at the tip
of the crack. Thus, let us focus on the asymptotic stress and displacement fields.
Sufficiently close to the crack tip, the stress field presents the standard square-root
singularity. Specifically the time-varying normal stress along the crack surface can
be written as

Ã(x1, x0, t) =
KI(t)

√

2Ã (x1 − x0(t))
H[x1 − x0(t)]H(t) (5.50)

where H(x) and H(t) are the unit step-functions in the space and time domain,
x1 is the lateral coordinate and x0(t) is the coordinate of the crack’s tip in the
fixed reference frame, as shown in Fig. 5.6. Exploiting linearity, translational
invariance and the elastic-viscoelastic correspondence principle (see Chapter 2),
the corresponding asymptotic time-dependent surface displacement on the crack’s
surface is

u(x1, x0, t) = J(0)

∫

d·G(x1−·)Ã(·, x0, t)+

∫ t

−∞

dt1J̇(t−t1)

∫

d·G(x1−·)Ã(·, x0, t1)

(5.51)
where G(x) is the Green’s function of the corresponding elastic problem for a
material of unitary modulus. Now observe that, in Eq. (5.51) the quantity

∫

d·G(x1 − ·)Ã(·, x0, t) = u1(x1, x0, t) (5.52)

is the crack surface gap for an elastic material of unitary modulus resulting from a
stress intensity factor equal to KI(t) and, using Eq. (5.50), it takes the well-known
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form:
u1(x1, x0, t) = KI(t)

√

8/Ã (x0(t)− x1)H[x0(t)− x1]H(t) (5.53)

allowing to re-write Eq. (5.51) as

u(x1, x0, t) = J(0)u1(x1, x0, t) +

∫ t

−∞

dt1J̇(t− t1)u1(x1, x0, t1) (5.54)

which can be easily handled numerically. However, x0(t) must be determined
by enforcing the closure equation. With this aim in mind, we recall the general
expression of the virtual work principle, i.e.,

¶LI =

∫

W

Ãij¶εijdA =

∫

∂W

Ã · ¶vdx = ¶LE (5.55)

for any admissible virtual displacement ¶v and its associated internal strain tensor
¶εij, where Ã is the surface stress field, and Ãij is the internal stress tensor. Let us
recall that in a virtual process time is ’frozen’. Thus, since the remote displacement
u∞ only depends on time according to Eq. 5.44, we conclude that ¶v must vanish
on the upper and lower rigid interfaces of the sheet and the deformation of the
contour resulting from the virtual variation of the crack tip position is the red line
shown in Fig. 5.6. Thus, the work of internal stresses entirely results from the
asymptotic stress field at the crack’s tip and the closure equation is identical to
that derived in Chapter 4 for unsteady contact mechanics. Therefore, the virtual
work of internals stresses is

(¶LI)T =
1

2

∫ a+δa

a

dx1Ã
+(x1)v

−(x1) (5.56)

where Ã+(x1) and v−(x1) are the asymptotic fields at the crack tip and the virtual
work of adhesive forces is

(¶LE)T = ¶a∆µ (5.57)

where ¶a is a positive quantity that represents the infinitesimal virtual variation of
the crack length and must take the same order of magnitude of the local process-
zone. Now, we move back to our analysis. Observe that, for t = 0+ in Eq. (5.56)
we have

v−(x1) = KI/E∞

√

8/Ã (a+ ¶a− x1) (5.58)

Ã+(x1) = KI/
√

2Ã (x1 − a) (5.59)

therefore we get

(¶LI)T (t = 0+) =
K2

I

2E∞

¶a (5.60)

i.e., the (virtual) internal work recovers the standard expression of the energy re-
lease rate, and this is consistent with the initial elastic (glassy) response. Assuming
that KI,0 <

√
2∆µE∞, crack propagation is prevented. Thus, we assume that the
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δa

x2

Viscoelastic sheetx1

F(t)
u (t)∞

L

2h

a(t)

x0(t)

Figure 5.6: The schematic of the unsteady crack problem for a pure shear geometry.
The red dashed line identifies the virtual deformation of the contour resulting from a
virtual variation ¶a of the time-dependent crack’s length a. x0(t) is the coordinate of
the crack’s tip in the considered fixed reference frame.

crack’s tip position remains unchanged until a certain time instant td. Notably,
for t < td, since x0(t) = x0(t = 0) Eq. (5.54) can be expressed as

u(x1, x0, t) = u1(x1, x0, t)J(t) (5.61)

= J(t)KI,0

√

8/Ã[x0(0)− x1]H[x0(0)− x1] (5.62)

Therefore, in Eq. (5.56) for t < td we have

v−(x1) = J(t)KI,0

√

8/Ã (a+ ¶a− x1) (5.63)

Ã+(x1) = KI/
√

2Ã (x1 − a) (5.64)

leading to:

(¶LI)T (t) =
1

2
K2

I,0J(t)¶a (5.65)

Since J(t) is a monotonically increasing function, the condition of incipient crack
propagation, i.e., (¶LI)T = (¶LE)T , is reached at time td corresponding to:

1

2
K2

I,0J(td) = ∆µ (5.66)

After crack propagation starts (i.e., for t > td) the time-dependent crack tip po-
sition x0(t) must be calculated numerically. Indeed, for t > td the displacement
field must be calculated according to Eq. (5.54), i.e., considering that x0(t) is
time-dependent. Therefore, Eq. (5.65) is no longer valid for t > td. The numerical
resolution is based on the simple discretization of the time domain in steps ∆t.
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Assuming that x0 has been determined up to time step tk, the value x0(tk+1) >
x0(tk) is the one ensuring that the closure equation:

1

2¶a

∫ a+δa

a

dx1Ã
+(x1)v

−(x1) = ∆µ (5.67)

is satisfied at time tk+1, where the stress field is given by Eq. (5.50) and the dis-
placement field is calculated by writing Eqs. (5.53, 5.54) at time tk+1. The delayed
fracture behavior is summarized in Fig. 5.7. Notably, delayed fracture occurs when
the applied stress intensity factor KI,0 satisfies the following inequality:

√

2∆µE0 < KI,0 <
√

2∆µE∞ (5.68)

Indeed, supposingKI,0 >
√
2∆µE∞ crack propagates instantaneously since in such

a case we have (¶LI)T (t = 0+) > ∆µ. On the other hand, since according to Eq.
(5.65) for t < td the maximum value that (¶LI)T (t) can take is 1/2K2

I,0/E0, crack

will never propagate ifKI,0 <
√
2∆µE0. In Fig. 5.7 the normalized delay-time td/Ä

is plotted as function of the dimensionless parameter hoÃ
2
∞/ (2∆µE0) according to

Eq.(5.66) in which we used:

J(t) =

{

1

E∞

+

[

1

E0

− 1

E∞

]

[1− exp(−t/Ä)]

}

H(t)

A qualitatively similar trend of the delayed propagation time vs. the applied

No fracture Delayed 

fracture
Instantaneous

      fracture

Figure 5.7: (a) The normalized delay time td/Ä as function of the dimensionless parame-
ter hoÃ

2
∞/ (2∆µE0) = K2

I / (2∆µE0) in a log-log diagram. Results refer to E∞/E0 = 103.
The delayed fracture is predicted as long as the inequality (5.68) is satisfied [cyan region
in Figure (a)]. (b) The crack tip position x0 as function of the dimensionless time t/Ä
for different values of the applied remote stress . Results are shown for E0 = 650 MPa,
E∞ = 10E0, Ä = 10−3 s, h = 6.2 nm, ¿ = 0.5, ∆µ = 0.03 N/m. The critical stress in Eq.
(5.69) has been estimated as Ãc = ∆µ/ϵ where we set as range of adhesive interactions
ϵ = 0.36 nm.

stress has been experimentally observed [159, 162, 162]. In Fig. 5.7 (b) we report
the overall trend x0(t) of the crack tip’s position as function of the normalized
time, for different values of the remotely applied stress. In the all of the reported
cases, crack propagation occurs with a certain delay, i.e., Eq. (5.68) is satisfied.
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Notably, the delay-time equation 5.66 has been derived without any assumption
on the process zone length. Instead, for t > td the quantity ¶a in Eq. (4.9) is set
as

¶a =

(

KI,0√
2ÃÃc

)2

(5.69)

where Ãc is some characteristic stress whose order of magnitude is Ãc = ∆µ/ϵ, being
ϵ the range of adhesive interactions. Eq. (5.69) represents the estimation of the
process zone’s length. Interestingly, Fig. (5.7) (b) shows that crack propagation
starts with a certain finite speed. As expected, increasing the remote stress leads
to higher crack velocity.

5.5 Conclusion

In this chapter, the crack propagation and healing in infinitely extended viscoelas-
tic media has been studied. When steady state conditions are assumed, the dis-
placement and stress fields present specular behaviors in the opening and closing
crack cases. In the opening case, the stress distribution is the same recovered in an
equivalent purely elastic problem. Instead, the displacement field is different, and
presents a characteristic trumpet shape that reflects the elastic glassy response
close to the crack tip and an elastic rubbery response at large distance. On the
other hand, in the closing crack case, the displacement field is the same of the
corresponding elastic problem and the stress distribution presents a very peculiar
different trend. Specifically, very close to the crack tip, the stress intensity factor
is much higher compared to the fully relaxed elastic case, reflecting a glassy re-
sponse. The equivalent elastic stress intensity factor is instead recovered very far
from the tip, where the material is fully relaxed. The overall energy release rate
vs. crack velocity trend is predicted by enforcing the energy balance presented
in Chapter 3. For both the opening and closing crack cases, results are in solid
agreement with previous studies, as long as the same assumptions are made while
estimating the characteristic problem’s length, i.e., the size of the local process
zone. Subsequently, the assumption of steady state crack motion has been relaxed,
and the study has focused on the delayed fracture of viscoelastic materials. The
time-dependent crack tip position has been determined by enforcing the energy
closure equation for unsteady conditions provided in chapter 4. The proposed
theory provides results consistent with experimental observation: depending on
the magnitude of the applied stress intensity factor, crack propagation can occur
either instantaneously and with a certain delay. In the latter case, a closed form
relation between the applied stress and the delay-time immediately follows from
the energy balance at the crack tip. The latter clearly shows that the phenomenon
is related to the material’s viscoelastic creep.



Conclusions

This thesis has presented a novel energy formulation to study adhesive contact
and fracture mechanics of viscoelastic materials. The energy closure equation of
the contact or crack problem has been rigorously formulated by exploiting the
principle of virtual work: when virtual variations of the contact domain are con-
sidered, the work of the external adhesive forces is balanced by the work of internal
stresses. The theoretical framework for deriving the energy equilibrium condition
has been developed both in steady and general unsteady conditions. In fact, the
proposed formulation is a general Griffith-like criterion for viscoelastic adhesion.
Overall, the energy arguments provide deep insights on physical mechanisms re-
sponsible for experimentally observed phenomena. Indeed, the theory allows to
tackle the viscoelastic-adhesive contact behavior in general conditions, and to cor-
rectly model the viscoelastic dissipation involving the entire volume of the system.
In Chapter 3, the steady-state adhesive sliding contact between a wavy surface and
a viscoelastic half-plane has been investigated. Results are in solid agreement with
experimental evidence, and many of the characteristic phenomena resulting from
the complex interplay between adhesion and viscoelasticity have been addressed.
The velocity-dependent friction coefficient is found highly increased compared to
adhesiveless conditions, and the predicted trend is in solid qualitative agreement
with experimental data provided by Grosch [27]. Specifically, at low velocity val-
ues the frictional response depends on visocelastic losses localized at the contact
edges, where the local behavior resemble the propagation of a crack, leading to a
certain amount of adhesion hysteresis. At intermediate velocity values, the effect
of adhesion is even more important: the increase of contact area entails additional
amount of dissipation within the bulk of the material, and the resulting friction
increase cannot be explained by simply summing-up independent estimations of
small- and large- scale hysteretic losses. The adhesive properties of the system
have been investigated in detail as function of the contact parameters. Small-scale
losses occurring at the contact trailing edge in fact increase the effective adhesion.
Therefore, depending on the sliding velocity, the contact length, the pull-off force
and the system’s toughness are significantly higher compared to corresponding
purely elastic cases.
In Chapter 4, the unsteady normal indentation of a rigid sphere into a viscoelastic
half-space has been investigated. Results have elucidated the fundamental role of
the specific enforced time-history on the overall response of the system. In the
same chapter, a novel methodology to calculate the energy release rate and the
amount of internal dissipation has been presented. This has allowed to investigate
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the physical mechanisms responsible for the predicted phenomena. Importantly,
results clearly indicate that models based on scale-separation exploiting the JKR
equations with energy of adhesion replaced by a velocity dependent term might do
not properly tackle the real behavior of the system. During approach - retraction
cycles with vanishing dwell-time, significative hysteresis is observed and the pull-
off force vs. the retraction velocity curve exhibits a bell-shape that reflects the
viscoelastic-induced adhesion enhancement. This mostly depends on local dissipa-
tion, leading to increased energy release rate. However, a very different behavior
is observed when the dwell-time allows for the full relaxation of the material. In
this case, the pull-off force monotonically increases with the retraction speed, until
a plateau is reached. In the high velocity limit, a flat-punch like behavior is trig-
gered by the glassy response of the material, that prevents the contact area form
decreasing. Under this conditions, since the response of the material is elastic, the
energy release rate equates the thermodynamical value of the adhesion energy. In
this case, the relations between contact quantities deviate from the JKR predic-
tions, therefore, the JKR model cannot predict the contact behavior.
In Chapter 5, the steady and unsteady crack propagation and healing in viscoelas-
tic media has been investigated. When steady state conditions are assumed, the
proposed theory correctly predicts the dependence of the energy release rate from
the crack’s speed, in perfect agreement with previous studies, as long as the same
assumptions are made in estimating the process zone’s length. Under unsteady
conditions, the energy formulation allows to predict a fundamental experimentally
observed phenomenon: the so called-delayed fracture. Specifically, when subjected
to a discontinuously applied stress, the fracture of a viscoelastic solid might occur
with a certain delay-time, which is found to depend on the viscoelastic creep of
the material.
Overall, the results presented in this thesis are in agreement with experimental ob-
servations and are supported by previous theoretical or numerical studies. Hence,
this dissertation aims at providing a general effective, simple and versatile method
to predict, investigate and deeply understand the adhesive contact behavior of
viscoelastic materials.
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