
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022 5133
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Abstract—The paper addresses the design of adaptive radar
detectors with desired behavior, in Gaussian disturbance with
unknown statistics. Specifically, based on detection probability
specifications for chosen signal-to-noise ratios and steering vec-
tor mismatch levels, a methodology for the design of customized
constant false alarm rate (CFAR) detectors is devised in a suitable
feature plane obtained from two maximal invariant statistics. To
overcome the analytical and numerical intractability of the re-
sulting optimization problem, a novel general reduced-complexity
algorithm is developed, which is shown to be effective in providing
a feasible solution (i.e., fulfilling a constraint on the probability of
false alarm) while controlling the behavior under both matched and
mismatched conditions, so enabling the design of fully customized
adaptive CFAR detectors.

Index Terms—Radar, GLRT, CFAR property, robust detectors,
selective detectors, mismatched signals, feature space.

I. INTRODUCTION

THE detection of targets embedded in Gaussian disturbance
composed of thermal noise, clutter, and possible jamming

interferers is a central problem in the radar detection literature.
A consolidated approach is to resort to the generalized likeli-
hood ratio test (GLRT) approach, in which the statistics of the
disturbance are estimated through the aid of a set of secondary
data, having the same statistics asH0. Since the pioneering work
by Brennan and Reed [1], and then Kelly [2], particular focus
has been put on obtaining statistics that do not depend upon
unknown clutter or noise statistics under theH0 hypothesis: this
in fact guarantees that the detection threshold can be set to ensure
a prefixed false alarm probability (Pfa), a property referred to
as constant false alarm rate (CFAR).

Several adaptive detectors have been derived in the past
decades based on such a rationale [3], [4]. Significant attention
has been paid to the design of CFAR detectors with desired
properties in terms of probability of detection (Pd) under mis-
matched conditions. Typically, a robust detector is desirable
to cope with possible off-grid conditions due to angle and/or
Doppler quantization, which imply that the actual steering vector
may be not aligned with the nominal one; conversely, a selective
detector is desirable to reject unwanted signals due to jamming
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or spectrum co-existence [5]. In this respect, Kelly’s detector is
a moderately selective receiver [6], while the adaptive matched
filter (AMF) [7] is a robust receiver. Other well-known exam-
ples of selective receivers are the adaptive coherence estimator
(ACE) [8] (also called adaptive normalized matched filter), the
ABORT or whitened-ABORT (WABORT) detectors [9], [10],
[11], as well as the Rao detector [12]. A further type of receivers
is based on the idea of inserting a parameter in a well-known
statistic, so as to obtain a tunable detector: for instance, in
Kalson’s detector [13] a nonnegative parameter is introduced
in the Kelly’s statistic, in order to control the rejection level of
mismatched signals, in between the AMF and Kelly’s detector.

The design of detectors with suitable symmetries that can also
ensure the CFAR behavior has found an important theoretical
tool in the principle of invariance [14], [15], [16], [17]. In
our previous work [18], a “CFAR feature plane” (CFAR-FP)
is introduced for a suitable maximal invariant of the classical
adaptive radar detection problem after Kelly’s formulation. In
the CFAR-FP, radar returns are mapped to two-dimensional
clusters whose properties in terms of position and shape in
the plane can be analytically characterized and expressed as a
function of few main parameters, so shedding new light on the
behavior of several well-known CFAR detectors.

The use of the invariance principle and maximal invariant
statistics as key elements in the design of adaptive radar detectors
has been an active research field in the last years. Invariance
theory turned out to be useful in heterogeneous environments,
characterized by Gaussian interference with spatially varying
power, to derive a class of detection rules exhibiting specific
symmetries that ensure the CFAR property [19]. In [20], de-
tection of targets embedded in Gaussian disturbance sharing
a block-diagonal covariance structure is addressed. A unified
framework considering point-like, range-spread, and subspace
targets is provided to model the general problem, and a new
family of invariant detectors is proposed to overcome the un-
availability of the GLRT in closed-form. In [21], authors dealt
with the problem of target detection in (possibly low-rank)
dominant heterogeneous clutter plus Gaussian thermal noise.
Two tunable invariant detectors derived from equivalent binary
hypothesis tests with observations having block-diagonal covari-
ance matrices are proposed, which guarantee bounded CFAR
property.

One of the challenges in adaptive coherent detection is how to
ensure a prefixedPfa and, at the same time, control the behavior
under both matched and mismatched conditions, while guaran-
teeing the CFAR property (as better discussed in Section II).
Moreover, enhancing either the robustness or the selectivity of a
radar detector often comes at the price of aPd loss under matched
conditions [22]. Although [18] provided tools for interpreting the
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performance of CFAR detectors, the design therein was mostly
heuristic. Indeed, the development of a general methodology for
the design of fully customized adaptive CFAR detectors is still
an open research problem.

Aiming at advancing the literature towards this direction, in
the present paper an original design methodology is devised
based on the CFAR-FP. Specifically, after introducing the re-
quired background and discussing in detail the importance of
having an analytical framework to guide the design of cus-
tomized detectors in the CFAR-FP in Section II, the following
contributions are provided:
� Given Pd specifications for chosen numerical values of

signal-to-noise ratios and steering vector mismatch levels
(examples are discussed in Section III-A), correspond-
ing to a desired detection behavior, the optimal infinite-
dimensional problem of designing a customized CFAR
detector working at a preassigned Pfa is formulated,
with suitable cost function and constraint (Section III-
B). To overcome its mathematical intractability, a finite-
dimensional version is considered (Section III-C), using
a suitable parametric family of approximation functions.
However, the resulting optimization problem is still highly-
nonlinear and state-of-the-art numerical methods attempt-
ing at jointly optimizing all the involved parameters fail in
providing a feasible solution satisfying the Pfa constraint
(Section IV-A).

� To address such a challenge, a novel, low-complexity, sub-
optimal search strategy in a reduced, though sufficiently
rich, solution space is devised. Using a piecewise-linear
structure for the approximation functions, convenient an-
alytical formulas are derived to ease the evaluation of
the cost function and provide a closed-form expression
for the Pfa constraint (Section IV-B). Though inherently
sub-optimal, the proposed algorithm represents (to the best
of the authors’ knowledge) the first method able to find a
feasible solution (i.e., exactly fulfilling the Pfa constraint)
to the intractable optimization problem for designing cus-
tomized CFAR detectors with desired properties.

� The effectiveness of the proposed approach, which is fully
general and does not depend upon the unknown statis-
tics of the disturbance, is demonstrated by designing two
novel detectors representative of either robust or selective
behaviors (among the examples of Section III-A). The
approximation accuracy is evaluated in comparison with
a plain solution, and a performance assessment against
well-known detectors is also performed (Section V). A
thorough performance analysis conducted on both simu-
lated and real-world radar measurements shows that the
proposed approach is effective in providing a satisfactory
approximation of the desired detector, while ensuring a
prefixed Pfa and controlling the behavior under both
matched and mismatched conditions, which is of utmost
importance in radar applications.

We conclude the paper in Section VI.
In the following, vectors and matrices are denoted by boldface

lower-case and upper-case letters, respectively. The (i, j)th entry
of a matrix A is indicated by [A]i,j . Symbols (·)T, (·)†, and
| · | denote the transpose, conjugate transpose, and modulus
operators, respectively. The functions Fx(·) and p(·) denote the
cumulative distribution function (CDF) of the random variable
x and the probability density function (pdf), respectively.Π(·) is
the rectangular window centered in the origin with unitary am-
plitude over [−1/2, 1/2] (and zero elsewhere). As to numerical

sets,C is the set of complex numbers andCP×Q is the Euclidean
space of (P ×Q)-dimensional complex matrices (or vectors if
Q = 1). IP×Q and 0P×Q stand for the identity matrix and the
null matrix of dimension P ×Q.

II. BACKGROUND AND MOTIVATION

In this section we recall the classical formulation of the radar
detection problem, and review its interpretation in the CFAR-
FP introduced in [18]. This will serve to provide the necessary
background, for self-consistency, and also to illustrate in more
details the motivation of the present work.

A. Problem Formulation

The classical hypothesis testing problem for detecting the
possible presence of a (point-like) coherent target from a given
cell under test (CUT) is given by{

H0 : z = n
H1 : z = αv + n

(1)

where z ∈ CN×1, n ∈ CN×1, and v ∈ CN×1 are the received
vector, the overall disturbance term, and the known space-
time steering vector of the target. The unknown deterministic
parameter α ∈ C is the target amplitude, depending on radar
cross-section, multipath, and other channel effects.

Kelly [2] derived a GLRT for problem (1) assuming complex
normal distributed n with zero mean and unknown (Hermitian)
positive definite covariance matrix C, and K ≥ N indepen-
dent and identically distributed training (or secondary) data
z1, . . . ,zK (independent of z, free of target echoes, and sharing
with the CUT the statistical characteristics of the noise). Let
S =

∑K
k=1 zkz

†
k, then Kelly’s statistic is

tKelly =
|z†S−1v|2

v†S−1v (1 + z†S−1z)
. (2)

Eq. (2) can be rewritten as tKelly = t̃
1+t̃

, where

t̃ =
|z†S−1v|2

v†S−1v
(
1 + z†S−1z − |z†S−1v|2

v†S−1v

) (3)

hence tKelly and t̃ are equivalent statistics (and of course t̃ =
tKelly

1−tKelly
). As mentioned, a remarkable property of Kelly’s detector

is that it has the CFAR property; moreover, it behaves as a
moderately selective detector when the actual steering vector
p in the received signal z is not aligned with the nominal one
v. The mismatch level is quantified by the squared cosine of the
angle between these two vectors, i.e.,

cos2 θ =
p†C−1v

p†C−1p v†C−1v
. (4)

Invariance theory has shown that CFAR detectors in Gaussian
disturbance can be written in terms of equivalent pairs of max-
imal invariant statistics; a convenient choice adopted in [18] is
(β, t̃), where

β =
1

1 + z†S−1z − |z†S−1v|2
v†S−1v

∈ [0, 1]. (5)

On the geometric side, this means that signals from the CUT
and secondary cells are mapped, through (3) and (5), into two-
dimensional points (β, t̃) of the CFAR-FP. The colored dots
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Fig. 1. Some well-known detectors in the CFAR-FP, for N = 8, K = 16,
Pfa = 10−4. Blue dots are the H0 cluster, red dots are the H1 cluster for
SNR = 15 dB, while cyan dots represent a cluster under mismatched conditions
(cos2 θ = 0.65).

shown in Fig. 1 indeed represent several realizations of the ran-
dom variables (β, t̃), obtained from data vectors z, z1, . . . ,zK :
specifically, blue dots correspond to data underH0 (noise only),
red dots are the data underH1 for 15 dB of signal-to-noise ratio
(SNR) defined as

γ = |α|2p†C−1p ∈ R+ (6)

whereas cyan dots are for H1 with the same SNR but under
mismatched conditions (with cos2 θ ≈ 0.46). Finally, the test
associated to a generic CFAR detectorX (including AMF, ACE,
Kalson, etc.) can be rewritten as

tX(β, t̃)
H1
>
<
H0

ηX (7)

where tX is the decision statistic and ηX is the threshold that
guarantees the desired Pfa; its geometrical interpretation in the
CFAR-FP is discussed as follows.

B. Detection in the CFAR Feature Plane

It has been shown in [18] that in most cases the curve
tX(β, t̃) = ηX in the β-t̃ CFAR-FP can be made explicit in t̃
as a function of β, meaning that (7) is equivalent to

t̃
H1
>
<
H0

fX(β; ηX) (8)

where fX is called decision region boundary and separates the
plane in two regions: for data points falling in the bottom-most
part the detector will decide forH0, while for the upper-most part
it will decide for H1, as shown in Fig. 1. For instance, Kelly’s
detector is a very special case of (8) with a constant decision
region boundary fKelly(β; ηKelly) = ηKelly. Similarly, the AMF
has a linear decision region boundary fAMF(β; ηAMF) = βηAMF
and likewise for the ACE we have fACE(β; ηACE) = − ηACE

1−ηACE
β +

ηACE
1−ηACE

. More examples of linear and non-linear decision region
boundaries are provided in Table I of [18].

Several insights on the detection behavior were obtained
in [18] by studying how such decision region boundaries relate,

as shown in Fig. 1, to the clusters of data points (β, t̃)which con-
centrate or spread according to the mismatch level cos2 θ (given
in (4)) and SNR (given in (6)). In particular, Kelly’s horizontal
boundary fKelly(β; ηKelly) best separates the H0 cluster from
any H1 cluster under matched conditions; conversely, detectors
with robust/selective behaviors exhibit oblique linear/non-linear
boundary, with increasing trend for robust behavior and decreas-
ing trend for selective behavior, as visible in Fig. 1, respectively,
for AMF and the robustified GLRT (ROB) [23] and for ACE
and WABORT. The ROB in particular has Pd similar to Kelly’s
detector under matched conditions but is very robust: in fact,
its decision region boundary fROB(β; ηROB) is increasing in the
lower range of β, as the AMF, and then becomes constant
(horizontal) for larger values, as Kelly’s detector, so combining
the characteristics of both detectors. Another decision scheme
that combines the characteristics of two well-known detectors
naturally arises when a K-nearest neighbors decision rule is
adopted, resulting in an intermediate behavior (as well as de-
cision region boundary) between Kelly’s detector and AMF
[24], [25].

C. Design Challenges and Motivations

Unfortunately, a general methodology for the design of cus-
tomized detectors (including, but not limited to, combinations of
two or more existing detectors) with prescribed behavior in terms
of Pd under matched and mismatched conditions is still missing
in the literature. In the CFAR-FP, this corresponds to choosing
an arbitrary decision region boundary of interest, denoted as
d(β), according to the intended classification of signal points
for different SNRs and mismatch levels (clusters) as either H0

or H1. However, the Pfa of the resulting detector

t̃
H1
>
<
H0

d(β)

cannot be controlled upfront, not even when joining parts
taken from existing detectors having common Pfa. Indeed, the
relationships between decision region boundary and the induced
Pfa and Pd’s (under matched and mismatched conditions) are
highly non-linear, as discussed in [18] and recalled later in
this paper; thus, any adjustment around a certain region of
the curve (aimed at matching the Pfa) will have an uneven
impact according to the density of points (belonging to the
different clusters) that fall in that region of the CFAR-FP —
so making such an adjustment unintuitive and non-trivial. The
naive solution adopted in [18] to adjust the Pfa was to stiffly
shift the desired curve d(β) upwards or downwards, iteratively,
while checking Pfa and stopping at equality. As it can be seen
from Fig. 2, if for instance d(β) (dashed line) yields a Pfa

higher than the chosen value ψ — meaning that the integral
of the joint pdf of (β, t̃) over the area above the curve exceeds
ψ — the curve is shifted upwards. This will result in a decrease
of Pfa since less points of the H0 cluster will fall above the
decision boundary of the shifted d(β). The process is iterated,
by shifting the curve upwards or downwards according to the
computed value of Pfa, until the exact shift is found for which
the corresponding Pfa perfectly matches ψ (shown with solid
line in Fig. 2). Unfortunately, in doing so the performance in
terms of Pd and/or desired behavior under mismatched condi-
tions will be affected, i.e., the shift may generally jeopardize the
design.
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Fig. 2. Adjustment of Pfa by stiff shift of a decision region boundary.

Fig. 3. Desired decision region boundary d(β) of the double-well detector in
the CFAR-FP.

The discussion above motivates the importance of address-
ing the design of customized detectors in the CFAR-FP under
a formal optimization framework, for any given d(β), while
guaranteeing a preassigned Pfa, as discussed below.

III. PROPOSED DESIGN OF CUSTOMIZED ADAPTIVE CFAR
RADAR DETECTORS

A. Preliminary Considerations and Design Examples

Considering the goal of designing customized detectors with
desired properties that work at a preassigned Pfa, the starting
point is the decision region boundary d(β) of a desired CFAR
detector. It is irrelevant how such an expression is obtained:
the most general case consists in directly drawing d(β) in the
CFAR-FP according to an intended classification of signal points
as either H0 or H1. In Fig. 3 we report, as a first example, a
possible customized detector aimed at exhibiting good rejection
capabilities of mismatched signals while providing high Pd

under matched conditions; given its shape, it will be referred
to as “double-well” detector. The desired d(β) is obtained as
a fourth-order spline parameterized by five control points, thus
interpolating them: the first two are chosen in correspondence
of the upper left-most part of the mismatched H1 cluster, while
the remaining three are set to better separate the matched H1

cluster from H0 according to the points dispersion, without
including too many points of the mismatched H1 cluster that
fall underneath d(β).

Alternatively, special cases of d(β) can be obtained by com-
bining two or more decision region boundaries of well-known
detectors for non-overlapping intervals of β, as discussed in
Section II, according to the desired performance. A possibility

Fig. 4. Desired decision region boundary d(β) obtained as a combination of
ROB and AMF detectors.

is to take selected points from the curves of different existing de-
tectors over the domainβ ∈ [0, 1], and use them as control points
for fitting a (low-order) spline; this will result in a curve with
“intermediate” characteristics (not necessarily passing through
all control points). An example is shown in Fig. 4, where the
AMF and ROB detectors have been selected and a third-order
spline has been used for the fitting. Clearly, it is also possible
to simply juxtapose the parts taken from the different detectors,
without any interpolation.

The central problem addressed in the paper is thus how to
obtain an implementable detector that is “close” to the chosen
d(β) but at the same time fulfills a given Pfa constraint. The
latter is indeed not generally satisfied by an arbitrary choice
of d(β), neither when it is inspired to existing CFAR detectors
(even when they work, individually, at the desiredPfa) nor when
it is chosen based on the locations and spread of the H0 and H1

data clusters.

B. Infinite-Dimensional Design Problem

We recall thatd(β) is a CFAR detector selected by the designer
for its desired performance under matched and mismatched
conditions. However, as anticipated, the resulting value of Pfa

is unpredictable, even in case of combination of detectors with
the same Pfa. In order to come up with a detector working at
a preassigned Pfa, which is of fundamental importance in the
radar context, a strategy is needed that starts from d(β) and
approximates it through a suitable parametric function until the
Pfa constraint is exactly fulfilled, while retaining as much as
possible its detection behavior.

A possible formulation of the design problem is to determine
a decision region boundary f(β) with Pd maximally close to
that of d(β), while at the same time satisfying the preassigned
Pfa constraint. We introduce however a more general objective
function, in order to take into account also the performance
under mismatched conditions, hence in turn to obtain a desired
trade-off in this respect. To this end, we select a set of S
specifications1 ρs = [γs λs ψs]

T, s = 1, . . . , S, encoding the
desired probabilities of detection ψs for each chosen pair of
SNR γs and mismatch value λs and denote by

e(f ;ρs) =
[
P (t̃>f(β)|γ = γs, cos

2θ = λs)− ψs

]2
(9)

1We will see later how these specifications can be related to d(β).
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the squared error between the desiredψs and the probability that
the detector having decision region boundary f(β) will decide
for H1 given γs and λs. Then, we propose to minimize the
weighted least squares cost functional

C1(f) =
S∑

s=1

ws(f ;ρ1, . . . ,ρS) e(f ;ρs) (10)

with ws chosen weighting functions. The specifications should
be interpreted as “soft desiderata” that will be not necessarily
fulfilled in the solution minimizing (10), given their possible
conflicting nature.2 It is worth remarking that d(β) is not an
unknown but rather an input to the problem, freely chosen by
the designer based on the desired behavior. Once chosen, d(β)
gives the reference to obtain a complete set of performance
specifications (as triples of Pd, cos2 θ, SNR) for both matched
and mismatched conditions, to be then fed into C1(f). We will
discuss in Section IV-C how specification values can be auto-
matically chosen in practice to encode the “desired behavior”
given by d(β). Moreover, we will specify a weighting strategy
in which ws’s depend on both the function f(·) itself and the
specifications ρs, s = 1, . . . , S.

The infinite-dimensional optimization problem is given by

minimize
f∈F

C1(f)

s.t. C0(f) = Pfa (11)

where F is a chosen space of functions defined over [0,1], C1(f)
is given in (10), and

C0(f) = P (t̃ > f(β)|H0) = 1−
∫ 1

0

Ft̃|H0
(f(β))p(β)dβ

(12)
with Ft̃|H0

(·) denoting the CDF of t̃ under the H0 hypothesis,
andp(·) denoting the pdf of the complex central Beta distribution
(better discussed in Section IV-B). The exact solution of such
an infinite-dimensional optimization problem would yield the
curve that best approximates d(β) in the CFAR-FP, i.e., the
one minimizing the deviation from the desired behavior ex-
pressed through a set of S specification values ρs, s = 1, . . . , S.
Unfortunately, it involves transcendental functions in both ob-
jective function and constraint, making analytical resolution a
formidable task.

C. Finite-Dimensional Design Problem

Thus, we focus on a more practical approach which consists
in solving a finite-dimensional version of the (intractable) opti-
mization problem (11), where the goal is to approximate the
desired decision region boundary d(β) through a parametric
curve f(β;x), with x a vector of real parameters. The optimal
x that guarantees a preassigned Pfa and minimizes the cost
function is obtained by solving the optimization problem

minimize
x

C1(x)

2Notice that this way of proceeding is well-founded as it is reminiscent of
what happens in other functional approximation problems in signal processing,
namely the design of a digital filter or beamformer. In filter design, for instance,
the designer first chooses the specific type of function (low-pass, high-pass, with
flat top or equi-ripple, etc.) based on the desired behavior, and then addresses the
problem of how optimizing its parameters to fulfill the specifications — hence
to obtain an approximate solution as close as possible to the desired response
but satisfying the constraints.

s.t. C0(x) = Pfa (13)

where

C1(x) =

S∑
s=1

ws(x;ρ1, . . . ,ρS)e(x;ρs). (14)

Notice that, besides depending on the specifications ρs, s =
1, . . . , S, the weightsws(·)may also depend upon the parametric
curve f(β;x), as in (10), but through the optimization vector x.
The choice of the quadratic loss

e(x;ρs) =
[
P (t̃>f(β;x)|γ = γs, cos

2θ = λs)− ψs

]2
(15)

is retained and, likewise (12),

C0(x)=P (t̃ > f(β;x)|H0) = 1−
∫ 1

0

Ft̃|H0
(f(β;x))p(β)dβ.

(16)
Resolution of the problem above requires to specify the paramet-
ric function f(β;x). In the following, we propose a convenient
structure for the latter, which leads to a convenient analytical
characterization of the involved statistics. Based on that, a
novel reduced-complexity algorithm is devised for designing
customized detectors in the CFAR-FP, which is able to find a
sub-optimal feasible solution for the optimization problem (13).

Before proceeding, it is worth pointing out that the opti-
mization problem (either in its infinite-dimensional and finite-
dimensional version) involved in the design of a customized
CFAR detector has an objective function that is specific to a given
desired behavior. In fact, the designer’s desiderata, expressed in
terms of the specifications (Pd, cos2 θ, SNR) encoding how the
desired detector should perform, ultimately determine the actual
cost function. As it is not always easy to guess which values of
Pd for matched and mismatched levels (cos2 θ) are feasible and
realistically achievable at certain SNRs, a simpler and effective
strategy is to assign the desired behavior graphically, leveraging
the CFAR-FP properties, and then automatically obtain the spec-
ifications from the performance curves of the resulting detector,
as illustrated in details in Section IV-C.

IV. PROPOSED RESOLUTION APPROACH

A. Choice of Parametric Function f(β;x)

We propose the adoption of a piecewise structure for the
parametric function f(β;x), as follows:

fm(β; ε) =

p∑
i=1

fmi
(β; εi)Π

(
β − i/p+ 1/(2p)

1/p

)
(17)

with x = [mT εT]T, where m = [m1 · · · mp]
T and ε =

[ε1 · · · εp]T. Notice that in general (17) depends on 2p pa-
rameters to be optimized. For simplicity (and without loss of
generality3) we have considered a uniform partition of the
domain [0,1] in which β takes values and {fmi

(β; εi), i =
1, . . . , p} is a set of elementary functions to be used in the
approximation of d(β) according to (13). Among the different

3The proposed approach can be straightforwardly extended to the case of
non-uniform partition of the interval [0,1], which could accommodate tighter
approximations in certain regions and looser approximations in other ones,
according to the d(β) at hand.
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alternatives, the simplest one is to adopt a piecewise-linear
approximation, i.e.,

fmi
(β; εi) = miβ + εi. (18)

The resolution of the optimization problem (13) will generally
lead to a decision region boundary that is discontinuous. If one
is interested in having a continuous (piecewise-linear) solution,
the optimization problem can be easily extended by adding the
following continuity constraint:

[A a B b]

[
m

ε

]
= 0(p−1)×1 (19)

whereA is a (p− 1)-dimensional bidiagonal matrix with diago-
nal elements i/p (i = 1, . . . , p− 1) and upper diagonal elements
−i/p (i = 1, . . . , p− 2), i.e.,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
p − 1

p 0 · · · 0

0 2
p − 2

p

. . .
...

... 0
. . .

. . . 0
...

...
. . .

. . . −p−2
p

0 · · · · · · 0 p−1
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

and, analogously, B is a (p− 1)-dimensional bidiagonal matrix
with diagonal elements 1 and upper diagonal elements−1, while
a and b are (p− 1)-dimensional vectors with all-zero elements
except for the last one, equal to −p−1

p and −1, respectively.
Unfortunately, (13) is highly non-convex and local minima

can be abundant, hence the numerical resolution of this problem
(with or without continuity constraint) is troublesome. Indeed, as
a matter of fact, state-of-the-art global optimization algorithms
barely fail in providing even a feasible solution for problem (13).
Specifically, different approaches have been tested: an interior-
point algorithm initialized with a scatter-search mechanism for
generating multiple start points (which is a standard approach to
escape local minima [26]), as well as global optimization tech-
niques such as direct methods (e.g., Pattern Search [27], [28])
and genetic algorithms [29], which search over a large portion
of the solution space. The results in all our trials, under different
conditions and parameter settings, invariably led to unfeasible
solutions not satisfying the Pfa constraint, and also with very
poor performance, far from being an acceptable approximation
of the desired d(β). To overcome such difficulties, we propose a
different optimization strategy that seeks for a feasible solution
in a limited, but sufficiently rich subset of the solution space, as
detailed below.

For the sake of clarity, it should be noted that the best (and
hence desirable) boundary design is in principle the optimal
solution to problem (13). Being such a solution not generally
available (nor in closed-form, neither using state-of-the-art res-
olution approaches), in the following we retain the terminology
“desired d(β)” to keep a pointer on an explicit and concrete
reference to the desired behavior chosen as input at the initial
design stage.

In addition to restricting the set of possible f(β;x) to
piecewise-linear structures of the form in (17), we also reduce
the parameter space x from 2p to p, by keeping fixed the
p parameters in m while optimizing the p parameters in ε.
This is tantamount to considering a feasible set defined by a
piecewise-linear neighborhood of d(β) with fixedmi’s. The key
aspect of this choice is that on each interval [(i− 1)/p, i/p] the

Fig. 5. Example of (17) for fmi (β; εi) = miβ + εi and p = 7.

approximant function will depend upon a single parameter, i.e.,
the affine term εi. In particular, we consider a discontinuous
piecewise-linear approximation obtained by juxtaposition of
the best linear fitting of d(β) in each interval i, as shown
in the example reported in Fig. 5, and better discussed later.
Following this sub-optimal optimization strategy, we develop a
practical algorithm that exploits the piecewise-linear structure of
fm(β; ε) to end up with a low-complexity resolution approach.
In doing so, we obtain a feasible solution to the (intractable)
original optimization problem, optionally also with continuous
boundary.

To start with, (14)–(16) can be made more explicit by ex-
ploiting the structure in (17); specifically, for any value of
SNR (including γ = 0, i.e., H0) and mismatch level (including
cos2θ = 1, i.e., H1 under matched conditions), we can write

P (t̃>fm(β; ε)|γ, cos2θ) = 1−
∫ 1

0

Ft̃|β(fm(β; ε))p(β)dβ

= 1−
p∑

i=1

ri(εi, γ) (21)

where each term

ri(εi, γ) =

∫ i/p

(i−1)/p

Ft̃|β(fmi
(β; εi))p(β)dβ (22)

is a monotonically increasing one-dimensional function in εi.
Using these new expressions, the optimization problem can be
finally recast as

minimize
ε

C1(ε)

s.t. C0(ε) = Pfa (23)

where

C1(ε) =
S∑

h=1

e(ε;ρh)

×
√∑S

s=1

(
e(ε;ρs)− 1

S

∑S

j=1
e(ε;ρj)

)2

(24)

with

e(ε;ρs) =
[
P (t̃>fm(β; ε)|γ = γs, cos

2θ = λs)− ψs

]2
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and

C0(ε) = P (t̃ > fm(β; ε)|H0) = 1−
p∑

i=1

ri(εi, 0). (25)

The adopted cost function (24) is one among several possible
choices, and is aimed at promoting a fairly uniform deviation
of the approximated decision region boundary from the desired
one, while minimizing the overall approximation error. Details
about its derivation and a discussion of alternative choices are
reported in Appendix A.

We now provide two key Propositions where the peculiar
structure of fm(β; ε) is exploited together with the statistical
characterization of the maximal invariant statistics (β, t̃) to
derive i) a more compact formula to compute the integral in
(22) under the H1 (matched/mismatched) hypothesis, which
will be used to evaluate the cost function in (24); ii) a closed-
form solution to the integral appearing in (22) under the H0

hypothesis, which will be exploited to compute the Pfa in
(25). Based on such results, we will be able to devise a novel
reduced-complexity algorithm for the design of customized
detectors according to problem (23). The proposed algorithm
will ultimately provide a feasible (though sub-optimal) solution
fm(β; ε∗) for (23).

B. Analytical Characterization

First recall the general characterization of (β, t̃) parameter-
ized in γ and cos2 θ, which encompasses the one under H0

(for γ = 0) and H1 under matched conditions (for cos2 θ =
1) [30], see also [2], [6], [22], [31], [32]. The variable t̃ given
β is ruled by a complex noncentral F-distribution with 1 and
K −N + 1 complex degrees of freedom and noncentrality pa-
rameter γβ cos2 θ, i.e., t̃ ∼ CF1,K−N+1(γβ cos

2 θ); β is ruled
by a complex noncentral Beta distribution withK −N + 2 and
N − 1 complex degrees of freedom and noncentrality parame-
ter γ(1− cos2 θ), i.e., β ∼ CβK−N+2,N−1(γ(1− cos2 θ)). We
now provide the following results.

Proposition 1: Consider for fm(β; ε) in (17) the set of affine
functions fmi

(β; εi) = miβ + εi, i = 1, . . . , p; then, ri(εi, γ)
in (22) can be more conveniently computed as

ri(εi, γ) =

∫ i/p

(i−1)/p

Ψ(fmi
(β; εi))Ω(β)dβ (26)

where

Ψ(fmi
(β; εi)) = (1 + fmi

(β; εi))
−(K−N+1)

×
K−N+1∑

�=1

(
K −N + 1




)
fmi

(β; εi)
�

Γ(
)
Γ

(

,

δ2F
1 + fmi

(β; εi)

)

and

Ω(β) =

(
K

N − 2

)
e−δ2ββK−N+1

(1− β)2−N

× 1F1(−K +N − 2, N − 1, δ2β(β − 1))

with Γ(a, b) the Euler’s upper incomplete Gamma function,
1F1(a, b; z) the Kummer’s confluent hypergeometric func-
tion, δF = γβ cos2 θ the noncentrality parameter of the F -
distribution, and δβ = γ(1− cos2 θ) the noncentrality param-
eter of the complex Beta distribution.

Proof: See Appendix B, where also the following Corollary
is obtained as a by-product. �

Corollary 1: For negative integer a and positive integer b,
1F1(a, b; z) is a polynomial of degree −a [38, eq. 13.1.3], hence
an alternative expression for Ω(β) is

Ω(β) =
e−δ2ββK−N+1

(1− β)2−N
L
(N−2)
K−N+2(δ

2
β(β − 1))

where L(α)
n (x) is the generalized Laguerre polynomial of order

n and parameter α, here computed in x = δ2β(β − 1).
Proposition 2: Under theH0 hypothesis (γ = 0), the integral

appearing in (26) can be solved in closed-form as

ri(εi, 0) = Fβ|H0
(i/p)− Fβ|H0

((i− 1)/p)

− K!

(K −N + 1)!(N − 2)!
[g(i/p, εi)− g((i− 1)/p, εi)]

(27)

with Fβ|H0
(·) denoting the CDF of the complex central Beta

distribution and

g(x, εi) =
x

K −N + 2

(
x

1 + εi

)K−N+1

×F1

(
K−N+2, 2−N,K−N+1,K−N+3;x,

−mix

(1 + εi)

)
with F1(a, b, c, d; y, z) the Appell F1 function of two variables.

Proof: See Appendix C. �

C. Low-Complexity Design Procedure

The main challenge with problem (23) is that the joint op-
timization of the p parameters in ε is still non-trivial as both
the cost function and the constraint encode a highly non-linear
dependency on the vector ε. To circumvent this challenge, we
pursue an alternative path that seeks for a feasible solution of
(23) by iteratively exploring a range of piecewise-linear ap-
proximations of d(β). The algorithm takes as inputs the desired
decision region boundary d(β), the maximum dimension p of
the parameter vector ε, and the desiredPfa, and returns in output
the customized piecewise-linear detector fm(β; ε∗) working at
the preassigned Pfa.

The specifications ρs, s = 1, . . . , S, have to be chosen in
order to correctly encode the desired detection performance
under matched and mismatched conditions. To this end, we
propose an automatic approach in which the S specifications
are directly obtained by sampling the mesa plots of d(β), i.e.,
each ρs is set to a point lying on an iso-Pd curve (with level ψs)
in the SNR-cos2 θ plane (with coordinates (γs, λs)), as shown
in Fig. 6. Notice that, since d(β) does not generally fulfill the
Pfa constraint, the specifications obtained by sampling its mesa
plots are only indicative of the desired behavior, i.e., they are
“soft desiderata” that drive the optimization procedure towards
a solution satisfying the Pfa constraint while approximating the
desired behavior.

The procedure defined above has the advantage of not re-
quiring any ad-hoc setting of the specifications. Moreover, it
appears a natural way to make the design requirements in the
cost function C1(ε) compatible with the desired d(β), facilitat-
ing the algorithm in finding a feasible solution fm(β; ε) that
works at the preassigned Pfa value. We will refer to such a
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Fig. 6. Proposed strategy for the automatic setting of the S specifications.
Mesa plots correspond to d(β).

procedure by means of the functional notation (ρ1, . . . ,ρS) =
SampleSpecifications(d(β), S).

Once the specifications have been set, the proposed algo-
rithm performs

∑p
k=2 k = p(p+1)

2 − 1 iterations in which the
function fm(β; ε) is progressively reparameterized by an in-
creasing number of optimization variables k, ranging from
k = 2 up to k = p. According to the results in Propositions
1 and 2, we consider for fm(β; ε) the set of affine functions
fmi

(β; εi) = miβ + εi, i = 1, . . . , k, where the parameters mi

and εi are initially set equal to the coefficients of the line
that approximates (in least squares sense) the desired d(β)
for β ∈ [(i− 1)/k, i/k]. In other words, the proposed method
explores a range of piecewise-linear approximations of d(β)
from a coarse (k = 2) up to a fine scale (k = p).

For each k-dimensional parameterization of fm(β; ε), our
strategy consists in iteratively changing only a single affine
parameter εi at a time, while keeping fixed the remaining k − 1
elements of the optimization vector ε. More specifically, we
consider the decomposition of (25) as

C0(ε) = 1− ri(εi, 0)−
k∑

j=1,j �=i

rj(εj , 0).

The modified value will then correspond to the root of the
equation C0(ε)− Pfa = 0 solved with respect to εi using the
result in Proposition 2, that is, the algorithm attempts to modify
εi in order to exactly fulfill the Pfa constraint. Among all the
configurations of the parametric function fm(β; ε) satisfying
the Pfa constraint, we retain as best approximation of d(β) the
piecewise-linear detector fm(β; ε∗) with k∗ parameters leading
to the minimum value of the cost function C1(ε) in (24), the
latter evaluated using the result provided in Proposition 1. Notice
that we use the ∗ symbol to remark that the corresponding
variables are numerical values resulting from the optimization
procedure. The steps of the proposed approach are summarized
in Algorithm 1.

Intuitively, the proposed approach consists in deforming only
a small portion of the desired decision region boundary d(β),
but at the same time considering a range of piecewise-linear
approximations from coarse to fine scale. This captures the
intrinsic trade-off between complexity of the approximate model
(in terms of degrees of freedom, while fulfilling exactly Pfa)
and deviation from the desired performance, the latter expressed
through the specifications encoded in the cost function. In doing
so, it completely avoids the combinatorial processing intrinsic

in the original complex problem at hand. Moreover, the closed-
form expressions provided in Propositions 1 and 2 allow the
required computation ofPfa andPd to be performed much more
quickly as Monte Carlo simulations are avoided.4

The proposed algorithm yields, by construction, a (mildly)
discontinuous decision region boundary. If one is interested in
enforcing an exactly continuous boundary, a further adjustment
can be performed, as summarized in Algorithm 2. Each edge
of the partition described by the k∗ segments returned by Algo-
rithm 1 can be easily made continuous by joining two adjacent

4To have an idea, the average time required to find the solution on a standard
laptop is about 1.3 seconds for a set of S = 16 specifications and for a number
of piecewise linear approximations ranging from a coarse (p = 2) up to a fine
scale (p = 16). Such a solution time would be further cut with a low-level
implementation, and is thus fully compatible with the operational requirements
in case the detectors need to be modified at run-time, e.g., by changing the
specifications to include different SNRs and mismatch degrees.
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segments in their middle point ai, given by

ai =

(
mi

i

k∗
+ ε∗i +mi+1

i

k∗
+ ε∗i+1

)
/2 (28)

for i = 1, . . . , k∗ − 1. The two extreme points corresponding to
β = 0 and β = 1 are instead kept fixed to their values, that is,
a0 = ε∗1 and ak∗ = mk∗ + ε∗k∗ . The resulting continuity-adjusted
boundary will have, in each segment, parameters m̃i and ε̃i; they
are obtained by modifying the parameters mi and ε∗i according
to the equation of the straight line passing through the points
((i− 1)/k∗, ai−1) and (i/k∗, ai), i.e.,

m̃i =
ai − ai−1

1/k∗
= k∗(ai − ai−1) (29)

and

ε̃i =
i/k∗ai−1 − (i− 1)/k∗ai

1/k∗
= i(ai−1 − ai) + ai (30)

for i = 1, . . . , k∗, so returning a continuous piecewise-linear
version of fm(β; ε∗), denoted as fm̃(β; ε̃). Clearly, this refine-
ment stage will (slightly) violate the Pfa constraint; however,
such a deviation is minor and can be safely recovered by a final
vertical shift of the whole curve, until the constraint is exactly
satisfied (step 8 in Algorithm 2). Results in the next Section V
will show that this procedure, given its minimal impact, does
not produce any appreciable performance degradation.

For completeness, we explicitly report the decision test of a
generic customized detector fm(β; ε∗) designed by means of the
procedure discussed above (the same applies to the continuous
version fm̃(β; ε̃)):

t̃
H1
>
<
H0

fm(β; ε∗) =

⎧⎪⎨
⎪⎩
m1β + ε∗1 0 ≤ β < 1

k∗
...

...
mk∗β + ε∗k∗

k∗−1
k∗ < β ≤ 1

. (31)

Moreover, in Algorithm 3 we report the corresponding detection
rule for a given realization of the maximal invariant statistics
(β, t̃), computed from the observed data z, z1, . . . ,zK . As
for the parameters (m�, ε

∗
�), they correspond to a specific pair

selected among the k∗ pairs (mi, ε
∗
i ), i = 1, . . . , k∗, that consti-

tute fm(β; ε∗). The detector simply finds the specific interval
[(
− 1)/k∗, 
/k∗] in which the β statistic falls among the k∗
cases in (31), and then uses the corresponding parameters (m�,
ε∗�) to test whether the t̃ statistic exceeds the corresponding
threshold η� = m�β + ε∗� (decide for H1) or not (decide for
H0). A convenient interpretation of the detection rule can be
visualized in the CFAR-FP as testing whether the t̃ statistic
falls above or below the line with parameters (m�, ε∗�), which
represents the portion of the decision region boundary to be
considered for that specific realization of β.

V. PERFORMANCE ASSESSMENT

In this section, we assess the performance of the two examples
of radar detectors discussed in Section III, whose design is
obtained through the methodology proposed in Section IV. The
analysis is performed on both simulated and real-world radar
data. The design is conducted assuming a maximum number of
segments for partitioning the domain β ∈ [0, 1] set to p = 16.

Thresholds are set by Monte Carlo simulation with 100/Pfa

independent trials. For target simulation, we assume v =
[1 ej2πfd · · · ej2π(N−1)fd ]T with a normalized Doppler fre-
quency fd = 0.08 (a small value such that the target competes

Algorithm 3: Detection Rule of the Customized Detector.

Input: t̃, β, k∗, fm(β; ε∗)
Output: Decision for H0 or H1

1: Find index 
 such that β ∈ [(
− 1)/k∗, 
/k∗];
2: Detection rule:

t̃
H1
>
<
H0

m�β + ε∗�

Fig. 7. CFAR-FP for the case of the double-well detector.

with low pass clutter). To model a mismatched target, we define
the actual steering vector p as v but with fd + δf and δf varying
in order to obtain different levels of mismatches.

A. Performance of the Double-Well Detector

We start by analyzing the first example of detector design
presented in Section III, labeled “double-well”. We consider
N = 16, K = 32, and a desired Pfa = 10−4. As to C, we
consider the sum of a Gaussian-shaped clutter and white (ther-
mal) noise 10 dB weaker, i.e., C = Rc + σ2

nIN with the
(m1,m2)th element of the matrix Rc given by [Rc]m1,m2

=
exp{−2π2σ2

f (m1 −m2)
2} and σf ≈ 0.051 (corresponding to

a one-lag correlation coefficient of the clutter component equal
to 0.95). Finally, we consider 103 independent trials to compute
the Pd.

The d(β) of Section III has a Pfa ≈ 10−3, which is about an
order of magnitude greater than the desired Pfa. The automatic
settings of the specifications is carried out by sampling the SNR-
cos2 θ plane of the d(β) mesa plots over four uniformly spaced
values of the mismatch, namely λs ∈ {1, 0.75, 0.5, 0.25}, and
over four different values of SNR γs ∈ {8, 10, 15, 20}, for a total
of S = 16 specifications.

1) Analysis of the Decision Region Boundary Approximation:
In Fig. 7, we depict the decision region boundary fm(β; ε∗)
of the double-well detector obtained through the proposed ap-
proach, which for this case returned a fm(β; ε∗) with k∗ = 10
segments. For comparison, the decision region boundary of the
detector obtained by simply shifting d(β) to match the preas-
signed Pfa is reported, labeled as “Shifted d(β)” for brevity.
As it can be noticed, the proposed approach provides a decision
region boundary which is close to that of the shifted d(β), for
both the discontinuous and continuous versions. Indeed, the
discontinuity gaps at the junctions of the different segments
are very limited, so if one is interested in having a continuous
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Fig. 8. Detection performance of the desired d(β) in comparison to the shifted
d(β) and to the proposed approach (with either continuous or discontinuous
decision region boundary) at Pd = 0.9.

boundary the solution fm(β; ε∗) provided by Algorithm 1 can be
safely made continuous through the refinement stage described
in Algorithm 2, without compromising the performance of the
design. The latter remarkable fact is not apparent from Fig. 7 but
can be appreciated by looking at the mesa plots of the different
detectors, as discussed below.

2) Comparison Between Continuous and Discontinuous So-
lutions: In Fig. 8, we report the detection performance of the
proposed double-well detector in the SNR-cos2 θ plane for a
single level of Pd = 0.9, also in comparison with the desired
d(β) and with the shifted d(β). It can be seen that the proposed
double-well detector follows more closely the behavior of the
desired d(β), with an evident gap compared to the performance
of the shifted d(β). This confirms the validity of the proposed
algorithm: by exploring a range of k-segment piecewise-linear
approximations of the desired d(β) from a coarse (k = 2) up to a
fine scale (k = p = 16), our design approach is able to provide a
satisfactory trade-off between satisfaction of the Pfa constraint
and deviation from the desired performance in terms of Pd

under matched and mismatched conditions. From Fig. 8 it also
emerges that the minimal changes required to make the decision
region boundary fm(β; ε∗) continuous practically lead to zero
deviations from the detection performance of the discontinuous
case; therefore, in the following we will no longer consider such
a distinction. The competitor “shifted d(β)” provides instead a
much worse approximation of the desired d(β); this may appear
counterintuitive, since in Fig. 7 the decision region boundaries
of the three detectors look quite close to each other. But this is
exactly the motivation of this work, as discussed in Section II:
given the highly-nonlinear mapping between the maximal
invariant statistics (CFAR-FP) and the corresponding detection
performance under matched and mismatched conditions (mesa
plots), it is challenging to adjust the desired d(β) so that the Pfa

constraint can be fulfilled without jeopardizing the design, as far
as possible.

3) Analysis of the Deviation From the Desired Behavior: It
is worth remarking that the desired d(β) does not share the same
Pfa of the other detectors (d(β) is working at a Pfa which is
about an order of magnitude greater), hence it cannot be strictly
considered as a benchmark for the desired Pd, but only for its
behavior, which should be approximated as closely as possible.
For a better assessment, we consider as metric the area of the
planar region delimited by the iso-Pd curves of a given detector
and that of the d(β) in the SNR-cos2 θ plane, which measures the
level of closeness between such curves. In fact, the smaller the
gap from the iso-Pd curves of d(β), the better the approximation

Fig. 9. Areas between iso-Pd curves (AbI) for the proposed approach, in
comparison with the shifted d(β) detector.

Fig. 10. Areas between iso-Pd curves (AbI) of the double-well detectors as a
function of the Pd levels.

of the desired behavior under both matched and mismatched
conditions. We will refer to such a metric as “area between iso-
Pd curves” (AbI).

In Fig. 9 we highlight the AbI of the proposed detector in com-
parison with the AbI of the shifted d(β), for two different levels
of Pd = {0.7, 0.9}. Results demonstrate that the double-well
detector provides a better approximation of the desired d(β),
being its corresponding areas visibly smaller than those of the
shifted d(β) detector. More precisely, Fig. 10 shows the exact
values of the AbI as a function of the Pd levels. Remarkably,
the proposed double-well detector satisfactorily follows the
detection performance of the desired d(β) for all the considered
Pd levels, with an approximation error that tends to decrease for
higher values of the Pd.

4) Analysis of the Detection Performance: In Fig. 11, we
compare the double-well detector against state-of-the-art detec-
tors. Since the former customized detector aims at rejecting mis-
matched signals while preserving high detection power under
matched conditions, we have included as relevant competitors
the well-known Kelly’s detector, which is taken as a reference
for the performance under matched conditions, as well as the
ACE, WABORT and RAO detectors, which are instead taken as
benchmarks for the performance under mismatched conditions.
It is interesting to observe that the double-well detector guaran-
tees almost the samePd of Kelly’s detector under matched condi-
tions, while providing much higher levels of selectivity. Further-
more, it is much more powerful than ACE and exhibits higher
rejection capabilities for large SNR values. It is also remarkable
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Fig. 11. Mesa plots of the double-well detector compared to Kelly, ACE,
WABORT and RAO detectors.

Fig. 12. CFAR-FP for the case of the combined AMF-ROB detector.

to notice that, compared to the very selective WABORT and
RAO detectors, the double-well detector does not experience
any significant Pd loss under matched conditions, while still
preserving satisfactory rejection capabilities. In summary, the
detector designed by the proposed methodology achieves a Pd

similar to Kelly’s detector but it is much more selective, which
is a major achievement since state-of-the-art selective detectors
typically experience a Pd loss compared to Kelly’s detector.

B. Performance of the Combined AMF-ROB Detector

For further illustration, we analyze also the second example
of detector design presented in Section III, namely the case in
which the desired d(β) is obtained by combining the decision
region boundaries of the two well-known detectors AMF and
ROB. For the analysis, we consider the same parameters as in
Section V-A. Intuitively, this scenario appears to be more favor-
able since the desired d(β) exhibits aPfa = 2.6 · 10−4, which is
already quite close to the final desiredPfa. The specificationsρs

are automatically set by sampling the SNR-cos2 θ plane of the
desired d(β) mesa plots at the same coordinates of the previous
example in Section V-A.

1) Analysis of the Decision Region Boundary Approximation:
Fig. 12 depicts the decision region boundary of the combined de-
tector obtained through the proposed reduced-complexity algo-
rithm, in comparison with the desired d(β) and with the decision
region boundary of the shifted d(β). Among the explored con-
figurations of k ∈ [2, 16], the best value of the objective function

Fig. 13. Areas between iso-Pd curves (AbI) of the combined AMF-ROB
detectors as a function of the Pd levels.

is achieved for k∗ = 3, namely the configuration in which the
decision region boundary fm(β; ε∗) consists of a juxtaposition
of three linear segments approximating the positive-slope line
of AMF for the lower range of β and attaining ROB’s behavior
in the upper range.

2) Comparison Between Continuous and Discontinuous So-
lutions: Also in this case, the discontinuities in fm(β; ε∗) are
very limited, as confirmed by the continuous version of the
decision region boundary, which practically coincides with its
discontinuous version. As for the previous case (double-well
detector), the decision region boundaries of the detectors are
close to each other, and in this case also closer to the desired
d(β) since the Pfa of the latter is already near the design value.
However, again, a small difference in the boundary can produce
a non-negligible impact on the performance.

3) Analysis of the Deviation From the Desired Behavior:
Specifically, to assess the adherence of the combined detector
to the behavior of the desired d(β), in Fig. 13 we report the
AbI values as a function of the Pd levels. Results demonstrate
that the proposed approach is able to provide a more accurate
approximation of the desired d(β) compared to the shifted
d(β), even in this more favorable scenario in which the Pfa

of the desired d(β) is very close to the preassigned one. As a
whole, the use of the proposed methodology can yield closer
approximations of a desired detector d(β) for a prefixed Pfa

compared to the mere shift of d(β) itself, regardless of the extent
of the gap between initial and desired Pfa values.

4) Analysis of the Detection Performance: For complete-
ness, we finally report in Fig. 14 the performance of the proposed
combined detector, in comparison to the performance of the
AMF, ROB, and Kalson detectors. It is worth noting that the
proposed detector is able to combine the satisfactory robustness
of the AMF with the high detection power of the ROB under
matched conditions (which is practically the same as Kelly’s
detector). Specifically, it is as powerful as both ROB and Kalson
under matched conditions, while guaranteeing at the same time
the level of robustness of AMF under mismatched conditions,
which is in between ROB and Kalson.

C. Evaluation on Real Radar Data

To corroborate the above results, we have carried out a perfor-
mance evaluation on real radar measurements by considering the
L-band land clutter data collected by the Phase One radar at the
Katahdin Hill site, MIT Lincoln Laboratory. We used the dataset
contained in the “H067038.3” file, which is composed of 30720
temporal returns from 76 range cells with HH polarization [33],
[34]. Given that the total number of real clutter measurements
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Fig. 14. Mesa plots of the combined AMF-ROB detector compared to the
AMF, ROB, and Kalson detectors.

is not sufficient to guarantee a number of snapshots matching
the 100/Pfa rule for the value of Pfa = 10−4 assumed in
the simulation analyses, we readjusted the design of the two
proposed detectors by downscaling it to N = 4, K = 8, and a
desired Pfa = 10−3. All the remaining parameters are instead
kept the same.

For both the double-well and combined AMF-ROB CFAR
detectors, the decision region boundaries obtained through the
proposed low-complexity design procedure show a very good
match with the desired ones (figures omitted for conciseness),
confirming the general validity of our approach, which can
flexibly adapt to a new set of parameters. In the following we
report the analysis of the corresponding performance.

We start the evaluation by estimating the actual Pfa of the
detectors when operating on the Phase One dataset. All the
detectors thresholds are set to guarantee the desiredPfa = 10−3

on simulated data. For the analysis, we select the 30-th range
cell as the CUT and K/2 adjacent range cells on each side
of the CUT as secondary data. We construct the data vectors
by selecting N consecutive pulses from each range cell, with
1 pulse of overlap in order to obtain 104 different snapshots.
The proposed double-well detector exhibits a Pfa = 5 · 10−4,
a value that does not deviate too much from the nominal one
and, remarkably, is even lower. Kelly and ACE detectors share
the same value of Pfa = 5 · 10−4, while WABORT and RAO
exhibit aPfa = 9 · 10−4. Interestingly, all the selective detectors
share very similar values of Pfa, which well approximate the
nominal one. Analogous results have been obtained for the case
of robust detectors: specifically, the combined AMF-ROB, AMF,
and ROB detectors also exhibit a Pfa = 5 · 10−4, while Kalson
has a Pfa = 4 · 10−4.

The performances in terms ofPd are then evaluated by adding
to the CUT a synthetic target αv, as done for the simulated
data. To make the comparison precisely fair, we adjusted the
thresholds of the WABORT, RAO, and Kalson so as to match
the same Pfa = 5 · 10−4 of the other detectors. In Fig. 15
and Fig. 16, we compare the performance of the proposed
double-well and combined AMF-ROB detectors against the
same state-of-the-art competitors considered in Section V-A
and Section V-B. As it can be noticed, the proposed design
procedure confirms its effectiveness in correctly approximating
the desired CFAR behaviors, with the proposed double-well

Fig. 15. Mesa plots of the double-well detector compared to Kelly, ACE,
WABORT and RAO detectors for N = 4, K = 8, evaluated on the Phase One
dataset.

Fig. 16. Mesa plots of the combined AMF-ROB detector compared to the
AMF, ROB, and Kalson detectors for N = 4, K = 8, evaluated on the Phase
One dataset.

detector that preserves the high Pd of the Kelly’s detector under
matched conditions, while striking a more evident selectivity
under mismatched conditions. Remarkably, the gain in terms of
Pd under matched conditions becomes much more pronounced
compared to the ACE and RAO detectors, which turn out to
be very selective. Similarly, the proposed combined AMF-ROB
detector practically keeps the satisfactory robustness of the AMF
detector, while guaranteeing the high detection power of the
ROB under matched conditions. Its robust behavior still lies
between ROB and Kalson, confirming the same findings on
simulated data.

VI. CONCLUSION

The paper proposed a methodology for the design of cus-
tomized CFAR detectors in Gaussian disturbance, with desired
behavior in terms of robustness or selectivity, and working at a
preassignedPfa value. By exploiting a reinterpretation of CFAR
detection in a suitable feature plane based on maximal invariant
statistics (CFAR-FP), the optimal approximation problem has
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been formulated and analyzed. To overcome its analytical and
numerical intractability, a general reduced-complexity approach
has been developed, which seeks for a sub-optimal solution
in a restricted, but sufficiently rich feasible set. The proposed
algorithm is very efficient in finding a detector satisfying the
requirements and provides satisfactory performance.

Under this framework, two novel customized detectors have
also been designed and analyzed, for illustration purposes. The
first one starts from a desired curve directly drawn in the
CFAR-FP, whose shape allows for rejection of mismatched
signals, but at the same time leads to high detection power under
matched conditions. The second design example follows instead
a strategy that combines two existing detectors, with the aim of
taking the best from both. Specifically, being the ROB detector
practically as powerful as Kelly’s detector but very robust, we
used a combination of AMF (which has a lower robustness) and
ROB to find a good balance. The same approach can work for the
selective case, by appropriate choice of the detectors to combine.

Future work includes the investigation of alternative resolu-
tion approaches for problem (11) that can consider additional
feasible solutions. Another interesting possibility is to extend
the proposed framework to environments different from the
homogeneous Gaussian one, using a different set of proper
maximal invariant statistics [35], [36], [37].

APPENDIX A
WEIGHTING STRATEGIES

As to the weights ws ∈ [0, 1], different strategies can be
identified to end up with an objective function able to encode
the different design requirements (and their relative priority) in
the proper way, summarized as follows:
� ws = 1, ∀s
� ws = w(γs, λs)
� ws = w(ε;ρ1, . . . ,ρS), ∀s.
The first option considers constant weights, hence is tanta-

mount to having an (unweighted) least squares functional, which
will treat all the S specifications ρs equally. As a consequence,
errors on higher probabilities of detection will have a dominant
effect, being their impact on the objective function greater in
magnitude.

The second option considers diversified weights given by
a weighting function w(·) depending only on SNR and
match/mismatch level specifications; its definition impacts on
the relative priority given to the different specifications. The
choice ws = 1/ψ2

s has the special meaning of a relative error,
thus would overcome the limitation of the first option (ws =
1∀s). However, it would produce the opposite effect of giving
too much weight to errors on low values of the probability
of detection (under matched or mismatched conditions), which
may be detrimental to the detection power for higher SNRs (an
unacceptable behavior for a radar detector). So, other choices
should be identified, e.g. an increasing function of λs, possibly
constant in (a certain range of) γs. In fact, ws = λs (or λα

s ,
α > 0, to also adjust the decay rate) would promote more priority
to maximizing Pd for any value of SNR, but at the same time
would take into account the desired probability of deciding for
H1 under various level of mismatches. For S = 1 with λ1 = 1,
ψ1 = 1, and a chosen SNR γ1, the minimization of C1(ε) would

be equivalent to the maximization of

Pd = P
(
t̃ > fm(β; ε)|γ1, 1

)
= 1−

∫ 1

0

Ft̃|β,H1
(fm(β; ε)|γ1) p(β)dβ

where Ft̃|β,H1
(·) is the CDF of t̃ given β under the H1 hypoth-

esis, hence the Neyman-Pearson inspired rationale is retrieved.
A slight generalization of this formulation is the maximization
of Pd in a span of SNRs, with weights all equal or increas-
ing/decreasing according to the given priority to the high/low
SNR regime.

In general, the main drawback of the second weighting strat-
egy (ws = w(γs, λs)) is that a fine-tuning of the weights is
necessary, whose impact may be not completely predictable,
thus resulting in a trial-and-error effort. For this reason, we
adopt the third strategy, in which weights are all equals but
set to a certain function w(ε;ρ1, . . . ,ρS) that depends on all
specifications as well as on the optimization parameters ε. A
simplifying yet reasonable choice is to map such dependencies
into the error function e(·) as

w =
1

S

√
1

S − 1

∑S

s=1
(e(ε;ρs)− ē(ε;ρ1, . . . ,ρS))

2

︸ ︷︷ ︸
σe

(32)

where ē(ε;ρ1, . . . ,ρS) = 1/S
∑S

j=1 e(ε;ρj) and σe denotes
the empirical standard deviation of the squared error. By substi-
tuting this expression into (14), we finally obtain (24).

APPENDIX B
PROOF OF PROPOSITION 1

We start fromΨ(fmi
(β; εi)), which can be obtained as a more

convenient rewriting of Ft̃|β(fmi
(β; εi)). More precisely, we

recall that in the general case [22]

Ft̃|β(fmi
(β; εi)) =

fmi
(β; εi)

(1 + fmi
(β; εi))K−N+1

K−N∑
k=0

(
K−N+1

1+k

)

× (fmi
(β; εi))

ke
− δ2

F
1+fmi (β;εi)

k∑
i=0

(
δ2F

1 + fmi
(β; εi)

)i
1

i!
.

We then notice that, by manipulating from [38, eq. 6.5.13] the
innermost summation can be expressed in terms of Eulerian
complete and upper incomplete gamma functions as

k∑
i=0

(
δ2F

1 + fmi
(β; εi)

)i
1

i!
=e

δ2
F

1+fmi (β;εi)

Γ
(
1 + k,

δ2F
1+fmi

(β;εi)

)
Γ(1 + k)

.

The ultimate Ψ(fmi
(β; εi)) follows by plugging back the above

expression in Ft̃|β(fmi
(β; εi)) and by performing a change of

variable 1 + k = 
.
Similarly,Ω(β) can be obtained by a proper rewriting of p(β).

Specifically, we recall that

p(β)=
e−δ2βββK−N+1

(1− β)2−N

Γ(K + 1)

Γ(K −N + 2)

K−N+2∑
j=0

(
K −N + 2

j

)
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× 1

(N + j − 2)!
δ2jβ (1− β)j .

The expression ofΩ(β) can be derived by exploiting the similar-
ity between the above summation and the generalized Laguerre
polynomials L(α)

n (x) of order n = K −N + 2 for α = N − 2;
in particular, by using [38, eq. 13.6.9] together with [38, eq.
22.3.9] it is possible to write the following identity:

K−N+2∑
j=0

(−1)j
(

K

K −N + 2− j

)
xj

j!

=

(
K

N − 2

)
1F1(−K +N − 2, N − 1;x).

Then, noticing that binomial/factorial terms in the two expres-
sions can be related as(

K−N+2
j

)
(N + j − 2)!

=

(
K

K −N + 2− j

)
(K −N + 2)!

K!j!

and that (1− β)j = (−1)j(β − 1)j , we obtain for x = δ2β(β −
1)

K−N+2∑
j=0

(
K−N+2

j

)
(N + j − 2)!

δ2jβ (1− β)j

=
1

Γ(N − 1)
1F1(−K +N − 2, N − 1; δ2β(β − 1))

since (K−N+2)!
K!

(
K

N−2

)
= 1

(N−2)! =
1

Γ(N−1) . The thesis fol-
lows by substituting back into p(β) and recognizing that

Γ(K+1)
Γ(K−N+2)Γ(N−1) =

(
K

N−2

)
.

APPENDIX C
PROOF OF PROPOSITION 2

Under the H0 hypothesis, we have that

ri(εi) =

∫ i/p

(i−1)/p

fmi
(β; εi)

(1 + fmi
(β; εi))K−N+1

K−N∑
j=0

(
K −N + 1

1 + j

)

× (fmi
(β; εi))

jp(β)dβ.

By using a change of variable1 + j = z and noting that by the al-
gebraic binomial formula

∑K−N+1
z=0

(
K−N+1

z

)
(fmi

(β; εi))
z =

(1 + fmi
(β; εi))

K−N+1, ri(εi) can be recast as

ri(εi) =

∫ i/p

(i−1)/p

p(β)dβ

−
(∫ i/p

0

(1 + fmi
(β; εi))

−(K−N+1)p(β)dβ

−
∫ (i−1)/p

0

(1 + fmi
(β; εi))

−(K−N+1)p(β)dβ

)
.

Considering the integrals between braces, for u = i/p or u =
(i− 1)/p we have∫ u

0

(1+fmi
(β; εi))

−(K−N+1)p(β)dβ=
K!

(N−2)!(K−N+ 1)!

×
∫ u

0

(1 + εi +miβ)
−(K−N+1)βK−N+1(1− β)N−2dβ

which is a generalization of the integral definition of the Euler’s
Beta function; in particular, it can be computed by exploiting
the following identity∫ u

0

xn(1− x)m

(1 + ax)n
dx =

xn+1

n+ 1
F1(n+ 1,−m,n, n+ 2;u,−au)

which is valid for a > 0 (for a = 0 returns the Beta function) and
0 ≤ u ≤ 1, m and n positive integers, where F1(a, b, c, d; y, z)
is the Appell F1 (hypergeometric) function of two variables [39,
sec. 9.18].

The result of Proposition 2 follows by noting that∫ i/p

(i−1)/p p(β)dβ = Fβ|H0
(i/p)− Fβ|H0

((i− 1)/p) and explo-
iting the identity above for a = mi/(1 + εi), m = N − 2, and
n = K −N + 1, i.e.,∫ u

0

(1 + fmi
(β; εi))

−(K−N+1)p(β)dβ

=
u

K −N + 2

(
u

1 + εi

)K−N+1

×F1

(
K−N+2, 2−N,K−N+1,K−N+3;u,−miu

1+εi

)
hence the thesis follows straight.
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