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ĂÿĀ ĈāĂĀ Ăā/ÿÿ
ĂÿĀ ĈāĂĀ Ăā/ÿÿ

ĂÿĀ ĈāĂĀĂā/ÿÿ
Fig. 158. Vapour oil volume fraction with ĂÿĀ =20 bar, varying ĈāĂĀ from 0.1 mm to 0.7 mm 
(increments of 0.1 mm) and  Ăā/ÿÿ (increment of 0.5 bar starting from 0.5 bar): (a) Normal Plot; (b) 
Semi-logarithmic Plot.

Fig. 159. Maximum average oil velocity near the restricted area m/s with ĂÿĀ =20 bar, varying ĈāĂĀ 
from 0.1 mm to 0.7 mm (increments of 0.1 mm) and  Ăā/ÿÿ (increment of 0.5 bar starting from 0.5 
bar). ĂÿĀ ĈāĂĀĂā/ÿÿ
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the flow rate is regulated by the spool9s notches and the degree of opening, before exiting toward 
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3 <x= represents the sliding spool 
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−90° phase lag frequency ranges from approximately 90 Hz to 250 Hz, with the highest values 
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by external environmental factors. The typical flow rate range for these pumps is 10 µL/min to 10 
µL



 ą1,ÿ

 ∆Ă
 ą2,ÿ

< =



One potential solution to solve these problems could be to replace electromagnetic actuators 
with piezoelectric actuators (PEAs) to develop innovative piezoelectric valves. PEAs ofer 
excellent characteristics like simple designs, fewer moving parts, high reliability, and fast 
response, making them ideal for this purpose. A piezo valve, namely a valve actuated by a PEA, 
could eliminate the need for both the torque motor and nexure tube in two-stage servovalves, 
reducing complexity and manufacturing costs. Moreover, using PEAs for the direct actuation of 
direct drive servovalves could provide faster dynamic responses and lower weight compared to 
LFMs. These piezovalves can replace conventional servovalves in the FMUs of conventional 
aircraft fuel systems, enhancing engine performance while lowering aviation's environmental 
impact.

To address the energy consumption issues associated with conventional analogue spool 
valves, the emerging oeld of digital hydraulics ofers a promising solution. This innovative 
technology aims to replace conventional analogue spool valves, both proportional and 
servovalves, with low-cost and robust digital on/of valves, known as digital hydraulic valves, 
for industrial and aeronautical applications. These valves, similar in design to poppet valves, 
ofer larger now areas and lower pressure drops, which can signiocantly minimize energy losses 
and enhance the overall eociency of hydraulic systems [39], [40], [41].

However, the practical application of this novel technology is currently limited due to the 
challenges in manufacturing these digital on/of valves. These valves, indeed, must meet specioc 
criteria, including high switching frequencies and speeds of less than 5 ms, minimal pressure 
losses, and the ability to maintain a large now rate while remaining compact. Once again, the use 
of PEAs could be the ideal solution for developing these digital on/of valves.

Finally, PEAs could also be the key for driving precision nuid pumps (known as piezopumps), 
that are compact, simple in design, capable of precise now control, and quiet, making them 
suitable for innovative nuid power applications.
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G., & Amirante, R. Investigation of Cavitation Phenomena in a <High Power= Piezohydraulic 
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Back in the 1990s, a research study was conducted on the application of piezo stacks to 
servovalves [80]. There were two piezo stack actuators that were connected to both sides of a 
spool through steel balls to directly actuate the sliding spool of the servovalve, as shown in Fig. 
15. The piezoelectric multilayer actuators were pre-compressed by about 20 µm. The 
displacement of the sliding spool was measured by a non-contact reluctance-type position sensor. 
Feed forward control was employed in order to obtain high speed response. The authors stated 
that this servovalve had a bandwidth of over 5 kHz and could pass a now of 5.4 L/min for a 
pressure drop of 100 bar. The application of this valve architecture to higher now rate values is 
not documented in the paper. This research study can be regarded as the precursor for more 
recent studies.

The main problems of that architecture are the high cost of using two piezo stack actuators. 
To cope with this problem, in [81], a spring mechanism and only one piezo stack were used to 
obtain bidirectional spool control, as shown in Fig. 16. A leaf spring allowed the spool to be kept 
in the neutral position when no voltage was applied to the piezo stack. Nonlinear efects such as 
hysteresis and creep were managed using a Fuzzy Logic control algorithm with a Preisach 
hysteresis nonlinear model in a feedforward loop. The valve was tested at a very low now rate 
(up to 4 L/min for a supply pressure of 7 MPa). In these conditions, the results illustrated that the 
piezo valve had a frequency response bandwidth of 470 Hz, and the system could reach the 
steady state in 4.77 ms.
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namely <a system which controls a 

of the system output=, was provided

 

 

and continuously over time, allowing active and intelligent control of the system9s output 



. The latter significantly impacts the system9s 

<on/off= switching of the components becomes unnecessary 
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yed to adjust the valve9s output 
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the movement of the HFSV9s poppet. The latter is caused by two factors, namely the electrical 
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and, thus, the same flow capacity (1:1:1:1…);
 

to a binary series (1:2:4:8:16…);
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individual valve between <on= and <off= to achieve continuous system output. Valve switching is 



→

→ → →









not perform as well when considering DFCUs9 lifespan 

• 

• 









valve9s

























ąÿÿĊ ĂÿÿĊ ĀĂÿĄĂÿ

he absence of valves reduces 

• 

• 

• 



• 

• 



��� ��� ���� ����
3

3

ÿ1ÿ2 ÿ1 b ÿ2
ÿ1 ÿ2



In 2011, Zhang et al. introduced a valveless piezoelectric pump with rotatable, unsymmetrical 
slopes, capable of mixing diferent nuids [241]. By rotating the slopes, this design controls the ratio 
of nuids entering the pump chamber. The prototype was tested at 220 V and 50 Hz, with a chamber 
diameter of 30 mm and slope angles of ÿ1 = 30° and ÿ2 = 90° on each side. Under these conditions, 
the pump achieved a maximum now rate of 32.32 mL/min.

In 2013, Ji et al. developed a novel valveless piezoelectric pump featuring six hemisphere 
segments in a water-olled chamber [232]. With a diameter of the piezomembrane actuator equal to 
30 mm, the experimental tests revealed that the pump reach a maximum now rate of 30 mL/min at 6 
Hz and 110 V, while a pressure diference of 0.0026 bar was achieved at 6 Hz and 160 V.

Six years later, Zhao et al. improved the now rate of this type of pump by optimizing the 
hemisphere segments, creating a crescent-shaped structure using 3D printing [242]. The pump 
prototype reached a maximum now rate of 286 mL/min at 220 V and 82 Hz. 

Recently, He et al. designed another valveless pump with rotatable asymmetrical slopes, 
achieving a maximum now rate of 220.6 mL/min at 190 V and 45 Hz [243]. The highest output 
pressure was 0.0067 bar, measured at 190 V and 130 Hz. Table 14 summarizes the properties of 
valveless piezoelectric pumps with built-in structures.

��� ��� ���� ����
Zhang et al 3 3

3

3

3

To summarize, integrating now resistance structures within the pumping chamber and using 
standard now tubes at the inlet and outlet enhances the eociency of this type of valveless 



piezoelectric pump, resulting in a signiocantly higher now rate compared to valveless piezopumps 
with external now tubes.
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pump9s power output. However, practical constraints such as thermal management, cost, and 

https://www.mdpi.com/1996-1073/17/19/4876#fig_body_display_energies-17-04876-f003


make use of such a device. It was estimated from the actuator9s force and displacement that the serial
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Chapter 3 

in aircraft power consumption and addressing the CO₂ impact of conventional gas turbine engines. 



combined and represented by the <Reservoir= block. This block acts as a pressurized hydraulic ĂĂ
off valve (2) is simulated using the <Constant Area Hydraulic Orifice= 
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deformation of the spring, respectively. The suffix <b= denotes the quantities regarding the bypass 

ąĀ ,

 ÿ�,Ā ĉĀ

ĄĂ,Ā

3

Both the FM 
servovalve and the IGV servovalve offer the option of incorporating a feedback spring for mechanical 
feedback or using a LVDT for electrical feedback [21]. For this analysis, both servovalves are assumed 
to be equipped with an LVDT, meaning that the feedback spring is not considered. In particular, the

3

(ĂĂ 2 Ăąă) = ýĀ(Ċ0,Ā + ĊĀ)ýĀ ,

ąĀ = ÿ�,ĀĉĀĊĀ:2(ĂĂ 2 ĂĂ)Ā ,

ĄĂ,Ā = ąĀ(ĂĂ 2 ĂĂ)ÿĂ .
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ă(ą) = ĊĄÿă = 1 ÿĄ⁄1 + ą (2��Ā) + ( ą�Ā)2 ,



ĂĄ ĂþĊ

Ăþ�þ� 2 ĂĄ�þ� ýą,�þā Ăþ�þ� 2 ĂĄ�þ�ýą,�þā = ���þ�24 Ā�þāĂĄ,�þā ā�þāă��þā  ÿ�þāă��þā ā�þā ÿ�þā

� þ�þā ā�þāă�þā

→ →

→ →ą�þā ýĄ,ą�þ�

ăā,Ą = ÿ�,ā ÿĂā24 :2(ĂĂ 2 ĂĄ)Ā ,
ăā,þ = ÿ�,ā ÿĂā24 :2(ĂĂ 2 Ăþ)Ā ,

ăĀ,Ą = ÿ�,ĀÿĂĀ(Ċ + ĊĄ):2(ĂĄ 2 ĂĂ)Ā ,
ăĀ,þ = ÿ�,ĀÿĂĀ(Ċ 2 ĊĄ):2(Ăþ 2 ĂĂ)Ā .

(Ăþ�þ� 2 ĂĄ�þ�)ýą,�þā 2 ĂĄ,�þā 2 ā�þāă��þā 2 ÿ�þāă��þā = 0,

ÿ�þā = µÿĀ�þāþ�þāā�þā:1 2 (ă�þāā�þā)2 ,

ĂĄ,�þā = 2Ā ą�þā2ýĄ,ą�þ� āāą�,



θ ýĄ,ą�þ�

Ā�þā ýþ,ą�þ�
→ →

ÿ��þ� �Ă
Ă1 Ă2 

ÿ�þā)

ă�þā Ć ăý ÿĂ,�þā  ÿ�,�þā

ýĄ,ą�þ� = Ā�þāă�þā ÿĄ ă�þā g ā�þā ,ýĄ,ą�þ� = ýþ,ą�þ� = Ā�þāā�þā  ÿĄ ă�þā < ā�þā ,

ą�þā = ÿ��þ�ýĄ,ą�þ�:2�ĂĀ ,

�Ă = ĂĂ 2 Ă1 = Ă2 2 ĂĂ = ĂĂ 2 ĂĂ2 ,

ĄĂ,�þā = 2 ą�þā�ĂÿĂ ,

ÿ�þā = ÿĂ,�þāă�þā(Ć) + ÿ�,�þā ∫ ă�þā(Ć)ĂĆĆ
0 .



ăą,þ�þ� ăĄ,þ�þ�

(ÿýĀ
3ĂĄ,ýĀ ąýĀ , 

ĂĄ,ýĀ = Ā ąýĀ2ýĄ,ąýý āāą�,



ýĄ,ąýý
3

ÿýĀ) ăýĀ) ăýĀ Ć
ÿĂ,ýĀ ÿ�,ýĀ

ăą,þýý ăĄ,ýĀ

 

 

ąýĀ = ÿ�ýýýĄ,ąýý:2(ĂĂ 2 Ăąă)Ā ,

ĄĂ,ýĀ = ąýĀ(ĂĂ 2 Ăąă)ÿĂ ,

ÿýĀ = ÿĂ,ýĀăýĀ(Ć) + ÿ�,ýĀ ∫ ăýĀ(Ć)ĂĆĆ
0 .



Ă1 2 Ă2 ýý Ă1 2 Ă2ýý = �(�ÿ22�ÿ2)4 Āă Āÿÿý ÿĄÿý ÿĄ ăý
ĉĂ)

ĂąăĂąă,āĄÿāý) ĂĂĄ

ĂĂĄ  (ĂĂ) ýĂĄĊ0,ĂĄ) (Ăąă,āĄÿāý)

(Ă1 2 Ă2)ýý 2 (ÿý + ÿĄ)ă�ý 2 (ÿý + ÿĄ)ă�ý = 0,

ĉĂ = ą�þāýý .



ýĂĄ Ċ0,ĂĄ ýĂĄ
spring, respectively. The suffix <pr= denotes the quantities regarding the pressurizing valve. ąĂĄ,

ÿ�,ĂĄ ĉĂĄĊĂĄ
ąĂĄĂąă Ăąă,þÿĀ

3 3

ąą/) ąĄĀ)

Ăąă,āĄÿāý = ýĂĄĊ0,ĂĄýĂĄ + ĂĂ ,

ąĂĄ = ÿ�,ĂĄĉĂĄĊĂĄ:2(Ăąă 2 ĂĂĄ)Ā ,

Ăąă,þÿĀ = ýĂĄĊĂĄýĂĄ + Ăąă,āĄÿāý ,

ĄĂ,ĂĄ = ąĂĄ(Ăąă 2 ĂĂĄ)ÿĂ .

ąą/ = ÿ�,ą/ýĄ,ą/:2(ĂĂĄ 2 Ăą/)Ā ,



ÿ� ýĄ is the restriction area (orifice area). The suffix < = 
and < = denote the engine shut Ăą/Ăāā
in the combustion chamber; the latter value is set in the <Reservoir= block. 

–

Density (ρ)
7.7∙10

Efficiency (·

–

(ω
(ξ

µm

ąĄĀ = ÿ�,ĄĀýĄ,ĄĀ:2(Ăą/ 2 Ăāā)Ā .



Radial Eccentricity (¸

Flow Angle (¸

µm

Radial Eccentricity (¸

Flow Angle (¸

µm
µm

– Δp



3

ăýĀ ăýÿýĀ ÿ�þā ÿă = 9 ÿ� = 150ÿă = 0.2 ÿ� = 0.0025

ăý = 0

ĊĄ,ýĀ = 0
ăĀ,Ąýý ăĀ,þýýăĀ,Ąýý ăĀ,þýý ÿýĀ



ÿă,ýĀ

ăýĀ ąýĀ
ăą,þýý ăą,Ąýý

ÿ�þāÿă,�þā ăĀ,þýýăĀ,Ąýý ĊĄ,�þā
ă�þā 

ă�þā 
ą�þā

ĂĂ , ą�þā (Ąý 2  þÿ)
ă�þā = 0.11 

ĂĂą�þā (Ąþ 2  ýÿ)



|ă�þā| = 0.44 ăą,þ�þ� ăą,Ą�þ�

ăý ĉĂ ą�þā



ĊĀ



ĂĂ  2  ĂąăąĀ

Ăąă,āĄÿāý =Ăąă,þÿĀ = 21
Ăąă ąĂĄ = ąýĀ Ăąă,þÿĀ

ĊĂĄ = 4Ăąă Ăąă,þÿĀĊĂĄ = 2.5 Ăąă,āĄÿāý < Ăąă < Ăąă,þÿĀ



ĂĂĄĂą/ Ăāā ĂĂĄ− Ăą/Ăą/− Ăāā ąýĀ
ĄĂ,ýĀ)ĄĂ,�þā) ĄĂ,ĂĄ ĄĂ,Ā

Ąÿ
4 4





Chapter 4 

4 4

4

developed, followed by validation of the ring stack actuator9s hysteresis model against manufacture

4
4

✓ 

✓ 

✓ 



ĊÿÿĊ = 325 µĂĀ,ÿÿĊ = 8450 N ýĂ = 26 N/µm





� Ą āāĀÿ āÿÿĂ ă(ą)

Set Pressure Drop (bar)

Power Consumption

1

1
2
3
4

exit
4/2 HFSV 

               
Ideal Hydraulic
Pressure Sensor

Tank     

        

Ideal Hydraulic
Pressure Source

Tank

               

Ideal Hydraulic
Pressure Sensor  

Tank   

  

    

Input voltage x 20 (V)  

Open/Closed Loop 
Contol System 

     

Input voltage (V)  

 
 

   

   
 

Input voltage (V)   
 

 

   



ýÿ �Ā ,  � ąÿÿĊ

 ÿÿĂ
Ā

ÿ Ā Ă Ā ĂĀ

ÿĀ ÿāý
ĂĀ ĂÿāĆ , 

ýĂ Ċ
poppets9 displacement).

• Ăą Ăą  =   ýą(Ċ +  Ă0) ýą Ă0
• Ăā Ăā  =  ÿĊ� ÿ 
• Ăÿ Ăÿ  =  ÿĊ� m
• ĂĄþāĉ

ă(ą)  = āÿÿĂāā = ýÿ�Ā2ą2 + 2��Āą + �Ā2,

(ĂāÿÿĂĂĆ )ÿÿĊ =  ąÿÿĊÿÿĂ ,

ĂĀĂĆ  =  ÿ ĂāÿÿĂĂĆ  2  Ā |ĂāÿÿĂĂĆ | Ā 2  Ă ĂāÿÿĂĂĆ |Ā|,

ĂĀ  =  ÿĀÿāý(āÿÿĂ  2  Ā),

ĂÿāĆ  =  ĂĀ 2  ýĂĊ,

ĂÿāĆ 2 Ăą  2  ĂĄþāĉ  2  Ăā  2  Ăÿ  =  0,



ĂĂ
ÿ

µ ĀĂ þĂ are the poppets8 diameter and length of the part ā ă

ĀĀą ýĄ

ÿ� ∆Ă

ĄĂ,Ĉ

ąĀ

ÿ =  µÿĀĂþĂā:1 2 (ăā)2,

ĂĄþāĉ  =  2Ā ą2ýĄ āāą�,

ýĄ  =  ÿĀĂĊąÿĀ�,
ą =  ÿ�ýĄ:∆ĂĀ ,

∆Ă =  Ăă  2  Ăÿ  =  2(Ăþ  2  Ăÿ)  =  2(Ăă  2  Ăý),

ĄĂ,Ĉ  =  ąĀ∆Ă,



Ċ =  ĊÿÿĊ Ċ =  ĊÿÿĀ  =  0 ĂąĆāĂ

ā0 Ā0 Ā0 āā/ÿÿĂ ăā  ā

 ā0 Ăÿ āā �
Ą � Āÿāā ∆ĂąĀĄĂ,Ĉ

ă(Ć)
ÿă ÿ�

ĂąĆāĂ  =  ÿąĆāĂ(ĊÿÿĊ  2  Ċ)  +  ÿąĆāĂ ĂĂĆ (ĊÿÿĊ  2  Ċ),Ċ g  ĊÿÿĊĂąĆāĂ  =  ÿąĆāĂ(ĊÿÿĀ  2  Ċ)  +  ÿąĆāĂ ĂĂĆ (ĊÿÿĀ  2  Ċ),Ċ f  0

āā/ÿÿ  =  ā0  +  ā0Ăā ,
ăā =  Ăāā/ÿÿĂĆ  =  ā0ā ĂĂĂĆ ,

ā =  ā0 1 + �(ĂÿĂ )1/�
1 + � Ăÿ1/�ā Ă(�+1)/� āā ,

Āÿ =  ÿăă(Ć)  +  ÿ� ∫ ă(Ć)ĂĆĆ
0





→ →

comparison of the entire simulated hysteresis curve with the corresponding manufacturer9s data. The 
manufacturer9s cu

ÿ =  0.53 Ā =  0.009 Ă =  0.02 ÿĀ  =  1.095
ĂĄþāĉ ,  Ăą,  Ăā,  Ăÿ  QĂĀ,ÿÿĊ  =  8450 Ă ýĂ  =  26 Ă/µm�Ā  =  10000 ĄÿĂ/ą ýÿ  =  40 � = 1.5



Ā  = � =ĂĆ
ĀĂ = Ā =þĂ āÿ =

ă ÿ = Ā0  =  ĀĂ  = Ā0  =  þĂ  = ā0  j2∙10-4ÿ�  =
ýą  =  Ă0  =ĊÿÿĊ  = 

ÿąĆāĂ  = 107 ÿąĆāĂ = 



ρ

ω

ξ
³
´
·

Poppets9 Diameter

Poppets9 Damping Factor
Poppets9 Angle

¸

¸

Ă
2∙10

τ

∆



Poppets’ 

� =Ą =
�Ă =Āÿ =

āā āÿÿĂ, ÿÿĀ ĂĀ
ĂÿāĆ ĂāĂÿ Ăą ĂĄþāĉ
history of poppets9 position, Ċ ąąĀ ĄĂ,Ĉ āāāÿÿĂ Ā ĂĀÿāý ÿĀ

ÿ
ÿĀ ĂāĂĄþāĉ ĂÿāĆĂĀ ýĂĊ



Ăą Ăÿ
Ă0 ÿÿ

Fact

ĊÿÿĊ Ăą Ċą āāąĀ
āā = ąĀ =

ĄĂ,Ĉ ĄĂ,Ĉ = 



 āā f = Δp = DC= 

) Poppets9 Position, Flow 

Āÿ = Āÿ = Āÿ = Āÿ =�Ă =āā  = Āÿ ąĀ



ĄĂ,ĈąĀ = ĄĂ,Ĉ = 

f = Δp = Vc= 

) Poppets9 Position, Flow 

āā ĀÿąĀ
�Ă = 



ąĀ =

āā Ą = Δp = 

�Ă = 
→ →

ĂĂ ąĀĄĂ,Ĉ
Āÿāā = �Ă =  ĂĂ  2  ĂĆ �Ă = �Ă = �Ă = �Ă = 

Āÿ = �Ă =   ąĀ = ĄĂ,ĈąĀ �Ă Āÿ = �Ă = ĄĂ,Ĉ = 



Δp DC f = Vc = 

Δp DC f = Vc = 

āā ÿă  ÿ�



Δp = pp-pt 

f = Δp = Vc = QM = QM = QM =



�Ă = āā = Ą = Āÿ =
was achieved. Additionally, the valve9s switching time was within 1 ms. For more details, please refer 

4 4

Wen model accurately simulated the ring stack actuator9s 





<



from −100 V to +100 V. 

þýăý ĉýăý/ýăý ĊÿÿĊ µm

ĊÿÿĊ µmýĂ N/µmĂĀ,ÿÿĊĂÿāĆ,ÿÿĊĂÿāĆ,ÿÿĊ2ÿĂÿÿĂ µF

(ĊÿÿĊ
(ĊÿÿĊ

ĂĀ



ĂĀ,ÿÿĊ ĂÿāĆĂĀýĂ
ĂÿāĆ,ÿÿĊ ĂÿāĆ,ÿÿĊ





āā (ranging from −5 to +5 V in āÿÿĂ (ranging from −100 V to +100 V). A second order transfer ă ą āÿÿĂ āā

ÿÿ �Ā,ÿ �ÿ

ÿÿĂ

           
                  
      
            
                

Set Pressure (bar)

        

Servo-Valve

      

Ideal Hydraulic
Pressure Source

Tank 

Spool position

L/min

Set point

Set point 
displacement

Blocking forces

                                      

Pressure 

Ideal Hydraulic
Pressure Sensor

Tank

1

2
Force-left

PID - Force 

Set point (Sine Wave)

Set point  

Set point (step)

               

 
 

Actuation force

 
 

ă(ą)  = āÿÿĂāā = ÿÿ�Ā,ÿ2ą2 + 2�ÿ�Ā,ÿą + �Ā,ÿ2 ,

(ĂāÿÿĂĂĆ )ÿÿĊ =  ąÿÿĊÿÿĂ ,



3 Ā
³, ´ and · are parameters to be adjusted in order to adapt the hysteresis model to a specific Ā ĂĀ , 
ýĂ Ċ

ÿĂ ÿąÿĂ ÿą

� Āą þąă

Āą �ýĄ,ą

Ā ýþ,ą 

ĂĀĂĆ  =  ÿ ĂāÿÿĂĂĆ  2  Ā |ĂāÿÿĂĂĆ | Ā 2  Ă ĂāÿÿĂĂĆ |Ā|,

ĂÿāĆ = ĂĀ 2 ýĂĊ,

ĂÿāĆ 2 ĂĄ 2 (ÿĂ + ÿą)Ċ� 2 (ÿĂ + ÿą)Ċ� ,

ÿą  =  µÿĀąþąā:1 2 (ăā)2,

ĂĄ  =  2Ā ą2ýĄ,ą āāą�,

ýĄ,ą = ĀĊ ÿĄ Ċ g ā,ýĄ,ą = ýþ,ą = ĀĊ ÿĄ Ċ < ā,



 ÿ� �Ă ýĄ,ą(Ăþ  2  Ăý)
Ăă Ăÿ āā

āā ă Ć
ÿă ÿ�

The Simulink solver (Ode 14x) computes the dynamic system9s states at successive time steps (0.1 

of Newton9s method and extrapolation from the current value to compute the model9s state at the 

Ċ āÿÿĂ
with the tuned parameters ³ = 0.7, ´ = 0.013, · = 0.03 and ÿĀāā amplitude (from −5 V to +5 V), with no load applied (i.e., ĂĄ ÿą ÿĂ ÿąą ĂĀ,ÿÿĊ ýĂ ÿĂ

�Ā,ÿ �ÿ ąÿÿĊ  
amplitude ratio is −3 dB) is 83 Hz. The good

simulation curve and the manufacturer9s curve shows the

ą =  ÿ�ýĄ,ą:∆ĂĀ ,

∆Ă =  Ăý  2  Ăÿ  =  Ăă 2 Ăþ  =  (Ăă  2  Ăÿ)/2,

āā  =  ÿăă(Ć)  +  ÿ� ∫ ă(Ć)ĂĆĆ
0



ĊÿÿĊĂĀ,ÿÿĊýĂ 
ÿąÿĂ

³ ´ δ ÿĀ
āāĂĄ ÿą ÿĂ ÿą ą �Ā,ÿ �ÿ ąÿÿĊ  

āā



Ā āýþ,ąĀ � þąăÿą
ÿ�

Ā
−āā − ÿÿ



ĀąþąĀÿąÿąāýþ,ąÿ�ĀĀĂĀ,ÿÿĊýĂÿÿĂąÿÿĊÿÿāÿÿĊÿĀĂÿĀ
āāĂă Ăÿ Ăă − Ăÿ

ÿĂ

ÿĂ ÿĂÿĂ ÿĂ
ÿĂ



āā
Ăă − Ăÿ

ĂĀýĂĊĂÿāĆ,ÿÿĊ
ĂĀ,ÿÿĊ≃ āÿÿĂ

�Ā,ÿ

�Ā,ÿ �ÿ ąÿÿĊ
−

ÿĂ ÿĂ

ÿĂ �Ā,ÿ ÿĂ Ăă 2 Ăÿ



ÿĂ �Ā,ÿ ÿĂ Ăă 2 Ăÿ

�Ā,ÿ āāāā pP 2 pTÿĂ ÿĂ �Ā,ÿ 
āÿÿĂ

Ăă 2 Ăÿ ÿĂ ÿĂ �Ā,ÿ
3 ÿĂ 

ÿĂāā  (Ăă 2 Ăÿ) ÿĂ �Ā,ÿ ÿĂ



ÿĂ Ăă 2 Ăÿ ÿĂ �Ā,ÿ

āā
– ÿĂ  ÿ�  āā  

Ăă 2 Ăÿ ÿĂÿĂ�Ā,ÿ



Ăă 2 Ăÿ ÿĂ ÿĂ �Ā,ÿ

Ăă 2 Ăÿ ÿĂ ÿĂ �Ā,ÿ

Ăă 2 Ăÿ ÿĂ mĂ �Ā,ÿ
20þāą10 ĊāćĆ ĊÿĀ ĊÿĀĊāćĆ



Ăă 2 Ăÿ ÿĂ ÿĂ �Ā,ÿ

− −

Ăă 2 Ăÿ ÿĂÿĂ �Ā,ÿ



Ăă 2 Ăÿ ÿĂÿĂ �Ā,ÿ



loop frequency response was predicted, the phase shift being −105° for a frequency

3



This work was carried out in collaboration with the University of Bath9s research group at the 

ąÿÿĄąăĆ ĂÿÿĄąăĆ ĄÿÿĄąăĆ
development, though this target isn9t tied to a specific 

4 4



ĊÿÿĊ ΜĂĀ,ÿÿĊ

Ċ ĂýĂ ĂÿÿĄąăĆ

ýĂ 8 ∙ 1024 ĂĂ
4ĂĂ ýĂ 4.91 ∙ 1024 ĂÿÿĄąăĆ

Ą

ýĂ  =  ĂĂÿÿĄąăĆ  ,



Ą

ĂāćĆ,þĂ = ĂÿĀ,þĂ =ĆþĂ = 
washers9 ýþĂ = 

ĆāÿþĈă = 

Fig. 123 presents a longitudinal section view of the ring stack actuator and piston assembly, with 
a detailed bill of materials available in Table 26.

3

Ą =  ąÿĄąăĆĊýĂ  ,



3

ÿ0 �ÿĂÿ
stack, which has been calculated to be 600 W based on a capacitance of 1.2 µF, aý(ÿ) ýąćĄĄāąĆ ĀąĆ āąĆ

�

ÿąĆ = ÿ0 + �ÿ(1 2 ăĆ�)�ÿ =  Ăÿý(ÿ)ýąćĄĄ  ,� =  āąĆĀąĆāąĆ ý(ÿ)ýąćĄĄ .





PiezoStack Results 

Chamber Results 

 
 
 

            

        

       
      

                          

           

           

        

                 

          

           

           

        

                

  

                    

   

                              

    

   

              

   

    

    

   

              

       

  

        
                 

 

 

                   

      

                     

           

                 



ÿ Ā ĂĊā Čā  

 ā

āĂÿăČā ĂĂĂĄăąąćĄă

Č�ā = ÿĊ�ā 2 Ā|Ċ�ā||Čā|Ā21Č 2  δĊ�ā|Čā|Ā,

ýĂÿăČā =  ĂĀ,ÿÿĊĊÿÿĊ ,



āăĄĄ Ăā/  ĂĀÿÿą

ąÿĀ ąāćĆ�āā/

ÿĂćÿĂ
• ÿĄþćÿĂ
• ÿĂ,Ąÿ)
• ÿĂ,ÿĊ)

• þ

Ă =  ÿāýāăĄĄ ,ĂĂĄăąąćĄă = (Ăā/ 2 ĂĀÿÿą)ýĂ.

�āā/ =  ĊýĂ + ∫ ąÿĀ 2 ∫ ąāćĆ ,
Ăā/ =  ÿĂćÿĂ�āā/ ,

ÿĄþćÿĂ =  þýā/Ā ,
ÿĂ,Ąÿ =  4āĆĉÿþþÿĀā/3 Ā ,

ÿĂ,ÿĊ =  āÿĀā/ĆĉÿþþĀýĂ2 ,
ÿĂćÿĂ =  11ÿĄþćÿĂ + 1ÿĂ,Ąÿ + 1ÿĂ,ÿĊ .



• ýā/
• Ā
• ā
• Āā/
• Ćĉÿþþ

ÿāÿþĈă ýąĂĄÿĀąāĄĄăă

ýăĀĂ āăĀĂĂāÿþĈă
āĄĄăă =  2�:ýąĂĄÿĀąÿāÿþĈă ,



ýāÿþĈă  ÿĄ ĂĂĄăĂĀĂ Ă�ā
By using this net force, the check valve9s position 

ÿĄþćÿĂ  <added mass= due to the fluid displaced as the valve moves. The flow through 

ą0 ą0

ĀĄþćÿĂ ÿĂþĄþćÿĂ  ĆāÿþĈă ÿāÿþĈă  

ÿÿąă 1 → āÿþĈă Ăćþþċ ăĂăĀ (ĊāÿþĈă g ĊăĀĂ)ĂāÿþĈă = ýāÿþĈăÿĄ(ĂĀĂ 2 Ă�ā) 2 āăĀĂĊ�āÿþĈă 2 ýăĀĂ(ĊāÿþĈă 2 ĊăĀĂ) 2 ýąĂĄÿĀąĊāÿþĈă 2 ĂĂĄăÿÿąă 2 → āÿþĈă ĄÿĄĆÿÿþþċ ăĂăĀ (0 < ĊāÿþĈă < ĊăĀĂ)ĂāÿþĈă = ýāÿþĈăÿĄ(ĂĀĂ 2 Ă�ā) 2 āĄĄăăĊ�āÿþĈă 2 ýąĂĄÿĀąĊāÿþĈă 2 ĂĂĄăÿÿąă 2 → āÿþĈă Ăćþþċ ÿþāąăĂ (ĊāÿþĈă f 0)ĂāÿþĈă = ýāÿþĈăÿĄ(ĂĀĂ 2 Ă�ā) 2 āăĀĂĊ�āÿþĈă 2 ýăĀĂĊāÿþĈă 2 ýąĂĄÿĀąĊāÿþĈă 2 ĂĂĄă

Ċ�āÿþĈă =  ĂāÿþĈăÿāÿþĈă + ÿĄþćÿĂ ,
ą = ą0 + ýĈÿþĈăĊ�āÿþĈă ,

(ĂĀĂ 2 Ă�ā) = ĀĄþćÿĂ2 ( ą0ÿĂÿýāÿþĈă)2 + ĀĄþćÿĂþĄþćÿĂÿāÿþĈă Ăą0ĂĆ .



ÿāÿþĈă 
ĂāÿþĈă ĊāÿþĈăÿ  is the disc9s tip 

ring, assuming that all force acts at the annulus center when the valve is closed and that the disc9s 
inner diameter equals the clamp piece9s

ý1 āāÿþĈă Young9s modulus (207 GPa for HR302 stainless steel). Using the 
disc9s displacement and the load force, a stiffness value can be determined. Assuming the disc 

valve9s mass, plus the mass of fluid displaced by the valve9s movement

ýāÿþĈă ĀāÿþĈă ĀĄþćÿĂ
ĂÿĀ,āÿþĈă = ĂāćĆ,āÿþĈă ĆāÿþĈă 

ÿāÿþĈă =  ÿĂāÿþĈăĊāÿþĈăÿ ,

ĊāÿþĈă ÿ =  ý1 (ĂĀĂ 2 Ă�ā)ĂāÿþĈă22āāÿþĈăĆāÿþĈă3 ,

ÿāÿþĈă =  13 ýāÿþĈă(ĀāÿþĈăĆāÿþĈă + ĀĄþćÿĂĊāÿþĈăÿ ),



ýĂÿăČāāĂÿăČāāþĀĄþćÿĂāýā/ĀĆĉÿþþāāÿþĈăýąĂĄÿĀąāĄĄăăÿāÿþĈăÿ�ÿĄĂÿĀ,āÿþĈăĂāćĆ,āÿþĈăĆāÿþĈă

1500 Hz, indicating the pump9s ability to produce higher power at increased frequencies. 



To assess the performance of the single cylinder piezohydraulic pump, a prototype was tested in a 
test rig shown in Fig. 130a with detailed components listed in Table 28. Fig. 130b provides a photo of 
the test setup.

3



In the test setup, oil from the pump (1) nowed through a 3-meter-long pipe with a 6 mm diameter 
(4). A direct drive servovalve at the pipe's end allowed for varying load pressures. To safeguard 
against potential over-pressure situations and damage, a pressure relief valve (7) set to open at 200 
bar was installed. The oil then entered a small hydraulic volume equivalent to the output chamber of 
the pump, measuring 0.01 L (9). The pump maintained a constant inlet pressure of 20 bar to enhance 
oil stifness and prevent cavitation.

The pressure and temperature in the pumping chamber are measured using an EFE PCM127 
sensor (2), which combines a PT1000 temperature (2) probe with a thin olm pressure transducer (2). 
This is connected to the pumping chamber via a small drilling so that the volume of the cylinder is 



not increased excessively. The pressure diference across the Moog D633 load valve (6)  is measured 
using Parker PTDVB250 sensors on either side of the valve (5).  

The test circuit included both mean and instantaneous now measurements to analyze the 
pump's high-frequency behaviour. Mean now was measured with a Max Machinery P214 piston now 
meter (8) (bandwidth of 100 Hz), while higher-frequency measurements were obtained using the 
three-transducer method, employing a PCB Piezotronics dynamic pressure sensor (3). These 
measurements were combined using two complementary olters, calibrated to cross over at 50 Hz, 
ensuring accuracy in both data sets.

Due to the high voltage (1 kV peak-to-peak) and frequencies (up to 1.4 kHz) required for testing, 
a bespoke power electronic converter was developed to drive the piezo stack at the high frequencies 
and voltages required. The electronics were designed to produce a sinusoidal voltage between 0 
and 1 kV at frequencies ranging from 500 Hz to 1.4 kHz. The power supply was envisaged from a 
High-Voltage Direct Current bus. For testing, this was emulated by a 450 V lab power supply unit 
(PSU). High eociency and high power density were achieved through a switched mode topology, 
utilising 1200 V SiC MOSFETs. The driver consisted of two stages. Firstly, an asynchronous boost 
converter increased the voltage from the lab power supply by a ratio of 2.25:1. Then, a PWM-
controlled half-bridge generated the sinusoidal output waveform by tracking a referenced signal 
provided by a controller implemented in the Simulink Real-Time environment. This is shown 
schematically in Fig. 131. 









ĊÿÿĊ ĂĊ

ýĂÿăČā �

ăĄ ýĂ ĂāċČÿ

ăĄýĂ�

Ċ =  ĊÿÿĊ 2 ĂýĂÿăČā

Ċ =  ăĄ(sin(�Ć) + 1) 2 ĂāċýĂýĂÿăČā

Ċ =  ăĄ(sin (�Ć + 2ÿÿČ ) + 1) 2 ĂāċýĂýĂÿăČā
ąÿ =  ýĂ ĂĊÿĂĆ                                           ĉ/ăĀ ĂĊÿĂĆ g 0 ąÿ =  0                                                    ĉ/ăĀ ĂĊÿĂĆ < 0
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capacitor9s value can be taken from the manufacturer9s specifications, with the resistor9s value 

cylinder pump using a 1.2 µF capacitance value, 505 W 



place of the stack9s maximum voltage of 1000 V. This also ga

3



3

3





performing as expected, they should both conform to the manufacturer9s specifications and exhibit 

stack behaviour but sufficient to confirm a defect9s presence.





cylinder9s response, the addition of outputs may be improved when not
stacks9 performance is due to damage 
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The 2D model system, based on previous considerations, was discretized using Cadence Fidelity 
Pointwise. Unstructured meshes, composed of triangular elements with explicit connectivity, were 
employed in this analysis for their nexibility and automation in the generation process [302]. The grid 
was created for all possible openings of the inlet reed valve, ranging from 0.1 mm (minimum value) 
to 0.7 mm (maximum value) in 0.1 mm increments. 



For non-restricted parts of the pump, the mesh setup used fewer than 25 points, resulting in 
large interval sizes from 0.1 mm to 0.9 mm. In contrast, for the edges of the piston orioce and the inlet 
reed valve, more than 1,000 points were used, creating very small interval sizes from 0.0025 mm to 
0.01 mm. This detailed approach aimed to identify pressure and velocity gradients and now swirls 
to predict potential cavitation during the intake stage, when oil nows through the small passage 
uncovered by the inlet reed valve opening.

After discretizing all edges, the entire now domain was meshed for the seven diferent cases 
corresponding to the seven diferent openings of the inlet reed valve. Fig. 154  provides images of 
three of the seven computational meshes of the 2D pump model system, speciocally for inlet reed 
valve openings of 0.1 mm, 0.4 mm, and 0.7 mm. It is important to note that the seven computational 
meshes each uses fewer than 57,000 total cells, resulting in a relatively low computational cost for 
obtaining the CFD simulations. 

Finally, Table 29 provides a detailed description of the boundary conditions set before exporting 
the seven computational grids.



Zone/Line Boundary Condition Description

Inlet Pressure Inlet (ĂÿĀ) Fixed Pressure at the pump 
inlet

Outlet Pressure Outlet (Ăā/ÿÿ)
Pressure value set in the 

pumping chamber during 
intake stage

Walls ─ Lines in the 2D meshed model 
system deoning the walls

Oil Zone ─ Area bounded by the inlet, 
outlet, and walls.

3 · 106 ý 2 ɛý 2 ɛ ý 2 ɛ ý 2 � ý 2 � ý 2 �
ý �
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Fig. 158. Vapour oil volume fraction with pin = 20 bar, varying vopn from 0.1 mm to 0.7 mm (increments of 0.1 
mm) and  pcham (increment of 0.5 bar starting from 0.5 bar): (a) Normal Plot; (b) Semi-logarithmic Plot.

Fig. 159. Maximum average oil velocity near the restricted area m/s with pin = 20 bar, varying vopn from 0.1 
mm to 0.7 mm (increments of 0.1 mm) and  pcham (increment of 0.5 bar starting from 0.5 bar).



Finally, Fig. 160 presents a heatmap illustrating all potential cavitation scenarios. As previously 
explained, these scenarios are explored by maintaining a oxed inlet pressure of ĂÿĀ  =20 bar while 
varying both the opening degree of the inlet reed valve (ĈāĂĀ) and  the pumping chamber pressure 
(Ăā/ÿÿ). The graph analysis reveals that larger openings of the inlet reed valve result in higher average 
oil now velocity near the restricted area. This increased velocity leads to greater pressure drops, 
which can potentially trigger cavitation. 

ĂÿĀ ĈāĂĀĂā/ÿÿ

These la琀琀er studies [46], [47] within this research project initiated an investigation into the 
cavitation potential in the piezohydraulic pump developed at the University of Bath (UK), utilizing 
CFD simulations in Ansys Fluent. These simulations were performed with a oxed inlet pressure of ĂÿĀ  = 20bar while varying the inlet reed valve openings (ĈāĂĀ) from 0.1 mm to 0.7 mm in 0.1 mm 
increments. Diferent values of pumping chamber pressure (Ăā/ÿÿ) during the intake stage were also 
examined. For each inlet valve opening, simulations started at a low chamber pressure (0.5 bar) and 
increased it by 0.5 bar increments until reaching a threshold where additional cavitation was no 
longer observed.



The CFD results showed that as the valve opening increased and chamber pressure decreased, the 
vapor oil phase area and vapor volume fraction also increased, leading to higher cavitation risk due 
to elevated oil velocity near the restricted area.

Future developments will aim to validate the CFD model by comparing its now characteristics 
with experimental data from pump testing.
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