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Abstract
We study the following nonlinear Schrödinger equation with a fourth-order dis-
persion term

∆2u−β∆u= g(u) in RN

in the positive and zero mass regimes: in the former, N⩾ 2 and β >−2
√
m,

where m> 0 depends on g; in the latter, N⩾ 3 and β > 0. In either regimes, we
find an infinite sequence of solutions under rather generic assumptions about
g; if N= 2 in the positive mass case, or N= 4 in the zero mass case, we need
to strengthen such assumptions. Our approach is variational.
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1. Introduction

Let N⩾ 2 and consider the following nonlinear Schrödinger equation with a fourth-order dis-
persion term

∆2u−β∆u= g(u) in RN, (1.1)

where g : R→ R satisfies

(g1) g is continuous and odd;

(g2) −∞< liminf
s→0

g(s)
s

⩽ limsup
s→0

g(s)
s

=:−m< 0;

(g3) lim
s→+∞

g(s)
s2∗∗−1

= 0 if N⩾ 5, lim
s→+∞

g(s)

eαs2
= 0 for every α> 0 if N= 4, with

2∗∗ =


2N
N− 4

if N⩾ 5,

+∞ if 2⩽ N⩽ 4;

(g4) there exists s0 6= 0 such that G(s0)> 0, where G(s) :=
ˆ s

0
g(t)dt;

and

β >−2
√
m.

This kind of assumptions has been introduced in [2, 3] for the study of the equation −∆u=
g(u). In particular, hypothesis (g2) corresponds to the so-called positive mass case.

For N⩾ 3, we consider also the zero mass case, i.e. when

lim
s→0

g(s)
s

= 0.

Nevertheless, unlike [2, 3], the presence of two differential operators in (1.1) makes the
assumptions about the behaviour of g at the origin non-univocal, therefore we consider two
sub-cases in place of (g2):

(g2′) −∞< liminf
s→0

g(s)
|s|2∗−2s

⩽ limsup
s→0

g(s)
|s|2∗−2s

=:−` < 0

or

(g2
′′
) lim
s→0

g(s)
|s|2∗−1

= 0,

with 2∗ = 2N/(N− 2).
Observe that in this case m= 0 and so we are requiring β > 0.
We remark also that in both the positive and the zero mass case, there is no growth assump-

tion about g at infinity whenever N< 4.
Let us spend a few words about classical motivations to deal with (1.1).
In the study of the nonlinear Schrödinger equation

i∂tψ+∆ψ+ |ψ|2σψ = 0, ψ : R×RN → C, (1.2)
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results concerning blow-up vs. global existence and instability vs. stability appear and they
depend strongly on the dimension and the nonlinearity (see, for example, [12]).

To enlarge the range of N and σ for the solutions to exist globally in time, in [24–26] an
additional fourth-order term is proposed in (1.2), obtaining the nonlinear mixed dispersion
Schrödinger equation

i∂tψ− γ∆2ψ+∆ψ+ |ψ|2σψ = 0, ψ : R×RN → C (1.3)

with γ > 0.
Results in this direction can be found in [10, 18, 35].
If standing wave solutions to (1.3), i.e. solutions of the form ψ(x, t) = eiµtu(x) for some

µ⩾ 0 and u : RN → R, are looked for, then one obtains (1.1) with β = 1/γ and g(s) =
(|s|2σs−µs)/γ. We recall that standing wave solutions are usually called waveguide solutions
in nonlinear optics, a major field of application of (1.2) and (1.3).

A different physical derivation for (1.3) appears in [18]. In nonlinear optics, it is well known
that equation (1.2) can be drawn from the nonlinear Helmholtz equation separating the fast
oscillations from the slowly varying amplitude, changing the nondimensional variables, and
using the paraxial approximation, which consists of neglecting some small terms.

The aforementioned blow-up results for (1.2), together with the fact that numerical simula-
tions and asymptotic analysis of the nonlinear Helmholtz equation suggest that nonparaxiality
arrests the blow-up, lead to taking into account the neglected terms. Following the standard
numerical approach, a biharmonic term appears as part of the nonparaxial correction. In the
end, we obtain (1.3). For more details, see [18, section 2].

This regularizing effect of the additional term γ∆2ψ appears clearly also in the Bopp–
Podolsky theory (see [9, 36]). In this context, if δ0 is the Dirac delta function centred at the
origin, the Poisson equation in R3

−∆ψ = 4πδ0

becomes

γ∆2ψ−∆ψ = 4πδ0.

The fundamental solution to the former is F1(x) := |x|−1, which is singular at 0 andˆ
R3

|∇F1|2 dx=+∞,

while the fundamental solution to the latter, instead, is F2(x) := |x|−1(1− e−|x|/√γ), which
satisfies limx→0F2(x) = 1/

√
γ andˆ

R3

[
γ(∆F2)

2 + |∇F2|2
]
dx<+∞

(see e.g. [14, section 3] for details).
Solutions to (1.1) can be found as critical points of the C1 functional

I(u) =
1
2

ˆ
RN

[(∆u)2 +β|∇u|2]dx−
ˆ
RN

G(u)dx,

with I : H2(RN)→ R in the positive mass case, I : D2(RN)→ R in the zero mass case, where
D2(RN) is the completion of C∞

c (RN) with respect to the norm

‖u‖D2 =
(
‖∆u‖22 + ‖∇u‖22

) 1
2 .
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Since (1.1) is set in the whole RN, we consider some symmetries in order to recover com-
pactness. To this aim, let us recall from [43, definition 1.22] (see also [1, 28]) that a subgroup
O ⊂O(N) is called compatible with RN if and only if there exists r> 0 such that

lim
|y|→+∞

m(y,r) = +∞,

where O(N) is the orthogonal group of order N over R and

m(y,r) := sup
{
n⩾ 1 : ∃{gi}ni=1 ⊂O such that i 6= j⇒ B(giy,r)∩B(gjy,r) = ∅

}
.

For example, if N=
∑n

i=1Ni for some n⩾ 1 and Ni ⩾ 2 integers, then O :=
∏n

i=1O(Ni) is
compatible with RN. In particular, one can take n= 1 and N1 = N and obtain O =O(N); one
can also take n= 2 and N1 = N2 = N/2 if N⩾ 4 is even, or n= 3, N1 = N2 ⩽ N/2− 1, and
N3 = N− 2N1 if N⩾ 6.

If O is a subgroup of O(N) compatible with RN, we define H2
O(RN) (resp. D2

O(RN) when
N⩾ 3) as the subspace of H2(RN) (resp. D2(RN)) of O-invariant functions.

In order to find non-radial solutions when N= 4 or N⩾ 6, according to the notations above
we consider n= 2 and

X :=
{
u ∈ D2(RN) : u(x1, . . . ,xN/2,xN/2+1, . . . ,xN) =−u(xN/2+1, . . . ,xN,x1, . . . ,xN/2)

}
if N is even, or n= 3 and

X :=

{
u ∈ D2(RN) :

u(x1, . . . ,xN1 ,xN1+1, . . . ,x2N1 ,x2N1+1, . . . ,xN)
=−u(xN1+1, . . . ,x2N1 ,x1, . . . ,xN1 ,x2N1+1, . . . ,xN)

}
if N⩾ 6, and define H2

X(RN) := H2
O(RN)∩X (resp. D2

X(RN) := D2
O(RN)∩X), where O =

O(N/2)×O(N/2) in the former case and O =O(N1)×O(N1)×O(N3) in the latter. It is
clear that X∩D2

O(N)(R
N) = {0}.

For simplicity, when there is no risk of misunderstanding, we introduce the notations

H := H2
O(N)(R

N) or H := H2
X(RN)

and

D := D2
O(N)(R

N) or D := D2
X(RN),

the right-hand ones provided N= 4 or N⩾ 6. This means that, whenever a statement is made
for H (resp. D), it holds both for H2

O(N)(R
N) (resp. D2

O(N)(R
N)) and, if N= 4 or N⩾ 6, for

H2
X(RN) (resp. D2

X(RN)).
As it is well known, we can work in such subspaces of H2(RN) or D2(RN) and still find

solutions to (1.1) in virtue of the principle of symmetric criticality [34].
Now we state our results, beginning with the positive mass regime.

Theorem 1.1. Assume that N⩾ 3 and (g1)–(g4) hold. Then there exists a sequence {un} ⊂H
of solutions to (1.1) such that I(un)→+∞ as n→+∞.

In the two dimensional case we have to require stronger assumptions about g. More precisely
we have what follows.

Proposition 1.2. Let N= 2. Assume that (g1)–(g4) hold and that

there exists γ > 2 such that g(s)s+ms2 ⩾ γ
(
G(s)+

m
2
s2
)
for every s ∈ R. (1.4)

Then there exists a sequence {un} ⊂ H2
O(2)(R

2) of solutions to (1.1) such that I(un)→+∞ as
n→+∞.
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We point out that (1.4) holds, for example, if g(s) = α|s|2σs−ms for some σ,α > 0.
In the zero mass regime (when N⩾ 3), taking into account the two different subcases men-

tioned above, we have the following results.

Theorem 1.3. Let N⩾ 3. Assume that (g1), (g2
′′
) or (g2′), (g3), and (g4) hold. Then there

exists a sequence {un} ⊂ D2
O(N)(R

N) of solutions to (1.1) such that I(un)→+∞ as n→+∞.

If, moreover, N⩾ 6, then there exists a sequence {un} ⊂ D2
X(RN) of solutions to (1.1) such

that I(un)→+∞ as n→+∞.

Observe that these two last theorems do not deal with the non-radial settingwheneverN = 4.
The reason is that assumptions (g1), (g2

′′
) or (g2′), and (g3) seem to be sufficient to prove that

the energy functional I is well defined (and of classC1) only overD2
O(4)(R

4), as a consequence
of a new Adams-type inequality proved in lemma 3.2 and corollary 3.3. However, we do not
know if this holds in the whole space D2(R4). Thus, we strengthen (g3) and the following
holds.

Theorem 1.4. Let N= 4 and assume that (g1), (g2
′′
) or (g2′), (g4), and

(g3′) lim
s→+∞

g(s)

eαs4/3 = 0, for every α> 0

hold. Then there exists a sequence {un} ⊂ D2
X(R4) of solutions to (1.1) such that I(un)→+∞

as n→+∞.

Recently many authors focused their attention on the nonlinear Schrödinger equation with a
fourth-order dispersion term in all ofRN. Here we recall just some of them. Existence and prop-
erties of ground states, multiplicity of solutions, normalized solutions, and (in)stability have
been considered in [4–6, 8, 11, 16, 17, 27], while [7, 30, 33, 41, 44–46] studied the mixed dis-
persion nonlinear Schrödinger equation in the non-autonomous case and with different types
of nonlinearities.

Nevertheless, up to our knowledge, this is the first work where this problem is tackled in
presence of very general nonlinearities and, in particular, it seems that the zero mass case has
not been considered so far. Furthermore, since our nonlinearity satisfies very general assump-
tions, we cannot adapt easily the strategies of the aforementioned papers. For example, in [8],
to find a least-energy solution, the authors minimize the energy functional over the set{

u ∈ H2(RN) :

ˆ
RN

|u|2σ+2 dx= 1

}
,

scaling the obtained minimizer u 7→ θu for a suitable θ > 0. However, the inhomogeneity of
our nonlinearity makes it impossible to use such an approach. In addition, the presence of two
differential terms of different orders (unless β= 0 in the positive mass regime) prevents us
also from using internal scaling u 7→ u(θ·).

Furthermore, it is hard to prove the boundedness of Palais–Smale sequences. In order to
overcome such a difficulty, inspired by [22], we introduce a two-variable functional: this allows
to construct a suitable Palais–Smale sequence which, in addition, almost satisfies a Pohozaev-
type identity. When dealing with such a particular bounded sequence, we also need to over-
come the lack of compactness. In the radial setting, this is usually done using the well known
Radial Strauss Lemma [2, 39]. However, since we are also interested in non-radial solutions,
we develop a unified approach, inspired by [31, 32], which holds in both cases and is only
based on the symmetry structure introduced before.
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Moreover, since we are interested in multiplicity results, we also have to find a sequence
of mini–max levels that diverges positively. To this aim, we follow two strategies according
to the different assumptions. More precisely, for the positive mass case and for the zero mass
case when (g2

′′
) holds, we adapt an argument of [19] introducing a comparison functional.

Under the assumption (g2′), instead, we proceed in a way similar to [13, 20, 21], proving a
suitable deformation lemma exploiting, once again, the two-variable functional.

The paper is organized as follows: we deal with the positive mass case in section 2 and
the zero mass case in section 3; in particular, in both sections we start with the functional
framework, then we show some compactness results, and finally we prove the main theorems.
We conclude with some open questions in section 4.

Notation. For 1⩽ p⩽+∞, we denote the usual Lp(RN) norm by ‖ · ‖p.

For y ∈ RN and r> 0, we denote B(y,r) := {x ∈ RN : |x− y|< r} and Br := B(0,r).
For every integer k⩾ 1, Bk ⊂ Rk is the closed unit ball centred at the origin, while

Sk−1 := ∂Bk.
If ωN−1 denotes the (N− 1)-dimensional measure of SN−1, then we recall that ω3 = 2π2.
The letters c and C denote positive constants that may change after an inequality sign and

whose precise value is not relevant.

2. The positive mass case

2.1. The functional framework

As observed in [8], if β >−2
√
m, then fixing m ′ ∈ (0,m) such that β >−2

√
m ′,

‖u‖ :=
(
‖∆u‖22 +β‖∇u‖22 +m′‖u‖22

) 1
2

defines a norm in H2(RN), which is equivalent to the standard one. Concerning D2(RN), by
[14] we know that

D2(RN) =
{
u ∈ D1,2(RN) |∆u ∈ L2(RN)

}
.

In particular, D2(RN) is continuously embedded in D1,2(RN).

Proposition 2.1. For any N⩾ 3, D2(RN) is continuously embedded intoW1,2∗(RN).

Proof. Let u ∈ C∞
c (RN). By Sobolev inequality, there exists C> 0 such that

‖u‖2∗ ⩽ C‖∇u‖2; ‖∂iu‖2∗ ⩽ C‖∇∂iu‖2 for any i= 1, . . . ,N.

Moreover, being∑
i,j

ˆ
RN

|∂iju|2dx=
ˆ
RN

|∆u|2dx,

we deduce that

‖∇u‖2∗ ⩽ C‖∆u‖2.

Therefore, for any u ∈ C∞
c (RN) we have

‖u‖W1,2∗ =
(
‖∇u‖2

∗

2∗ + ‖u‖2
∗

2∗

)1/2∗

⩽ C
(
‖∆u‖2 + ‖∇u‖2

)
. (2.1)
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Now let u ∈ D2(RN) and {un} be a sequence in C∞
c (RN) such that un → u in D2(RN). Then,

using also the continuous embedding of D2(RN) into D1,2(RN) we get that, up to a sub-
sequence, un → u and |∇un| → |∇u| a.e. in RN. Moreover, by (2.1) and using Fatou’s Lemma,
we deduce that

‖u‖W1,2∗ ⩽ C‖u‖D2 ,

and so D2(RN) ↪→W1,2∗(RN).

As an immediate consequence we have the following

Corollary 2.2. The following continuous embeddings hold.

(a) If N⩾ 5, then D2(RN) ↪→ Ls(RN), for any s ∈ [2∗,2∗∗].
(b) D2(R4) ↪→ Ls(R4), for any s ∈ [4,+∞).
(c) D2(R3) ↪→ Ls(R3), for any s ∈ [6,+∞].

Proof. We already know that, by proposition 2.1, D2(RN) ↪→W1,2∗(RN).
If N⩾ 5, since 2∗∗ = (2∗)∗, and so W1,2∗(RN) ↪→ L2∗∗(RN), we can conclude.
The cases N= 3 and N= 4 follow immediately.

We remark that the case N= 3 has been already proved in [14, lemma 3.1].
When N= 4, let us recall the following sharp result (i.e. [38, theorem 1.4]), which we write

explicitly for H2(R4).

Lemma 2.3. There exists C> 0 such that

sup
u∈H2(R4), ∥u∥⩽1

ˆ
R4

(
e32π

2u2 − 1
)
dx⩽ C.

As a consequence of lemma 2.3 we have

Corollary 2.4. Let σ ⩾ 2, M> 0, and α> 0 such that αM2 < 32π2. Then there exists C> 0
such that for every τ ∈

(
1,32π2/(αM2)

]
and u ∈ H2(R4) with ‖u‖⩽M,ˆ

R4

|u|σ
(
eαu

2

− 1
)
dx⩽ C‖u‖σστ

τ−1
.

Proof. First, observe that, if s⩾ 0 and t⩾ 1,

(es− 1)t ⩽ est− 1. (2.2)

Let u ∈ H2(R4). By Hölder inequality and (2.2) we have that, for every τ > 1,
ˆ
R4

|u|σ
(
eαu

2

− 1
)
dx ⩽ ‖u‖σστ

τ−1

(ˆ
R4

(
eαu

2

− 1
)τ

dx

)1/τ

⩽ ‖u‖σστ
τ−1

(ˆ
R4

(
eατu

2

− 1
)
dx

)1/τ

.

Moreover, if τ ∈
(
1,32π2/(αM2)

]
and ‖u‖⩽M, by lemma 2.3,ˆ

R4

(
eατu

2

− 1
)
dx=

ˆ
R4

(
eατ∥u∥

2(u/∥u∥)2 − 1
)
dx⩽

ˆ
R4

(
eατM

2(u/∥u∥)2 − 1
)
dx

⩽
ˆ
R4

(
e32π

2(u/∥u∥)2 − 1
)
dx⩽ C

and we conclude.
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Remark. Corollary 2.4 remains valid for 0< σ < 2 provided στ
τ−1 ⩾ 2.

2.2. Some compactness results

In this section, we prove some useful compactness results that we will apply later.
We begin with the following variant of Lions’s lemma [29, lemma I.1].

Lemma 2.6. Let N⩾ 2, and F : R→ R be a continuous function such that

lim
s→0

F(s)
s2

= 0 (2.3)

and

lim
|s|→+∞

F(s)
|s|2∗∗

= 0 if N⩾ 5, (2.4)

lim
|s|→+∞

F(s)

eαs2
= 0 for all α > 0 if N= 4. (2.5)

Assume that {un} ⊂ H2(RN) is bounded and there exists r> 0 such that

lim
n

sup
y∈RN

ˆ
B(y,r)

u2n dx= 0.

Then

lim
n

ˆ
RN

|F(un)|dx= 0.

Proof. First, let us consider the case N⩾ 5.
By (2.3) and (2.4), for every p ∈ (2,2∗∗) and ε> 0 there exists cε > 0 such that, for all

s ∈ R,

|F(s)|⩽ ε(s2 + |s|2
∗∗
)+ cε|s|p.

Since {un} is bounded in L2(RN), and, by Sobolev embeddings, it is also bounded in L2∗∗(RN),
there exists C> 0 such that, for every n ∈ N,ˆ

RN

|F(un)|dx⩽ Cε+ cε‖un‖pp.

Thus it suffices to prove that un → 0 in Lp(RN) at least for one p ∈ (2,2∗∗).
Let us take p= 2(1+ 4/N).
From the interpolation inequality for Lebesgue spaces and Sobolev inequality we have that,

for every y ∈ RN and r> 0 as in the statement,

‖un‖Lp(B(y,r)) ⩽ ‖un‖1−λ
L2(B(y,r))‖un‖

λ
L2∗∗ (B(y,r)) ⩽ C‖un‖1−λ

L2(B(y,r))‖un‖
λ
H2(B(y,r)),

where C> 0 does not depend on y ∈ RN and λ= 2/p= N/(N+ 4). Hence

‖un‖pLp(B(y,r)) ⩽ C‖un‖p−2
L2(B(y,r))‖un‖

2
H2(B(y,r)).

Then, covering RN with balls of radius r such that each point is contained in at most N+ 1
balls we obtain

‖un‖pp ⩽ Csup
k
‖uk‖2 sup

y∈RN

(ˆ
B(y,r)

|un|2 dx

)(p−2)/2

→ 0.
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If N= 4, by (2.3) and (2.5), for every ε> 0, α> 0, and σ ⩾ 2 there exists cε > 0 such that, for
all s ∈ R,

|F(s)|⩽ εs2 + cε|s|σ(eαs
2

− 1).

Then, applying corollary 2.4, the boundedness of {un} implies that for α> 0 and τ > 1 such
that ατ supn ‖un‖2 ⩽ 32π2

ˆ
R4

|F(un)|dx⩽ Cε+ cε‖un‖σστ
τ−1

and so it suffices to prove that un → 0 in L
στ
τ−1 (RN) at least for one couple (σ,τ) with σ ⩾ 2

and τ > 1. For example, to simplify the computations, we take σ= 3 and τ = 5.
Arguing as before, by interpolation we have that for every y ∈ RN,

‖un‖L 15
4 (B(y,r))

⩽ ‖un‖1−λ
L2(B(y,r))‖un‖

λ
L16(B(y,r)) ⩽ C‖un‖1−λ

L2(B(y,r))‖un‖
λ
H2(B(y,r)),

where C> 0 does not depend on y ∈ RN and λ= 8/15, which allows us to conclude that
‖un‖ 15

4
→ 0.

Finally, if N ∈ {2,3}, by (2.3), using the boundedness of {un}, we can write

|F(s)|⩽ εs2 + cε|s|3 for all s ∈
[
−sup

n
‖un‖∞,sup

n
‖un‖∞

]
,

and so ˆ
RN

|F(un)|dx⩽ Cε+ cε‖un‖33.

To prove that un → 0 in L3(RN) we apply again the interpolation inequality, obtaining that, for
every y ∈ RN,

‖un‖L3(B(y,r)) ⩽ ‖un‖1−λ
L2(B(y,r))‖un‖

λ
L4(B(y,r)) ⩽ c‖un‖1−λ

L2(B(y,r))‖un‖
λ
H2(B(y,r)),

where c> 0 does not depend on y ∈ RN and λ= 2/3, and we conclude as before.

Remark 2.7. The condition lim
n

sup
y∈RN

ˆ
B(y,r)

u2n dx= 0 holds if lim
n

sup
y∈RN

ˆ
B(y,r)

|un|q dx= 0 for

some q ∈ [2,2∗).

The next lemma shows when the condition limn supy∈RN

´
B(y,r) u

2
n dx= 0 can occur.

Lemma 2.8. LetO ⊂O(N) be a subgroup compatible with RN, with r> 0 as in the definition
of compatibility. Let (Y,‖ · ‖Y) be a normed space such that Y ↪→ L2

loc(RN) compactly and Y ↪→
Lq(RN) for some q ∈ [2,+∞). If {un} ⊂ Y is bounded, un → 0 a.e. in RN, and each un is O-
invariant, then

lim
n

sup
y∈RN

ˆ
B(y,r)

u2n dx= 0.

Proof. Since each un is O-invariant, for every n we have

m(y,r)

(ˆ
B(y,r)

u2n dx

) q
2

⩽ Cm(y,r)
ˆ
B(y,r)

|un|q dx⩽ C‖un‖qq ⩽ C‖un‖qY ⩽ C,

where C> 0 does not depend on y.

1751



Nonlinearity 36 (2023) 1743 P d’Avenia et al

Let ε> 0. Since O is compatible with RN, there exists R> 0 such that for every n

sup
|y|>R

ˆ
B(y,r)

u2n dx⩽ ε.

Moreover, from the compact embedding Y ↪→ L2
loc(RN) and the almost everywhere pointwise

convergence un → 0, for every sufficiently large n

sup
|y|⩽R

ˆ
B(y,r)

u2n dx⩽
ˆ
B(0,R+r)

u2n dx⩽ ε.

Remark 2.9. Observe that, for instance, we will apply lemma 2.8 when Y= D2(RN) and
q= 2∗ (if N⩾ 3), or Y= H2(RN) and q= 2.

Now we prove the following compactness result (see [31, 32]).

Proposition 2.10. Let F ∈ C1(RN) be such that F(0) = 0 and

• if N⩾ 5, there exists C> 0 such that

|F′(s)|⩽ C
(
|s|+ |s|2

∗∗−1
)

for all s ∈ R;
• if N= 4, for every α> 0 there exist σ ⩾ 2 and C> 0 such that

|F′(s)|⩽ C
(
|s|+

(
eαs

2

− 1
)
|s|σ−1

)
for all s ∈ R;

• if N ∈ {2,3}, there exists C> 0 such that
|F′(s)|⩽ C|s| for all s ∈ [−1,1].

Let {un} ⊂ H2(RN) be bounded and such that un → u0 a.e. in RN for some u0 ∈ H2(RN).
Then

lim
n

ˆ
RN

(
F(un)−F(un− u0)

)
dx=

ˆ
RN

F(u0)dx. (2.6)

If, in addition,

lim
s→0

F(s)
s2

= lim
|s|→+∞

F(s)
|s|2∗∗

= 0 when N⩾ 5,

lim
s→0

F(s)
s2

= lim
|s|→+∞

F(s)

eαs2
= 0 for all α > 0 when N= 4,

lim
s→0

F(s)
s2

= 0 when N ∈ {2,3},

and u0 and all the un areO-invariant for a suitable subgroupO ⊂O(N) compatible with RN,
then

lim
n

ˆ
RN

F(un)dx=
ˆ
RN

F(u0)dx.

Proof. Let us begin with the case N⩾ 5.
Note preliminarily that for every measurable Ω⊂ RN and every t ∈ [0,1]ˆ

Ω

∣∣F′(un+(t− 1)u0
)
u0
∣∣dx⩽ C

ˆ
Ω

(
|un+(t− 1)u0|+ |un+(t− 1)u0|2

∗∗−1
)
|u0|dx

⩽ C
(
‖|un|+ |u0|‖2‖u0‖L2(Ω) + ‖|un|+ |u0|‖2

∗∗−1
2∗∗ ‖u0‖L2∗∗ (Ω)

)
⩽ C

(
‖u0‖L2(Ω) + ‖u0‖L2∗∗ (Ω)

)
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for some C> 0 that does not depend on n or Ω. Therefore using Vitali’s Theorem we obtain

ˆ
RN

(
F(un)−F(un− u0)

)
dx=

ˆ
RN

ˆ 1

0
F′(un+(t− 1)u0

)
u0 dtdx

→
ˆ
RN

ˆ 1

0
F′(tu0)u0 dtdx=

ˆ
RN

F(u0)dx,

and so (2.6) is proved.
If N= 4, for every measurable Ω⊂ RN, every t ∈ [0,1], α> 0, and for σ ⩾ 2 as in the

assumptions, there holds

ˆ
Ω

∣∣F′(un+(t− 1)u0
)
u0
∣∣dx

⩽ C
ˆ
Ω

(
|un|+ |u0|+

(
eα(|un|+|u0|)2 − 1

)
(|un|+ |u0|)σ−1

)
|u0|dx.

Obviously

ˆ
Ω

(|un|+ |u0|)|u0|dx⩽ C‖u0‖L2(Ω)

for some C> 0 that does not depend on n or Ω. Moreover, let us write vn := |un|+ |u0| and let
M> 0 be such that ‖vn‖⩽M. We can choose α> 0 and p1,p2,p3 > 1 such that 1/p1 + 1/p2 +
1/p3 = 1, αp1M2 ⩽ 32π2, p2 ⩾ 2/(σ− 1), and p3 ⩾ 2, so that, from lemma 2.3, the sequence
{eαp1v2n − 1} is bounded in L1(R4), obtaining

ˆ
Ω

(
eαv

2
n − 1

)
vσ−1
n |u0|dx⩽

(ˆ
R4

(
eαv

2
n − 1

)p1
dx

)1/p1

‖vn‖σ−1
(σ−1)p2

‖u0‖Lp3 (Ω)

⩽
(ˆ

R4

(
eαp1v

2
n − 1

)
dx

)1/p1

‖vn‖σ−1
(σ−1)p2

‖u0‖Lp3 (Ω)

⩽ C′‖u0‖Lp3 (Ω)

for some C ′ > 0 not depending on n and concluding as before. Note that such a choice of
α,p1,p2,p3 is possible by taking α sufficiently small, p1 sufficiently close to 1, and p2,p3
sufficiently large.

Finally, if N ∈ {2,3}, in view of the embedding H2(RN) ↪→ L∞(RN), there exists T > 0
such that supn ‖un‖∞ ⩽ T and C̃= C̃(T)> 0 such that

|F′(s)|⩽ C̃|s| for all s ∈ [−2T,2T].

Hence, in a similar way as above, for every measurable Ω⊂ RN and every t ∈ [0,1], we get

ˆ
Ω

∣∣F′(un+(t− 1)u0
)
u0
∣∣dx⩽ C‖u0‖L2(Ω)

for some C> 0 that does not depend on n or Ω and conclude as before.
Now let us move to the second part, assuming that all the un and u0 are O-invariant.

Since (2.6) holds, it is enough to prove that
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ˆ
RN

F(un− u0)dx→ 0,

but this is true in virtue of lemmas 2.6 and 2.8.

Applying proposition 2.10 to the function F(s) = |s|p, we get

Corollary 2.11. Let N⩾ 2 and O ⊂O(N) a subgroup compatible with RN. Then
H2

O(RN) ↪→↪→ Lp(RN) for every p ∈ (2,2∗∗).

In a similar way to proposition 2.10, the following further compactness result for F′ holds.

Proposition 2.12. Let F ∈ C1(RN) be such that F(0) = 0 and

lim
s→0

F′(s)
|s|

= lim
|s|→+∞

F′(s)
|s|2∗∗−1

= 0 when N⩾ 5,

lim
s→0

F′(s)
|s|

= lim
|s|→+∞

F′(s)

eαs2
= 0 for all α > 0 when N= 4,

lim
s→0

F′(s)
|s|

= 0 when N ∈ {2,3},

and let {un} be a bounded sequence of O-invariant functions in H2(RN), for a suitable sub-
group O ⊂O(N) compatible with RN, such that un → u0 a.e. in RN for some u0 ∈ H2(RN).
Then

lim
n

ˆ
RN

F′(un)un dx=
ˆ
RN

F′(u0)u0 dx.

Proof. As in the proof of proposition 2.10, from Vitali’s Theorem∣∣∣∣ˆ
RN

(
F′(un)un−F′(u0)u0

)
dx

∣∣∣∣⩽ ˆ
RN

|F′(un)−F′(u0)||u0|dx

+

ˆ
RN

|F′(un)||un− u0|dx

= on(1)+
ˆ
RN

|F′(un)||un− u0|dx.

Fix p ∈ (2,2∗∗). Since u0 and all the un are O-invariant, from corollary 2.11 we deduce that
limn ‖un− u0‖p = 0.

Assume first that N⩾ 5 and let ε> 0. There exists cε > 0 such that for every s ∈ R

|F′(s)|⩽ ε(|s|+ |s|2
∗∗−1)+ cε|s|p−1.

Whence there exists C> 0 not depending on ε such that for every sufficiently large nˆ
RN

|F′(un)||un− u0|dx⩽ ε(‖un‖2‖un− u0‖2 + ‖un‖2
∗∗−1

2∗∗ ‖un− u0‖2∗∗)

+ cε‖un‖p−1
p ‖un− u0‖p ⩽ Cε

and so we conclude.
If N= 4, for every ε,α > 0 and σ ⩾ 2 there exists cε = cε(α,σ)> 0 such that for every

s ∈ R

|F′(s)|⩽ ε|s|+ cε
(
eαs

2

− 1
)
|s|σ−1.
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Then, takingM> 0 such that ‖un‖⩽M for every n and α < 32π2/M2, arguing again as in the
proof of proposition 2.10 we obtain

ˆ
RN

(
eαu

2
n − 1

)
|un|σ−1|un− u0|dx⩽ C‖un− u0‖p3

with p3 > 2 and C> 0 not depending on n, whence for every sufficiently large n
ˆ
RN

|F′(un)||un− u0|dx⩽ ε‖un‖2‖un− u0‖2 + cεC‖un− u0‖p3 ⩽ Cε.

Finally, if N ∈ {2,3}, fix p> 2. For every ε> 0 there exists cε > 0 such that for every s ∈
[−T,T]

|F′(s)|⩽ ε|s|+ cε|s|p−1,

where T > 0 is such that ‖un‖∞ ⩽ T, and we conclude as in the case N⩾ 5.

2.3. Proofs of theorem 1.1 and proposition 1.2

Following [19], we fix m ′ ∈ (0,m) such that β >−2
√
m ′, where m is defined in (g2), q ∈

(2,2∗∗), and introduce the functions h : R→ R and h : R→ R as

h(s) := (m′s+ g(s))+ and h(s) :=

{
sq−1 sup0<t⩽s

h(t)
tq−1 if s> 0

0 if s= 0

for s⩾ 0, extending them oddly for s< 0. Let us define

H(s) :=
ˆ s

0
h(t)dt and H(s) :=

ˆ s

0
h̄(t)dt.

In a similar way to [19, lemma 2.1, corollary 2.2] we can prove as follows.

Lemma 2.13. The following properties hold.

(a) There exists δ0 > 0 such that H(s) = h(s) = H(s) = h(s) = 0 for every s ∈ [−δ0, δ0].
(b) The functions h and h satisfy (g3). Moreover, if N⩾ 5, then

lim
s→+∞

H(s)
s2∗∗

= lim
s→+∞

H(s)
s2∗∗

= 0;

if N= 4, then for every α> 0

lim
s→+∞

H(s)

eαs2
= lim

s→+∞

H(s)

eαs2
= 0.

(c) For every s⩾ 0, we have that h(s)⩾ h(s)⩾ g(s)+m ′s and H(s)⩾ H(s)⩾ G(s)+
m ′s2/2.

(d) The function s 7→ h(s)/sq−1 is non-decreasing on (0,+∞) and h(s)s⩾ qH(s)⩾ 0 for all
s ∈ R.
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Note that, in view of lemma 2.13, h and H are well defined and there holds

∃C> 0 such that h(s)⩽ Cs2
∗∗−1 for s⩾ 0, if N⩾ 5, (2.7a)

∀α > 0,σ ⩾ 2∃C> 0 such that h(s)⩽ C
(
eαs

2

− 1
)
sσ−1 for s⩾ 0, if N= 4, (2.7b)

∀T> 0,σ ⩾ 2∃C> 0 such that h(s)⩽ Csσ−1 for s ∈ [0,T], if N ∈ {2,3}, (2.7c)

and

∃C> 0 such that H(s)⩽ C|s|2
∗∗

for s ∈ R, if N⩾ 5, (2.8a)

∀α > 0,σ ⩾ 2∃C> 0 such that H(s)⩽ C
(
eαs

2

− 1
)
|s|σ for s ∈ R, if N= 4, (2.8b)

∀T> 0,σ ⩾ 2∃C> 0 such that H(s)⩽ C|s|σ for s ∈ [−T,T], if N ∈ {2,3}. (2.8c)

The very same estimates hold for h and H respectively.
We then introduce a comparison C1 functional I : H2(RN)→ R as

I(u) :=
1
2

ˆ
RN

[
(∆u)2 +β|∇u|2 +m′u2

]
dx−

ˆ
RN

H(u)dx.

Now we can prove the following (cf [19, lemmas 2.4 and 2.5]).

Proposition 2.14. The functionals I and I satisfy:

(a) I⩽ I;
(b) there exist ρ,µ > 0 such that I(u)⩾ I(u)⩾ µ for every ‖u‖= ρ and I(u)⩾ I(u)⩾ 0 for

every ‖u‖⩽ ρ;
(c) for every integer k⩾ 1 there exists an odd map γk ∈ C(Sk−1,H) such that I ◦ γk ⩽ I ◦ γk <

0;
(d) I satisfies the Palais–Smale condition if restricted toH.

Proof. (a) It follows from lemma 2.13(c).
(b) In virtue of point (a), it suffices to prove the statement for I.
Assume first N⩾ 5. From (2.7a) there exists C> 0 such that, for every u ∈ H2(RN),

I(u)⩾ 1
2
‖∆u‖22 +

β

2
‖∇u‖22 +

m′

2
‖u‖22 −C‖u‖2

∗∗

2∗∗ ,

so the statement follows from the classical Sobolev embedding.
Now let N= 4. If α ∈ (0,32π2) and σ> 2, then from corollary 2.4 and (2.7b) there exists

C> 0 such that for every u ∈ H2(RN) with ‖u‖⩽ 1

I(u)⩾ 1
2
‖∆u‖22 +

β

2
‖∇u‖22 +

m′

2
‖u‖22 −C

ˆ
RN

(eαu
2

− 1)|u|σ dx

⩾ 1
2
‖∆u‖22 +

β

2
‖∇u‖22 +

m′

2
‖u‖22 −C‖u‖σστ

τ−1

for some fixed τ ∈ (1,32π2/α]. So again the statement follows from the Sobolev embedding.
Finally, letN ∈ {2,3} and fix T > 0 such that ‖u‖∞ ⩽ T for every u ∈ H2(RN)with ‖u‖⩽ 1.

From (2.7c) with σ= 3, there exists C> 0 such that, for every u ∈ H2(RN) with ‖u‖⩽ 1,

I(u)⩾ 1
2
‖∆u‖22 +

β

2
‖∇u‖22 +

m′

2
‖u‖22 −C‖u‖33

and we conclude as before.
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(c) Again, in view of point (a), it is enough to prove the statement for I. Arguing in a
similar way4 to [3, proof of theorem 10] (if H := H2

O(N)(R
N)) or [23, proof of lemma 3.4]

(if H := H2
X(RN)), for every integer k⩾ 1 there exists an odd map πk ∈ C(Sk−1,H) such that´

RNG
(
πk(ξ)

)
dx⩾ 1 for every ξ ∈ Sk−1. Let λ> 0 and define γk(ξ) := πk(ξ)(·/λ). We have

I
(
γk(ξ)

)
=
λN−4

2
‖∆πk(ξ)‖22 +

βλN−2

2
‖∇πk(ξ)‖22 −λN

ˆ
RN

G
(
πk(ξ)

)
dx

⩽ λN−4

2
‖∆πk(ξ)‖22 +

βλN−2

2
‖∇πk(ξ)‖22 −λN,

thus the statement holds for sufficiently large λ.
(d) Owing to lemma 2.13(d), every Palais–Smale sequence for I is bounded, hence the

assertion follows from proposition 2.12.

Let

Γk := {γ ∈ C(Bk,H) : γ is odd and γ|∂Bk = γk},
where γk : Sk−1 →H is given in proposition 2.14(c). Observe that Γk 6= ∅ because γ̄k ∈ Γk,
where

γ̄k(ξ) :=

{
|ξ|γk

(
ξ
|ξ|

)
if ξ 6= 0

0 if ξ = 0.

Define

σk := inf
γ∈Γk

sup
ξ∈Bk

I
(
γ(ξ)

)
, ck := inf

γ∈Γk

sup
ξ∈Bk

I
(
γ(ξ)

)
.

Using proposition 2.14 we check that σk ⩾ ck ⩾ µ for every k⩾ 1.
We will prove that each σk is a critical value of I.
In order to have that limkσk =+∞ we use the following result.

Proposition 2.15. We have that limk ck =+∞.

Proof. For every integer k⩾ 1 consider the family of subsets of H given by

Σk := {γ(Bm \Y) : γ ∈ Γm, m⩾ k, Rm \ {0} ⊃ Y= Y=−Y, g(Y)⩽ m− k},

where g is the Krasnosel’skij genus (cf e.g. [40, chapter II, section 5]). Then we define the
sequence of values

dk := inf
A∈Σk

sup
u∈A

I(u).

It is clear that {dk} is nondecreasing. Moreover, since γ(Bk) ∈ Σk for every γ ∈ Γk (i.e. taking
m= k and Y= ∅), there holds ck ⩾ dk. Finally, in view of proposition 2.14(d), one can adapt
the argument of [37, proof of theorem 9.12] and obtain that limk dk =+∞, concluding the
proof.

Following [19], we introduce an auxiliary functional J ∈ C1
(
R×H2(RN),R

)
given by

J(s,u) =
es(N−4)

2
‖∆u‖22 +

βes(N−2)

2
‖∇u‖22 − esN

ˆ
RN

G(u)dx. (2.9)

4 In particular, one can smooth the piecewise affine functions considered therein so that they belong to H2(RN).
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For all (s,u) ∈ R×H2(RN),

J(0,u) = I(u),

J(s,u) = I
(
u(e−s·)

)
.

We equipR×H2(RN)with the standard product norm ‖(s,u)‖R×H2(RN) = (|s|2 + ‖u‖2)1/2 and
define a sequence of minimax values for J as

σ̃k := inf
γ̃∈Γ̃k

max
ξ∈Bk

J
(
γ̃(ξ)

)
,

Γ̃k :=
{
γ̃ = (γ̃1, γ̃2) ∈ C(Bk,R×H) : γ̃1is even, γ̃2is odd, and γ̃|∂Bk = (0,γk)

}
,

γk being given in proposition 2.14(c). Arguing as in [19, section 4] we have that σ̃k = σk for
every k⩾ 1 and the following properties hold.

Proposition 2.16. For every integer k⩾ 1 there exists a sequence {(sn,un)} ⊂ R×H such
that

(1) limn sn = 0;
(2) limn J(sn,un) = σk;
(3) limn ∂sJ(sn,un) = 0;
(4) limn ∂uJ(sn,un) = 0 inH∗.

We now prove some fundamental properties of the sequence found in proposition 2.16.

Lemma 2.17. If N⩾ 3 or (1.4) is satisfied, then {un} is bounded, where {un} ⊂H is given in
proposition 2.16.

Proof. Let us begin with the case N⩾ 3. Since (2) and (3) of proposition 2.16 read explicitly

e(N−4)sn

2
‖∆un‖22 +

βe(N−2)sn

2
‖∇un‖22 − eNsn

ˆ
RN

G(un)dx→ σk,

N− 4
2

e(N−4)sn‖∆un‖22 +
N− 2

2
βe(N−2)sn‖∇un‖22 −NeNsn

ˆ
RN

G(un)dx→ 0,

we have

2e(N−4)sn‖∆un‖22 +βe(N−2)sn‖∇un‖22 → Nσk (2.10)

and so, taking into account (1) of proposition 2.16, {‖∆un‖2},{‖∇un‖2},and
{´

RNG(un)dx
}

are bounded.
Now we prove {un} is bounded in L2(RN) as well.
Assume first that N⩾ 4. By contradiction, let us suppose that, up to a subsequence, tn :=

‖un‖2/N2 →+∞ and define vn(x) := un(tnx). Then

‖vn‖22 = 1, ‖∇vn‖22 = t2−N
n ‖∇un‖22, ‖∆vn‖22 = t4−N

n ‖∆un‖22.

Hence {vn} is bounded in H2(RN). Since |∇vn| → 0 in L2(RN), vn ⇀ 0 in H2(RN).
Moreover

tNn

∣∣∣∣e(N−4)sn t−4
n ‖∆vn‖22 +βe(N−2)sn t−2

n ‖∇vn‖22 − eNsn
ˆ
RN

g(vn)vn dx

∣∣∣∣
=

∣∣∣∣e(N−4)sn‖∆un‖22 +βe(N−2)sn‖∇un‖22 − eNsn
ˆ
RN

g(un)un dx

∣∣∣∣
= |∂uJ(sn,un)[un]|⩽ εn‖un‖= εn

√
tN−4
n ‖∆vn‖22 +βtN−2

n ‖∇vn‖22 +m′tNn
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where εn := ‖∂uJ(sn,un)‖∗ → 0 (due to proposition 2.16(4)) and ‖ · ‖∗ is the norm in H∗

induced by ‖ · ‖, obtaining

δn := e(N−4)sn t−4
n ‖∆vn‖22 +βe(N−2)sn t−2

n ‖∇vn‖22 − eNsn
ˆ
RN

g(vn)vn dx→ 0.

Hence, in view of proposition 2.12 with F ′ = h, lemma 2.13, and (g1), for n large we have

m′

2
⩽ e(N−4)sn t−4

n ‖∆vn‖22 +βe(N−2)sn t−2
n ‖∇vn‖22 +m′eNsn

= eNsn
ˆ
RN

[m′v2n+ g(vn)vn]dx+ δn

⩽ eNsn
ˆ
RN

h(vn)vn dx+ δn → 0,

which is a contradiction.
IfN= 3, sinceD2(R3) ↪→ L∞(R3) from corollary 2.2, there exists T > 0 such that ‖un‖∞ ⩽

T for every n. From lemma 2.13 (c) and (2.7c), there exists C> 0 such that

m′

2
‖un‖22 +

ˆ
RN

G(un)dx⩽
ˆ
RN

H(un)dx⩽ C‖un‖66 ⩽ C‖un‖6D2

and so, in particular, ‖un‖2 is bounded.
Finally, let us consider the case when (1.4) holds. Observe that

g(s)s− γG(s)⩾ m
(γ
2
− 1
)
s2 ⩾ m′

(γ
2
− 1
)
s2,

hence (1.4) still holds with m′ instead of m. Thus, for every sufficiently large n, there holds

σk+ 1+ ‖un‖⩾ J(sn,un)−
1
γ
∂uJ(sn,un)[un]

=

(
1
2
− 1
γ

)[
esn(N−4)‖∆un‖22 +βesn(N−2)‖∇un‖22 +m′esnN‖un‖22

]
+

1
γ

ˆ
RN

esnN
[
g(un)un− γG(un)−m′

(γ
2
− 1
)
u2n
]
dx

⩾ 1
2

(
1
2
− 1
γ

)
‖un‖2

and we conclude.

Lemma 2.18. If N⩾ 3 or (1.4) is satisfied, then {un} contains a convergent subsequence,
where {un} ⊂H is given in proposition 2.16.

Proof. Since {un} is bounded in H2(RN) from lemma 2.17, there exists u0 ∈ H2(RN) such
that, up to a subsequence, un ⇀ u0 in H2(RN) and un(x)→ u0(x) for a.e. x ∈ RN. Moreover,
from (1) and (4) of proposition 2.16, we easily see that u0 is a solution to (1.1); in particular,

‖u0‖2 =
ˆ
RN

(
m ′u20 + g(u0)u0

)
dx. (2.11)

Again from (4) of proposition 2.16 and the boundedness of {un} we obtain

e(N−4)sn‖∆un‖22 +βe(N−2)sn‖∇un‖22 − eNsn
ˆ
RN

g(un)un dx→ 0,

1759



Nonlinearity 36 (2023) 1743 P d’Avenia et al

whence

e(N−4)sn‖∆un‖22 +βe(N−2)sn‖∇un‖22 +m ′eNsn‖un‖22

= eNsn
ˆ
RN

[m ′u2n+ g(un)un]dx+ on(1)

= eNsn
ˆ
RN

h(un)un dx− eNsn
ˆ
RN

[h(un)un−m ′u2n− g(un)un]dx+ on(1).

(2.12)

From proposition 2.12 with F ′ = h,
ˆ
RN

h(un)un dx→
ˆ
RN

h(u0)u0 dx, (2.13)

while from Fatou’s lemma and lemma 2.13(c),

liminf
n

ˆ
RN

(
h(un)un−m ′u2n− g(un)un

)
dx⩾

ˆ
RN

(
h(u0)u0 −m ′u20 − g(u0)u0

)
dx. (2.14)

Therefore, in virtue of (2.11), (2.12), (2.13), and (2.14), limsupn ‖un‖⩽ ‖u0‖ and we conclude
that un → u0 in H2(RN).

Now we are ready to conclude this section.

Proofs of theorem 1.1 and proposition 1.2. Fix k⩾ 1: we prove that σk = σ̃k is a critical
value of I. Let {(sn,un)} ⊂ R×H be the sequence from proposition 2.16: from lemma 2.18,
there exists u0 ∈H such that un → u0 along a subsequence. Recalling that sn → 0, there holds

I(u0) = J(0,u0) = σk and I′(u0) = ∂uJ(0,u0) = 0.

Remark 2.19. Under the assumption (1.4), we do not need the comparison functional Ī,
because we can prove directly that the sequence {σk} diverges positively.

3. The zero mass case

We recall that, throughout this section, N⩾ 3.

3.1. The functional framework

Let us start recalling the well-known radial lemma.

Lemma 3.1 ([2, radial lemma A.III]). If u ∈ D1,2(R4) is radially symmetric, then

|u(x)|⩽ 1√
2π

‖∇u‖2
|x|

, for a.e. x ∈ R4.

We have the following property.

Lemma 3.2. There exists C> 0 such that for every u ∈ D2
O(4)(R

4) with ‖u‖D2 ⩽ 1,
ˆ
R4

(
e32π

2u2 − 1− 32π2u2
)
dx⩽ C.
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Proof. Fix u ∈ D2
O(4)(R

4), with ‖u‖D2 ⩽ 1. For R> 0 we have

ˆ
R4

(
e32π

2u2 − 1− 32π2u2
)
dx

=

ˆ
BR

(
e32π

2u2 − 1− 32π2u2
)
dx︸ ︷︷ ︸

I1

+

ˆ
BcR

(
e32π

2u2 − 1− 32π2u2
)
dx︸ ︷︷ ︸

I2

.

Let us start with I1. We define a radial function v(x) = v(|x|) as

v(|x|) := u(|x|)− u(R), for |x|⩽ R.

Observe that v ∈W2,2(BR)∩W1,2
0 (BR). Following [38, Page 655] and using lemma 3.1, we

have

u2(|x|)⩽ v2(|x|)
(
1+

1
2π2

‖∇u‖22
R2

)
+

(
1+

1
2π2

‖∇u‖22
R2

)
, for 0< |x|⩽ R.

Setting

d(R) := 1+
1

2π2

‖∇u‖22
R2

and w(|x|) := v(|x|)
√

1+
1

2π2

‖∇u‖22
R2

,

we have that w ∈W2,2(BR)∩W1,2
0 (BR) and

u2(|x|)⩽ w2(|x|)+ d(R), for 0< |x|⩽ R.

Since ‖u‖D2 ⩽ 1 and so ‖∆u‖2 < 1, being

‖∆w‖2L2(BR) = d(R)‖∆v‖2L2(BR) = d(R)‖∆u‖2L2(BR),

for R sufficiently large, we deduce that ‖∆w‖L2(BR) ⩽ 1. So we can apply [38, Theorem 3.1]
(see also [42]) deducing the existence of C= C(R)> 0 such that

ˆ
BR

e32π
2w2

dx⩽ C.

Hence ˆ
BR

e32π
2u2dx⩽ e32π

2d(R)
ˆ
BR

e32π
2w2

dx⩽ C,

and this concludes the estimate of I1.
Now we focus our attention on I2. Using the power series expansion we have

I2 =
+∞∑
k=2

(32π2)k

k!
I2,k, where I2,k :=

ˆ
BcR

|u|2kdx.

For any k⩾ 3, using again lemma 3.1, we have

I2,k ⩽
ˆ
BcR

1
(2π2)k

‖∇u‖2k2
|x|2k

dx=
‖∇u‖2k2
(2π2)k−1

ˆ +∞

R

dρ
ρ2k−3

=
‖∇u‖2k2
(2π2)k−1

R4−2k

2k− 4
.
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Therefore, since ‖u‖D2 ⩽ 1, there exists C> 0 independent of u such that

I2 ⩽ 29π4‖u‖44 +
+∞∑
k=3

(32π2)k

k!
‖∇u‖2k2
(2π2)k−1

R4−2k

2k− 4
⩽ 29π4‖u‖44 +π2R4

+∞∑
k=3

1
k!

[
16‖∇u‖22

R2

]k
⩽ C.

This proves our claim.

Corollary 3.3. Let σ ⩾ 4, M> 0, and α> 0 such that αM2 < 32π2. Then there exists C> 0
such that for every τ ∈

(
1,32π2/(αM2)

]
and every u ∈ D2

O(4)(R
4) with ‖u‖D2 ⩽M,ˆ

R4

|u|σ
(
eαu

2

− 1−αu2
)
dx⩽ C‖u‖σστ

τ−1
.

Proof. First observe that, if s⩾ 0 and t⩾ 1,

(es− 1− s)t ⩽ est− 1− st.

Then, by Hölder inequality
ˆ
R4

|u|σ
(
eαu

2

− 1−αu2
)
dx⩽ ‖u‖σστ

τ−1

(ˆ
R4

(
eαu

2

− 1−αu2
)τ
dx

)1/τ

⩽ ‖u‖σστ
τ−1

(ˆ
R4

(
eατu

2

− 1−ατu2
)
dx

)1/τ

.

Now the arguments are similar to those of the proof of corollary 2.4, using lemma 3.2.

Remark. Corollary 3.3 remains valid for 0< σ < 4 provided στ
τ−1 ⩾ 4.

3.2. Some compactness results

Lemma 3.5. Let N⩾ 3, and F : R→ R be a continuous function such that

lim
s→0

F(s)
|s|2∗

= 0 (3.1)

and

lim
|s|→+∞

F(s)
|s|2∗∗

= 0 if N⩾ 5, (3.2)

lim
|s|→+∞

F(s)

eαs2
= 0 for all α > 0 if N= 4. (3.3)

Assume that {un} ⊂ D2(RN) is bounded and there exists r> 0 such that

lim
n

sup
y∈RN

ˆ
B(y,r)

u2n dx= 0.

If N= 4, assume additionally that {un} ⊂ D2
O(4)(R

4).
Then

lim
n

ˆ
RN

|F(un)|dx= 0.

Proof. First, let us consider the case N⩾ 5.
By (3.1) and (3.2), for every p ∈ (2∗,2∗∗) and ε> 0 there exists cε > 0 such that, for all

s ∈ R,

|F(s)|⩽ ε(|s|2
∗
+ |s|2

∗∗
)+ cε|s|p. (3.4)
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Since {un} is bounded inD2(RN), by corollary 2.2, it is also bounded in L2∗(RN) and L2∗∗(RN).
Then, there exists C> 0 such that for every n,ˆ

RN

|F(un)|dx⩽ Cε+ cε‖un‖pp.

Thus, arguing as in lemma 2.6, it suffices to prove that un → 0 in Lp(RN) at least for one
p ∈ (2∗,2∗∗). Let us take p= 2(N+ 2)/(N− 2).

From the interpolation inequality for Lebesgue spaces we have that, for every y ∈ RN,

‖un‖Lp(B(y,r)) ⩽ ‖un‖1−λ
L2(B(y,r))‖un‖

λ
L2∗∗ (B(y,r)),

with λ= 2∗/p= N/(N+ 2).
As in corollary 2.2, since 2∗∗ = (2∗)∗, by the Sobolev embeddings, we get

‖un‖L2∗∗ (B(y,r)) ⩽ C‖un‖W1,2∗ (B(y,r)),

where C> 0 does not depend on y ∈ RN.
Hence

‖un‖pLp(B(y,r)) ⩽ c‖un‖p−2∗

L2(B(y,r))‖un‖
2∗

W1,2∗ (B(y,r)),

Then, covering RN with balls of radius r such that each point is contained in at most N+ 1
balls and using proposition 2.1 we obtain

‖un‖pp ⩽ Csup
k
‖uk‖2

∗

D2 sup
y∈RN

(ˆ
B(y,r)

u2n dx

)(p−2∗)/2

→ 0.

If N= 4, by (3.1) and (3.3), for every ε> 0, α> 0, and σ ⩾ 4 there exists cε > 0 such that, for
all s ∈ R,

|F(s)|⩽ εs4 + cε|s|σ(eαs
2

− 1−αs2).

Then, applying Corollaries 2.2 and 3.3, the boundedness of {un} ⊂ D2
O(4)(R

4) implies that for

α> 0 and τ > 1 such that ατ supn ‖un‖2 ⩽ 32π2

ˆ
R4

|F(un)|dx⩽ Cε+ cε‖un‖σστ
τ−1

,

and so it suffices to prove that un → 0 in L
στ
τ−1 (RN) at least for one couple (σ,τ) with σ ⩾ 4

and τ > 1. Let us take, for instance, τ = 5 and σ= 4. Arguing as before, by interpolation we
have that for every y ∈ RN,

‖un‖L5(B(y,r)) ⩽ ‖un‖1−λ
L2(B(y,r))‖un‖

λ
L8(B(y,r)) ⩽ C‖un‖1−λ

L2(B(y,r))‖un‖
λ
W1,4(B(y,r)),

where C> 0 does not depend on y and λ= 4/5, which allows us to conclude that
‖un‖ στ

τ−1
= ‖un‖5 → 0.

Finally, if N= 3, by (3.1) , if p> 6, using the boundedness of {un} and corollary 2.2, we
can write

|F(s)|⩽ εs2 + cε|s|p for all s ∈
[
−sup

n
‖un‖∞,sup

n
‖un‖∞

]
,

and so ˆ
RN

|F(un)|dx⩽ Cε+ cε‖un‖pp.
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Let us take, for instance, p= 8. Arguing as before, by interpolation we have that for every
y ∈ RN,

‖un‖L8(B(y,r)) ⩽ ‖un‖1−λ
L2(B(y,r))‖un‖

λ
L∞(B(y,r)) ⩽ C‖un‖1−λ

L2(B(y,r))‖un‖
λ
W1,6(B(y,r))

where C> 0 does not depend on y and λ= 3/4, which allows us to conclude that ‖un‖8 → 0.

Now we present the analogues of propositions 2.10, 2.12, and corollary 2.11 for D2(RN).

Proposition 3.6. Let N⩾ 3 and F ∈ C1(RN) be such that F(0) = 0 and

• if N⩾ 5, then there exists C> 0 such that

|F′(s)|⩽ C
(
|s|2

∗−1 + |s|2
∗∗−1

)
for all s ∈ R;

• if N= 4, then for every α> 0 there exist σ ⩾ 4 and C> 0 such that

|F′(s)|⩽ C
(
|s|3 +

(
eαs

2

− 1−αs2
)
|s|σ−1

)
for all s ∈ R;

• if N= 3, then there exists C> 0 such that
|F′(s)|⩽ C|s|5 for all s ∈ [−1,1].

Let {un} ⊂ D2(RN) bounded such that un → u0 a.e. in RN for some u0 ∈ D2(RN). If N= 4,
assume additionally that {un} ⊂ D2

O(4)(R
4). Then

lim
n

ˆ
RN

(
F(un)−F(un− u0)

)
dx=

ˆ
RN

F(u0)dx. (3.5)

If, in addition,

lim
s→0

F(s)
|s|2∗

= lim
|s|→+∞

F(s)
|s|2∗∗

= 0 when N⩾ 5,

lim
s→0

F(s)
s4

= lim
|s|→+∞

F(s)

eαs2
= 0 for all α > 0 when N= 4,

lim
s→0

F(s)
s6

= 0 when N= 3,

and u0 and all the un areO-invariant for a suitable5 subgroupO ⊂O(N) compatible withRN,
then

lim
n

ˆ
RN

F(un)dx=
ˆ
RN

F(u0)dx. (3.6)

Proof. The proof is similar to that of proposition 2.10, hence we only highlight the differences.
If N⩾ 5, likewise we prove that there exists C> 0 such that for every measurable Ω⊂ RN,

every t ∈ [0,1], and every nˆ
Ω

∣∣F′(un+(t− 1)u0
)
u0
∣∣dx⩽ C

(
‖u0‖L2∗ (Ω) + ‖u0‖L2∗∗ (Ω)

)
.

If N= 4, then takingM> 0 such that ‖|un|+ |u0|‖D2 ⩽M for every n, 0< α < 32π2/M2, σ ⩾
4, p1,p2,p3 > 1 such that 1/p1 + 1/p2 + 1/p3 = 1, αM2p1 ⩽ 32π2, p2 ⩾ 4/(σ− 1), and p3 ⩾

5 If N= 4, then necessarily O =O(4) due to the first part.
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4, and using lemma 3.2 instead of lemma 2.3, we prove similarly that there exists C> 0 such
that for every measurable Ω⊂ RN, every t ∈ [0,1], and every nˆ

Ω

∣∣F′(un+(t− 1)u0
)
u0
∣∣dx⩽ C

(
‖u0‖L4(Ω) + ‖u0‖Lp3 (Ω)

)
.

If N= 3, then again we prove in a similar way that there exist T > 0 such that supn ‖un‖∞ ⩽ T
and C̃= C̃(T)> 0 such that |F ′(s)|⩽ C̃|s|5 for all s ∈ [−2T,2T] and, consequently, that there
exists C> 0 such that for every measurable Ω⊂ RN, every t ∈ [0,1], and every nˆ

Ω

∣∣F′(un+(t− 1)u0
)
u0
∣∣dx⩽ C‖u0‖L6(Ω).

Regardless of the dimension, we prove the first statement using Vitali’s Theorem and the
second one using lemmas 3.5 and 2.8.

Remark 3.7. In subsection 3.5, we will see that, when N= 4, if F(s) is controlled by eαs
4/3

at
infinity, similar results hold also in D2

O(R4), with O ⊂O(4) compatible with R4.

Corollary 3.8. Let N⩾ 3 andO ⊂O(N) a subgroup compatible withRN. Then D2
O(RN) ↪→↪→

Lp(RN), for every p ∈ (2∗,2∗∗).

Proof. Letting F(s) = |s|p, the statement follows from (3.5) and (3.6) provided that N 6= 4 or
O =O(N). Now assume N= 4 and O 6=O(4). Then there exists C> 0 such thatˆ

Ω

∣∣F′(un+(t− 1)u0
)
u0
∣∣dx= (p− 1)

ˆ
Ω

|un+(t− 1)u0|p−1|u0|dx⩽ C‖u0‖Lp(Ω)

for every measurable Ω⊂ R4, every t ∈ [0,1], and every n, hence we conclude as before.

Finally, arguing in a similar way to the proofs of propositions 2.12 and 3.6 and using corol-
lary 3.8, we obtain the following.

Proposition 3.10. Let N⩾ 3 and F ∈ C1(RN) be such that F(0) = 0 and

lim
s→0

F′(s)
|s|2∗−1

= lim
|s|→+∞

F′(s)
|s|2∗∗−1

= 0 when N⩾ 5,

lim
s→0

F′(s)
|s|3

= lim
|s|→+∞

F′(s)

eαs2
= 0 for all α > 0 when N= 4,

lim
s→0

F′(s)
|s|5

= 0 when N= 3,

and let {un} be a bounded sequence of O-invariant functions in D2(RN), for a suitable sub-
group O ⊂O(N) compatible with RN, such that un → u0 a.e. in RN for some u0 ∈ D2(RN). If
N= 4, assume additionally that O =O(4).
Then

lim
n

ˆ
RN

F′(un)un dx=
ˆ
RN

F′(u0)u0 dx.

3.3. Proof of theorem 1.3 under assumption (g2
′′
)

The procedure is similar to the one in the positive mass case, therefore we skip some details.
We recall that, in this subsection, we assume (g3), hence we considerD = D2

X(RN) only when
N⩾ 6 and that β > m= 0.
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Fix q ∈ (2∗,2∗∗) and define

h(s) :=

(
`

2
s2

∗−1 + g(s)

)
+

for s⩾ 0,

extending it oddly for s< 0, and h,H,H : R→ R as before. Then a result similar to lemma
2.13 holds.

Lemma 3.10. The following properties are satisfied.

(a) There exists δ0 > 0 such that H(s) = h(s) = H(s) = h(s) = 0 for every s ∈ [−δ0, δ0].
(b) The functions h and h satisfy (g3). Moreover, if N⩾ 5, then

lim
s→+∞

H(s)
s2∗∗

= lim
s→+∞

H(s)
s2∗∗

= 0;

if N= 4, then for every α> 0

lim
s→+∞

H(s)

eαs2
= lim

s→+∞

H(s)

eαs2
= 0.

(c) For every s⩾ 0, we have that h(s)⩾ h(s)⩾ g(s)+ `s2
∗−1/2 and H(s)⩾ H(s)⩾ G(s)+

`s2
∗
/(2·2∗).

(d) The function s 7→ h(s)/sq−1 is non-decreasing on (0,+∞) and h(s)s⩾ qH(s)⩾ 0 for all
s ∈ R.

Consequently, conditions similar to (2.7a)–(2.7c) and (2.7a)–(2.7c) are satisfied, i.e.

∃C> 0 such that h(s)⩽ Cs2
∗∗−1 for s⩾ 0, if N⩾ 5,

∀α > 0,σ ⩾ 4∃C> 0 such that h(s)⩽ C
(
eαs

2

− 1−αs2
)
sσ−1 for s⩾ 0, if N= 4,

∀T> 0,σ ⩾ 6∃C> 0 such that h(s)⩽ Csσ−1 for s ∈ [0,T], if N= 3,

and

∃C> 0 such that H(s)⩽ C|s|2
∗∗

for s ∈ R, if N⩾ 5,

∀α > 0,σ ⩾ 4∃C> 0 such that H(s)⩽ C
(
eαs

2

− 1−αs2
)
|s|σ for s ∈ R, if N= 4,

∀T> 0,σ ⩾ 6∃C> 0 such that H(s)⩽ C|s|σ for s ∈ [−T,T], if N= 3.

The very same estimates hold for h and H respectively. If we define I : D2(RN)→ R as

I(u) :=
1
2

ˆ
RN

[
(∆u)2 +β|∇u|2 + `

2∗
|u|2

∗
]
dx−

ˆ
RN

H(u)dx,

then the following result holds.

Proposition 3.11. The functionals I and I satisfy:

(a) I⩽ I;
(b) there exist ρ,µ > 0 such that I(u)⩾ I(u)⩾ µ for every ‖u‖= ρ and I(u)⩾ I(u)⩾ 0 for

every ‖u‖⩽ ρ;
(c) for every integer k⩾ 1 there exists an odd map γk ∈ C(Sk−1,D) such that I ◦ γk ⩽ I ◦ γk <

0;
(d) I satisfies the Palais–Smale condition if restricted to D.
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Proof. We can argue as in proposition 2.14. In particular, we use corollary 3.3 instead of
corollary 2.4 in point (b) when N= 4 and proposition 3.10 instead of proposition 2.12 in point
(d), while concerning point (c), we simply observe that H ↪→D and so we can consider the
same γk given in proposition 2.14.

For every integer k⩾ 1 we define

Γ0
k := {γ ∈ C(Bk,D) : γis odd and γ|∂Bk = γk} ⊃ Γk 6= ∅, (3.7)

where γk is given in point (c) of proposition 3.11.
We also define

σk := inf
γ∈Γ0

k

max
ξ∈Bk

I
(
γ(ξ)

)
, ck := inf

γ∈Γ0
k

max
ξ∈Bk

I
(
γ(ξ)

)
. (3.8)

Observe that σk ⩾ ck ⩾ µ, where µ> 0 has been introduced in point (b) of proposition 3.11,
and the analogous of proposition 2.15 still holds. Therefore limkσk =+∞.

Next, we define J ∈ C1
(
R×D2(RN),R

)
as in (2.9) equipping R×D2(RN) with the stand-

ard product norm ‖(s,u)‖R×D2 = (s2 + ‖u‖2D2)1/2 and

σ̃k := inf
γ̃∈Γ̃0

k

max
ξ∈Bk

J
(
γ̃(ξ)

)
,

Γ̃0
k :=

{
γ̃ = (γ̃1, γ̃2) ∈ C(Bk,R×D) : γ̃1is even, γ̃2is odd, and γ̃|∂Bk = (0,γk)

}
,

thus still σ̃k = σk and proposition 2.16 holds, except now {un} ⊂ D and ∂uJ(sn,un)→ 0 inD∗.

Proof of theorem 1.3 under assumption (g2
′′
). Fix k⩾ 1 and consider the corresponding

sequence {(sn,un)} ⊂ R×D given in the zero-mass-regime analogous of proposition 2.16.
We check that the sequence {un} is bounded in D2(RN) with the same proof as in lemma 2.17
when N⩾ 3 (in fact, the proof is easier because we do not prove that ‖un‖2 is bounded) and
that, up to a subsequence, there exists u0 ∈ D such that un → u0 in D2(RN) arguing as in the
proof of lemma 2.18 with `|u|2∗/2 instead of m ′u2. Then

I(u0) = J(0,u0) = σk and I′(u0) = ∂uJ(0,u0) = 0,

and so we conclude.

3.4. Proof of theorem 1.3 under assumption (g2′)

Also in this subsection, we assume (g3) and so we consider D = D2
X(RN) only when N⩾ 6.

The main difference between (g2′) and (g2
′′
) is that, when the former holds, we can no

longer define the function h, which in turn is used to prove that the sequence of critical values
{σk} defined in (3.8) diverges positively. We follow the approach of [13] (see also [20, 21]).

Let us consider the functional P : D2(RN)→ R defined as

P(u) :=
N− 4

2
‖∆u‖22 +β

N− 2
2

‖∇u‖2 −N
ˆ
RN

G(u)dx.

Let b ∈ R. We say that I restricted to D satisfies the Palais–Smale–Pohožaev condition at the
level b, (PSP)b for short, if and only if every sequence {un} ⊂ D such that

lim
n
I(un) = b, lim

n
P(un) = 0, lim

n
‖I′(un)‖D,∗ = 0

has a (strongly) convergent subsequence, where we recall that ‖ · ‖D,∗ is the dual norm in D∗

induced by ‖ · ‖D2 . We also define

Kb := {u ∈ D : I(u) = b, P(u) = 0, ‖I′(u)‖D,∗ = 0} .
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Let us recall the functional J : R×D2(RN)→ R given by (2.9). By explicit computations we
obtain the following result.

Lemma 3.12. For every s, t ∈ R and every u,v ∈ D2(RN) there holds:

• ∂sJ(s,u) = P
(
u(e−s·)

)
;

• ∂uJ(s,u)[v] = I ′
(
u(e−s·)

)
[v(e−s·)];

• J
(
s+ t,u(et·)

)
= J(s,u).

In particular, P(u) = ∂sJ(0,u). Then, arguing in a similar way to lemmas 2.17 and 2.18 with
sn = 0, without the term m ′u2, and g instead of h, see also proof of theorem 1.3 under assump-
tion (g2

′′
), we obtain the following.

Proposition 3.13. For every b ∈ R, the functional I, restricted to D, satisfies (PSP)b.

In fact, taking into account (2.10), we observe that sequences {un} such that I(un)→ b and
P(un)→ 0 exist only if b⩾ 0.

Now let us focus on J. We consider M := R×D as a Hilbert manifold and define the
equivalent norm

‖(t,v)‖s := ‖(t,v)‖(s,u) :=
(
t2 + e(N−4)s‖∆v‖22 + e(N−2)s‖∇v‖22

)1/2

for every (t,v) ∈ T(s,u)M, (s,u) ∈M. The corresponding dual norm on T∗(s,u)M will be
denoted by ‖ · ‖s,∗. Moreover, for every τ ∈ R, every (s,u) ∈M, and every (t,v) ∈ T(s,u)M∥∥(t,v(eτ ·))∥∥

s+τ
= ‖(t,v)‖s. (3.9)

Given (s,u),(t,v) ∈M, we define the distance between them as

d
(
(s,u),(t,v)

)
:= inf

γ∈Γ

ˆ 1

0
‖γ̇(τ)‖γ(τ) dτ,

where

Γ :=
{
γ ∈ C1([0,1],M) : γ(0) = (s,u) and γ(1) = (t,v)

}
.

In virtue of (3.9), we obtain that, for every τ ∈ R and every (s,u),(t,v) ∈M,

d
(
(s,u),(t,v)

)
= d
((
s+ τ,u(eτ ·)

)
,
(
t+ τ,v(eτ ·)

))
. (3.10)

As usual, if (s,u) ∈M and A⊂M, then

d
(
(s,u),A

)
= inf

(t,v)∈A
d
(
(s,u),(t,v)

)
.

From lemma 3.12, for every (s,u) ∈M

‖J′(s,u)‖2s,∗ =
(
P
(
u(e−s·)

))2
+
∥∥I′(u(e−s·)

)∥∥2
D,∗.

For b ∈ R, let

K̃b := {(s,u) ∈M : J(s,u) = b and ‖J′(s,u)‖s,∗ = 0}=
{(
s,u(e−s·)

)
: u ∈ Kb and s ∈ R

}
.

We say that J satisfies (̃PS)b if and only if every sequence {(sn,un)} ⊂M such that

lim
n
J(sn,un) = b and lim

n
‖J′(sn,un)‖sn,∗ = 0
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has a subsequence (still denoted (sn,un)) such that

lim
n
d
(
(sn,un), K̃b

)
= 0.

Using proposition 3.13 and arguing as in [13, proposition 4.6], we have the following.

Proposition 3.14. The functional J satisfies the (̃PS)b condition at every level b ∈ R.

For a,b ∈ R with a< b, r> 0, A⊂D, and B⊂M, we denote

Ib := {u ∈ D : I(u)⩽ b} , Iba :=
{
u ∈ Ib : I(u)⩾ a

}
,

Jb := {(s,u) ∈M : J(s,u)⩽ b} , Jba :=
{
(s,u) ∈ Jb : J(s,u)⩾ a

}
,

Nr(A) := {u ∈ D : dist(u,A)< r} , Ñr(B) :=
{
(s,u) ∈M : d

(
(s,u),B

)
< r
}
,

where

dist(u,A) := inf
v∈A

‖u− v‖D2 .

Note that Nr(∅) = ∅ and Ñr(∅) = ∅. The next property is a consequence of proposition 3.14.

Corollary 3.15. For every ρ> 0 there exists δ = δ(ρ)> 0 such that

(s,u) ∈ Jb+δ
b−δ \ Ñρ(K̃b) =⇒ ‖J′(s,u)‖s,∗ ⩾ δ.

Using corollary 3.15 and arguing as in [13, proof of theorem 7.2], we obtain the following.

Lemma 3.16. Let b, ε̄,r> 0 and Ũ := Ñr(K̃b). Then there exist ε ∈ (0, ε̄) and η̃ : [0,1]×M→
M continuous such that:

• η̃(t,s,u) = (s,u), if t= 0 or J(s,u)⩽ b− ε̄;
• J
(
η̃(t1,s,u)

)
⩾ J
(
η̃(t2,s,u)

)
if t1 < t2;

• η̃(1,Jb+ε \ Ũ)⊂ Jb−ε and η̃(Jb+ε)⊂ Jb−ε ∪ Ũ;
• η̃ is even in s and odd in u.

Define p : M→D and i : D→M by

p(s,u) := u(e−s·) and i(u) = (0,u).

An immediate consequence is that

p ◦ i= idD, J= I ◦ p, I= J ◦ i, p(K̃b) = Kb.

Moreover, the following holds.

Lemma 3.17. Let b> 0. For every ρ> 0 there exists R= R(ρ)> 0 such that

p
(
Ñρ(K̃b)

)
⊂ NR(Kb), (3.11a)

i
(
NR(Kb)

c
)
⊂ Ñρ(K̃b)

c. (3.11b)

Moreover,

lim
ρ→0+

R(ρ) = 0.

Proof. Let (s,u) ∈ Ñρ(K̃b) and note that (3.11a) reads explicitly

d
(
(s,u), K̃b

)
< ρ =⇒ dist

(
p(s,u),Kb

)
< R. (3.12)
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Note also that, if s= 0, then (3.12) becomes

d
(
(0,u), K̃b

)
< ρ =⇒ dist(u,Kb)< R,

which is equivalent to (3.11b) and so it is enough to prove (3.12).
Observe that, by (3.10),

d
(
(s,u), K̃b

)
= d
(
(0,p(s,u)), K̃b

)
.

To simplify notations, we relabel p(s,u) as u. So there exists γ ∈ C1([0,1],M) such that
γ(0) = (0,u), γ(1) ∈ K̃b, andˆ 1

0
‖γ̇(t)‖γ(t) dt< ρ.

With a small abuse of notation, let us write γ(t) =
(
s(t),u(t)

)
, which yields s(0) = 0 and

u(0) = u. Since
(
s(1),u(1)

)
∈ K̃b, we have p

(
s(1),u(1)

)
∈ Kb, therefore

dist(u,Kb)⩽ ‖u− p
(
s(1),u(1)

)
‖D2 ⩽ ‖u− u(1)‖D2︸ ︷︷ ︸

I1

+‖u(1)− p
(
s(1),u(1)

)
‖D2︸ ︷︷ ︸

I2

. (3.13)

Note preliminarily that, since s(0) = 0, for all t ∈ [0,1] we have

|s(t)|⩽
ˆ 1

0
|ṡ(t)|dt⩽

ˆ 1

0
‖γ̇(t)‖γ(t) dt< ρ.

Therefore

(N− 2)s(t)+Nρ > 0, t ∈ [0,1].

We claim that

(N− 4)s(t)+Nρ > 0, t ∈ [0,1].

Indeed, ifN⩾ 5, we argue as above; ifN= 4, the claim is obvious; ifN= 3, we simply observe
that s(t)< ρ < 3ρ. Then

I1 ⩽
ˆ 1

0
‖u̇(t)‖D2 dt=

ˆ 1

0

(
‖∆u̇(t)‖22 + ‖∇u̇(t)‖22

)1/2
dt

⩽ eNρ/2
ˆ 1

0

((
ṡ(t)
)2

+ e(N−4)s(t)‖∆u̇(t)‖22 + e(N−2)s(t)‖∇u̇(t)‖22
)1/2

dt

= eNρ/2
ˆ 1

0
‖γ̇(t)‖γ(t) dt< eNρ/2ρ.

At the same time,

I2 = ‖p
(
− s(1),p

(
s(1),u(1)

))
− p
(
s(1),u(1)

)
‖D2 ⩽ sup{‖p(t,v)− v‖D2 : |t|< ρ and v ∈ Kb} .

Combining (3.13) with the inequalities for I1 and I2 we infer

dist(u,Kb)< ρeNρ/2 + sup{‖p(t,v)− v‖D2 : |t|< ρ and v ∈ Kb}=: R(ρ)

and R(ρ)→ 0 as ρ→ 0+ thanks to the compactness of Kb.

Using Lemmas 3.16 and 3.17 and arguing as in [13, proof of theorem 7.1], we obtain the
following.
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Lemma 3.18. Let b, ε̄ > 0 and U ⊂ D a neighbourhood of Kb. Then there exists ε ∈ (0, ε̄) and
η : [0,1]×D →D such that:

• η(t,u) = u if t= 0 or I(u)⩽ b− ε̄,
• I
(
η(t1,u)

)
⩾ I
(
η(t2,u)

)
if t1 < t2,

• η(1, Ib+ε \U)⊂ Ib−ε and η(1, Ib+ε)⊂ Ib−ε ∪U ,
• η is odd in u.

Proof of theorem 1.3 under assumption (g2′). For every integer k⩾ 1 consider the family
of subsets of D given by

Σ0
k :=

{
γ(Bm \Y) : γ ∈ Γ0

m, m⩾ k, Rm \ {0} ⊃ Y= Y=−Y, g(Y)⩽ m− k
}
,

where Γ0
m is defined in (3.7), and g is the Krasnosel’skij genus. Moreover we define the values

dk := inf
A∈Σ0

k

sup
u∈A

I(u).

Then, using lemma 3.18, the compactness of Kb, and arguing in a similar way to in [37, proof
of theorem 9.12], we obtain that each dk is a critical value of I and dk →+∞ as k→+∞.

3.5. Proof of theorem 1.4

We conclude this section looking for non-radial solutions in D2
X(R4). To this aim we

have to consider stronger assumptions about the nonlinearity g in order that the functional
I : D2(R4)→ R is of class C1 (or even well defined). In particular, we assume (g3′) instead of
(g3).

Lemma 3.19 ([15, lemma 1]). For any u ∈W1,4(R4) and α> 0, we have
ˆ
R4

(
eα|u|

4/3

− 1−α|u|4/3 − α2

2
|u|8/3

)
dx<+∞.

Moreover, if ‖∇u‖4 ⩽ 1, ‖u‖4 ⩽ A<+∞, and α < 4ω1/3
3 , then there exists C= C(α,A)> 0

such that ˆ
R4

(
eα|u|

4/3

− 1−α|u|4/3 − α2

2
|u|8/3

)
dx⩽ C(α,A).

Corollary 3.20. Let σ ⩾ 4, M> 0, and α> 0 such that αM4/3 < 4ω1/3
3 . There exists C> 0

such that for every τ ∈
(
1,4ω1/3

3 /(αM4/3)
)
and every u ∈W1,4(R4) with ‖u‖W1,4 ⩽M

ˆ
R4

|u|σ
(
eα|u|

4/3

− 1−α|u|4/3 − α2

2
|u|8/3

)
dx⩽ C‖u‖σστ

τ−1
.

Proof. First observe that, if s⩾ 0 and t⩾ 1,(
es− 1− s− s2

2

)t

⩽ est− 1− st− (st)2

2
.
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Then, by Hölder inequality

ˆ
R4

|u|σ
(
eα|u|

4/3

− 1−α|u|4/3 − α

2
|u|8/3

)
dx

⩽ ‖u‖σστ
τ−1

(ˆ
R4

(
eα|u|

4/3

− 1−α|u|4/3 − α2

2
|u|8/3

)τ

dx

)1/τ

⩽ ‖u‖σστ
τ−1

(ˆ
R4

(
eατ |u|

4/3

− 1−ατ |u|4/3 − (ατ)2

2
|u|8/3

)
dx

)1/τ

.

Now the arguments are similar to those of the proof of corollary 2.4, using lemma 3.19 with
A= 1.

Proof of theorem 1.4. Using lemma 3.19 and corollary 3.20, the analogous of the compact-
ness results in Subsection 3.2 holds forD2

X(R4) under the stronger assumption at infinity com-
ing from (g3′). Therefore, the arguments are similar to those in Subsections 2.3 and 3.3 or
Subsection 3.4 adapted to D2

X(R4).

4. Open problems and related remarks

Question: can we extend lemma 3.2 to all the functions in D2(R4)? That is, does C> 0 exist
such that ˆ

R4

(
e32π

2u2 − 1− 32π2u2
)
dx⩽ C

for every u ∈ D2(R4) with ‖u‖D2 ⩽ 1?
A version of lemma 3.2 valid in all of D2(R4) but where the constant 32π2 is replaced with

1, which is still sufficient for I to be of class C1 in D2(R4), is satisfied provided the following
condition holds:

(q1)
+∞∑
k=2

C2k
2k

k!
<+∞,

where, for p⩾ 4, Cp > 0 is the best constant in the inequality of Gagliardo–Nirenberg-type

‖u‖p ⩽ Cp‖∆u‖1−4/p
2 ‖u‖4/p4 for every u ∈ D2(R4).

Note that we do not need the formula above to hold for every u ∈ {v ∈ L4(R4) : ∆v ∈
L2(R4)} ⊃ D2(R4) as it would be for the classical Gagliardo–Nirenberg inequality.

Theorem 4.1. If (q1) holds, then there exists C> 0 such that for every M> 0 and every u ∈
D2(R4) with max{‖u‖4,‖∆u‖2}⩽M

ˆ
R4

(
eu

2/M2

− 1− u2

M2

)
dx⩽ C.

Notice that taking M= 1 we obtain the version of lemma 3.2 mentioned before.
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Proof. We can assume u 6= 0. Observe preliminarily that

ˆ
R4

(
eu

2/∥∆u∥2
2 − 1− u2

‖∆u‖22

)
dx=

ˆ
R4

+∞∑
k=2

1
k!

u2k

‖∆u‖2k2
dx=

+∞∑
k=2

1
k!

‖u‖2k2k
‖∆u‖2k2

⩽
+∞∑
k=2

C2k
2k

k!
‖u‖44
‖∆u‖42

= C
‖u‖44
‖∆u‖42

,

where C :=
∑+∞

k=2 C
2k
2k/k!<∞. Next, since ‖∆u‖2 ⩽M,

eu
2/M2

− 1− u2

M2
=

+∞∑
k=2

1
k!
u2k

M2k
=

1
M4

+∞∑
k=2

1
k!

u2k

M2k−4
⩽ 1
M4

+∞∑
k=2

1
k!

u2k

‖∆u‖2k−4
2

=
‖∆u‖42
M4

+∞∑
k=2

1
k!

u2k

‖∆u‖2k2
=

‖∆u‖42
M4

(
e

u2

∥∆u∥2
2 − 1− u2

‖∆u‖22

)
,

thus, since ‖u‖4 ⩽M,

ˆ
R4

(
eu

2/M2

− 1− u2

M2

)
dx⩽ ‖∆u‖42

M4

ˆ
R4

(
eu

2/∥∆u∥2
2 − 1− u2

‖∆u‖22

)
dx⩽ C

‖u‖44
M4

⩽ C.

Arguing as in corollary 3.3, but using theorem 4.1 instead of lemma 3.2, we obtain the follow-
ing result, which suffices to use the machinery of the previous sections.

Corollary. If (q1) holds, then for every σ ⩾ 4,α> 0, andM> 0 such thatαM2 < 1 there exists
C> 0 such that for every τ ∈

(
1,1/(αM2)

]
and every u ∈ D2(R4) with max{‖u‖4,‖∆u‖2}⩽

M ˆ
R4

|u|σ
(
eαu

2

− 1−αu2
)
dx⩽ C‖u‖σστ

τ−1
.
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