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Understanding the role of self-attention in a
Transformer model for the discrimination of SCD

from MCI using resting-state EEG
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Abstract— The identification of EEG biomarkers to dis-
criminate Subjective Cognitive Decline (SCD) from Mild
Cognitive Impairment (MCI) conditions is a complex task
which requires great clinical effort and expertise. We exploit
the self-attention component of the Transformer architec-
ture to obtain physiological explanations of the model’s de-
cisions in the discrimination of 56 SCD and 45 MCI patients
using resting-state EEG. Specifically, an interpretability
workflow leveraging attention scores and time-frequency
analysis of EEG epochs through Continuous Wavelet Trans-
form is proposed. In the classification framework, models
are trained and validated with 5-fold cross-validation and
evaluated on a test set obtained by selecting 20% of the
total subjects. Ablation studies and hyperparameter tuning
tests are conducted to identify the optimal model configu-
ration. Results show that the best performing model, which
achieves acceptable results both on epochs’ and patients’
classification, is capable of finding specific EEG patterns
that highlight changes in the brain activity between the
two conditions. We demonstrate the potential of attention
weights as tools to guide experts in understanding which
disease-relevant EEG features could be discriminative of
SCD and MCI.

Index Terms— Alzheimer’s disease, Multi-Head Attention,
Interpretability, Transformer, Resting-state EEG
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I. INTRODUCTION

DEMENTIA disorders stand as the primary contributor to
disability in the elderly population, since they encompass

a variety of cognitive and behavioral symptoms that disrupt the
capacity to carry out daily activities [1]. These conditions are
progressive, and often preceded by less severe stages of im-
pairment. Subjective Cognitive Decline (SCD) refers to a self-
reported worsening of cognitive abilities experienced by an
individual, without objective evidence of impairment assessed
through standardized cognitive tests [2], while Mild Cognitive
Impairment (MCI) is a clinical condition that results in a no-
ticeable decline in cognitive or behavioural domains, assessed
by standardized tests used for diagnostic purposes and to
differentiate it from normal age-related cognitive changes [3].
SCD and MCI can be caused by various underlying factors.
However, both conditions may represent early manifestations
of dementia disorders, particularly Alzheimer’s Disease (AD),
as they have been associated with an increased likelihood
of biomarkers’ abnormalities consistent with AD pathology
and with a higher risk for future AD [4], [5]. While some
cases may progress to more severe impairment, other cases
may remain stable or even move toward the recovery, or at
least the non-worsening, of impaired domains. Hence, the
characterization and identification of biomarkers related to
SCD and MCI is essential to monitor individuals which will
eventually develop the disease [5]. Additionally, with the ad-
vance of research for disease-modifying therapies for AD [6],
the ability to accurately identify patients in the initial stages of
the disease is pivotal for timely and targeted interventions to
potentially alter the disease’s course [7]. From a functional
perspective, the discrimination between SCD and MCI is
essential to target populations of subjects in the preclinical and
prodromal states of AD, before irreversible neurodegeneration
occurs. However, since morphological and functional changes
in the brain between the two conditions are variable and partly
overlapping, this task requires significant effort from domain
experts.

Recently, there has been a growing interest in using Deep
Learning (DL) techniques to automatically identify AD from
neuroimaging data, such as magnetic resonance imaging
(MRI) and positron emission tomography (PET) [8], but more
prominently from electroencephalography (EEG) data [9],
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[10]. Indeed, EEG has the advantages of non-invasiveness,
ease of use and cost-effectiveness, representing a promising
and more reproducible alternative to traditional diagnostic
methods [11]. In particular, resting-state EEG (rsEEG) has
been confirmed as a biomarker related to disease progres-
sion [12]–[14] which can be used to discriminate early stages
of AD [15]. In this context, rsEEG-based DL models have also
shown remarkable results in the identification of MCI [16],
[17] and preclinical AD [18], [19].

However, a well-known limitation concerning the applica-
tion of DL algorithms to clinical practice is the underlying
black-box behaviour of the models, which can reduce their
reliability and generate mistrust about their results. Explain-
ability and visualization methods, such as GradCAM or LIME,
have already been employed in tasks for the classification of
biological signals [20], [21]; however, a trustworthy under-
standing of DL algorithms supporting decisions in healthcare
is essential and still needed [22], [23]. The concept of in-
terpretability could represent a valid approach to deal with
this problem. An interpretable model is able to show why
a decision is made for a specific input [24], by exposing
the inner mechanisms through human-understandable expla-
nations. The design and improvement of methods to enhance
the interpretability aspects of DL models are currently open
research topics [8], [22], [23].

Transformers [25] and Vision Transformers [26] have intro-
duced a new approach to the interpretability of deep networks
in the fields of Natural Language Processing and Computer
Vision through the mechanism of self-attention. Indeed, while
most of the explainability methods focus on giving information
about how a model processes data or how it represents data
internally, attention-based architectures generate explanation-
producing systems by directly revealing which information
flows through the network [27]. Specifically, attention can help
access a model’s inherent processes by showing how it assigns
different weights to different inputs and parts of the input [28].

Various interpretability methods have been proposed for
models based on Transformers [29]. Nonetheless, one effective
approach is to leverage raw attention scores to visualize
the portions of the input on which the model focused the
most during the decision process [30], [31], particularly when
working with time series [32].

In this context, the potential of explanations obtained from
attention weights has been explored in the field of EEG classi-
fication. Recently, several works employing Transformers for
EEG-based automatic sleep staging have highlighted the im-
portance of understanding which physiologically interpretable
patterns are detected by the model and how different parts
of the input influence the classification outcome [33]–[35].
In particular, by mapping attention scores to the raw EEG
signals, they all found that the Transformers attended more to
sleep-related features, such as K-complexes and spindles, to
classify specific sleep stages. Similarly, a study using EEG for
emotion recognition employed the output weights of attention
modules to visualize the importance of different EEG channels
in emotional activities [36] and showed that the channels
with higher attention focus were located in the temporal and
prefrontal lobes, which play a major role in human emotion

regulation. Likewise, Baghdadi et al. performed an EEG-based
seizure type classification task and observed that the attention
block in their model assigned larger weights to channels and
time blocks that contributed to characterize specific seizure
types [37].

Although several studies have demonstrated the potential of
Transformers for the classification of AD and its transitional
stages using MRI [38]–[41] and PET images [42], [43], a very
limited number of works have employed these models with
EEG data [44]–[46] and none of them has investigated the
potential of attention scores as interpretability tools to find
pathological biomarkers of AD.

In our previous study, we proposed an innovative approach
to classify SCD and MCI subjects using rsEEG with a deep
model based on the Transformer architecture [47]. Specifically,
the model processed rsEEG epochs of 10 seconds, predicted a
label for each epoch, and subsequently classified each subject
based on the class predicted for most of the corresponding
epochs. We demonstrated that the Transformer model was
able to distinguish between SCD and MCI subjects with good
accuracy levels, comparable to those obtained with state-of-
the-art DL models employed for EEG signal classification
tasks.

In this work, we argue that our model allows to provide
explanations for its decisions and support the identification of
alterations in the brain activity of SCD and MCI patients by
detecting patterns of interest in the input signals. In addition,
we aim to provide a further analysis of our method by
tuning parameters and performing ablation studies on different
modules of the Transformer in order to highlight the role
of the self-attention component in the classification process.
The main contributions of this paper are summarised in the
following:

• we propose an interpretability framework that leverages
attention scores to qualitatively and quantitatively identify
peculiar changes in the rsEEG signals between SCD
and MCI patients. The proposed approach allows the
automatic attention-guided segmentation of EEG epochs
to locate the most meaningful parts of the signal;

• we integrate statistical and time-frequency analyses to
correlate the decisions made by the Transformer with the
physiological basis of cognitive impairment in the specific
classification task;

• we investigate how choosing multi-head attention over
traditional self-attention impacts the explainability capa-
bilities of the model.

To the best of our knowledge, this is the first work that
proposes a systematic approach based on resting-state EEG
signals exploiting the attention weights to guide the detection
of biomarkers in the context of AD detection and classification.

The remainder of this study is organized as follows: Sec-
tion II describes the materials, the classification framework
and the experimental details. In Section III, the findings of the
interpretability approach are presented and discussed, along
with the results obtained from the experiments conducted on
the model architecture. Finally, conclusions and future works
are discussed in Section IV.
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II. MATERIALS AND METHODS

A. EEG data acquisition and preprocessing

The dataset is composed of resting-state EEG recordings
of 56 SCD and 45 MCI subjects collected at IRCCS Don
Carlo Gnocchi in Florence, Italy, as part of the ”PRedicting
the EVolution of SubjectIvE Cognitive Decline to Alzheimer’s
Disease With machine learning (PREVIEW)” project [48].
Patients were classified as SCD according to the terminology
proposed by the Subjective Cognitive Decline Initiative (SCD-
I) Working Group [2], and as MCI according to the National
Institute on Aging-Alzheimer’s Association (NIA-AA) work-
groups criteria for the diagnosis of MCI [49]. Fundamental de-
mographic and clinical information of the patients are reported
in Table I. More detailed information about the PREVIEW
study design and participants can be found in [48].

TABLE I: Clinical-demographic characteristics of the study
population reported as mean ± standard deviation. SCD: Sub-
jective Cognitive Decline; MCI: Mild Cognitive Impairment;
MMSE: Mini-Mental State Examination; TIB: Italian Brief
Intelligence Test

.

SCD MCI
Age 66.26± 8.72 74.26± 8.20
Females (%) 78.3 54.3
Age onset 55.15± 8.04 62.09± 9.97
Years of Education 12.58± 3.47 10.18± 4.17
MMSE 27.48± 2.28 27.52± 2.13
TIB 107.22± 20.48 111.00± 6.01

All subjects were recruited in accordance with the Dec-
laration of Helsinki and with the ethical standards of the
Committee on Human Experimentation of Careggi University
Hospital (Florence, Italy). The study was approved by the local
Institutional Review Board (”Comitato Etico di Area Vasta
Centro” reference 15691oss).

EBNeuro’s GalNt system (EBNeuro, Florence, Italy) with
64 channels, including two EOG channels and ECG, and a
sampling rate of 512 Hz was used to collect the signals. Elec-
trodes were positioned according to the 10–10 international
system. The acquisition protocol was designed to include both
eyes-closed and eyes-open conditions, resulting in recordings
lasting about 20 minutes. Only the eyes-closed portions of the
signal were retained for analysis, since they constituted the
largest part of the acquisition protocol.

Raw data were preprocessed using a standardized pipeline,
the PREP pipeline [50], which was implemented in Mat-
lab R2019b (The Mathworks, Natick, MA, USA) with the
EEGLAB toolbox v.2021.0. After that, signals were addition-
ally filtered with a 50 Hz notch filter to ensure the removal of
line noise components.

Then, Independent Component Analysis (ICA) was per-
formed and a semi-automatic method employing EEGLAB’s
ICLabel [51] was used to exclude components relative to
noise and artifacts. Lastly, residual artifactual segments were
manually removed.

EOG and ECG were excluded from the analyses. Of 61
recorded channels, 19 were retained, namely Fp1, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2,

which we already proved to ensure sufficient information for
this specific classification task; in fact, the choice of this subset
of channels is not new in the context of EEG analysis for AD
detection [12], [52]. In our previous work, we compared the
classification results of our Transformer model when using
both the reduced and complete set of channels and found
that the overall performances of our model worsened when
all channels were employed due to redundancy in the input
signal [47].

Subsequently, the signals were bandpass filtered between
1 Hz and 30 Hz to include the EEG frequency bands of
interest, i.e. delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz)
and beta (12-30 Hz), and then normalized using the z-score
normalization, according to Equation 1, where X∗ is the
normalized output signal, X is the reference signal, µ is its
mean value and σ is the standard deviation for each subject.
Mean and standard deviation have been computed per channel.

X∗ =
X − µ

σ
(1)

For each subject, the signal was split into n epochs with the
same time duration L and each epoch was labelled with the
class of the corresponding subject. Since the EEG recordings
had a different duration for each subject, and the preprocessing
led to the removal of a variable number of segments of the
input signal, n differed per subject.

B. Transformer architecture

As described in [47], the inputs to our Transformer model
are EEG epochs of channels C and length L, while the output
is the probability for each epoch to belong to one of the two
classes, i.e. SCD or MCI.

Figure 1 shows the architecture of the Transformer. The
model is composed of three main modules, namely patch
embedding, positional encoding and the self-attention module,
which is included in an encoder block. Lastly, it comprises a
classification module constituted by a fully-connected layer
with the softmax activation function.

1) Patch embedding: Each EEG epoch is split into patches
and linearly projected by a single convolution operation, like
in Song et al. [53]. Embedding dimension is set to emb, kernel
size is set to (C, k), and the stride is the same as kernel
width, i.e. (1, k). This allows us to compress the input signal
into (L ∗ f/k) single-channel patches, where f is the EEG
sampling rate. Classification (CLS) tokens are prepended to
the projected epochs and used to predict the epoch class after
being updated by attention, as in the Vision Transformer [26].

2) Positional encoding: As in the original architecture, our
Transformer model employs the position information of the
input patches to make decisions. After patch embedding, the
positions of all patches in the sequence are encoded in a
vector, which is linearly added to the input sequence. The
obtained array is then given as input to the first encoder block
containing the attention module.

3) Self-attention module: The encoder block includes one
module of attention, as well as a feed-forward module, nor-
malization layer and dropout (Figure 2). In our model, the
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Fig. 1: Representation of the modules composing the proposed Transformer. C is the number of EEG channels, L is the length
of the input epoch (in s), f is the EEG sampling rate (in Hz), k is the kernel size, emb is the embedding dimension and H is
the number of attention heads. The classification token is denoted as CLS; the classification token updated after the Attention
module is denoted as CLS*.

encoder block is replicated Depth times. The module is based
on the concept of self-attention, which computes an attention
function of the input elements to retrieve the dependencies
of each element with respect to the others [25]. Specifically,
the input vector is firstly projected by a linear transformation
into three different vectors: the query vector q, the key vector
k and the value vector v, with dimensions dq = dk = dv.
Vectors derived from the different input patches are then
merged together into three different matrices, namely Q, K
and V . Subsequently, the function computes scores between
each pair of input patches, meaning that these values impact
how much attention is given to other input patches when
encoding the current one. These scores are normalized for
gradient stability and then translated into probabilities using
the softmax function, according to Equation 2. Finally, V is
multiplied by scores to obtain attention values (Equation 3).

Scores = softmax(
Q ·KT

√
dk

) (2)

Attention = Scores · V (3)

To investigate how the traditional self-attention and Multi-
Head Attention (MHA) strategies could affect the classification
performances, we varied the number of heads (H) per encoder.
Depending on H , MHA generates different representations
of the input into the q, k and v spaces. Then, the scaled
dot-product is performed on these mapped queries, keys, and
values simultaneously, which are then concatenated, as in
Equation 4, where Qi,Ki, Vi denote the query, key, and value
obtained by linear transformation of divided token in the i-th
head.

MHA(Q,K, V ) = Concat(head1, . . . , headH), (4)
headi = Attention(Qi,Ki, Vi)

The attentive output, generated with self-attention or by

MHA, is linearly projected. Finally, the output is then pro-
cessed by the classification block.

C. Training setup and details

To avoid overevaluation of model performance, a test set
was generated using 20 % of total subjects with a stratified
random sampling approach. A stratified 5-fold cross-validation
was employed on the remaining subjects, i.e. 43 SCD and 37
MCI, to train and validate the classification model. Using this
technique, the data is divided subject-wisely into five equally-
sized subsets, and the model is iteratively trained on four of
these subsets and validated on the remaining one. Each subset
is used as validation set exactly once.

Models were trained using Adam optimizer (lr = 10e− 4,
β1 = 0.9, β2 = 0.999, eps = 1e − 08), which is the most
employed method when training Transformer-based architec-
tures [25] since it has faster convergence than non-adaptive
algorithms such as SGD [54]. The value of lr was chosen by
reducing it by a factor of 10 until finding an optimum in the
validation set accuracy, starting from 10e− 2. Cross-Entropy
was used as loss function. Batch size was set to 16 and the
number of training iterations was equal to 250. In the proposed
model, emb is set to 32 and Depth is set to 2, resulting in
56194 trainable parameters.

It should be noted that the number of input signal epochs
per subject varied depending on the duration of the single
EEG recording. Thus, in the training phase, the number of
EEG epochs in the majority class was reduced by randomly
sampling to match the number of those in the minority class.
During inference and performance evaluation, all epochs in
the test set for both classes were considered.

Since our model directly classifies epochs either as SCD or
MCI, a hard voting approach was then employed in order to
predict a label for each subject. This means that each subject
was classified based on the most frequent class predicted for
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their corresponding epochs. If the frequency of predictions was
equal for both classes, the subject was classified as MCI.

For each fold in the cross-validation, we calculated the Area
Under Curve (AUC) of the Receiver-Operating Characteristics
(ROC) curves on training and validation sets. We then selected
the model at the training iteration which allowed to obtain
the highest AUC score on the validation set and evaluated the
performances on the test set. Results in Table II are reported in
terms of mean (± standard deviation) accuracy (Equation 5),
sensitivity (Equation 6), specificity (Equation 7), precision
(Equation 8) and F1-score (Equation 9) for epochs’ classi-
fication on the test set. AUC values are also reported, given
the true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN). All metrics were computed
considering the MCI class as the positive class and the SCD
as the negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

Precision =
TP

TP + FP
(8)

F1-Score =
2 ∗ TP

2 ∗ TP + FN + FP
(9)

D. Interpretability workflow via Self-attention
To understand the behavior of the model for the investigated

classification task, it is important to know which parts of the
input the model pays more attention to. To this end, we ex-
tracted weights from each attention layer of the trained models
in order to identify the signal patch that contributed the most
to the classification of each EEG epoch. As described above,

the classification of an EEG epoch is made upon the updated
representation of the CLS token, i.e. CLS* (see Fig. 1). Thus,
for each attention matrix, we considered the first row of values
that correspond to the scaled dot-product attention of the
CLS* token on the representations corresponding to the non-
overlapping patches of the raw signal. This gives attention
weights for each patch of the input epoch, helping evaluate
their impact on the prediction.

It is worth noting that our Transformer, in its configuration
with H > 1, uses a multi-depth and multi-head attention
mechanism, which can produce different attention patterns
that can be challenging to visualize [28]. We averaged the
attention scores across attention heads in order to retain all
information produced by the attention module. On the other
hand, we extracted different results for the first and the second
encoder blocks to evaluate the contribution of each attention
layer separately.

For all subjects in the dataset, we identified n patches,
corresponding to n epochs of the raw signals with the highest
attention weights. This means that for each epoch of length L,
a patch of signal with dimension k datapoints was obtained,
where k is the dimension of the kernel in the convolutional
layer employed for patch embedding. In order to uphold the
assumption that the highest attention weights are representative
of significant changes in the EEG activity between SCD and
MCI groups, we collected and concatenated 1-second long
windows of the signal centered on the previously identified
patches, obtaining a new set of signals for each class. Epochs
belonging to the same class were then merged in a single
time series. To validate the significance of the results through
a comparison with a reference, we also segmented the com-
plete signals with windows of 1 second and, once again,
concatenated epochs of the same class to obtain one SCD
and one MCI time series. Statistical analysis was performed
on EEG data using Matlab’s Letswave 7 tool. We applied
the non-parametric cluster-based permutation Student’s t-test
for unpaired data [55] to compare the signals’ epochs of the
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two groups, both for the attention-based set and the reference,
which allowed us to handle the multiple comparisons prob-
lems. The cluster significant threshold was set to 0.05 and the
number of permutations was set to 2000. Multi-sensor analysis
was performed in order to consider both temporal and spatial
adjacency of the samples.

Finally, to gain a physiological interpretation of the results,
we performed time-frequency analysis by applying Continuous
Wavelet Transform (CWT) to the EEG epochs and averaging
the results across each group. Complex Morlet wavelet with
bandwidth of 1 Hz and central frequency of 1.5 Hz was used
as mother wavelet.

III. RESULTS AND DISCUSSION

In this section, we extensively illustrate the results of inter-
pretability analysis for visualizing the focus of the model on
specific EEG patterns. Then, we provide results of parameter
tuning tests for choosing the best model configuration and
demonstrate the efficacy of the attention module through
ablation studies.

A. Interpretability analysis
Following the approach proposed in section II-D, the in-

terpretability analysis was performed on the model which
obtained the highest values of mean accuracy and AUC on
the test set, i.e. the Transformer configuration with L = 30 s,
k = 64 and H = 8. This configuration achieves mean accuracy
of 65.4 % (95 % CI [0.637 - 0.671], p-value [Accuracy > No
Information Rate] = 0.00026) on epochs’ classification, and
65.7 % of accuracy for subjects’ classification through hard
voting.

As a first attempt to visualize the attention focus, we present
heat maps of attention scores on the raw EEG signals for
both SCD and MCI classes. Figure 3 shows two examples
of 5-s-long windows extracted from the corresponding 30-
s epochs of one correctly classified SCD (Fig. 3a) and one
correctly classified MCI (Fig. 3b) subject of the test set. For
clarity purposes, the normalized and non-normalized signals of
one channel, namely T3, have been plotted for both samples.
Attention scores are plotted over patches of k datapoints, with
dark red indicating areas with higher focus, and light yellow
indicating areas with lower focus.

To quantitatively evaluate the contribution of the attention
scores on the final classification outcome, we show results
of the nonparametric cluster-based permutation Student’s t-
test and the corresponding time-frequency analysis with the
aim of highlighting differences between the two groups. We
considered channels with clustered p-value < 0.01 to be
significant.

When comparing epochs of 1 s centered on patches with
the highest attention, the most significant differences between
the SCD and MCI signals are, indeed, located in the time
interval that corresponds to those patches, i.e. from 437 ms to
562 ms since the epoch start. For instance, when considering
the results of the first Transformer attention block (Fig. 4a)
it can be noted that most statistically significant inter-group
differences can be found in the central part of the time window,

as shown by the corresponding scalp topographies representing
clustered p-values. The most significant changes occur on
clusters including the following channels: Fp1, Fp2, F3, F7,
Fz, F4, F8, C3, Cz, C4, P3, P4, Pz, T5, T6, O1 and O2.

This evidence is strengthened by the results obtained on
the second attention block (Fig. 4b). In this case, almost all
statistically significant differences correspond to the highest
attention scores which are located in the middle of the con-
sidered time window. Scalp topographies of clustered p-values
show that the significant clusters include the Fp1, Fp2, F7, F3,
F4, F8, C4, Cz, T3, P3, Pz and P4 channels.

The clusters found in both cases indicate brain regions that
are congruent with scientific evidence from cross-sectional
and longitudinal studies on the cognitive spectrum of AD.
As reported in [56], the left posterior parietal and left and
right temporo-occipital regions (which are represented by P3,
P4, T6 and O2 electrodes) were consistently described as the
most discriminative brain areas between controls, MCI and
AD, while the left posterior temporal region and fronto-central
midline (corresponding to T5, Fz, Cz and Pz channels) as
important in the prediction of clinical progression in patients
with SCD.

On the other hand, statistical analysis performed on the
reference dataset, i.e. considering all epochs of 1 s extracted
from the input signal, regardless of weights attributed by
attention, found no significant channels at any time instant
(p > 0.01). This result confirms that, although mean classifica-
tion accuracy on the test set is not optimal, the Transformer is
able to capture global temporal dependencies of the signal that
allow the classification of each epoch with good discrimination
capability.

However, differently from other studies that applied an
interpretability approach based on attention scores to EEG
signals in the context of sleep stage classification [33], [34]
or motor imagery paradigms [57], [58], these features are not
easily detectable and do not provide enough explanations in
the time domain.

Hence, on the basis of the findings derived from the statisti-
cal analysis, we report scalp topographies of the average power
CWT for SCD and MCI subject groups based on the results of
the first Transformer block (Depth = 1). In particular, Fig. 6
shows CWT maps averaged across the whole 1-s interval (first
and third row) and the interval of interest (second and fourth
row) for delta (Fig.6a) and alpha (Fig.6b) frequency bands,
respectively. Of notice, differences between the groups are
once again more evident when considering the time interval
corresponding to the highest attention scores, rather than the
entire time window. The maps confirm that subjects belonging
to the MCI group show a lower power in high frequencies
and higher power in low frequencies in accordance with state-
of-the-art results in the context of AD characterization from
rsEEG [15], [56], [59]. In addition, these explanations keep
with expectations of our previous work [47].

Additionally, we compared these maps with the ones ob-
tained on the reference dataset, and found that in the latter
the differences between the groups do not correspond to
specific time intervals, in accordance with the results of the
aforementioned statistical analysis.
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(a) SCD (b) MCI

Fig. 3: Sample plots of two 5-s long EEG epochs with relative attention scores for one SCD (a) and one MCI (b) subject of
the test set. Both normalized and non-normalized signals are shown.

To further understand the role of the multi-head attention
mechanism, we repeated the analyses for the baseline model
with single-head self-attention, which achieves a mean accu-
racy of 59.5 % (95 % CI [0.577 - 0.612], p-value [Accuracy
> No Information Rate] > 0.05) on epochs’ classification and
61.9 % on patients’ classification. As expected, and as found
by [57], the attention activation of a single head is similar to
the one obtained by averaging multiple heads, with signifi-
cantly different patches (p-value < 0.01) between SCD and
MCI groups corresponding to the highest attention scores, but
resulting in more sparse and less consistent channel clusters,
particularly when considering the results obtained on the first
Transformer block. For Depth = 1, significant clusters include
Fp2, F4, F7, F8, Cz, C3, C4, P3, Pz, T3, T4, T5, T6, and O2
(Fig. 5a). For Depth = 2, significant channels are Fp1, Fp2,
F3, F7, F8, Fz, Cz, C3, C4, Pz, P4, T3, T4, T5, T6, O1 and
O2 (Fig. 5b). This is explained considering that the baseline
model, for the same model depth, has lower performances
which do not reach the statistical significance in terms of
accuracy; such a result is in line with [60], who report that
single-head attention necessitates deeper models to prove more
effective than MHA, but increasing the model complexity.
Thus, the attention focus is less indicative of discriminative
EEG features. Consequently, the spectral analysis obtained
with CWT shows similar outcomes, with changes in activation
between groups mostly gathered in the central part of the
window, but being less enhanced, especially in the lower
frequencies, for both Depths.

B. Hyperparamter tuning
We conducted experiments to identify the best model’s

parameters to achieve optimal classification performances. We
varied two parameters that influence the construction of the
input, namely the time duration of input EEG epochs and the
design of the convolutional kernel, and also investigated the
influence of the number H of attention heads in the attention
layer, known to impact feature learning.

In particular, three different lengths of input epochs (10, 30
and 60 seconds) and five different kernel sizes (16, 32, 64, 128
and 512) were tested and compared to identify the combination
with the highest classification performance. Table II reports
mean results for all the considered metrics on epochs’ and
patients’ classification. The highest levels of mean accuracy
are reached with a kernel size of 64, with values of 65.4 %
and 63.0 % for epochs of 30 s and 60 s respectively, and a
kernel size of 32 on epochs of 10 s with a value of 63.4 %.

By contrast, the lowest results are yielded when using
kernel sizes of 512 (52.4 % on epochs of 60 s) and 16
(54.3 % on epochs of 30 s). Although the differences are not
significant (p > 0.05), in accordance with Song et al. [57], we
found that large kernel sizes tend to flatten temporal features
and reduce the learning of global dependencies, while small
kernels produce tokens that do not contain enough information
for the model to perceive local changes in the signal. On the
other hand, the length of the input EEG signal seems to impact
the performances of our model to a lesser extent. However, as
a general remark, using very long epoch lengths (i.e. 60 s)
results in a smaller dataset size which increases the risk of
lowering the performance of the classification model.

We also compared the impact of choosing different numbers
of heads for the attention layer, performing experiments by
varying H in [1, 2, 4, 8, 16, 32]. Since each head projects the

input onto a subspace of dimension dim =
emb

H
to compute

the context [25], the values of H were chosen based on the
embedding dimension.

The results reported in Fig. 7 show that the effects on the
performance of the model follow no evident trend (p > 0.05),
but the highest accuracy of 65.4 % is obtained with H = 8,
compared to 59.5 % with H = 1, 62.8 % with H = 2,
57.8 % with H = 4, 56.9 % with H = 16 and 59.3 % with
H = 32. Also, as shown by the error bars in the same figure,
setting the number of heads to 8 allowed to obtain the smallest
95 % confidence interval. Conversely, the highest confidence
intervals were derived from configurations with 1 and 32
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(a) (b)

Fig. 4: The results of the cluster permutation Student’s t-test for multi-head attention model, Depth = 1 (a) and Depth = 2
(b). Clustered p-values over time are plotted on scalp maps at 50 ms intervals. Significant channels are yellow-circled and
highlighted.

(a) (b)

Fig. 5: The results of the cluster permutation Student’s t-test for single-head self-attention model, Depth = 1 (a) and Depth = 2
(b). Clustered p-values over time are plotted on scalp maps at 50 ms intervals. Significant channels are yellow-circled and
highlighted.

heads. This suggests that while employing a greater number of
heads enables the model to identify more meaningful features,
a progressive increase in the number of heads results in shorter
feature lengths within each head. This, in turn, contributes
to a marginal decrease in performance. This result confirms
previous evidence from another study [61].

C. Ablation Study

In this section, we systematically analyze the importance of
two key components of our model, namely the attention-based
Transformer encoder module and the positional encoding
module. An ablation study was conducted by firstly removing
the Transformer encoder, i.e. the classification was performed
on the input signal after convolution without applying any
attention strategy. Then, we reintroduced the Transformer
encoder module and dismissed the positional encoding, so that
the model had no information about the position of each patch
in the input sequence when performing classification. Lastly,
we removed both the Transformer and the positional encoding
blocks. In the study, we included results for both MHA and

single-head self-attention models.

As depicted in Figure 8, and as already shown in Fig. 7, for
the same input configuration, the model employing multiple
heads has overall better performances than the model employ-
ing the traditional self-attention layers, which does not reach
statistical significance in classification accuracy on the test set
and shows high variability over the folds.

Nevertheless, the effectiveness of using an attention mech-
anism is confirmed by the results obtained when the Trans-
former block is removed, in which the mean accuracy on
the test set drops significantly in the epochs’ classification,
decreasing by 16 % (p = 0.004) for the MHA configuration
and by 10.5 % (p > 0.05) for the single-head self-attention
configuration including it. Also, in patients’ classification it
reduces significantly by 19 % (p = 0.009) in the first case
and by 15.2 % (p > 0.05) in the latter.

The removal of the positional encoding has a different
impact on the two models. For the model employing MHA,
the mean accuracy over the folds decreases by 1.5% (p >
0.05). Although the difference is not significant, these results
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(a)

(b)

Fig. 6: Scalp topographies of Average Continuous Wavelet Transform of EEG signals segmented based on attention scores
of the first Transformer block for SCD and MCI groups. (a) Average CWT in delta band (1-4 Hz) across the whole second
interval (first row) and the interval of interest (second row). (b) Average CWT in alpha band (8-12 Hz) across the whole second
interval (first row) and the interval of interest (second row).
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TABLE II: Classification results on the epochs’
test set for different input configurations, expressed as mean ± standard deviation.

Epoch length Kernel Accuracy Sensitivity Specificity Precision F1 AUC

10

16 0.61± 0.01 0.59± 0.12 0.62± 0.09 0.48± 0.01 0.52± 0.04 0.60± 0.02
32 0.63± 0.03 0.63± 0.13 0.64± 0.03 0.51± 0.03 0.56± 0.07 0.63± 0.05
64 0.62± 0.06 0.54± 0.06 0.66± 0.07 0.50± 0.08 0.52± 0.06 0.60± 0.06

128 0.47± 0.08 0.54± 0.15 0.42± 0.19 0.36± 0.05 0.43± 0.07 0.52± 0.06
512 0.57± 0.03 0.53± 0.04 0.59± 0.02 0.44± 0.03 0.48± 0.03 0.59± 0.04

30

16 0.56± 0.06 0.57± 0.08 0.55± 0.05 0.44± 0.05 0.49± 0.06 0.56± 0.06
32 0.62± 0.05 0.61± 0.11 0.62± 0.09 0.50± 0.06 0.54± 0.06 0.61± 0.05
64 0.65± 0.05 0.58± 0.11 0.70± 0.06 0.54± 0.06 0.56± 0.07 0.64± 0.06

128 0.62± 0.12 0.46± 0.15 0.72± 0.26 0.57± 0.14 0.48± 0.08 0.62± 0.12
512 0.55± 0.03 0.57± 0.11 0.54± 0.09 0.43± 0.03 0.48± 0.05 0.58± 0.05

60

16 0.60± 0.08 0.64± 0.16 0.58± 0.12 0.48± 0.09 0.55± 0.11 0.61± 0.09
32 0.59± 0.12 0.56± 0.14 0.62± 0.19 0.49± 0.12 0.51± 0.10 0.59± 0.11
64 0.63± 0.09 0.64± 0.12 0.62± 0.09 0.51± 0.10 0.57± 0.11 0.63± 0.10

128 0.59± 0.08 0.57± 0.20 0.60± 0.13 0.46± 0.07 0.50± 0.13 0.60± 0.11
512 0.53± 0.05 0.49± 0.13 0.55± 0.10 0.40± 0.05 0.43± 0.07 0.52± 0.06

Fig. 7: The impact of different numbers of attention heads on
the mean accuracy over folds for epoch-wise classification on
the test set.

suggest that this model makes use of positional encoding in an
informative way, but is still able to compensate for it with the
attention module. Additionally, this consideration is supported
by the results of the last ablation test, in which both the
Transformer and the positional encoding modules are removed.
In this case, the mean performances of the model are slightly
higher than the case in which only the Transformer is removed,
by 1.5 % epoch-wise (p = 0.02), proving that the positional
encoding module is useful when combined with multi-head
attention, but has a negative impact on the results when added
to a convolutional-based model. In fact, positional information
could be inherently learned by a convolutional layer with a
sufficient receptive field size [62] and thus the information
provided by the positional encoding in this case could produce
redundancy. On the other hand, the ablation of the positional
encoding module in the single-head self-attention model also
seems to impact positively on the classification performances,
by increasing accuracy of 2.2 %, but not significantly (p >
0.05), which further proves that the attention module is capable

Fig. 8: The results of ablation study for epoch-wise classifi-
cation on the test set. Accuracy values are plotted for single
folds and as mean values over folds. In the legend, att is
the attention module, pe is the positional encoding, mha is
the multi-head attention and sa is the traditional self-attention
with one head.

of learning positional information by itself [63]. However, this
result needs further understanding [64].

D. General remarks

The complexity of EEG signals poses a challenge in the
identification of biomarkers that can accurately discriminate
between SCD and MCI conditions. Here, we demonstrate that
MHA can be used in an end-to-end Transformer model to
automatically locate time windows of the resting-state EEG
that may account for significant changes in the brain activity.
The interpretability analysis shows a higher global efficacy
of MHA compared to traditional self-attention approaches.
Indeed, although we previously found that the MHA-based
Transformer does not outperform other investigated DL meth-
ods for the specific task, it allows to highlight significant
differences between the groups which could not be explained
otherwise. In addition, the ablation study we conducted con-
firmed the effectiveness of introducing Transformer blocks in
our model, in particular when coupled with the encoding of
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the positions of patches in the input.
Based on the present results, we speculate that our frame-

work could serve not only to enhance the interpretability of a
black-box model which achieves state-of-the-art classification
performances, thus addressing the problem of the trade-off
between accuracy and trustworthiness [65], but also as a guide
for experts to facilitate the extraction of rsEEG markers of
cognitive decay. A recent work employed the attention mech-
anism to design an EEG channel interpolation algorithm [66].
Similarly, our method could be exploited also in different
applications to select relevant domain-specific information by
taking into account short and long temporal dependencies of
the signal.

Future work will be aimed at addressing the limitations of
the proposed approach. First, the workflow for interpreting
the Transformer could be extended by extracting physiological
EEG biomarkers guided by attention scores. The validity of
our method should also be assessed on larger EEG datasets,
and alternative methods for attention visualization aimed at
increasing the interpretability of the model should be analyzed.
Lastly, variants of the proposed Transformer model should be
further explored to improve classification performances.

IV. CONCLUSION

The functional characterization of SCD and MCI conditions
using non-invasive rsEEG signals constitutes a fundamental
step to support an early diagnosis of cognitive decline. Build-
ing upon our previous results, in this work we constructed
an interpretability framework leveraging the mechanism of
attention and found that the focus of our Transformer model,
which corresponds to the highest attention scores on specific
signal patches, is representative of hallmark EEG patterns that
could allow to discriminate SCD from MCI.

The source code is publicly available at https://
github.com/LabInfInd/SCD_MCI_Transformer.
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