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A COMPUTATIONALLY EFFICIENT STRATEGY FOR
TIME-FRACTIONAL DIFFUSION-REACTION EQUATIONS

ROBERTO GARRAPPA AND MARINA POPOLIZIO

Abstract. An efficient strategy for the numerical solution of time-fractional diffusion-
reaction problems is devised. A standard finite difference discretization of the space
derivative is initially applied which results in a linear stiff term. Then a rectangular
product-integration (PI) rule is implemented in an implicit-explicit (IMEX) frame-
work in order to implicitly treat this linear stiff term and handle in an explicit way
the non-linear, and usually non-stiff, term.

The kernel compression scheme (KCS) is successively adopted to reduce the over-
load of computation and storage need for the persistent memory term. To reduce
the computational effort the semidiscretized problem is described in a matrix-form,
so as to require the solution of Sylvester equations only with small matrices.

Theoretical results on the accuracy, together with strategies for the optimal se-
lection of the main parameters of the whole strategy, are derived and verified by
means of numerical experiments carried out in two-dimensional domains. The com-
putational advantages with respect to other approaches are also shown and some
applications to the detection of pattern formation are illustrated at the end of the
paper.

1. Introduction

Diffusion-Reaction (DR) systems represent an important class of partial differential
equations (PDEs) used to describe models in many branches of biology, chemistry,
physics etc. The theoretical analysis of DR equations is still an active research subject
whose development has gone hand in hand with the development of numerical methods
for their resolution (we just refer to [1; 2; 3] and references therein). In recent times, DR
systems have attracted much interest as a prototype model for pattern formation; their
solutions can indeed present spatially inhomogeneous distributions showing “Turing
patterns” like stripes, hexagons, spirals, targets, hexagons etc. [4; 5; 6].

Recent researches indicate that classical DR systems may be inadequate to model
many real situations. To fill this gap, Fractional Diffusion-Reaction (FDR) equations
have been proposed; they generalize DR systems by considering a time-derivative with
non-integer (i.e. positive real) order. The presence of this real parameter represents an
additional degree of freedom which allows to better model real life problems. Speak-
ing in general, Fractional Differential Equations (FDEs), namely differential equations
involving one or more derivatives of non-integer order, are capturing an increasing
attention since their ability to incorporate memory effects usually observed in anoma-
lous, heterogeneous or complex materials [7; 8; 9; 10; 11; 12; 13]. FDR equations are
commonly used to model the phenomenon of anomalous diffusion [14; 15; 16], differ-
ent self-organization phenomena and specific nonlinear effects [17] or continuous-time
random walk model with temporal memory and sources [18].
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2 ROBERTO GARRAPPA AND MARINA POPOLIZIO

In this work we propose an efficient numerical strategy to solve a FDR equation

(1.1) CDαt u = d∆u+ f(u)

where ∆u is the Laplacian operator, d a diffusion parameter and f(u) a non-linear
non-stiff reaction term. With CDαt we denote the time fractional derivative of order
0 < α < 1 regularized in the Dzhrbashyan-Caputo way (usually simply known as
Caputo’s fractional derivative) [10; 11; 19; 20; 21] defined, for a sufficiently regular
function y(t), as

CDαt y(t) =
1

Γ(1− α)

∫ t

0

(t− τ)−αy′(τ)dτ, t > 0,

where Γ(z) =
∫∞

0
tz−1e−tdt is the Euler-Gamma function.

For simplicity we restrict our attention to two-dimensional domains and therefore
u = u(x, y, t) for (x, y) ∈ Ω ⊂ R2 and t ≥ 0. To ensure the uniqueness of the solution,
equation (1.1) must be coupled with the initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

for some assigned function u0, and with boundary conditions of Dirichlet or Neumann
type.

We focus here on subdiffusive processes of order 0 < α < 1; however, the extension to
problems with fractional higher-order derivatives, in particular superdiffusive problems
with 1 < α < 2, involves just minor issues (related to the presence of additional initial
conditions) but it does not affect computational issues which are the main target of
this work.

One of the main difficulties in solving FDEs is the presence of a persistent memory
which is typical of fractional, and more generally non-local [22; 23; 24; 25], opera-
tors. This means that computing the solution of (1.1) at a given time t requires the
knowledge and use of its history on the whole interval [0, t], resulting in an extremely
demanding need of storage memory and computational resources. For these reasons
efficient numerical strategies are mandatory to perform simulations in an acceptable
time and with a reasonable memory occupation. The first aim of the proposed strategy
is therefore to keep storage and computation low even with the challenging problem
of FDR systems.

To numerically solve (1.1) we consider here the Method of Lines (MOL) by which the
original time-dependent PDE is recast as a system of ordinary differential equations
(ODEs) (the semi-discrete system) after the discretization, by finite differences, of
the Laplacian operator. Since the large eigenvalues of the discretization matrix, semi-
discrete diffusion problems are usually stiff , thus to force the use of implicit methods
for their time integration [1]. Moreover, the discretization of a 2-dimensional operator
may lead serious problems related to the large size; indeed, if we fix a spatial grid with
Nx nodes in the x-direction and Ny in the y-direction, then the size of the semi-discrete
system is O

(
Nx ·Ny

)
.

Recently Simoncini and coauthors [3; 26; 4; 27; 28] proposed matrix-equation-based
strategies to reduce the computational effort involved by these large systems. As
a particularly challenging example, we cite the numerical approximation of Turing
patterns of FDR systems. This issue is extremely demanding since identifying the
spatial structure of these patterns may require mesh-grids of very large size.

Regarding the time integration of the resulting system of FDEs, a longtime inte-
gration may be necessary (for instance to capture the asymptotic pattern formation
in Turing patterns’ detection). Additionally, a small time step-size h may be needed
to capture an initial transient regime. These aspects are particularly challenging for
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FDEs since, because of the persistent memory, it is necessary to save all the previously
computed approximations. If Nt denotes the number of time grid points, the whole
amount of memory storage required for the history of the solution is O

(
Nt ·Nx ·Ny

)
.

Not to mention that the number of floating-point operations with a PI rule imple-

mented in a standard way would be proportional to O
((
Nt)

2
)

(or to O
(
Nt

(
log2Nt

)2)
when efficient methods [29; 30] are used), which may be not affordable.

It is therefore necessary to apply a suitable strategy which reduces both storage and
computational needs. In this paper we propose a properly combined strategy mixing
different approaches:

• a matrix approach to describe the semi-discretized problem: this expedient
considerably reduces the computational effort since the most expensive part
of the procedure is reduced to the solution of Sylvester equations with small
matrices;
• product-integration (PI) rules for the time integration of FDEs in an IMEX

framework to limit the implicit method just to the stiff part;
• Kernel Compression Scheme (KCS) to treat the persistent-memory typical of

FDEs.

The paper is organized as follows: in Section 2 we address the semi-discretization of
(1.1) by analyzing both a vector and a matrix formulation. In both cases the original
FDR equation is transformed into a system of FDEs. For its numerical solution,
in Section 3 we describe an IMEX version of a rectangular PI rule: in practice, a
rectangular PI rule is proposed which treats the non linear part with explicit solvers
and the stiff part with implicit methods. The numerical issues are addressed, while
in Section 4 the accuracy and convergence properties are studied. In Section 5 we
describe the KCS to effectively treat persistent-memory problems. Following, Section
6 presents numerical tests to show the accuracy and the efficiency of the proposed
scheme; some numerical tests concerning the application of this strategy in pattern’s
detection are also presented. Some concluding remarks are provided at the end of the
paper.

2. Semi-discretization in space: vector and matrix approaches

To apply the MOL method, in the FDR equation (1.1) just spatial derivatives are
discretized and time variable are left continuous. To this purpose we fix a grid on
the space domain by selecting Nx nodes x1, . . . , xNx in the x-direction and Ny nodes
y1, . . . , yNy in the y-direction, with hx and hy the corresponding mesh sizes.

Moreover, we also fix a grid tn = nh, n = 0, . . . , Nt, with step-size h > 0 and
T = Nth on the time domain [0, T ] to proceed later with the time integration.

2.1. Vector approach. To represent the exact solution u we can use the vector
u(t) ∈ RNxNy whose entries are an approximation to u at the nodes, having used
a lexicographic order for the nodes (xi, yj). Then we denote with

(un)ij ≈ u(xi, yj, tn).

To approximate the Laplacian we opt for the finite difference scheme: in particular,
we use the second order difference formula [1]

1

h2
x

(
u(x− hx, y, t)− 2u(x, y, t) + u(x+ hx, y, t)

)
= ∂xxu(x, y, t) +O

(
h2
x

)
.
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At this purpose we introduce the matrix Tx = h−2
x diag(1,−2, 1) ∈ RNx×Nx which

approximates the second order derivative in the x-direction. More precisely, to the ma-
trix Tx we need to add a matrix term BC which takes into account the given boundary
conditions. Analogously, the matrix Ty ∈ RNy×Ny , with hy as scaling factor, approx-
imates the second order derivative in the y-direction and incorporates the boundary
conditions.

Then ∆u ≈ Au where

A = Iy ⊗ Tx + Ty ⊗ Ix ∈ RNxNy×NxNy ,

the symbol ⊗ denotes the Kronecker product, Ix ∈ RNx×Nx and Iy ∈ RNy×Ny are the
identity matrices.

The numerical issue to face here is that the matrix A has large eigenvalues; in
particular, the spectral radius of A is O(h̃−2) where h̃ = min{hx, hy}. For this reason,
semi-discrete diffusion problems are usually classified as stiff problems, thus to require
the use of implicit methods for their time integration [1].

After this semidiscretization, the equation (1.1) is reformulated as a system of FDEs

(2.1)

{
CDαt u(t) = Au(t) + f(u(t))
u(0) = u0.

2.2. Matrix approach. Matrix-oriented strategies have been recently proposed in
[3; 4] to drastically reduce the computational effort when solving PDEs. We describe
here this approach which turns out to be very effective also in our context.

To represent the exact solution u we resort to a matrix U(t) ∈ RNx×Ny such that

Ui,j(t) ≈ u(xi, yj, t).

In this way

∆U ≈ TxU + UTy

with Tx and Ty as before.
With this matrix notation, the equation (1.1) is reformulated as a system of FDEs

(2.2)

{
CDαt U(t) = TxU(t) + U(t)Ty + F (U(t))
U(0) = U0

where (F (U(t)))i,j = f(Ui,j(t)) for i = 1, . . . , Nx and j = 1, . . . , Ny.
After the discretization of the FDE (1.1) along the space variables we can rewrite

it as (2.1) if the vector approach is used or in the form (2.2) if the matrix approach is
considered. However, for convenience they both can be written in the general form

(2.3)

{
CDαt U(t) = G(t, U(t))
U(0) = U0

, G(t, U(t)) = L(U(t)) + F (U(t))

where L(U(t)) differs according to the vector or matrix approach employed to collect
the semi-discretized variables u(xi, yj, t), namely

L(U(t)) =

{
AU(t) with U(t) ∈ RNxNy

TxU(t) + U(t)Ty with U(t) ∈ RNx×Ny

with F (U(t)) defined accordingly.
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3. A product-integration rule in IMEX framework

Product-Integration (PI) rules are some of the most employed discretization tech-
niques for time-fractional differential equations. They were introduced in 1954 by
Young [31] to solve second-kind weakly-singular Volterra integral equations and suc-
cessively applied to FDEs as well [32; 33]; the solution of (2.3) can be indeed formulated
as [19; 10]

(3.1) U(t) = U0 +
1

Γ(α)

∫ t

0

(t− τ)α−1G(τ, U(τ))dτ.

Let us now consider the numerical approximation of (3.1) by means of the PI rule
(we refer to [34] for a thorough description). By referring to the time grid defined
in Section 2, to approximate the solution at a value tn we consider the equivalent
expression

U(tn) = U0 +
1

Γ(α)

n−1∑
k=0

∫ tk+1

tk

(tn − τ)α−1G(τ, U(τ))dτ ;

then, in each of the sub-intervals [tk, tk+1], interpolating polynomials are used to ap-
proximate the vector field G(τ, U(τ)). Rectangular PI rules are the simplest scheme
in this framework and they are obtained after the replacement of the vector field with
zero-degree polynomials (i.e., constant values). Thus, whenever the value G(tk, Uk) is
used to approximate G(τ, U(τ)), with Uk ≈ U(tk), the explicit rectangular PI rule is
obtained

Un = U0 + hα
n−1∑
k=0

b
(α)
n−k−1G(tk, Uk),

whilst when the approximation G(τ, U(τ)) ≈ G(tk+1, Uk+1) is alternatively used, the
implicit rectangular PI rule is instead derived

Un = U0 + hα
n∑
k=1

b
(α)
n−kG(tk, Uk).

In both cases the weights bn are easily evaluated after a standard exact integration
and they are given by

(3.2) b(α)
n =

1

Γ(α)

∫ 0

−1

(n− τ)α−1dτ =
(n+ 1)α − nα

Γ(α + 1)
.

Remark 3.1. Using higher-degree polynomials in PI rules usually does not lead to rec-
ognizable improvements; the lack of smoothness at the origin of the exact solution of
FDEs (see [35; 36; 37; 38]) does not in general allow the achievement of high order of
convergence. This is well-known since Dixon found that a convergence order less than
2 must be expected under reasonable smoothness properties [39] (see also [33]). In
addition, the larger computational difficulties and the deterioration of stability prop-
erties [40] in consequence of the increase of the polynomial degree, make rectangular
PI rules a satisfactory compromise.

In the presence of non-linearity, large systems of FDEs may demand an exceedingly
high computational cost when an implicit scheme is used; conversely, explicit schemes
do not appear suitable since the stiffness resulting from the discretization of the dif-
fusive term. An Implicit-Explicit (IMEX) strategy is surely more advantageous for
problems in which linear stiff and non-linear non-stiff terms coexist. The main idea of
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IMEX is to apply the implicit scheme just to the linear stiff term and treat explicitly
the non-linear non-stiff term.

The IMEX approach we propose for the time integration of the semidiscretized
problem (2.3) consists in considering the implicit rectangular PI rule for the stiff linear
term and its explicit version for the non-linear term. The following rectangular PI
IMEX scheme results

(3.3) Un = U0 + hα
n∑
k=1

b
(α)
n−kL(Uk) + hα

n−1∑
k=0

b
(α)
n−k−1F (Uk),

which, since b
(α)
0 = 1/Γ(α + 1), can be rewritten as

(3.4) Un−
hα

Γ(α + 1)
L(Un) = U0 + hαb

(α)
n−1F (U0) + hα

n−1∑
k=1

[
b

(α)
n−kL(Uk) + b

(α)
n−k−1F (Uk)

]
.

3.1. Numerical aspects. The scheme (3.4) is clearly implicit; however deep differ-
ences arise between the vector and the matrix form. Indeed, if the former is used, the
numerical evaluation of (3.4) requires just the solution of the linear systems

(3.5) AUn = Bn, A = I − hα

Γ(α + 1)
A

with the known term Bn collecting all terms depending on the known values U0, . . . , Un−1,
that is, the memory of the equation.

For the matrix form (2.2) the left hand side of (3.4) is instead Un − TxUn − UnTy
and the numerical computation of (3.4) involves the solution of a Sylvester matrix
equation which can be written in compact form as

(3.6) TxUn + UnTy = Bn, Tx = I − hα

Γ(α + 1)
Tx, Ty = − hα

Γ(α + 1)
Ty

and Bn the matrix version of the previous known term.
The solution to (3.6) exists and is unique if Tx and −Ty have disjoint spectra [41]

and this condition is trivially verified in our case.

3.2. Implementation issues. At each time step the PI IMEX method (3.4) requires
the solution of the Sylvester equation (3.6) of dimension Nx × Ny when the space
semidiscretization is written in matrix form or the solution of the linear system (3.5)
of dimension NxNy ×NxNy involved in the vector approach. To have an idea of these
dimensions, we assume to fix 400 points in the x and y directions; this choice leads to a
Sylvester equation of dimension 400×400 or to a linear system of dimension 160000×
160000 if the vector form is used. However, as stressed in [4], the implementation of
both approaches can widely benefit from the fact that the coefficient matrices do not
change as the iteration proceeds.

We give here some details to show how the implementation complexity simplifies,
by following the implementation proposed in [4]. To solve the Sylvester equation (3.6)
the “small” matrices Tx and Ty can be factorized just once [3; 41; 42]. In particular,
we assume that Tx and Ty are diagonalizable. In fact, the matrices Tx and Ty are
symmetric, except for the low-rank BC terms. This implies that they are likely to be
diagonalizable (at worst considering a very small perturbation, that was never needed
in our tests) because the diagonalizable matrices form a dense set. This property is
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then immediately extended to Tx and Ty. So we determine two nonsingular matrices
Sx and Sy and two diagonal matrices Λx and Λy such that

Tx = SxΛxS
−1
x , Ty = SyΛyS

−1
y .

Then, for each n we compute

Y = L ◦ (S−1
x BnSy)

with the matrix L ∈ RNx×Ny such that

Lij =

((
1− hα

Γ(α + 1)
(Λx)ii

)
+

(
− hα

Γ(α + 1)
(Λy)jj

))−1

and ◦ denoting the element-by-element (or Hadamard) product. Then the solution is
Un = SxY S

−1
y .

Regarding the solution of the linear system (3.5), we recall that the coefficient matrix
A has dimension NxNy × NxNy; however, its very sparse and structured nature can
be profitably exploited to compute a factorization of A: this is very effective since
the factorization is done just once while the factors are used to solve the Nt systems
required for the time integration in [0, T ]. In particular, for our numerical tests we
performed an LU factorization with pivoting.

4. Accuracy of the PI IMEX method

To study the accuracy of the rectangular PI IMEX scheme (3.4) we have first to
mention that the exact solution of the nonlinear FDE (2.3) expands in mixed (i.e.
integer and fractional) powers [36]

(4.1) U(t) = U0 +
∑
k,`∈N

tk+`αUk,` = U0 + tαU0,1 +O
(
t
)

for some Uk,` independent of t.
We now show that the PI IMEX rule has first order of convergence, by closely

following the approach proposed in [39] (and in line with similar results in [33]) for
trapezoidal PI rules.

Before stating our main result we need some preliminary matters. We first recall
the following discrete Gronwall inequality.

Lemma 4.1 ([39]). Let 0 < α < 1 and h > 0; for n = 0, . . . , N let tn = nh and vn be
a sequence of non-negative real numbers such that

vn ≤ V1 + V2t
α−1
n + V3h

α

n−1∑
k=0

vk(n− k)α−1,

for some non-negative constants V1, V2 and a positive constant V3 independent of h.
Then for any τ > 0 there exists a constant C = C(τ) such that

vn ≤ C
(
V1 + V2t

α−1
n

)
for any n = 0, 1, . . . , N and Nh ≤ τ .

We also need the following result about the rectangular PI weights.

Lemma 4.2. Let n ≥ 0 and the sequence b
(α)
n be defined according to (3.2). Then

b(α)
n + b

(α)
n−1 ≤

22−α

Γ(α)
nα−1.
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Proof. From (3.2) it is easy to see that

b(α)
n + b

(α)
n−1 =

1

Γ(α + 1)

∫ 1

−1

(n− τ)α−1dτ =
2

Γ(α)
(n− ξ)α−1, ξ ∈ [−1, 1],

where the last equality is obtained by a straightforward application of the mean value
theorem for integrals. The proof now immediately follows since (n− ξ)α−1 ≤ 21−αnα−1

whenever ξ ∈ [−1, 1]. �

The convergence properties can be now stated by means of the following result where
‖ · ‖ denotes any vector-matrix norm.

Proposition 4.3. Let U(tn) denote the exact solution of (2.3) at tn = nh and Un its
approximation computed by the rectangular PI IMEX scheme (3.3). If F is Lipschitz
continuous then there exists a constant C independent of h such that for sufficiently
small h

‖U(tn)− Un‖ ≤ C(hα+1tα−1
n + htαn), n = 0, . . . , N.

Proof. We start by writing the exact solution of (2.3) as

U(tn) = U0 + hα
n∑
k=1

b
(α)
n−kL(U(tk)) + hα

n−1∑
k=0

b
(α)
n−k−1F (U(tk)) + Tn,

where Tn = In,0 + In,1 + · · ·+ In,n−1 is the quadrature error with

In,k =
1

Γ(α)

∫ tk+1

tk

(tn − τ)α−1
[
L(U(τ))− L(U(tk+1)) + F (U(τ))− F (U(tk))

]
dτ.

To bound the error En = ‖U(tn)− Un‖, we subtract (3.3) from the above represen-
tation of the exact solution; then, if we denote with K the Lipschitz constant of F , it
is

En ≤ hαH
n∑
k=1

b
(α)
n−kEk + hαK

n−1∑
k=0

b
(α)
n−k−1Ek + ‖Tn‖

with H denoting ‖A‖ in the vector case or ‖Tx‖+ ‖Ty‖ in the matrix one.
Then, since E0 = 0, for sufficiently small h we may assume hα

Γ(α+1)
H < 1 and

equivalently write

En ≤ hα
n−1∑
k=1

c
(α)
n−kEk + T̂n

with

c
(α)
n−k =

Hb
(α)
n−k +Kb

(α)
n−k−1

1− hα

Γ(α+1)
H

≤ max{H,K}
1− hα

Γ(α+1)
H

(
b

(α)
n−k + b

(α)
n−k−1

)
, T̂n =

‖Tn‖
1− hα

Γ(α+1)
H
.

Using Lemma 4.2 we get

c
(α)
n−k ≤

max{H,K}
1− hα

Γ(α+1)
H

22−α

Γ(α)
(n− k)α−1 = Cα(n− k)α−1

and hence

(4.2) En ≤ hαCα

n−1∑
k=1

(n− k)α−1Ek + T̂n.
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To study the term T̂n, i.e. the scaled truncation error Tn, we analyze each term In,k
by noting that

‖In,k‖ ≤
1

Γ(α)

∫ tk+1

tk

(tn − τ)α−1
[
H‖U(τ)− U(tk+1)‖+K‖U(τ)− U(tk)‖

]
dτ.

To bound the norms above we look at the expansion (4.1) to analyze the smoothness
of the solution. In particular, we may fix a value, say tp for a given p > 0, such that,
in [0, tp] the exact solution U(t) is not smooth, say U(t) = O(tα), while in [tp, T ] a
better regularity holds, say U(t) = O(t).

Then, if k < p there exist two constants M1 and M2 such that ‖U(τ)− U(tk+1)‖ ≤
M1h

α and ‖U(τ)− U(tk)‖ ≤M2h
α for any τ ∈ [tk, tk+1].

Differently, in [tp, tn] the exact solution U(t) has more regularity and therefore clas-
sical results on the remainder of the polynomial interpolation can be used to infer the
existence of positive constants M3 and M4 such that, for any τ ∈ [tk, tk+1] and k > p,
it is ‖U(τ)− U(tk+1)‖ ≤M3h and ‖U(τ)− U(tk)‖ ≤M4h.

We may then split Tn as

Tn = Tn,a + Tn,b, Tn,a =

p−1∑
k=0

In,k, Tn,b =
n−1∑
k=p

In,k.

Therefore when n ≤ p one can observe that

‖Tn‖ = ‖Tn,a‖ ≤
M1H +M2K

Γ(α)
hα
∫ tn

t0

(tn − τ)α−1dτ = C1h
αtαn

where for shortness we put C1 = (M1H +M2K)/Γ(α).
When n > p we have

‖Tn‖ ≤ ‖Tn,a‖+ ‖Tn,b‖

≤ C1h
α

∫ tp

0

(tn − τ)α−1dτ + C2h

∫ tn

tp

(tn − τ)α−1dτ

≤ C1C3h
α

∫ tp

0

tα−1
n dτ + C2h

∫ tn

tp

(tn − τ)α−1dτ

≤ C̃1h
α+1tα−1

n + C̃2ht
α
n

where C2 = (M3H +M4K)/Γ(α) and we exploited the inequality

(tn − τ)α−1 ≤ C3t
α−1
n

holding for some positive constant C3 when τ < tn. Hence, since p is fixed, we can
introduce further positive constants C4, C5 and C6 in order to write

(4.3) T̂n ≤
{
C4h

αtαn n = 0, 1, . . . p
C5h

α+1tα−1
n + C6ht

α
n n = p+ 1, p+ 2, . . . N.

Therefore, away from the origin, namely for tn ∈ [tp, T ], and h sufficiently small, we
can find two constants V1 and V2 such that

T̂n ≤ V1h
α+1tα−1

n + V2ht
α
n;

this result, inserted into the expression (4.2), completes the proof by reason of Lemma
4.1. �
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5. Kernel compression scheme

As seen before, to evaluate the exact solution of the FDE (2.2) we may refer to
its integral formulation (3.1); however, it involves weakly-singular integrals whose
computation may result seriously challenging since the presence of the singularity.
In addition, most of the applications usually require an order α quite close to 1, thus
implying that the kernel tα−1 decays slowly as t→ +∞; as a consequence, all the past
history of the solution, from 0 to t, must be taken into account to correctly evaluate
the solution.

To separate these two features, we fix a value δt > 0 to rewrite (3.1) as

U(t) = U0 +
1

Γ(α)

∫ t−δt

0

(t− τ)α−1G(τ, U(τ))dτ︸ ︷︷ ︸
UM(t)

+
1

Γ(α)

∫ t

t−δt
(t− τ)α−1G(τ, U(τ))dτ︸ ︷︷ ︸

UL(t)

where UM(t) is the memory term and UL(t) is the local term. When δt is sufficiently
small, the more demanding computation is related to the memory term UM(t).

For the local term, any numerical method for weakly singular integral equations
may be used. In particular, we apply the rectangular PI IMEX scheme described in
Section 3 to evaluate UL(t) at any grid-point tn. Let us denote with n? = δt/h (for
simplicity δt is chosen such that n? ∈ N) and we observe that the rectangular PI IMEX
approximation (3.4) leads to

UL(tn) ≈
n−1∑

k=n−n?

1

Γ(α)

∫ tk+1

tk

(tn − τ)α−1
[
L(Uk+1) + F (Uk)

]
dτ

= hα
n−1∑

k=n−n?
b

(α)
n−k−1L(Uk+1) + hα

n−1∑
k=n−n?

b
(α)
n−k−1F (Uk)

= hα
(
b

(α)
n?−1F (Un−n?) +

n−1∑
k=n−n?+1

(
b

(α)
n−kL(Uk) + b

(α)
n−k−1F (Uk)

)
+ b

(α)
0 L(Un)

)
.

5.1. Fast evaluation of the memory term. To weaken computation and storage
needs necessary to compute UM(t) several strategies have been proposed. Here, we
focus on the KCS [35; 43; 44; 45; 46; 47] which appears particularly suited for the
problems under investigation. The basic idea of this approach is to use an accurate
approximation of the integral representation for the kernel tα−1/Γ(α), namely

(5.1)
tα−1

Γ(α)
=

Q∑
q=1

wqe
−ξqt + vα(t), max

t∈[δt,T ]

∣∣vα(t)
∣∣ ≤ ε

for a given tolerance ε > 0 (we will give the theoretical foundation of it in Proposition
5.2).
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The memory term can now be written as

(5.2)

UM(t) =
1

Γ(α)

∫ t−δt

0

(t− τ)α−1G(τ, U(τ))dτ

=

Q∑
q=1

wq

∫ t−δt

0

e−ξq(t−τ)G(τ, U(τ))dτ +

∫ t−δt

0

vα(t− τ)G(τ, U(τ))dτ

=

Q∑
q=1

wqe
−ξqδtUM,q(t) +R(t)

with

UM,q(t) =

∫ t−δt

0

e−ξq(t−δt−τ)G(τ, U(τ))dτ =

∫ t

δt

e−ξq(t−τ)G(τ − δt, U(τ − δt))dτ,

and R(t) the remainder which satisfies∥∥R(t)
∥∥ ≤ ∫ t−δt

0

∣∣vα(t−τ)
∣∣·∥∥G(τ, U(τ))

∥∥dτ ≤ ε

∫ t−δt

0

∥∥G(τ, U(τ))
∥∥dτ ≤ εt max

τ∈[0,t]

∥∥G(τ, U(τ))
∥∥

It is easy to observe that UM,q(t) is the solution of the initial value problem{
y′(t) = −ξqy(t) +G(t− δt, U(t− δt)),
y(δt) = 0

for t ≥ δt (observe that the expression above is not properly a delayed differential
equation since U(t) must be considered as a known external term). Each of these
systems can be solved, at a reasonable cost, by means of the implicit Euler scheme
(using an implicit method is mandatory since some of the ξq can be large and thus make

the system stiff). So, if U
(n)
M,q denotes the approximation of UM,q(tn), since δt = n?h,

we evaluate for n > n?

U
(n)
M,q =

1

1 + hξq

(
U

(n−1)
M,q + hL(Un−n?) + hF (Un−n?)

)
, U

(n?)
M,q = 0.

Then equation (5.2) reads as

UM(tn) ≈ U
(n)
M =

Q∑
q=1

wqe
−ξqδtU

(n)
M,q

=

Q∑
q=1

wqe
−ξqδt

1 + hξq
U

(n−1)
M,q + h

Q∑
q=1

wqe
−ξqδt

1 + hξq

(
L(Un−n?) + F (Un−n?)

)
.

To recap, when combining the rectangular PI IMEX for the local term and the KCS

for the memory term in the expression of Un, namely Un = U0 + U
(n)
L + U

(n)
M , the

numerical scheme that we propose reads as

(5.3)

Un −
hα

Γ(α + 1)
L(Un) = U0 +

n−1∑
k=n−n?+1

(
b

(α)
n−kL(Uk) + b

(α)
n−k−1F (Uk)

)

+

Q∑
q=1

wqe
−ξqδt

1 + hξq
U

(n−1)
M,q + hγL(Un−n?) +

(
hαb

(α)
n?−1 + hγ

)
F (Un−n?)
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where γ =
∑Q

q=1(wqe
−ξqδt)/(1 + hξq).

As discussed in Section 3, the approximation above requires the solution of a linear
system of the form (3.5) when the vector form is used, or the solution of a Sylvester
equation like (3.6) when the matrix form is preferred.

5.2. Use of Gauss-Jacobi quadrature for the kernel approximation. We now
address the problem of finding a suitable approximation (5.1) of the kernel tα−1/Γ(α).
To start we describe an appropriate integral formulation to write it.

Proposition 5.1. Let 0 < α < 1. For any t > 0 it is

tα−1

Γ(α)
=

2 sinαπ

π
Iα(t),

where

(5.4) Iα(t) =

∫ 1

−1

(1− s)α−1(1 + s)−αψt(s)ds, ψt(s) =
e−

1+s
1−s t

1− s
.

Proof. We start from the integral representation

(5.5)
tα−1

Γ(α)
=

sinαπ

π

∫ ∞
0

e−rt
1

rα
dr,

which holds whenever 0 < α < 1 since tα−1 is the inverse Laplace transform of Γ(α)s−α.
We thus recast the integral above from an infinite to a finite interval by the change of
variable r = z(s) by means of the conformal map

z(s) : [−1, 1)→ [0,∞) =
1 + s

1− s
;

the claim then readily follows. �

Remark 5.1. In case one is interested in simulating equations with superdiffusion,
namely when 1 < α < 2, a similar approach can be followed but, instead of using
(5.5), it is necessary to start from the alternative integral representation of the kernel

tα−1

Γ(α)
=

sinαπ

π

∫ ∞
0

e−rt − 1

rα
dr, 1 < α < 2.

To approximate the integral Iα(t) in (5.4) a Gauss-Jacobi (GJ) quadrature rule is
the natural choice since the integrand contains the weight function

w(s) = (1− s)α−1(1 + s)−α

which is typical of quadrature rules of GJ type; Jacobi polynomials are indeed orthogo-
nal over [−1, 1] with respect to this weight function. GJ rules were already used in [48]
for approximating matrix power functions Aα but with a different integral formulation.

In practice, for t very small or t very large, the function ψt(s) presents a stiff behavior
for values close to s = −1 or s = 1 respectively. This could lead to an accuracy loss in
the numerical approximation of Iα(t). To make the integrand function in Iα smoother
we use the equivalent expression holding for any parameter c > 0 (which must be
suitably chosen)

(5.6)
tα−1

Γ(α)
=

2c1−α sinαπ

π
Iα(ct).
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Regarding the related quadrature formula, we denote with ξ̃1, . . . , ξ̃Q the Q roots of
the Jacobi polynomial of degree Q and w̃1, . . . , w̃Q the corresponding weights, so that
the resulting quadrature formula for Iα(t) can be written as

(5.7) I [Q]
α (t) =

Q∑
q=1

w̃qψt(ξ̃q).

An accurate efficient method to compute weights and nodes, involving a compu-
tational cost only linear with respect to Q, has been recently proposed by Hale and
Townsend [49].

Proposition 5.2. Whenever 0 < α < 1 and t > 0 the following quadrature formula
holds for any fixed positive parameter c

(5.8)
tα−1

Γ(α)
=

Q∑
q=1

wqe
−ξqt + vα(ct)

with

wq =
2c1−αw̃q sinαπ

π(1− ξ̃q)
> 0, ξq = c

1 + ξ̃q

1− ξ̃q
> 0

and
vα(ct) = CQ,αψ

(2Q)
ct (η)

where η ∈ (−1, 1) and

CQ,α =
c1−αΓ(Q+ α)Γ(Q− α + 1)Q sinαπ

(2Q− 1)!

[
(Q− 1)!

π(2Q)!

]2

22Q+1.

Proof. From (5.6) we deduce that

tα−1

Γ(α)
=

2c1−α sinαπ

π

(
I [Q]
α (t) + E

)
.

Then, in the expression (5.7) for I
[Q]
α we make ψct explicit and we collect terms

to arrange weights and nodes as in the claim. The estimate of the quadrature error
E hence follows from well-known results for GJ quadrature rules (e.g., see [50, Eq.
(8.9.8)]). �

Coefficients CQ,α in the quadrature error decay in a fast way. Indeed, by exploiting
the results in [48, Lemma 3.2] we know that for any 0 < α < 1 it is

(5.9) CQ,α ∼ CQ := c1−α sinαπ
2−2Q+2

(2Q)!
, Q→∞.

To give an estimate for the 2Q-order derivatives of ψct we present the following
result.

Proposition 5.3. Let t > 0, c > 0 and Q ∈ N. Then for any ρ > 1 it is

(5.10) max
r∈(−1,1)

|ψ(2Q)
ct (r)| ≤ (2Q)!

ρ2 + 1

2ρ

[
2ρ

(ρ− 1)2

]2Q+2

e
(ρ+1)2

(ρ−1)2
ct
.

Proof. To give an upper bound for ψ
(2Q)
ct we consider for any r ∈ (−1, 1) the Cauchy

integral formula

(5.11) ψ
(2Q)
ct (r) =

(2Q)!

2πi

∫
C

ψct(z)

(z − r)2Q+1
dz
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where C is a closed contour with no singularities of ψct(z) on or within it. Since ψct(z)
has just a singularity at z = 1, for convenience we choose C = Eρ,ε ∪ L− ∪ Cσ,δ ∪ L+,
as illustrated in Figure 1, and composed by the Bernstein ellipse

Eρ,ε :=
{
z ∈ C

∣∣∣ z = gρ(θ), ε ≤ θ ≤ 2π − ε
}
, gρ(θ) =

1

2

(
ρeiθ +

1

ρ
e−iθ

)
,

with a the small circular circuit enclosing z = +1

Cσ,δ :=
{
z ∈ C

∣∣∣ z = 1 + σeiθ, δ ≤ θ ≤ 2π − δ
}
, =(γε) < σ < <(γε)− 1,

connected, in the proper sense, by two segments

L− :=
{
z ∈ C

∣∣ z = x− i=(γε), <(γε) ≤ x ≤ <(γδ)
}

L+ :=
{
z ∈ C

∣∣ z = x+ i=(γε), <(γδ) ≤ x ≤ <(γε)
}

where, for shortness, we put γε = gρ(ε) and γδ = 1 + σeiδ, and δ is chosen such that
=(γε) = =(γδ). Observe that

-1 +1

Figure 1. Contour for the Cauchy integral formula (5.11).

∫
L±

ψct(z)

(z − r)2Q+1
dz = ±

∫ <(γε)

<(γδ)

ψct(x± i=(γε))

(x± i=(γε)− r)2Q+1
dx

and when passing to the limit as ε→ 0 (and hence δ → 0) we have

lim
ε→0

∫
L±

ψct(z)

(z − r)2Q+1
dz = ±

∫ ρ2+1
2ρ

1+σ

ψct(x)

(x− r)2Q+1
dx

and hence the contributions on L− and L+ cancel each other out as ε → 0. On the
small circuit Cσ,δ∫

Cσ,δ

ψct(z)

(z − r)2Q+1
dz =

∫ 2π−δ

δ

ψct(1 + σeiθ)

(1 + σeiθ − r)2Q+1
σieiθdθ

and when we let the ray of the small circuit tend to zero, the contribution from this
circuit tends to zero as well. Since the only contribution to (5.11) comes from the
Bernstein ellipse, we observe that∣∣∣ψ(2Q)

ct (r)
∣∣∣ ≤ (2Q)!

2π

∫ 2π−ε

ε

∣∣ψct(gρ(θ))∣∣ ∣∣∣∣ g′ρ(θ)

(gρ(θ)− r)2Q+1

∣∣∣∣ dθ
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and elementary manipulations allow to verify that for any r ∈ (−1, 1) it is∣∣ψct(gρ(θ))∣∣ ≤ 2ρ

(ρ− 1)2
e

(ρ+1)2

(ρ−1)2
ct
,
∣∣g′ρ(θ)∣∣ ≤ ρ2 + 1

2ρ
, min

θ∈[0,2π]
|gρ(θ)− r| ≥

(ρ− 1)2

2ρ

from which the proof follows by letting again ε→ 0. �

By using (5.9) and (5.10) in Proposition 5.2, we observe that for a sufficiently large
number of nodes Q the quadrature error can be bounded by

|vα(ct)| ≤ 16c1−α sinαπ
ρ2 + 1

2ρ

[
ρ

(ρ− 1)2

]2Q+2

e
(ρ+1)2

(ρ−1)2
ct

and, when ρ is chosen sufficiently large so that ρ/(ρ− 1)2 < 1 (namely ρ > 2 +
√

3) it
is assured that any given accuracy can be achieved once a sufficiently large number of
nodes is used.

The above estimate, however, can be quite conservative, especially for large t and not
always turns to be useful to determine the number of nodes Q necessary to achieve
a prescribed accuracy. For practical purposes we therefore propose an algorithmic
approach to tune in a fine way the parameters Q and c in the quadrature rule.

5.3. Fine tuning of quadrature parameters. The accuracy of the time-step pro-
cedure (5.3), as based on the combination of PI, IMEX and KCS, depends on several
factors. In particular the choice of the time step-size h will influence the accuracy
of the PI IMEX method, whilst the accuracy of the KCS depends on the choice of
the length interval δt on which to apply the PI IMEX and the number Q of nodes
(together with the smoothing parameter c) in the quadrature rule (5.7).

All these parameters have influence not only on the accuracy of the solution but also
on the computational cost. It is unfortunately not realistic to find the optimal choice
of the parameters in order to achieve a certain accuracy with the lowest computational
cost. We therefore propose an heuristic approach based on considerations from the
nature of the problem and from the features of each method.

The step-size h and the interval length δt are fixed a priori, the former on the basis
of the target accuracy for the solution and the latter according to computational needs
(storage capability and execution time). The number Q of nodes and the smoothing
parameter c in the quadrature rule (5.8) are suitably selected with the aim of preserving
the O

(
h
)

accuracy of the PI IMEX. Therefore, it is fixed a tolerance ε > 0 and, by
means of a direct search algorithm, the values Q are c are determined so that (5.1)
holds on the selected interval [δt, T ].

As expected, (see Figures 2, 3 and 4), larger numbers Q of nodes are necessary
to achieve the target tolerance when α or δt are smaller, as effect of the stronger
singularity of the power kernel tα−1 close to the origin. Moreover, also the width of
the integration interval plays a role as one can clearly observe from the comparison
of the three considered upper end-points T = 1 (Figure 2), T = 10 (Figure 3) and
T = 20 (Figure 4).

It is possible that the algorithm to determine the minimum number of nodes Q
(and the smoothing parameter c) to achieve a target tolerance ε is not optimized and,
surely, this point deserves a deeper investigation. However, the number of nodes Q
provided by the algorithm appears suitable for a reasonably fast computation.

The tolerance ε must be chosen to preserve the O
(
h
)

accuracy of the PI IMEX.
Since the accumulation of errors at each step, for integrating on an interval [0, T ],
with T = Nh, a tolerance proportional to h/N appears necessary. Thus we choose
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Figure 2. Number Q of nodes to achieve the target tolerance ε by the
GJ quadrature (5.7) to approximate tα−1/Γ(α) in [δt, T ], when T = 1
and δt = 0.01 (left plot) or δt = 0.005 (right plot).
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Figure 3. Number Q of nodes to achieve the target tolerance ε by the
GJ quadrature (5.7) to approximate tα−1/Γ(α) in [δt, T ], when T = 10
and δt = 0.01 (left plot) or δt = 0.005 (right plot).
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Figure 4. Number Q of nodes to achieve the target tolerance ε by the
GJ quadrature (5.7) to approximate tα−1/Γ(α) in [δt, T ], when T = 20
and δt = 0.01 (left plot) or δt = 0.005 (right plot).

ε = h2/C, where the factor C compensates for neglected constants. In our experiments
we have observed that C = 10 is a sufficiently conservative value.

6. Numerical tests on the accuracy and efficiency of the time-step
integration

We present here some numerical experiments in order to verify accuracy and com-
putational efficiency of the proposed approach. All the experiments are carried out
in Matlab ver. 9.9.91495850 (R2020b) on a PC equipped with an Intel i7-9600 CPU
running at 3.0 GHz (with 16.0 Gbyte of RAM) under Windows 10 Pro.

With the only aim of testing the accuracy, we first consider a linear problem whose
exact solution is known, in such a way as to calculate the actual error of the numerical
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solution. In particular, we consider the problem

(6.1)


CDαt u = d∆u+ f(u)
∂u
∂n

= 0 (x, y) ∈ ∂Ω
u
∣∣
t=0

= u0(x, y) (x, y) ∈ Ω

with Ω = [0, 1] × [0, 1], u0(x, y) = cos(πxy(1 − x)(1 − y)) and f(u) = −(dG1(x, y) +
c)u − dG2(x, y)Eα(−ctα). Here Eα(z) is the Mittag-Leffler function and G1 and G2

are two functions suitably selected in order to get the exact solution for this problem
in the form u(x, y, t) = u0(x, y)Eα(−ctα). The reference solution for d = 0.4, c = 0.9
and α = 0.8 is presented in Figure 5.

Figure 5. Exact solution at T = 1 of the test problem (6.1) with α = 0.8.

Table 1 reports the relative errors, in ‖.‖∞, together with the experimental order of
convergence (EOC), of the numerical simulations for α = 0.7, α = 0.8 and α = 0.9
when a space grid with Nx = Ny = 400 is considered. In Figure 6 these relative errors
are plotted, together with the results for the same parameters and Nx = Ny = 200.
As expected, the convergence is almost linear with respect to h.

h α = 0.7 α = 0.8 α = 0.9
Error EOC Error EOC Error EOC

2−8 1.061× 10−3 1.095× 10−3 1.036× 10−3

2−9 5.984× 10−4 0.826 6.655× 10−4 0.719 7.015× 10−4 0.562
2−10 2.923× 10−4 1.034 3.341× 10−4 0.994 3.657× 10−4 0.940
2−11 1.383× 10−4 1.079 1.612× 10−4 1.052 1.803× 10−4 1.020
2−12 6.392× 10−5 1.114 7.574× 10−5 1.089 8.610× 10−5 1.066
2−13 2.795× 10−5 1.194 3.381× 10−5 1.164 3.902× 10−5 1.142

Table 1. Relative errors in ‖ · ‖∞ at T = 1 for the test problem (6.1)
when Nx = Ny = 400.

We now consider the Fischer-KPP equation describing the time evolution of the
spread of the density of some populations or epidemics diffusing and reacting at the
same time [51]. For simplicity, we confine to a normalized unit square domain Ω =
[0, 1] × [0, 1] and, as usual with models of this type, it is assumed that the system
is isolated from outside the domain thus to impose homogeneous Neumann boundary
conditions
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Figure 6. Relative errors at T = 1 of the test problem (6.1) when
Nx = Ny = 200 (left plot) and Nx = Ny = 400 (right plot).

(6.2)


CDαt u = d∆u+ ru(1− u)
∂u
∂n

= 0 (x, y) ∈ ∂Ω
u
∣∣
t=0

= x2(1− x)2y2(1− y)2 (x, y) ∈ Ω

Values d = 0.4 and r = 0.9 for the parameters of the equation are considered.
Since an exact solution is not available for this equation, we will adopt as reference
solution the numerical approximation obtained with a very small step-size (namely
h = 2−18 ≈ 2.8× 10−6). This reference solution for α = 0.8 is illustrated in Figure 7.

Figure 7. Exact solution at T = 1 of the test problem (6.2) with
α = 0.8, d = 0.4 and r = 0.9.

Table 2 reports the relative errors, in ‖.‖∞, of the numerical simulations with respect
to the aforementioned reference solutions. Results refer to α = 0.7, α = 0.8 and α = 0.9
when a space grid with Nx = Ny = 400 is considered. Also in this case, the first order
for convergence is achieved.

The same information can be inferred from the plots of the relative errors presented
in Figure 8 where the errors for Nx = Ny = 200 (left plot) are shown together with
those for Nx = Ny = 400 (right plot):

We now focus on the advantages of the proposed approach (5.3) from the computa-
tional point of view. For this purpose we perform a comparison with different strate-
gies. We consider the Fisher problem (6.2) on the interval [0, T ] and we fix a step–size
h > 0, such that Nt = T/h grid-points are involved. The following approaches will be
compared:
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h α = 0.7 α = 0.8 α = 0.9
Error EOC Error EOC Error EOC

2−11 5.299× 10−5 6.706× 10−5 7.472× 10−5

2−12 3.755× 10−5 0.497 4.199× 10−5 0.675 4.397× 10−5 0.765
2−13 2.170× 10−5 0.791 2.303× 10−5 0.866 2.344× 10−5 0.908
2−14 1.139× 10−5 0.930 1.177× 10−5 0.969 1.180× 10−5 0.991
2−15 5.552× 10−6 1.037 5.647× 10−6 1.059 5.616× 10−6 1.071

Table 2. Relative errors in ‖ · ‖∞ at T = 1 for the test problem (6.2)
when Nx = Ny = 400.
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Figure 8. Relative errors at T = 1 of the test problem (6.2) when
Nx = Ny = 200 (left plot) and Nx = Ny = 400 (right plot).

PI IMEX:: standard PI rule implemented in the IMEX way, as defined in (3.4);
this method is expected to be extremely slow since the computation involves a
number of floating-point operations proportional to O

(
N2
t

)
;

PI IMEX FFT:: in the PI IMEX method (3.4) the memory term is evaluated
according to the FFT-based algorithm proposed in [29; 30] which provides a
computational cost proportional to O

(
Nt(log2Nt)

2
)

(see also [34] for a descrip-
tion of its implementation);

PI IMEX KCS VET:: this is the PI IMEX method with the KCS for the ef-
ficient treatment of the memory term described in (5.3) implemented in the
standard vector formulation (2.1); its overall cost is expected to be propor-
tional to NtQ; the involved linear systems are solved by resorting to a LU
decomposition.

PI IMEX KCS MAT:: this is the PI IMEX method with the KCS for the
efficient treatment of the memory term described in (5.3) implemented in the
matrix form (2.2).

The various plots in Figure 9 report the CPU time for each of the four approaches for
the evaluation of the solution at each point in the time mesh; as we can see, the combi-
nation of PI IMEX with KCS turns out to be more competitive with respect to standard
PI IMEX. However we observe that the representation of the spatial discretization by
means of the matrix approach is more efficient when accurate discretizations of the
spatial derivative are required (and hence large systems are involved). This feature
confirms the suitability of the matrix approach for problems of large size also in the
fractional-order case, as already observed in [4] for the integer-order case. Note that
the CPU times of the different algorithms assume different values at t = 0 since each
algorithm involves different initialization times which are taken into account in the
time registration.
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Figure 9. Comparison of CPU times for the test problem (6.2) with
α = 0.8, ht = 2−10 and T = 1 and different sizes of the spatial discretiza-
tion.

To show the potentials and a possible field of applications of the proposed ap-
proach on long-time integration, we consider two time-fractional RD systems which
present patterns, namely the fractional activator-inhibitor model and the fractional
Fitzhugh-Nagumo model. Patterns usually emerge for systems characterized by two
homogeneously distributed interacting substances and represent regional differences in
the concentrations of the two substances.

We first consider a time-fractional version of the activator-inhibitor model [52] orig-
inally proposed to describe the concentrations of two chemical species: the activator
u and the inhibitor v.

By following the notation successively adopted in [53], the subdiffusive activator-
inhibitor system is defined by the coupled RD time-fractional equations

(6.3)


CDαt u = ∆u+ u− av + buv − u3

CDαt v = d∆v + u− cv
∂u
∂n

= 0 (x, y) ∈ ∂Ω
u
∣∣
t=0

= sin(xy), v
∣∣
t=0

= cos(xy) (x, y) ∈ Ω

where a square domain Ω = [0, 50] × [0, 50] is considered and the chosen parameters
are a = 7.81, b = 0.75, c = 5 and d = 20.

In Figure 10 we present the results of the numerical simulation at T = 1000 with
ht = 2−9, Nx = Ny = 200 and α = 0.95. For a problem of this kind standard
approaches would not have been able to provide any result in a reasonable time while
our method reveals some patterns in the considered domain.

As a further example we consider the Fitzhugh-Nagumo equation, an important
nonlinear reaction-diffusion equation applied to model the transmission of electrical
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Figure 10. Numerical solution of Eq. (6.3) at T = 1000 with ht = 2−9,
Nx = Ny = 200 and α = 0.95. Solution u (left plot) and solution v
(right plot).

impulses along a nerve fiber [54; 55] and, more recently, in the modeling of population
dynamics. We consider here the model discussed by Gambino et al. [56] in which we
replace the integer-order derivative with the fractional Caputo derivative

(6.4)


CDαt u = ∆u+ c(−u3 + u− v)
CDαt v = d∆v + bc(u− av)
∂u
∂n

= 0 (x, y) ∈ ∂Ω
u
∣∣
t=0

= u0(x, y), v
∣∣
t=0

= v0(x, y) (x, y) ∈ Ω

on the square domain Ω = [0, π]×[0, π] with parameters a = 0.1, b = 11, c = 65.731 and
d = 42.1887. The initial conditions are taken as small perturbations of the equilibria.
Results for the numerical simulations are presented in Figure 11 where we can observe
the appearance of square patterns, which are typical of this model. In this case, for
ease of presentation we have plotted the difference between the obtained solutions and
their mean values.
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Figure 11. Numerical solution of Eq. (6.4) at T = 200 with ht = 2−10,
Nx = Ny = 100 and α = 0.95. Solution u (left plot) and solution v
(right plot).
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7. Conclusions

We have discussed a strategy to numerically solve time-fractional reaction diffu-
sion problems: the main idea is the combination of product integration rules, in an
implicit-explicit framework, with a kernel compression scheme to reduce the overload
of computation and storage needs related to the persistent memory of fractional-order
problems. Furthermore, at first we have discretized the problem with respect to the
space variables and a matrix formulation of the semidiscretized problem, recently dis-
cussed for reaction-diffusion problems of integer order, has been used to improve the
overall method. By a suitable selection of integration parameters of the KCS we have
been able to preserve the original accuracy of the PI-IMEX scheme with a considerable
reduction of the computational effort. The matrix formulation contributes to keep the
computation at a reasonable level as well, and that turns to be extremely useful for
integration over large intervals as in the case of applications in detection of pattern
formation.

A series of numerical experiments has showed the efficiency of the proposed strategy
and confirmed the theoretical results.

In a forthcoming research activity we aim to use more efficient strategies for the
discretization of partial differential equations [57; 58] and to extend the analysis to
the case of discontinuous systems [59; 60] which represent an interesting research topic
with considerable applications in real life phenomena.
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[47] L. Banjai, M. López-Fernández, Efficient high order algorithms for fractional inte-
grals and fractional differential equations, Numerische Mathematik 141 (2) (2019)
289–317.

[48] L. Aceto, C. Magherini, P. Novati, On the construction and properties of m-step
methods for FDEs, SIAM J. Sci. Comput. 37 (2) (2015) A653–A675.

[49] N. Hale, A. Townsend, Fast and accurate computation of Gauss–Legendre and
Gauss–Jacobi quadrature nodes and weights, SIAM Journal on Scientific Com-
puting 35 (2) (2013) A652–A674.

[50] F. B. Hildebrand, Introduction to numerical analysis, 2nd Edition, Dover Publi-
cations, Inc., New York, 1987.

[51] J. Roessler, H. Hüssner, Numerical solution of the (1 + 2)-dimensional Fisher’s
equation by finite elements and the Galerkin method, Math. Comput. Modelling
25 (3) (1997) 57–67.

[52] V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional
reaction–diffusion systems, Journal of Computational and Applied Mathematics
220 (1) (2008) 215 – 225.



COMPUTATIONAL EFFICIENCY FOR TIME-FRACTIONAL DIFFUSION-REACTION 25

[53] L. Zhang, C. Tian, Turing pattern dynamics in an activator-inhibitor system with
superdiffusion, Phys. Rev. E 90 (2014) 062915.

[54] R. FitzHugh, Impulses and physiological states in theoretical models of nerve
membrane, Biophysical journal 1 (6) (1961) 445.

[55] J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating
nerve axon, Proceedings of the IRE 50 (10) (1962) 2061–2070.

[56] G. Gambino, M. Lombardo, G. Rubino, M. Sammartino, Pattern selection in the
2D FitzHugh–Nagumo model, Ricerche di Matematica 68 (2) (2019) 535–549.

[57] L. Lopez, G. Vacca, Spectral properties and conservation laws in mimetic finite
difference methods for PDEs, J. Comput. Appl. Math. 292 (2016) 760–784.

[58] L. Beirão da Veiga, L. Lopez, G. Vacca, Mimetic finite difference methods for
Hamiltonian wave equations in 2D, Comput. Math. Appl. 74 (5) (2017) 1123–
1141.

[59] A. Colombo, N. Del Buono, L. Lopez, A. Pugliese, Computational techniques to
locate crossing/sliding regions and their sets of attraction in non-smooth dynam-
ical systems, Discrete Contin. Dyn. Syst. Ser. B 23 (7) (2018) 2911–2934.

[60] L. Lopez, S. Maset, Time-transformations for the event location in discontinuous
ODEs, Math. Comp. 87 (313) (2018) 2321–2341.

Roberto Garrappa: Department of Mathematics, University of Bari, Via E. Orabona
4, 70125 Bari, Italy. Member of the INdAM Research group GNCS

Email address: roberto.garrappa@uniba.it
URL: www.dm.uniba.it/members/garrappa/main

Marina Popolizio: Department of Electrical and Information Engineering, Poly-
technic University of Bari, Via E. Orabona 4, 70125 Bari, Italy. Member of the
INdAM Research group GNCS

Email address: marina.popolizio@poliba.it


	1. Introduction
	2. Semi-discretization in space: vector and matrix approaches
	2.1. Vector approach
	2.2. Matrix approach

	3. A product-integration rule in IMEX framework
	3.1. Numerical aspects
	3.2. Implementation issues

	4. Accuracy of the PI IMEX method 
	5. Kernel compression scheme
	5.1. Fast evaluation of the memory term
	5.2. Use of Gauss-Jacobi quadrature for the kernel approximation
	5.3. Fine tuning of quadrature parameters

	6. Numerical tests on the accuracy and efficiency of the time-step integration
	7. Conclusions
	References

