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The paper proposes a Decision Support System (DSS) for the supply chain of packaged fresh and highly perishable
products. The DSS combines in a unique tool sales forecasting with order planning which includes an individual
model selection system equipped with ARIMA, ARIMAX and transfer function forecasting model families, the lat-
ter two accounting for the impact of prices. Forecasting models parameters are chosen via two alternative tuning
algorithms: a two-step statistical analysis, and a Sequential Parameter Optimization framework for automatic param-
eter tuning. The DSS selects the model to apply according to user-defined performance criteria. Then it considers
sales forecasting as a proxy of expected demand and uses it as input for a multi-objective optimization algorithm
that defines a set of non-dominated order proposals with respect to outdating, shortage, freshness of products and
residual stock. A set of real data and a benchmark—based on the methods already in use—are employed to evaluate
the performance of the proposed DSS. The analysis of different configurations shows that the DSS is suitable for the
problem under investigation; in particular, the DSS ensures acceptable forecasting errors and proper computational
effort, providing order plans with associated satisfactory performances.
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1. Introduction

The fresh food supply chain management has experienced great changes over the last years, and it has now
become the major strategic issue for food firms (Bourlakis and Weightman 2004). In this context, one of
the main goals for a company is to individuate a combination of purchasing, transportation, physical distri-
bution and logistics to get a position to achieve economies of scale; the control of the supply chain tends to
shift from producers to retailers, while the increased pressure for higher quality and cost efficiency affects
all members of the food chain.

Consequently, the food chain is called to move toward a more vertically integrated structure that includes
joint partnerships, strategic alliances, and more vertical co-ordination among different supply chain play-
ers; and retailers are asking for new value-added logistics services. In fact, traditional logistics firms cannot
always fully meet the demands of the retailers, because they did not possess the adequate logistics and infor-
mation technology solutions. Thus retailers started to co-operate also with logistics information technology
suppliers as new actors in the field. The resulting value-added services increase the operational complexity
of the food retail chain.

Today’s food supply chain are required to be reliable and agile enough to respond to consumer demand and
preferences and it is expected that e-logistics practices and e-commerce will have a growing relevance to
support a customer-focused and more responsive organization. Sales forecasts and order planning play a
central role in this customer and data centered process. They constitute a process that is dual to the physical
process of delivering goods from the producer to the retailer. The whole process can be viewed as an inte-
grated demand and supply chain management (Dotoli et al. 2005) which integrates both the pull action from
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the customer’s demand and the push effect from the producer and the retailer in the form of promotions and
advertising actions.

The forecasting techniques to be employed on the store level are called to fulfill the requirements of the
so called micro-forecasting (i.e., a specific forecast for every item in each store), while aggregation across
items and/or across stores is considered not meaningful or even misleading. The order plan per store must
be based on the individual sales forecast for the individual store. Since calendar events, advertising, and pro-
motional events may have very different effects in the different stores depending on the respective locations,
the forecasting techniques should not be based only on the observed time series of sales but should also be
able to take this information about external factors into account also including the possibility of judgmental
adjustments (Wang and Petropoulos 2016). To deal with these aspects, collaborative planning and forecast-
ing approaches can be adopted involving different actors of the supply chain organization (Arminger 2004;
Du et al. 2009; Yang et al. 2017).

Forecasts for sales and orders for stores are usually based on short-term forecasts, ranging from daily to
between one and four weeks depending on the adopted delivery plans. At supply chain level and/or in a
vendor/retailer collaboration (Borade and Sweeney 2015; Yang et al. 2017), to forecast the large number of
items and store combinations, as required for demand planning, some automatic computer-assisted order-
ing systems are needed to process data and execute the recurrent computations (Tan et al. 2017).

Clearly, the efficiency and effectiveness of quantitative methods for optimizing supply chain operations
strictly depend on the quality of available data. For this reason, sales forecasting represents the first crucial
step in this integrated process and may influence the development of a realistic supply chain model. Sales
forecasting accuracy typically has close interactions with inventory management performance. In partic-
ular, in a fresh and highly perishable food supply chain, integrating forecasting and optimization is even
more important: because the shelf life of products can be very limited, reliable order proposals are fun-
damental to manage and reduce inefficiencies such as stock-out and outdating (Ma et al. 2013; Nahmias
2011). The fresh food supply chain represents a very challenging application, characterized by several inter-
related variables and constraints, and possible sources of uncertainties: it requires an effective management
of logistics operations, and perishability is a particularly critical issue (Alvarez and Johnson 2011; Nahmias
2011). This calls for integrated and flexible approaches able to properly account for the characteristics of
customers, retailers, and producers in order to meet their needs.

This paper proposes methods and models devoted to fresh food supply chain operations management to be
included in a unique software tool to form a Decision Support System (DSS), and presents a case study
involving a set of retailers with both small and medium sized stores located in the Apulia region (Italy).
Both forecasting and optimization are crucial issues in such a context and the main criticalities are related
to the uncertainty on future sales. In the considered context, a detailed forecast, i.e. forecast by product or
even by product-location, is necessary. In fact, the retailer needs sales forecast to determine how much of
each product to deliver or to stock at the different retail locations. We focus on this situation that drives
the planning of the considered supply chain. The considered forecasting process uses sales data, such as
point-of-sale scanner data, and promotion and marketing plans. These information flows also show the col-
laborative nature of the forecasting activity and its integration in the decision-making process. The demand
forecasts become a key input to the order planning function. The fresh food supply chain is usually char-
acterized by a high number of products, where each item may account for only a small fraction of both
the total volume and revenue. A relatively cheap and efficient way to repetitively forecast the sales of each
of a large number of items is to adopt an automatic forecasting system. Otherwise, it could seem neither
practical nor economical to spend a lot of effort in forecasting single items, except for the few best-selling
products. These forecasting issues are addressed by an integrated, flexible and simple-to-use tool proposed
to support the decision maker to determine, within a vendor/retailer collaboration, reliable operations plans
with respect to waste reduction and other different criteria, such as shortage, freshness and residual stock
of products.
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1.1 Literature review

The literature clearly shows how the integration of sales forecasting and planning activities plays a crucial
role in the market of fresh and highly perishable food: in fact, the shelf life of products is very limited,
therefore reliable forecasts are essential to reduce inefficiencies (Nahmias 2011; Stevenson 2015; Wagner
2002; Wagner and Meyr 2002). In particular, we refer to the analyses proposed by Fildes and Petropoulos
(2015); Leung and Bhaskaran (2011) and Wagner (2002) on the role and functions of forecasting tools in
order to give adequate support to decision makers. These analyses point out that the selection of a fore-
casting model and the estimation of its parameters are fundamental issues in the configuration of a demand
planning system or during the update of forecasting parameters. These activities should be made regularly
providing some kind of automatic software tool to search all available statistical forecasting procedures and
parameter combinations and select the one which produces the best forecast accuracy in the period of inter-
est. More specifically, selecting the appropriate individual (i.e., for each item or even each item-location)
forecasting method for a large number of time series is considered as a crucial problem for many demand
forecaster. In addition, the forecast performance of such a system may deteriorate over time if they are not
adequately diagnosed and tuned. These studies also observe that although dedicated software packages usu-
ally provide some parameter optimization capability, forecasting modules of many integrated supply chain
management systems do not provide such a feature or it is very limited. The survey of McCarthy et al.
(2006) offers a guide to expand the knowledge of understanding the importance of performance indicators
when a decision maker is called to choose, managing or design a forecasting system.

This paper focuses on the problem of sales forecasting and order planning integration through a DSS, and
mainly refers to base forecast generated from historical data (i.e., time series) captured in a continuous
planning and monitoring system. It is important to observe that final adjustments could be made to improve
the base forecasts considering several factors that have not been part of historical data (Eksoz et al. 2014;
Goodwin 2002; Wang and Petropoulos 2016). For instance, recent changes in the market, weather condi-
tions, competitors’ plan or last minute changes at retail or supply side are among the factors that should be
considered in the order planning process through an experts’ adjustment of base forecasts (Lawrence et al.
2006; Syntetos et al. 2015). In a fresh food supply chain, this aspect could much more relevant due to de-
mand variability, risk of expiry, freshness and sales miss. How to implement these judgmental adjustments
(which cannot be underestimated in the fresh food industry) and the analysis of their impact are outside the
scope of this paper and could be addressed in further research works.

Different mathematical modeling approaches have also been proposed to offer quantitative methods to de-
cision makers. A review of the state-of-the-art in the area of planning models for the different components
of agri-food supply chains is offered in Ahumada and Villalobos (2009). The links between sustainabil-
ity in food supply chains and quantitative methods to support the decision makers are analyzed in detail
by Beske et al. (2014) and Soysal et al. (2012). Indeed, fresh food production and distribution potentially
generate considerable waste through poor planning of operations for both packaged and unpackaged items
(Brandenburg et al. 2014). This paper deals with the first case in which each item has its own nominal shelf
life which can be considered as a constant, while in the case of unpackaged products the planner has to face
with a random lifetime (Kouki et al. 2014).

The problem of determining the optimal economic operating policy when a number of non-instantaneous
deteriorating items are jointly replenished has been recently addressed by Ai et al. (2017). While analytical
methods to reduce the overproduction wastes in the convenience food production are proposed in Darling-
ton and Rahimifard (2006) and Darlington et al. (2009). The optimization issues in the supply chain com-
posed of retailers and potential recipients that practice food recovery are addressed in Aiello et al. (2014);
Muriana (2015). Wang et al. (2009) develop approaches to integrate traceability initiatives with operations
management objectives for perishable food products. While Van Der Vorst et al. (1998) investigates the
effects of supply chain management on logistical performances in food supply chains, showing the crucial
role of the reduction (or elimination) of uncertainties to improve the overall behavior of the chain. In such
a context, a robust supply chain operations management can only be obtained by taking uncertainties of fu-
ture demand into account; for this reason a good and reliable forecasting plays a crucial role (Dellino et al.
2010, 2012; Fleischmann et al. 2002; Simangunsong et al. 2012). At this aim, an extended version of the
classical newsvendor problem has been proposed by Huang (2013), to account for specific issues related
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to random demand and item deterioration over time. van Donsellar et al. (2006) investigate inventory con-
trol policies for perishable items in supermarkets, providing directions for improving the automated store
ordering system currently in use in two Dutch supermarket chains. Moreira and Tjahjono (2016) study the
beverage industry decision-making process at an operational level, with the aim to increase supply chain
flexibility to satisfy fluctuating customer demand quantitatively considering the impact on the supply chain.
The close interactions between demand forecasting and inventory management performance are addressed
by Babai et al. (2013) focussing on their impact on both inventory costs and service levels. Galasso et al.
(2009) propose a mixed integer linear planning model embedded in a framework simulating a rolling hori-
zon planning process in order to assist the decision makers for coping with an uncertain or flexible demand,
while Kanet et al. (2010) show how the implementation of dynamic planned safety stocks can reduce un-
necessary safety stocks and improve service in supply networks. The study conducted by Rijpkema et al.
(2014) shows that, in perishable product supply chain design, a trade-off should be defined between trans-
portation costs, shortage costs, inventory costs, product waste, and expected shelf life, suggesting to adopt a
multi-criteria approach. However, Yakovleva et al. (2012) point out that experts give considerably different
relative weights to various elements of sustainability in the supply chain, while Kaipia et al. (2013) observe
that the sustainability (in terms of waste reduction) of the perishable food chain needs more efficient infor-
mation sharing.

The approach presented in this paper refers to the operational level of a supply network in which the supply
configuration (i.e., actors, products and supply policies) is fixed at a prior decision phase and the supply
management is conducted in co-operation by suppliers and retailers. Thus the considered models rely only
on four KPIs accounting for waste, freshness, stock-out and residual stock. Indeed, in the fresh food busi-
ness these are among the ones that are used in practice. However, the previous discussion and the relevant
literature suggest that for further research, in a more general context or for more integrated approaches, it is
worthwhile to enrich the set of KPIs to consider customer service and supply chain costs, risks, uncertain-
ties, and sustainability issues (Abbou et al. 2017; Diabat et al. 2012; Simangunsong et al. 2012; Yakovleva
et al. 2012).

1.2 Contribution

In this paper, we address the problem of sales forecasting and order planning integration in a unique soft-
ware tool, which is framed within the general problem of supply chain management, for a set of fresh
and highly perishable packaged food products. This goal is reached by designing a modular and reliable
DSS, whose main building blocks are the following: the first one addresses sales forecasting adopting an
automatic individual model selection approach; the information about sales forecasts is then used as in-
put for a multi-objective optimization algorithm to define the best order policy. Data, coming from a set
of small and medium sized retailers operating in Apulia region, Italy, collected for model estimation are
pre-processed for a two-fold reason: identify seasonality and remove noise. Following an individual model
selection approach, three different forecasting model families are considered; besides, the DSS has a mod-
ular architecture, so it is open to include other model families or consider possible judgmental adjustments
on forecasts. The first family is one of the best known classes of mathematical models for time series fore-
casting represented by the Autoregressive Integrated Moving Average (ARIMA) models (Box et al. 2008).
ARIMA models are widely used in statistics, econometrics and engineering for several reasons: (i) they are
considered as one of the best performing models in terms of forecasting, (ii) they are used as benchmark for
more sophisticated models, (iii) they are easily implementable and have high flexibility due to their mul-
tiplicative structure. Nevertheless, they do not take the effect of exogenous variables into account. In the
case study under investigation, sales of fresh goods are influenced by prices and the impact of the latter on
the forecasting process should be considered. Several alternative approaches can be found in the literature
that make forecasting more robust and reliable by including the effect of exogenous variables. The easiest
approach is to adapt ARIMA models to account for the aforementioned variables, obtaining the so-called
ARIMAX models (Box et al. 2008). Another common technique is based on the identification of a transfer
function (TF) relating the time series of the variable of interest with the one of the exogenous variable
(Makridakis et al. 2008). We investigated the performance of these model families on our data set. Specifi-
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cally, given a time series, for each family the best model is identified and estimated by varying parameters
in predefined intervals. The best parameter setting for each family can be selected according to two alterna-
tive approaches. The first is a grid search based tuning framework that adopts a set of statistical indicators.
The second is the Sequential Parameter Optimization (SPO) framework proposed by Bartz-Beielstein et al.
(2010): it makes the parameter tuning automated according to modern statistical techniques based on meta-
models’ construction and design of experiments. The SPO framework is very general and it is considered
an efficient and effective tuning procedure in a variety of applications (Bartz-Beielstein et al. 2010).

The DSS includes a module devoted to automatically operate an individual (i.e., item-location) forecasting
model selection—on the basis of some general user-defined criteria—the tuned forecasting model, among
those preliminarily chosen for each family, which provides the input data (i.e., the forecasted demand)
for the multi-objective optimization method. The latter is designed to be user-interactive and to provide a
Pareto front of optimal order proposals according to some crucial Key Performance Indicators (KPIs) for
packaged fresh and perishable products such as outdatings, stock-out and freshness of goods in the context
of a pre-configured supply network in which the planning activities are conducted in co-operation by sup-
pliers and retailers. The modular structure of the proposed DSS enables to easily consider different KPIs of
interest for different research works and applications. We propose to compute the order proposal through
a meta-heuristic approach, based on a genetic algorithm, that considers the forecasting sales as a proxy of
demand. Then, the user (i.e., the manager) specifies the criteria for selecting an order plan among the pool
of non-dominated solutions identified by the optimization module. Therefore, the DSS provides the order
proposal to be implemented on the basis of the manager preferences. Demand uncertainty is also taken
into account through a simulation analysis to assess the impact of demand perturbations on the optimal
order quantity. A scheme describing the proposed DSS is displayed in Figure 1. As described above, each

data - )
objectwes constraints

SALES FORECASTING

ORDER PLANNING

noise | data seasonality

Pareto front

order
proposal

order
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Figure 1.: DSS.

building block implements specific approaches and algorithms and their integration into a user interactive
system is an innovative contribution in order to provide a well defined DSS that combines the order plan-
ning problem with sales forecasting, making it tailored for real world applications.

The paper is organized as follows. Section 2 details the building blocks of the proposed DSS, which com-
bines pre-processing, alternative tuning procedures for the different forecasting model families, statistical
indicators for model selection, and order planning. Next, computational results are discussed in Section 3:
specifically, we investigate the DSS performance under different alternative configurations based on pos-
sible user preferences. Intermediate forecasting results are analyzed and also compared to some models
belonging to the exponential smoothing family (Makridakis et al. 2008). The latter represents a robust
approach commonly used in practice in this area, often implemented in the forecasting and supply chain
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planning systems available commercially (Fildes and Petropoulos 2015; Leung and Bhaskaran 2011). They
are previously adopted by the retailers participating in the case study for sales forecasting, and taken here
as benchmark. Finally, conclusions are drawn in Section 4.

2. The DSS structure

In the following we discuss the methods adopted in the proposed DSS for order management, as illustrated
in Figure 1. Specifically, in Section 2.1 we first describe the data pre-processing step of the forecasting
module. Then, we use the pre-processed data as input for the model tuning block, which requires the user
to specify the tuning approach (either grid search or SPO based). This block is composed of an automatic
tuning procedure and a statistical analyzer to select the best model. Three forecasting techniques (ARIMA,
ARIMAX and TF) are described in Section 2.2, while tuning procedures and indicators are reported in
Section 2.3. The module devoted to the dynamic selection of the forecasting model to use in the current
planning activity is described in Section 2.4. The order planning module, consisting of a multi-objective
optimization block and an order plan selection block, is finally discussed in Section 2.5.

2.1 Pre-processing

Data, coming from a set of small and medium sized retailers operating in Apulia region, Italy, are collected
for model estimation and need to be pre-processed for a two-fold reason: identify seasonality and remove
noise.

Sales are normalized as follows. Let y; be the quantity of product P sold in store V at time ¢. Then, the
corresponding normalized quantity z, is

Zl:yr;,u, (1)

where u and G are the sample mean and the standard deviation, respectively, of time series y, over the data
set under investigation.

Seasonality typically emerging from historical sales can be detected by applying an Independent Compo-
nent Analysis (ICA) (Hyvérinen and Oja 2001), a well known Blind Source Separation (BSS) technique
widely used in signal and image processing to extract the most significant information from the given data.
In our study, we assume that the sales time series are linear combinations of several mutually independent
components. ICA finds these components by minimizing the mutual information between the unmixed time
series. Before applying ICA, a pre-processing step is required in order to get the major advantage. This step
is called pre-whitening and consists in uncorrelating the time series and reducing the data dimensional-
ity; i.e., pre-whitening performs a Principal Component Analysis (Jolliffe 2002) and discards the principal
components with lowest variance, which are associated to the noise affecting the sales data. Based on the
impact of noise on historical sales, the pre-processing module might filter this noise in case it represents a
significant component of the original time series.

2.2 Sales forecasting

Concerning the model selection procedure each time-series is decomposed in three distinct time-segments:
a) training set, used for training the considered models; b) validation set, used to compare the methods and
select the best performing one; and c) test set, which provides the forecasting horizon where the selected
models are tested to get forecasts after refitting over all samples from both training and validation sets. As
mentioned in Section 1, we adopt three time series forecasting model families: ARIMA, ARIMAX and TF.
The latter two methods account for prices’ effect on sales.
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2.2.1 ARIMA models

Let z, be the realization of a stochastic process at time 7, that is an observation of time series at time ¢, and
let a; be a random variable with normal distribution, having zero mean and variance equal to 62. Thus, the
random variable a, represents the realization at time ¢ of a white noise process. An ARIMA model with
seasonality is defined as follows:

0,(B)®p(B*)VIVPz = 0,(B)O(B")a;, (2)

where B is the backward shift operator which is defined by Bz, =z, and

0p(B) =1—0;B—:B°...—§,B", 3)
Op(B) =1—D B —P)B* ... — PpB™, (4)
0,(B)=1-0,B—6,B*...— 0,87, (5)
0y(B’) =1—0,B' —0,B*... — ©yB%, (6)
V¢ =(1-B)", (7)
VP = (1-B%)P. ®)

The parameter p defines the order of the autoregressive non-seasonal component, g defines the order of the
moving average non-seasonal component, and the parameter d represents the order of non-seasonal integra-
tion necessary to obtain a stationary time series. The parameters p, g and d are commonly used for referring
to non-seasonal models in a concise way. For more complex models, in which a similar pattern at regular
time intervals is observed, it is more realistic to take seasonality under consideration. A data set comprised
of food sales on large-scale stores is typically affected by a weekly seasonality, which reflects the cus-
tomers’ habit to buy foods especially on the weekend. The seasonal component is defined by the parameters
P, D and Q, where P defines the order of the seasonal autoregressive component, Q defines the order of the
seasonal moving average component, and D is the order of seasonal differences. Finally, s defines the time
series’ seasonality. A seasonal ARIMA model is synthetically described as ARIMA(p,d,q) x (P,D,Q)s.
Model tuning and parameters’ identification is performed by the module discussed in Section 2.3. A dis-
advantage of classical ARIMA models is that the effect of exogenous variables on data is not taken into
account. In the following sections we present the alternative forecasting model families included in our
DSS.

2.2.2 ARIMAX models
ARIMA model with exogenous variables, also referred to as ARIMAX, can be defined as follows:

¢,(B)®p(B")V'VPz = 8,(B)@¢(B")a, +Bxi, ©)

where x; is the vector of exogenous variables and P is the vector of regression coefficients. The latter has
to be estimated and its initial value is set equal to the canonical correlation between z; (series of sales) and
x; (series of prices). According to Makridakis et al. (2008), defining P as a regression coefficient is not
appropriate, so they propose an alternative formulation of the ARIMAX model. As the difference between
these two models is not remarkable, we implement the ARIMAX forecasting model (9) as it is more sim-
ilar to the classical ARIMA model; i.e., the two models preserve a similar theoretical structure. The best
ARIMAX model for a given time series will be selected by the procedures discussed in Section 2.3.
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2.2.3 TF Models

TF models are based on the assumption that the relation between time series and exogenous variables can
be modeled by a TF (to be estimated) plus an error vector described by an ARIMA model. More formally,

X; +ny, (10)

where the TF is defined by v zeros, r poles and a delay b, with

o(B) = wy — wB—0,B>... — 0,B", (11)
8B)=1-8,B—&,B*...—§,B", (12)

and the error vector 7, is described by the following ARIMA model
0,(B)®p(B°)V'VPn, = 0,(B)Oy(B)a; . (13)

Unlike the previous two models, in this third one additional parameters have to be estimated, namely pa-
rameters v, r and b. Therefore, a TF model will be described by a tuple (p,d,q) x (P,D,Q), x (v,r,b), whose
values will be identified as discussed in Section 2.3.

2.3 Model tuning and selection

For each forecasting model family, given a data set (i.e., an item-store sales time series), the best forecasting
model to use has to be identified. In the literature, diverse approaches are proposed for accomplish this task
(e.g., see Box et al. (2008)). Our DSS implements two procedures, namely a grid search (GS) and the SPO
approach, which are discussed in the following sections 2.3.2 and 2.3.3, respectively. The user is required
to specify in the system configuration the identification approach to apply for model tuning (the default
choice is SPO), together with the forecasting families to consider for the pre-processed input data (the
default choice is ARIMA). Both GS and SPO procedures use a set of statistical indicators which will be
introduced in the following section.

2.3.1 Statistical Indicators

In this section we analyze the tuning and selection phase in more detail and provide a complete description
of the statistical indicators adopted to identify the best model for each family in the forecasting module of
our DSS. As the tuning and selection procedure refers to the training set and the validation set (previously
introduced in Section 2.2), these indicators can be divided into two groups, in-sample (referring to the
training set) and out-of-sample indicators (referring to the validation set). We perform the so-called in-
sample analysis, working on the training set, to identify a set of non-dominated models with respect to the
first group of indicators. Then, in order to finalize the search for the most accurate model, we perform the
so-called out-of-sample analysis on the validation set, which is used to compare forecasts to observed data,
and to assess the effectiveness of the forecasting model in order to individuate the best representative for
each considered forecasting model family.

In-sample indicators. This subset includes indicators that are computed on the training set. These are
mostly used as lack of fit measures, based on the information entropy and parsimony of models. Thus, the
objective of in-sample analysis is to measure the matching between real data and simulated data obtained
by the mathematical model under analysis.

We compute two different indicators: the Ljiung-Box test and the Hannan-Quinn Information Criterion
(HQC) (Box et al. 2008; Burnham and Anderson 2002). The Ljiung-Box test is a statistical test in which
the null hypothesis is that the autocorrelations of the residuals are assumed to follow a white noise process.
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HQC is a well known criterion used to quantify the entropy of the information and the information lost in
the fitting process. It can be used under the assumption that the residuals are independent and identically
distributed, and it tends to penalize lack of parsimony. The interested reader is referred to Burnham and
Anderson (2002) for a detailed description of these (and others) in-sample indicators.

For the sake of implementation of our forecasting models, the proposed indicators are used as follows:
a non-domination analysis is performed with respect to variance, residuals and HQC for all the models
obtained by changing the tuple of parameters, e.g., (p,d,q) x (P,D, Q) for ARIMA models. The dominated
models, as well as models not satisfying the Ljung-Box test, are excluded by the next analysis, while the
remaining models undergo the out-of-sample analysis.

Note that the joint use of both the Ljiung-Box test and the HQC indicator is relevant from a theoretical
standpoint. In fact, the uncertainty associated to the forecast provided by the model strictly depends on two
assumptions: (i) the time series model describing data is correctly identified and (ii) the residuals follow
a normal distribution; see Chatfield (2001). In this respect, the HQC indicator supports the selection of
the best model (see e.g. Hyndman and Khandakar (2008)), while Ljiung-Box test guarantees the normal
distribution of residuals.

Out-of-sample indicators. The out-of-sample indicators are well known statistical indicators for qual-
ity and accuracy of forecasting (Makridakis et al. 2008; Makridakis and Hibon 2000; Armstrong 2001).
Specifically, we use them to compare forecast data and real data within the validation set and to make a
quantitative comparison among different models in terms of quality of forecast, working on the models
passing the previous in-sample analysis.

The first group of indicators includes absolute measures: they are scale dependent and for this reason can
only be used when computed on the same data set, but they cannot be used to compare the behaviour of a
forecasting model on different data sets. Let us define f; as the forecast of quantity of product P (indicated
as z;) sold in store V at time 7 € {1,...,n}, where n denotes the size of the validation set. We compute the
following indicators:

e Root Mean Squared Error (RMSE):

i(zt —fi)?,

t=1

1 n
e Mean Absolute Error MAE): — Z |z — fi],
.3

S | =

e Maximum Absolute Error (MaxAE): max |z — fi].-
1= n

geany

The second set of indicators is comprised of relative measures that are scale independent. We computed the
following indicators:

1 ¢ —
e Mean Absolute Percentage Error (MAPE):  100- — Z Lft ,
n3 <
e Maximum Absolute Percentage Error (MaxAPE): rrllax Z’Z_—f’ ,
t=1,...n !
n _ 2
e Coefficient of determination R: 1-— Z’n:l(zi[ftl ,
Yo (z—u)

where u is the average value of z; over the validation set. On the one hand, they allow to compare the
performance of the same model on data sets with different scales; on the other hand, MAPE and MaxAPE
are not defined for time ¢ in which the denominator is equal to zero. Thus, these indicators should be used
with caution in case of either missing data or data too close to zero. To this aim, we replace MAPE by the
following indicator:

-1 . Y |z — fi]
218 =Gl

proposed by Hyndman and Koehler (2006) to overcome the main issues related to the other measurements
(Hyndman 2006; Franses 2016). In particular, this indicator scales the absolute error (on the validation set)

e Mean Absolute Scaled Error (MASE):
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of the forecasting model under study by the error on the training set (indexed with j € {1,...,J}) associated
to the naive forecast, which takes the actual value of one period (;) as the forecast for the next period. For
seasonal time series, this indicator will be adapted using seasonal naive forecasts and, in this case, indicated
as Seasonal MASE (SMASE).

Finally, in order to assess the precision of forecast within the validation set, prediction intervals are com-
puted. They can be defined as an upper and a lower bound between which the future forecasted value is
expected to lie with a defined probability (Chatfield 2001). Thus, the 100(1 — )% prediction intervals are
computed as:

fi(h) £ 8aj2- /Varlzeen — fi(h)], (14)

where gq/> is the a-percentile point of the normal distribution of forecasting errors (modeled as white
noise), f;(h) represents the & steps ahead forecast made at time # and Var|z., — f;(h)] is the variance of
the i steps ahead forecast error made at time ¢; o is usually set at 5%. According to Chatfield (2001), for
time series forecasts based on ARIMA the variance of the forecast error is the Mean Squared Error (MSE),
under the assumption that the model is properly identified and that the residuals are normally distributed. As
stated above, the latter conditions are guaranteed by the in-sample indicators. Formally, the A steps ahead
MSE is defined as the expected square loss, E[(z:+4 — f;(h)|z;,x)?], conditional on time series z, up to time
t and to exogenous components x;, if they are included in the forecasting model. MSE provides information
on the forecast precision. Indeed, a forecast may be very accurate in terms of out-of-sample indicators,
meaning that there is a good matching between real and forecast data, nevertheless a high MSE reveals
that the forecast may vary within a wider prediction interval. That is, MSE is an indicator of the forecast
dispersion and this feature has been taken into account by including MSE as an additional out-of-sample
indicator.

2.3.2  Grid Search approach

We propose a grid search approach in which each model parameter ranges in predefined intervals; see,
for instance, Hoglund and Ostermark (1991). The main advantage of this approach is that an extremely
large set of combinations, i.e., forecasting models, can be compared and the resulting model may be very
accurate. On the contrary, the larger are the parameters’ intervals the higher is the required computational
effort, since a set of statistical tests and analyses have to be performed for every considered forecasting
model.

In the grid search approach for ARIMA and ARIMAX, we consider all possible combinations of parameters
p,d, q, P, D and Q ranging in predefined intervals, while seasonality s is set based on results from the pre-
processing phase. For each tuple (p,d,q) x (P,D,Q), the maximum likelihood principle is adopted for
model parameters’ estimation. Then the analysis of the forecasting model is conducted by means of two
kinds of statistical indicators, in-sample and out-of-sample, that are used to determine the best model.
Such indicators have been described in Section 2.3.1. For TF, the grid search is implemented as follows:
parameters v and r range in predefined intervals, while parameter b is estimated according to the maximum
likelihood principle. In order to choose the best value of unknown parameters, for each pair (v,r) the
simulated time series Z; is defined as

21‘ = .xt. (15)

The original time series z; is compared to Z, and the following goodness of fit measure F is computed:

F:100.<1— ”ZZ”>, (16)
|z — |

where p is the average value of z, over the training set. The pair (v,r) providing the best fitting F is selected
and the error vector is computed as n, = z; — Z;. This component is described by an ARIMA model whose

10
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parameters are estimated through the grid search approach proposed above for ARIMA models.

2.3.3 SPO approach

The main drawback of the GS approach is that, regardless the forecasting model to be tuned, computational
cost for determining the best parameter setting may be very high, thus it is necessary to let parameters range
within intervals of limited size. In order to pursue efficiency in tuning the forecasting models, we embed
an automatic tuning procedure in our DSS, based on the SPO framework proposed by Bartz-Beielstein
et al. (2010). SPO is a heuristic that combines classical and modern statistical techniques; it can be used in
scenarios where performing an exhaustive parameter tuning is too complex and time consuming, because
of the heavy number of parameter combinations. The general idea of the SPO framework can be described
as follows:

(1) define a budget (e.g., number of forecasting model estimations), an initial population (i.e., a set of
parameter settings) and an objective function (i.e., an out-of-sample indicator);

(2) starting from the initial population, explore the search space and infer information about the evolution
of the objective function by building a metamodel;

(3) based on predictions by the metamodel, define new design points and increase the search space;

(4) refine the metamodel until budget is available.

The SPO framework tries to determine a functional relationship between a parameter setting and the objec-
tive function by building a metamodel. Many different metamodels, such as standard regression techniques,
tree-based regression or Kriging models (Bartz-Beielstein et al. 2010), are supported by the SPO approach.
In particular, we adopt Kriging models in our implementation since they are among the most frequently
used. The metamodel is used to predict MAE for a new and wider set of parameter settings. The setting
with the best expected improvement is selected (Bartz-Beielstein et al. 2010), the population is increased
and it is used to refine the metamodel. The whole scheme is repeated until the budget is consumed. The main
feature of the framework is that the model to be tuned is treated like a black box. Thus we can use ARIMA,
ARIMAX or TF models without any distinctions. We define a budget equal to a maximum number of pa-
rameter estimations of the forecasting model. The initial population, i.e., the alternative parameter settings
to test the model forecasting performance, is designed according to the Latin Hypercube Sampling (LHS),
introduced by McKay et al. (1979) for computer experiments and allowing to define space-filling designs.
For each parameter setting the forecasting model is estimated and the out-of-sample indicator MAE (see
Section 2.3.1) is used as objective function to measure the forecasting quality. Note that, for the TF model,
it is necessary to make two parameter estimations, thus the SPO approach is performed twice: parameters
(v, r) are estimated according to the best goodness of fit measure F defined in (16), then parameters (p,d,q)
and (P, D, Q) are estimated according to the best MAE.

2.4 Dynamic Forecasting Model Selection

Automating tuning operations in the design of a forecasting system is relevant when a high number of
item/store combinations needs to be analyzed (i.e., a micro-forecasting approach is adopted). Besides, we
investigated different models (i.e., ARIMA, ARIMAX and TF) and—in general—no method always dom-
inate the others (Petropoulos et al. 2014). Therefore, an autonomic character of the forecasting module is
of high practical interest also to choose the forecasting method to use (in an actual instance) without the
necessary intervention of the decision maker (Wagner 2002). In fact, the user or the decision maker at the
store level should not be exposed to the complexity of the forecasting system. In general, he/she often has
neither the expertise nor enough time to directly configure these technical details, and should only pay
attention to items with the highest volumes (or values) or to exceptions. To this aim, the proposed DSS is
equipped with a Model Selection Module (as reported in Figure 1) devoted to analyze the set of candidate
forecasting methods considering different criteria (e.g., RMSE, MAE, MaxAE, MASE, MaxAPE, R2, and
MSE, already used for model validation purposes).

Our procedures derive, for each forecasting model family, a group of non-dominated models on the basis
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of in-sample indicators; then, they further perform a non-domination analysis by means of the selected
out-of-sample indicators. Among the latter non-dominated models, the selection procedure concludes by
choosing, for each family, the model with the best performance in terms of MAE. The reason for adopting
MAE as the criterion for the final choice was agreed with the management, as retailers are mostly interested
in minimizing the absolute deviation from actual sales, rather than other measures.

The selection between forecasts produced by different models is conducted adopting an individual (for
each single item/store pair) approach, and the final choice among the available models can follow either a
specific (yet pre-configured) or user-defined rule. This approach has the advantage of taking into account
specific time series characteristics shown in each series individually in the period of interest. Moreover, the
performance of individual selection generally outperforms that of aggregate selection at the expense of an
additional complexity and computational cost (Armstrong 2001; Fildes and Petropoulos 2015). Neverthe-
less, tuning the forecasting model, which represents the most expensive component in the module, does
not need to be performed at each run of the DSS; investigating the frequency of such update goes beyond
the purpose of this study and deserves further research. Considering that inventory and order performances
are, in general, mainly affected by the forecast errors and their variance (Fleischmann et al. 2002; Nahmias
2011), in this paper we limit our analysis considering two main possible criteria: accuracy and variability,
while further investigations form a subject for future research. The considered criteria are associated to the
MAE and MSE model validation measures, respectively, and the analysis of the performance of the selected
models will be conducted—after a refitting using all the samples from both training and validation sets—on
the test set representing, in our study, the forecasting/planning horizon.

2.5 Order Proposal based on Sales Forecasting

Once one of the forecasting models is selected as described in Section 2.2, in order to apply that model
in the forecasting/planning horizon represented by the test set, we refit it using all samples available in
both the training and the validation sets. Then sales forecasts are obtained and they can be considered as a
proxy of expected demand and are provided as input to a multi-objective optimization algorithm. The aim
is to identify an optimal order planning policy according to multiple (and often conflicting) objectives—
reproducing management’s needs—namely minimizing stock-outs and waste, as well as maximizing the
quality of service perceived by customers, in terms of product freshness, while keeping residual stock
levels under control. Deriving an order proposal which guarantees the best trade-off among these objectives
requires a careful inventory management system. Specifically, it relies on the following assumptions:

e [tems are sold according to a First-In First-Out (FIFO) rule (Nahmias 2011); i.e., they are sold on an
oldest first basis.

e The age distribution of the on hand inventory has to be tracked daily, in order to identify outdates
resulting in waste. As a consequence, the age of sold items needs to be tracked as well.

e When a new order is delivered to the store, it consists of fresh units whose residual shelf life is exactly
equal to the nominal shelf life of the product; i.e., items arrive at the store with age equal to 1 day.

e [tems leave the system due to outdating when their age passes the shelf life, meaning they have just
expired and become waste.

Then, inventory is reviewed at the end of each day throughout the forecasting horizon, according to the
procedure illustrated in Figure 2. The notation adopted is summarized in Table 1. Based on this notation,
the following relation holds:

SL
L=Yr.
=1

From here, we compute the daily waste w; as the remaining number of units with age SL on hand (if any)
after satisfying the demand D;. If D, exceeds I°F, no waste is observed, as resulting from line 6 in Figure 2,
where the notation (-)* is introduced to represent max(0, ). Similarly, daily stockout s, occurs whenever
demand D, exceeds total on hand inventory I, including the order quantity delivered in day ¢, g;; otherwise,
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s; = 0, as resulting from line 7. Total on hand inventory at the end of day ¢ is then obtained by difference of
daily waste w; and demand D, from the total on hand inventory at the beginning of day ¢, /;, including the
order quantity delivered in day ¢, ¢;, if no stockouts occur (so that g, + 1, — D, > 0), otherwise the total on
hand inventory at the end of day ¢ is equal to 0. This gives the total on hand inventory at the beginning of
the next day, thus denoted as /,; in line 8.

Table 1.: Notation adopted by the order planning module.

Symbol Description

T forecasting horizon

t day in the forecasting horizon

SL shelf life

[ age of the item

1 number of units with age / in the starting inventory

A number of units on hand with age [ at the beginning of day ¢
I total on hand inventory at the beginning of day ¢

D, demand in day ¢

q: number of units ordered (and delivered) at the beginning of day ¢
wy waste at the end of day ¢

St stock-out at the end of day ¢

y! number of units with age / sold at the end of day ¢

! number of units with age / sold in the forecasting horizon

Inventory Review
: Inputs: T, SL, Dy, q;; 14: Outputs:
2 B, 155 T
15: Waste f1 = Zw,;
=1

3 I'e1,1=1,...,SL
g ()

SL
p 16: Freshness f, = ;
4 he 12110 PIARD Y IARY
= T
550 fort=1,....,T 17: Stock-outs f3 =) s;:
6: Wy <ItSL —D,)+ ] =1
7 — Dy — (g + Iz)]+ . 18: Residual stock f4 = IT41;
8: L1+ [(%JF I *Dt)+ *Wz]
9: forli=1,...,SL
10: Il o4yl
1 Ity —1 =yt
12: end
13: end

Figure 2.: Inventory review and KPIs computation for order planning.

As shown in Figure 2, the KPIs of interest are computed as follows: waste f; (line 15) provides the
overall number of items that must be discarded along the forecasting horizon due to outdating; freshness f,
(line 16) is computed by tracking the age of the product when sold to the customer, and then averaging over
the weekly sales; stock-outs f3 (line 17) express the cumulative unmet demand at the end of the forecasting
horizon; residual stock f4 (line 18) corresponds to the items remaining in stock at the end of the forecasting
horizon.

We formulate a multi-objective optimization problem based on the aforementioned KPIs, in order to derive
a plan covering the whole forecasting horizon (typically, a week). The proposed formulation accounts for
the following issues:
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e [ ot size constraint; i.e., orders are allowed only in multiples of a minimum order quantity.

e Fixed delivery date; i.e., orders can be delivered only in given days. The number and frequency of
weekly deliveries are established by the supplier and taken as input by our DSS.

e [ cad time, which determines when an order has to be placed in order to meet the delivery require-
ments.

The problem is solved through a meta-heuristic approach, based on a genetic algorithm implemented in
Matlab (MATLAB 2014), which adopts a variant of NSGA-II (Deb 2001). As a result of the optimization
process, we obtain a set of Pareto optimal solutions, which are non-dominated with respect to the four
identified objectives.

The following step of the order planning module is the selection of a single order plan among all the non-
dominated solutions computed by the meta-heuristic approach. To this aim, the order plan selection module
is called by the DSS. This module takes two inputs: the Pareto front of optimal solutions and an indica-
tion of the criteria defined by the user. Alternative criteria may be specified in order to take management’s
preferences into account. Among the most widely used selection rules we cite the following two: (i) an
aggregated objective function such as a weighted sum of the four KPIs, such that the non-dominated order
plan minimizing the aggregated objective function is selected; (ii) ranking the KPIs by relevance in lexico-
graphic order, thus selecting the best ranked non-dominated order plan.

It is clear that almost any kind of criterion may be introduced in the DSS. Moreover, the management’s
priority may change over time or it may depend on the specific kind of item and store, thus our DSS is
flexible enough to satisfy different user’s requirements. The order plan selection module (see Figure 1) is
introduced to this objective: without altering the overall structure and behaviour of the DSS, the user may
define the most suitable selection criteria fitting his/her needs.

The optimal order proposal is based on the forecasted demand provided by the forecasting module of the
DSS. As demand might deviate from its forecasted value, it may be helpful for the management to evaluate
the impact of demand uncertainty on the computed order proposal, in terms of KPIs variation. Therefore,
we perform an ex-post analysis in which, given the optimal order plan, the DSS simulates demand variabil-
ity and evaluates KPIs deviation. In particular, we simulate system performances for different realizations
(say, N) of daily demand. To this aim, we estimate the distribution of daily demand based on predictions
provided by each forecasting model. In particular, we assume daily demand to be normally distributed
(Stevenson 2015) with mean equal to the forecasted value and standard deviation derived from the square
root of the MSE associated to the forecast. Then, we sample N observations from the estimated distribution
and compute the KPIs associated to the optimal order proposal when demand equals each sampled real-
ization. Comparing the value of the KPIs for the base scenario to the N values of the same KPIs for the
alternative scenarios, we are able to estimate how sensitive the order plan selected by our DSS is to demand
variability. In particular, a small variability in the KPIs would be preferable to denote a stable order plan
with a limited impact of demand variability on system’s performances.

3. Experimental analyses

In this section we investigate the performance of the proposed DSS on a set of real sales’ data for a number
of sample items, chosen among the ‘best sellers’. Details on the available data set and the selected sample
products are reported in Section 3.1. After the pre-processing analysis, we study all the proposed forecasting
models using classical statistical indicators; to this aim, we identify a training set of 90 days, a validation
and a test set of 7 days each (corresponding to the usual length of the real planning horizon). Then, we
run the whole DSS to derive an order proposal by optimizing the KPIs introduced in Section 2.5, based on
forecasted sales provided by the model identified by the selection module described in Section 2.4. Finally,
we perform a sensitivity assessment of the KPIs due to forecasts’ uncertainty; this investigation helps the
management to evaluate risks in terms of potential performance losses caused by sales deviating from their
forecasts.
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3.1 Data Description

The data set used for designing and setting the DSS comes from a real fresh food supply chain. The available
data is made of three year sales, from 2011 to 2013, for a set of 19 small and medium sized supermarkets
operating in Apulia region, Italy. We have been provided with a set of 156 fresh products identified as
best sellers, for which the available sales were characterized by large and reliable values. Restricting our
analyses to the freshest items—i.e., those having a shelf life lower than two months—the remaining 113
products belong to nine food categories, represented in Figure 3 together with their percentage composition.
Tests have been performed on specific pairs of items and stores, according to the following criteria:

m Yogurt
\ ® Cheese
\ Milk/cream
Pasta
= Desserts

10% .
W 16%

Figure 3.: Fresh food classification for our data set.

2%

1%
= Cold cuts

; m Specialties

® Ready meals

u Others

e We selected products belonging to the three biggest categories (namely, cheese, yogurt and fresh
milk/cream), as they appear to be the most representative, covering 66% of the whole data set, as
emerging from Figure 3.

e For each of these food categories, we selected the products showing the highest sales volume.

e For each selected product, we compared sales on different stores and computed the correlation among
them; finally, we selected the store with the highest correlation.

Regarding store selection for a given product, we considered correlation as a measure of similarity among
sales on different stores. Indeed, given a store A, a high correlation between the corresponding time series
and the sales series from the other stores means that sales on store A precisely mimics the overall behaviour
of sales on all stores.

We propose four examples to illustrate the performance of the proposed DSS. The first example refers to
1 liter of milk, selected for being a common fresh item, with a very short shelf life (4 days). In the second
example we analyze another very common fresh product, 250 grams of mozzarella cheese, which has a
medium shelf life (18 days) and can be supplied as single items. Another example is based on 125 grams
of yogurt, having a medium-long shelf life (30 days). Finally, the last example considers 200 grams of
salmon, selected for having the highest sales’ volumes in our data set and a relatively longer shelf life (51
days). Key information on our sample products are summarized in Table 2. Further, Table 3 reports details
on historical sales, including minimum and maximum value observed on a daily basis, as well as sample
mean, standard deviation, and the corresponding coefficient of variation (CV), computed as the ratio of the
stardard deviation to the mean. We also specify the percentage of zero sales occurring throughout the time
horizon under study—apart from closing days, when sales are obviously zero. From here, it is clear that
zero sales have a negligible impact on the following DSS data processing, ranging between 1% to 5.6%
across the four sample products.
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Table 2.: Data on sample products.

Product Food Category Shelf Life Lot size Delivery days
(days) (# items)

Milk Fresh milk/cream 4 12 MON,WED,THU,SAT

Mozzarella cheese Cheese 18 1 MON, THU

Yogurt Yogurt 30 20 MON, THU

Salmon Specialties 51 10 TUE,SAT

Table 3.: Statistics on historical sales for sample products.

Product Min Max Mean Std.dev. CV % zero sales
Milk 10 47 20.89 11.43 0.55 1.0%
Mozzarella cheese 3 25 9.31 581 0.62 1.1%
Yogurt 13 63 25.83 16.81 0.65 5.6%
Salmon 2 26 8.36 5.87 0.70 2.2%

3.2 Data pre-processing

To identify seasonality in sales, we run ICA in its JADE implementation (Cardoso 1999). The pre-whitening
procedure mentioned in Section 2.1 reveals that only one principal component is characterized by high vari-
ance, thereby reducing the problem dimensionality to one component. The remaining principal components
are associated to the noise affecting historical sales data.

For each product, a seasonality of 7 days is observed. This is typical of food sold on large scale distribution
in which customers tend to have well defined cyclical behaviour.

Concerning the impact of noise on the historical sales, we observe that it is less than 1% and, therefore, we
process the original sales time series without filtering it.

3.3 Forecasting models

All forecasting models are implemented in Matlab and, even if different and faster implementation are
possible, the analysis of the computation times among the considered models is fair. In our implementation,
the user is required to specify store and item, retrieved by a database, the forecasting/planning horizon,
and what kind of exogenous variables has to be accounted for (in our study, the price). When tuning the
forecasting models, the following intervals have been set for their parameters:

e for grid search based tuning, we let p, d, ¢, v and r vary in the set {0,1,2}, while P, D, and Q may
take values O or 1; we also set b = 0, as no delay is expected;

e for SPO-based tuning, we set the interval [0, 3] for all parameters (p, d, ¢, P, D, Q, v, and r), while
keeping b = 0.

In fact, because the SPO approach explores the parameters’ search space more efficiently, we used this
framework to investigate whether increasing the intervals’ width might provide better forecasting results
while keeping computational time under control.

Table 4 provides validation results of the six forecasting models (i.e., one for each family and for tuning
method) in terms of out-of-sample indicators, the bold values denoting the best value for each indicator.
Notice that, whenever historical sales are zero, we do not include them in the computation of MaxAPE.
In fact, dealing with best-selling products, no sales are mostly due to store closings while being seldom
observed during the week, as confirmed by sparsity results from Table 3. When this is the case, it appears
reasonable to exclude the corresponding prediction error from the computation of the out-of-sample indica-
tor. Zero-demand samples still impact on all the other error measures, which are well-defined also for these
values. The computational times (in seconds) required by the different methods (including tuning/selection
and forecasting activities) are also reported in Table 4. The out-of-sample analysis shows that ARIMA
and ARIMAX have a quite similar performance, while TF performs worse, especially in the basic version,
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Table 4.: Validation (out-of-sample) analysis for milk.

ARIMA ARIMAX TF ARIMA-SPO ARIMAX-SPO TF-SPO
da) | (L,0,0)  (0,0,1) (0,000 | (3,0,1) 0,0,0)  (3.0.2)
(P7DaQ)s (1’1a1)7 (171a1)7 (171a1)7 (2?070)7 (0’270)7 (03070)7
(V,I’,b) - - (17170) - - (37070)
RMSE 2.79 2.87 3.72 2.14 2.85 2.72
MAE 2.49 2.38 3.08 1.78 2.26 2.12
MaxAE 4.57 5.03 6.98 3.70 6.43 4.56
SMASE 0.51 0.49 0.63 0.36 0.46 0.44
MaxAPE | 30.60% 34.78% 58.16% 10.27% 20.22% 22.78%
R? 92.36%  91.90%  86.38% 95.51% 91.99% 92.72%
MSE 31.32 31.32 64 46.98 50.98 128.02
time(sec) 233 318 224 475 533 724

showing, in this case, a not relevant impact of prices. When integrated with SPO the differences among the
three models are smoothed over: the integration of every model with SPO substantially increases the com-
putational time (more than 50%, on average) but it also improves the performance indicators in almost all
cases. ARIMA-SPO seems to be the best performing model according to the adopted statistical indicators,
while TF is the least time-consuming.

Concerning mozzarella cheese, Table 5 shows results for the out-of-sample statistical indicators. In this

Table 5.: Validation (out-of-sample) analysis for mozzarella cheese.

ARIMA ARIMAX TF ARIMA-SPO ARIMAX-SPO TEF-SPO
(r.dg) | (1,1,2)  (0,0,0)  (2,0,0) 2,0,1) (1,0,3) 2,0,2)
(PaDaQ)s (17171)7 (170a0)7 (17170)7 (07273)7 (01070)7 (27070)7
(v,1,b) ; ] (2,1,0) - - (3,1,0)
RMSE 4.69 4.05 3.13 3.63 2.04 1.78
MAE 3.94 3.58 2.59 2.79 1.75 1.50
MaxAE 7.78 6.45 5.65 7.97 3.81 3.43
SMASE 1.24 1.12 0.81 0.88 0.55 0.47
MaxAPE | 66.79%  65.26%  54.90% 46.81% 63.54% 48.93%
R? 8.82% 32.17%  59.52% 45.25% 82.72% 86.92%
MSE 9.12 13.48 18.24 13.19 17.9 19.92
time(sec) 245 307 231 506 493 715

case, TF is the best performing among the basic models in terms of computational time and all the statis-
tical indicators except for MSE. Considering the integration with SPO, TF-SPO is the best one except for
MaxAPE, MSE and computational time. Hence, in this case, prices have a relevant role as exogenous data.
Again we notice that the SPO approach allows to improve the out-of-sample indicators at overall computa-
tional time’s expense. However, the tuning phase is not always required at each use of the system allowing
significant savings. Results for yogurt are summarized in Table 6. It is evident that there is no model clearly
outperforming the others over all the indicators. We note that negative values of R? observed for almost all
models do not reflect a low forecasting accuracy, as supported by the other indicators; rather, it depends
on the limited variability of historical sales around their average values: based on the definition of the R?
coefficient, this makes the denominator very small thus implying a negative R>. The validation analysis
for salmon is reported in Table 7. ARIMA-SPO seems to be the best model in terms of RMSE, MaxAE,
MaxAPE and R? while ARIMAX-SPO performs slightly better as far as MAE and SMASE are concerned.
ARIMA is the least time consuming model; note that the forecasting quality of the three models with SPO
is almost comparable, but the average MSE is higher than the models using GS, that is, the provided fore-
cast is the least accurate one. Conversely, ARIMAX is the model with the smallest average MSE. Overall,
TF and ARIMAX seem to outperform ARIMA in terms of all the out-of-sample indicators.
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Table 6.: Validation (out-of-sample) analysis for yogurt.

ARIMA ARIMAX TF ARIMA-SPO ARIMAX-SPO TF-SPO
(pdg) | (O11)  (LL,2) (1,1 (1,0,2) 2,11) (2,0,2)
(P7DaQ)S (17071)7 (1>1a0)7 (171a0)7 (2?172)7 (2’133)7 (13071)7
(erab) - - (27170) - - (173’0)
RMSE 2.65 2.35 2.95 2.70 2.52 2.96
MAE 2.20 1.35 2.11 2.12 2.05 1.99
MaxAE 5.38 5.92 6.29 4.72 4.87 7.08
SMASE 0.55 0.34 0.53 0.53 0.51 0.50
MaxAPE | 89.69% 98.71% 104.81% 77.77% 97.30% 33.52%
R? —17.46% 7.711% —46.37% —22.29% —6.49% —47.43%
MSE 15.2 17.9 28.65 24.48 25.18 23.42
time(sec) 225 331 232 383 440 613
Table 7.: Validation (out-of-sample) analysis for salmon.
ARIMA ARIMAX TF ARIMA-SPO ARIMAX-SPO TF-SPO
(pdg) | (1,0,0)  (1,0,0) (2,02 | (LLD 0,1,3) 1,10
(PaDaQ)s (071a1)7 (170,1)7 (17071)7 (371?2)7 (1a272)7 (37172)7
(v,r,D) - - (2,1,0) - - (2,1,0)
RMSE 6.94 5.34 5.21 4.12 4.22 4.28
MAE 4.96 4.21 4.08 3.59 2.98 3.33
MaxAE 13.74 11.51 10.15 6.90 9.85 8.30
SMASE 0.58 0.49 0.48 0.42 0.35 0.39
MaxAPE | 35.23% 20.56% 26.70% 18.68% 25.93% 21.54%
R? 80.24% 88.31% 88.87% 93.05% 92.71% 92.48%
MSE 93.3 70.6 115.82 129.94 474.71 251.48
time(sec) 219 299 241 465 512 722

Summing up, if we consider all the out-of-sample indicators and compare all the selected models, ARIMA-
SPO is the non-dominated model for milk, ARIMA-SPO and TF-SPO are the two non-dominated models
for mozzarella cheese, ARIMAX, ARIMA-SPO and TF-SPO are the non-dominated models for yogurt,
while ARIMA-SPO and ARIMAX-SPO are the two non-dominated models for salmon. Taking the compu-
tational time into account leads to different conclusions, as the integration of the forecasting models with
SPO almost doubles the total solve elapsed time. ARIMA seems to be preferable for milk, while ARIMAX
performs better for yogurt and TF seems to provide the best compromise between forecasting quality and
computational burden for mozzarella cheese and salmon. This behaviour may be affected by the impact
of prices: for primary goods and highly fresh products, such as milk, having a shelf life of a few days,
price seems to be irrelevant for the forecasting process, also because their high perishability prevents from
buying too many pieces when the price is lower. On the contrary, for secondary goods, such as mozzarella
cheese, salmon and yogurt, price plays a more relevant role.

The family of Exponential Smoothing (ES) models represents a simple robust approach commonly used in
practice and also previously adopted in the application context under study (e.g., see Fildes and Petropoulos
(2015); Gardner and McKenzie (2011); McKenzie and Gardner (2010)). Hence, we consider three different
ES models as benchmarks, namely the simple ES (indicated as ETS), the seasonal ES (indicated as ETSs)
and the linear damped trend ES with seasonality (ETSDs). Table 8 reports a comparison of the selected
models with some Exponential Smoothing (ES) models in terms of both validation and test performance.
The results are summarized reporting the averages on the considered cases for the SMASE indicator ob-
tained in the validation phase and the MAE measured in the test phase. Notice that several models belonging
to the ES family can be expressed as an ARIMA and are among those investigated by the sales forecast-
ing module of the proposed DSS; therefore, they would be selected in case they perform better than other
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forecasting models. Comparing the forecasting performance of the ES models against the models tested

Table 8.: Performance comparison of ARIMA (A), ARIMAX (AX), and TF models with Exponential Smoothing
methods.

A AX TF A-SPO AX-SPO TF-SPO ETS ETSs ETSDs
SMASE (Validation) 0.72 0.61 0.61 0.55 0.47 0.45 1.31 0.74 0.89
MAE (Test) 049 041 042 037 0.32 0.32 096 049 0.59

by the DSS in terms of the out-of-sample indicators, it emerges that there is always at least one model per
group—either the one using a grid search or SPO—among those returned by the DSS which performs better
than ESs. These observations are confirmed by the results (in terms of MAE) obtained over the forecasting
horizon. When forecasts are poor, it is possible that the forecasting model is structurally inadequate, or that
the parameters of the model are not set properly. In general it is difficult for the user to distinguish between
the two cases. At this aim, the proposed DSS offers a simple-to-use tool able to give high quality forecasts
automatically adapting the structure of the forecasting model to the underlying data, if necessary.

3.4 Order Proposal

As emerging from the results discussed in the previous subsection, there is no forecasting model clearly
outperforming the others over all the analyzed products. Moreover, the forecast performance of a selected
model tends to deteriorate over time without adequate diagnosis and tuning actions. Therefore, it is use-
ful for the user to have a DSS that dynamically adapts to the available data, each time selecting the most
appropriate forecasting model according to some user-specified criteria. In fact, this avoids to choose a fore-
casting technique a priori, regardless of the specific characteristics of the underlying data. Specifically, the
proposed DSS implements two alternative final model selection criteria among those individuated for each
family: the accuracy criterion selects the model having the smallest MAE, corresponding to the smallest
deviation in terms of units of product; the variability criterion chooses the model with the smallest MSE,
which implies a more stable forecast. Combining these two criteria with the alternative tuning techniques
described in Section 2.3, we analyze four configurations. Summing up, we analyze the following four DSS
configurations:

Config #1 — grid search based tuning, accuracy criterion;
Config #2 — grid search based tuning, variability criterion;
Config #3 — SPO tuning, accuracy criterion;

Config #4 — SPO tuning, variability criterion.

For each of these four configurations, once sales forecasts are available from the forecasting module,
our DSS calls the order planning module aiming to identify an optimal order proposal with respect to the
KPIs (f; with i = 1,...,4) discussed in Section 2.5, assuming empty inventory at the beginning of the
planning horizon. So, we derive the optimal order plan associated to the daily forecasted sales, covering
the whole planning horizon; we refer to this scenario as the base scenario. The computational time to
solve the optimization problem usually remains below 30 seconds, thus impacting by less than 9% on the
overall computational cost required by each DSS configuration considered when tuning and selection of
the forecasting model are also performed.

After the multi-objective optimization algorithm computes the Pareto frontier, it is necessary to define a
criterion for the order plan selection module of the DSS. In our experimental analyses, we test the weighted
sum of KPI as selection criterion: specifically, the order proposal is derived by equally weighting the four
KPIs and selecting the one minimizing their weighted sum. Note that different combinations of weights can
be used to reflect the corresponding management’s policies.

Next, we analyse the variability of the four selected KPIs resulting from demand uncertainty. To this aim,
we sample N = 100 different realizations of daily demand over the planning horizon, using the estimated
probability distribution. This results in as many scenarios, including the base scenario. Then, we simulate
system’s performance in terms of its identified KPIs when different demands occur, as expressed by the
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N alternative scenarios, while the order proposal remains fixed at the optimal level associated to the base
scenario. We note that this analysis is usually very fast (less than 1 second, on average), so its contribution
to the overall computational cost is negligible.

For each product we compare the four DSS configurations over the following results:

daily sales forecasting along the planning horizon, denoted as forecasted sales;

daily sales variability as square root of the forecasting MSE;

sales coefficient of variation (CV), based on the daily average forecasted sales and variability;

order proposal for the base scenario;

expected inventory at the end of each day associated to the optimal order proposal in the base sce-

nario;

KPIs (fi1-f1) associated to the optimal order proposal in the base scenario;

e sample mean (avg_inventory) and standard deviation (stddev_inventory) of daily inventory resulting
from alternative scenarios generated during the sensitivity analysis;

e sample mean (avg_KPI), standard deviation (stddev_KPI), and coefficient of variation (CV_KPIs) of

the KPIs associated to the alternative scenarios generated during the sensitivity analysis.

Results are summarized in Tables 9-11, specifying also the forecasting model selected by the model selec-
tion module in each configuration. We also include box plots showing variability of the KPIs due to demand
uncertainty along the forecasting horizon. Possible outliers have been identified as follows: data points are
considered outliers if they fall outside the interval [q; —w(g3 — q1),93 +w(g3 — q1)], where ¢; and g3 are
the 25" and 75" percentiles, respectively, and we set w = 1.5 to guarantee 99.3% coverage, approximately
corresponding to £2.7c. Table 9 reports results for milk, which can be delivered every other day (see Ta-
ble 2 and zero values in the order proposal section of Table 9). We notice that overall weekly forecasted
sales are different across configurations, ranging from 135 to 146, while order proposals always sum up to
144, although with different assortments along the planning horizon. This may result in stock-outs and/or
residual stock at the end of the week (as in configs #1-2). Nevertheless, based on the choice of the weights
for the KPIs and due to lot size constraints, it turns out to be preferable to order less, thus accepting to face
stock-outs, instead of ordering one lot more to prevent stock-outs, rather risking to have waste. Figure 4
depicts the box plots associated to the KPIs for milk. Blue dots superimposed to the box plots correspond
to the KPI values for the base scenario, when demand equals forecasted sales. We also included squared
markers for the KPIs measured at the end of the planning horizon, resulting from the selected order proposal
having faced the historical demand, as it occurred in the planning horizon. Triangular markers reproduce
the KPIs we would obtain by optimizing the order proposal in the ideal case of forecasting sales perfectly
matching the historical demand observed at the end of the planning horizon.
We notice that zero waste is reached by all DSS configurations across the N scenarios, so we do not include
the corresponding boxplot. Freshness remains around 1.5 days for the base scenario: this is a satisfactory
result, since milk has a shelf life of 4 days, and in the base scenario it will be always sold within the next
half a day following the delivery day. Config #1 ensures the lowest freshness, both in terms of median and
in terms of variability across the N scenarios. The other configurations show similar behaviour with higher
median values — still remaining below 2 days — and increased variability, particularly for configs #3-4. All
configurations show similar stock-outs performance, being config #1 slightly better in terms of lower third
quartile and maximum values. All the other configurations show similar median and third quartile values.
The lowest residual stock is provided by configs #3 and 4, in terms of both quartile and maximum values.
Higher interquartile ranges are observed for config #2; it has high third quartile and maximum values.
Mozzarella cheese is delivered (at most) twice a week. Based on the delivery days specified in Table 2,
we notice from Table 10 that the DSS usually suggests to order as many units to fully cover the overall
forecasted sales up to the next delivery: in fact, mozzarella cheese is sold as single item, so the best KPIs
are obtained when ordering as many units as expected to sale. In the base scenario this ensures zero stock-
outs and residual stock at the end of the planning horizon. However, the identified order proposal becomes
subject to higher variability when tested in the alternative scenarios: in fact, both average stock-out and
residual stock values and their standard deviations increase. This is clearly shown in Figure 5, representing
the box plots of the KPIs. Again all DSS configurations ensure zero waste across the N scenarios, and are
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Table 9.: DSS configuration results for milk. Table 10.: DSS configuration results for moz-
zarella cheese.
# config 1 2 3
Forecasting model ARIMAX ARIMA ARIMA-SPO ARIMA-SPO # config 1 2 3 4
16 16 12 12 Forecasting model  TF ARIMA TE-SPO ARIMA-SPO
20 2 20 20
0 0 0 0
41 41 40 40 p 10 6 5
Forecasted sales 0 0 0 0
2 2 21 21 7 2 o i
o4 o4 2 0 Forecasted sales 10 9 12 11
0 8 0 8
21 21 20 20 11 12 10 10
537 532 6.07 6.07 18 " 1 s
5.55 5.59 6.17 6.17
555 562 6.17 6.17 424 300 44l 3.54
I 424 3.01 441 3.62
Sales variability 5.55 5.62 6.19 6.19
o e 019 619 429 3.01 4.48 3.65
5.55 5.62 6.19 6.19 Sales variability 4.29 3.01 4.48 3.66
P 62 6.19 6.19 429 3.01 448 3.66
Sales CV 023 023 0.27 0.27 429 3.01 4.43 2 66
% % 6 6 429 3.01 448 66
0 0 0 0 Sales CV 0.49 0.27 0.53 038
36 48 48 48 0 0 0 0
Order proposal 0 0 0 0 23 29 27 26
48 36 36 36 0 0 0 0
0 0 0 0 Order proposal 0 0 0 0
24 24 12 12 29 37 24 32
20 20 24 24 0 0 0 0
0 0 4 4 0 0 0 0
0 7 12 12 0 0 0 0
Inventory 0 7 12 12 17 19 21 21
26 21 27 27 10 10 12 12
2 0 5 5 Inventory 0 1 0 1
5 3 0 0 29 30 24 25
0 0 0 0 18 18 14 15
KPIs 1.35 1.39 1.64 1.64 0 0 0 0
5 5 3 3 0 0 0 0
5 3 0 0 KPIs 2.42 2.18 2.39 2.28
0 0 0 0
2011 20.65 22.88 22.88 0 0 0 0
3.87 277 4.65 4.65
) 261 10.05 13.46 13.46 0 0 0 0
Avg_inventory 261 10.05 13.46 13.46 1619  19.14 2029 20.68
2886  23.69 28.55 28.55 ) 827 1021 10.98 11.48
5.8 3.69 8.01 8.01 Avg_inventory 1.83 3.04 2.59 236
947 778 4.54 4.54 3083 3229 2659 25.84
498 5.69 592 592 1930 2020 1593 15.48
547 429 5.69 5.69 347 3.84 434 3.24
473 723 9.23 9.23 0 0 0 0
Stddev_inventory 4.73 7.23 9.23 9.23 3.53 3.10 4.34 3.18
6.91 8.66 11.02 11.02 4.96 420 5.86 4.62
5.90 542 8.62 8.62 Stddev_inventory ~ 3.02 3.78 4.03 3.68
7.01 6.77 7.25 7.25 3.02 5.29 4.03 5.21
0 0 0 0 5.05 6.55 5.74 6.05
1.48 1.53 1.71 1.71 4.40 5.05 5.40 491
Avg KPIs 755 9.28 9.26 9.26 0 0 0 0
9.47 7.78 4.54 4.54 2.44 2.26 2.48 228
I o o Avg KPIs 599 349 549 477
. : } } 347 3.84 434 324
Stddev_KPIs 762 1021 1062 10.62 o o o g
7.01 6.77 7.25 7.25
! ! al al Stddey KPIs 0.29 0.29 0.45 0.30
ol ol oo oot 6.59 5.26 6.08 5.44
: - : : 4.40 5.05 5.40 491
CV.KPIs 1.01 1.10 1.15 1.15 — - — —
074 0.87 1.60 1.60 CV KPIs 0.12 0.13 0.18 0.13
- 1.10 1.51 1.11 1.14
127 131 1.24 1.51

not reported in the figure. Freshness varies between 1.8 and 3.4 days, remaining below 2.5 days on average,
given a shelf life of 18 days for mozzarella cheese. Stock-outs show low median and limited variability in
config #2; values increase in config #4 and further worsen in configs #3 and 1, which has the highest third
quartile and maximum values. As for residual stock, the lowest quartile values and variability across the N
scenarios are provided by config #4, while the other configurations have higher median and third quartile
values.

Assuming to have no inventory at the beginning of the planning horizon and having fixed delivery days,
all yogurt forecasted sales for the first day result in stock-outs, as shown in Table 11. Figure 6 illustrates
the box plots related to the KPIs for yogurt, which can be delivered twice a week. All DSS configurations
guarantee zero waste (not reported) and high freshness, which always remains below 4.5 days, i.e., around
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Figure 4.: Box plots of the KPIs for milk.
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Figure 5.: Box plots of the KPIs for mozzarella cheese.

15% of its shelf life; the shortest interquartile range is provided by config #2, while configs #1, 3 and 4 show
similar performance, with higher variability. Stock-outs show the smallest variability in config #2, which
also has the lowest quartile values. The best residual stock is provided by config #1. While Configs #2, 3
and 4 have higher values for the first quartile and median values, and similar maximum values. Figure 7
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Figure 6.: Box plots of the KPIs for yogurt.

shows box plots of the KPIs for salmon, whose delivery days are the first and fourth day of the week. Again
zero waste (not reported) and (almost) no stock-outs are guaranteed by all DSS configurations in the base
scenario. Config #4 provides the lowest stock-out values across scenarios, while the worst is config #3,
having the highest median and third quartile values and the widest interquartile range. Given a shelf life
of 51 days, average freshness is also good, showing limited variability around 2.2 days, while remaining
always under 3.5 days; config #2 has the best quartile values and the lowest variability across scenarios.
Residual stock is zero or close to zero in the base scenario; similar performance is observed across scenarios
by configs #1-2: the latter has the lowest third quartile and maximum values, which slightly increases in
configs #1, and increases even more in configs #3 and 4.

The proposed tool combining simulation-based analyses and box plots appears to be adequate to evaluate
the KPIs’ variability induced not only by the forecasts themselves and the planning model but also by the
criteria adopted by the decision maker to select an order plan from the set of Pareto-optimal solutions. Such

22



April 13,2018

International Journal of Production Research IJPR 10°lug 2017 bn

Table 11.: DSS configuration results for yogurt. Table 12.: DSS configuration results for smoked salmon.
# config 1 2 3 4 # config 1 2 3 4
Forecasting model ARIMAX ARIMA TF-SPO TF-SPO Forecasting model TF ARIMAX ARIMAX-SPO ARIMA-SPO

7 3 6 6 25 35 31 36

9 9 10 10 28 34 28 31

6 7 6 6 26 29 28 23

Forecasted sales 12 11 8 8 Forecasted sales 32 35 36 37
0 0 0 0 53 44 58 54

7 6 6 6 0 0 0 0

7 4 7 7 29 28 27 31

427 391 472 472 10.79 8.08 11.26 10.29

427 3.91 472 472 10.79 8.35 15.92 11.37

427 3.91 4.87 4.87 10.80 8.36 19.50 11.59

Sales variability 4.27 3.91 4.87 4.87 Sales variability 10.80 8.36 22.01 11.64
427 3.91 493 4.93 10.81 8.36 24.26 11.65

427 3.91 493 493 10.81 8.36 26.31 11.65

427 3.91 493 493 10.81 8.36 28.22 11.65

Sales CV 0.53 0.59 0.68 0.68 Sales CV 0.34 0.24 0.58 0.32
0 0 0 0 110 130 130 130

40 40 40 40 0 0 0 0

0 0 0 0 0 0 0 0

Order proposal 0 0 0 0 Order proposal 0 0 0 0
0 0 0 0 80 70 80 80

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 85 95 99 94

31 31 30 30 57 61 71 63

25 24 24 24 31 32 43 40

Inventory 13 13 16 16 Inventory 0 0 7 3
13 13 16 16 27 26 29 29

6 7 10 10 27 26 29 29

0 3 3 3 0 0 2 0

0 0 0 0 0 0 0 0

KPIs 3.20 2.97 3.19 3.19 KPIs 2.19 2.20 2.32 2.23
8 3 6 6 3 5 0 2

0 3 3 3 0 0 2 0

0 0 0 0 84.88 94.49 99.42 93.53

30.17 3136 3003  30.03 55.80 59.74 69.58 60.89

2349 2462 2330 2330 . 30.48 30.32 41.55 37.85

Avg_inventory 12.6 13.69 15.29 15.29 Avg_inventory 7.49 4.87 11.93 9.79
12.60 13.69 15.29 15.29 34.03 31.42 33.00 36.31

6.42 750 8.99 3.99 34.03 31.42 33.00 36.31

258 407 420 420 10.77 7.18 13.07 10.64

0 0 0 0 971 7.68 12.10 972

445 370 447 447 16.41 11.89 18.50 15.40

571 495 6.03 6.03 19.45 13.80 24.51 18.24

Stddev inventory 6.54 6.47 751 751 Stddev_inventory ~ 12.41 8.01 17.50 12.63
6.54 647 751 751 18.77 12.83 24.41 17.78

6.17 6.19 709 709 18.77 13 24.41 17.78

408 544 558 558 17.95 10.79 19.48 14.29

0 0 0 0 0 0 0 0

2.29 224 2.35 2.29

Avg KPS Do n s nsm ECE 52 139) 226 1599
558 407 420 420 10.77 7.18 13.07 10.64

0 0 0 0 0 0 0 0

0.45 0.25 0.47 0.36

Stddev_KPIs ggg 2‘32 323 (7);7) Stddev.KPIs 19.37 14.77 29.58 19.48
408 544 558 558 17.95 10.79 19.48 14.29

018 014 019 0.9 CV KPIs 0.20 0.11 0.20 0.16

CV _KPIs 0.59 077 o 0,64 1.23 1.06 1.09 1.22
: ‘ ’ : 1.67 1.50 1.49 1.34

1.58 1.34 1.33 1.33

a tool provided support to compare the different DSS configurations investigated in this study. Overall, we
notice that all configurations have a significantly smaller dispersion than the historical one. Configurations
adopting SPO offer in general good performances not only in terms of quality of sales forecasting but
also in terms of KPIs’ dispersion. Configurations adopting the variability criterion (i.e., configs #2 and 4)
to select the forecasting model give, on average, lower dispersion of the predictions; however, this result
tends to be absorbed throughout the planning process due to the combined effects of solution integrality,
delivery days restrictions and lot size constraints. On the basis of these observations, it seems useful—from
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Figure 7.: Box plots of the KPIs for salmon.

an overall DSS performance and reliability point of view—to prefer configurations oriented towards more
accurate predictions, as those based on the accuracy selection criterion and SPO tuning.

4. Conclusions

In this paper we propose a modular and reliable DSS for sales forecasting and order planning in the supply
chain management of packaged fresh food products. The proposed DSS combines, in a unique, flexible and
easy-to-use software tool, a forecasting module to derive sales forecasts from historical data and exogenous
variables, supported by a model selection and tuning module for the automatic choice and configuration of
the forecasting method, and a multi-objective optimization module equipped with an order plan selection
module, to derive the best order proposal based on a set of KPIs accounting for cost and quality of service.
Three different forecasting model families were considered and tested on a set of sample products in a real
supply network.

Our results clearly show the benefits of deriving an optimal order proposal based on sales forecasting, ex-
plicitly accounting for demand variability and the possible impact of exogenous variables. The proposed
analyses highlight the capability of the DSS to absorb relevant differences in terms of forecasting behaviour,
thus limiting their impact on the order planning phase. Another advantage offered by this DSS relies on its
flexibility, as it is designed to be easy-to-use and to automatically run alternative approaches in terms of
forecasting and model tuning techniques, depending on the characteristics of the data set. In this respect,
we notice that results point out that there is no dominant forecasting model and there is not convenience
to use a single model for all the cases (i.e., pairs item/store), and also the performance of a model selected
for a specific case might deteriorates over time. Hence, instead of a one-size-fits-all approach, an individual
selection including the identification of the best method for each series is considered, though it is more
computationally intensive. More specifically, configurations using SPO tend to provide more accurate fore-
casts, although the computational time, when tuning is required, is higher than the configurations adopting
the grid search.

For a given configuration of the DSS, the forecasting model selected may change depending on the product
or the store under investigation, as well as on the specific period (i.e., sales time series) under study. In fact,
it is not required to identify the "best’ forecasting technique for a given product. Results show that almost all
forecasting techniques are selected at least once across the DSS configurations, which confirms there is no
technique always ‘worse’ than the others. Overall, this supports the usefulness of a DSS in identifying the
most appropriate forecasting model for the specific situation, accounting for both product’s characteristics,
its historical sales and user’s preferences. Specifically, it is preferable to adopt a DSS configuration pursu-
ing the accuracy criterion, as it provides more accurate sales forecasting, while its dispersion—whenever
relevant—tends to be absorbed throughout the planning process. In fact, as the sales forecasting module
can be computationally more expensive than the order planning module, particularly because of the micro-
forecasting environment we are working on, investing more computational resources on the forecasting
module might pay off in terms of reliability of the whole DSS.

Further research may focus on the forecasting side extending the considered families of forecasting meth-
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ods (e.g., including Exponential Smoothing and Neural Networks), and developing more sophisticated tools
for parameter tuning of models, and on performing long-run simulations (including the implementation and
test of both monitoring and re-tuning policies), e.g. over one year, to test alternative settings for the tun-
ing module (McCarthy et al. 2006). Moreover, further research efforts could be oriented to evaluate the
overall behaviour of the proposed DSS against the current supply chain; and design suitable robust plan-
ning approaches to cope with the uncertainty associated to the obtained forecasts (Fleischmann et al. 2002;
Simangunsong et al. 2012). Another interesting theme for future researches could be devoted to adapt and
extend the proposed approach to cases including products characterized by a random shelf life (Kouki et al.
2014) as often occurs for unpackaged fresh foods.

Many elements, such as market and weather conditions, competitor’s plans, last minute changes at retail
or supply side, promotions or festivities, as well as intermittent demand behaviour, may have an impact on
sales and considering their contribution in the forecasting process may represent promising future research
directions. The latter could be addressed considering managers judgment to adjust the statistical baseline
forecasts (Goodwin and Fildes 1999; Onkal et al. 2013; Syntetos et al. 2009).

The modular and flexible structure of the proposed DSS enables for an easy implementation of different
possible extensions for more general contexts or for more integrated approaches. At this aim, it is worth-
while to enrich the set of KPIs to consider customer service and supply chain costs, risks, uncertainties, and
sustainability issues.
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