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Abstract

The recent advancements in the surging field of Deep Learning (DL) have revolutionized
every sphere of life, and the healthcare domain is no exception. The enormous success of
DL models, particularly with image data, has led to the development of several computer-
aided diagnosis and clinical support systems. These intelligent imaging systems can help
physicians in numerous medical tasks including classification and staging of the various
diseases, image-guided surgical procedures, and many more. Additionally, the proliferation
of medical datasets has further facilitated the applications of DL techniques in healthcare
realm.

Moreover, all the perks DL offers are remarkable, however, DL architectures are typically
blackbox, i.e. they hide the decision making mechanism, therefore, interpreting how the
model arrived at a particular decision is hidden. Additionally, Convolutional Neural Networks
(CNNs), which are most widely used DL techniques, are prone to adversarial examples,
where small, imperceptible perturbations to the input data can cause the model to make
incorrect predictions. These facts question the applicability of DL in healthcare sector where
explainability holds paramount significance to build a trust on surging field of machine
learning.

The concept of eXplainable Artificial Intelligence (XAI) brings forward the possibility
of explaining the results of DL models and reveals how the models produce results. These
techniques aim to improve the transparency and interpretability of AI models, which can
enhance trust in their results and facilitate their adoption in clinical practice. XAI approaches
have the potential to advance the understanding of complex medical image analysis tasks
and improve the reliability of AI-based diagnosis and treatment planning.

The story does not end here, the XAI methods in the context of medical imaging generally
produce saliency maps and compute feature importance to explain the results of DL models.
The sensitive nature of healthcare industry, because of having the direct correlation with
human life, questions the authenticity of XAI outcomes, and demands a qualitative and quan-
titative measure to evaluate these evaluation methods. Furthermore, heatmap visualizations
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alone are often insufficient for achieving transparency and interpretability of DL models in
medical imaging to foster the AI and biomedical synergy.

Inspired by the latest trends and contributions in light of the aforementioned concerns,
this thesis designs, develops, and validates an interpretable and transparent intelligent clinical
decision support system based on traditional machine and DL architectures, whose outcomes
can be qualitatively and quantitatively explained with XAI methods. The thesis also comprises
a segmentation and detection pipeline for image-driven surgical applications. These novel
intelligent systems aims to assist the physicians and clinicians in image-guided diagnostic
and treatment systems. The developed interpretable diagnostic frameworks offer wide range
of applications and can be extended to several clinical scenarios.

Concerning the XAI, transparency and interpretability of CNN architectures are achieved
through two families of XAI methods, i.e. perceptive and mathematical XAI. Furthermore,
within each of these XAI families, two explanation frameworks are employed. These methods
facilitated to investigate the reliability of features and learning process, to critically analyse
various CNN architectures and XAI methods, and to compare the outcomes of both XAI
pipelines.

To further highlight the applications of DL in the image-guided surgical domain, a case
study has been performed on image-guided surgical procedures and interventions. The case
study also encompasses a detailed investigative study of public datasets and presents the legal
and ethical issues of DL-driven image-guided surgery. The study additionally underlines the
risks and limitations towards the autonomous systems and provides the future perspective.

Finally, the second case study investigates the qualitative and quantitative evaluation of
the XAI techniques in regards to the medical images. The case study also sheds light on the
evaluation measures, metrics for XAI, quality of explanation, types of explanation, and few
more.

The clinical efficacy of the developed solutions is evaluated through comparison with
existing state-of-the-art methods, and is further validated through consultation with physicians
where feasible. The datasets incorporated during the study are either obtained from the online
open source platforms or collected from local health institutions.
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Chapter 1

Introduction

1.1 Background

Deep learning (DL) has undergone significant development in recent years, leading to its
widespread application across various sectors, including healthcare [1, 2]. These advance-
ments brought a transformative impact in medical realm, resulting in numerous innovations
and improvements. The DL has emerged as a promising computational approach for the au-
tomatic detection, classification, and segmentation of various diseases thorough the analysis
of diagnostic medical images, thus enabling the Computer-aided Diagnosis (CAD), clinical
decision support systems, and surgical robotics among several others [3–6]. The DL methods
along with the traditional image processing techniques have already been established as
an effective approach to automatically analyze medical images for diagnosis and monitor-
ing [7–10]. Additionally, the contemporary availability of the image datasets has boosted the
interdisciplinary synergies of biomedical engineers and physicians in healthcare industry.

Moreover, before the advent of the modern image modality capturing systems, the
physicians and the surgeons mostly relied upon simple cameras and naked eyes to study
the internal behaviour of the organs. Today, the most common imaging modalities include
X-rays, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound (US),
and Positron Emission Tomography (PET) [11, 12].

However, even the modern imaging modalities required intensive preprocessing and
feature engineering [13]. Thanks to the DL, this laborious, time consuming, and cost
intensive task is no more as tedious as heretofore.

Additionally, the basic underlying principle of the DL mimics the (functionality of)
biological neuron, that connects with a complex layered structure, learns from generalization,
and keeps the neuron-associated weights updated. One of the most powerful models of the
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DL is believed to be the Convolutional Neural Network (CNN). The introduction of the CNN
can be traced back to early 1960s [14], which has led to the development of several highly
efficient diagnostic systems [15].

Furthermore, the subsequent rise of DL has also assisted the surgeons in the operating
room in several different ways [16]. This successful incorporation has paved the way for
Robot Assisted Surgery (RAS) and other surgical planning systems [17]. The purpose of
RAS, as the name suggests, is not to replace the surgeons and physicians but to assist them
in order to achieve higher proficiency in security and safety of the undergoing patients in
preoperative, intraoperative, and postoperative surgical procedures [18, 19].

Image driven DL methods for robotic surgery have already taken care of the instrument
detection and segmentation [20, 21], gesture recognition [22], workflow analysis [23], skill
assessment [24], and many more [25–28] to facilitate the semi-autonomous RAS.

Moreover, the development of a fully autonomous image-guided surgical system, where
the direct involvement of the surgeon is seldom required, is foreseeable task for the DL
models. The DL has ultimately proven the enormous success in Minimally Invasive Surgery
(MIS) systems. The very first RAS system i.e. da Vinci surgical system, introduced in the year
2000, has successfully performed around 1,594,000 surgical procedures in 2021 [29] with
an increase of 28% from the previous year (1,243,000 in 2020) and is expected to perform
12−15% more in the following part of the year. The MIS reduces the post-surgery trauma,
minimises the hospital stay, improves recovery, and avoids potential risk of contagion [30].

In spite of the enormous success in all of the aforementioned fields, the complex nature of
the DL techniques hides any possible information of the underlying decision mechanism [31,
32], which questions its application in the healthcare domain where explainability holds
paramount significance to build a trust on decisions made by inevitably booming Artificial
Intelligence (AI).

The super successful DL models come with blackbox nature. The eXplainable Artificial
Intelligence (XAI) brings forward the possibility of explaining the results of the blackbox
DL models and reveals how the models produce results. Generally, XAI is supposed to fit a
model onto four basic attributes [33]:

• Transparent : open to the degree where humans can understand the decision-making
mechanism.

• Justifiable: the decision can be supported or justified along each step.

• Informative: to provide reasoning and allow reasoning.
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• Uncertainty yielding: does not follow hard-coded structure, but open to change.

XAI has drawn a tremendous amount of attention in the recent past and to comprehend the
importance of such methodologies in the clinical field, where AI is spreading fast [34], has
become indispensable. The symbiosis of AI and XAI is extremely fascinating yet challenging,
because, as it can be easily envisaged, a more complex AI model that can reach high-level
performance is less interpretable than, for example, a simple rule-based model, however, at
the cost of unsatisfactory outcomes.

The interpretability and explainability have largely been studied and categorised into
two families of methods, namely, perceptive interpretability and mathematical interpretabil-
ity [34]. The perceptive XAI is responsible for bringing a straightforward visualisation of
the top contributing features that affect the final predictions, whereas the mathematical inter-
pretability provides insights into the used models and portrays the features that are employed
to make the final predictions. The former is used to study the feature-level classification
behavior (the importance of a particular region towards classification) of the DL architectures,
whereas the latter is used to study the clustering capabilities of the DL networks.

More importantly, as the definition of XAI states, the purpose of XAI is to make the
DL decisions understandable to human. Merely relying upon saliency maps and feature
contribution values lack the actual definition of XAI, particularly in medical imaging domain.
The debate to make the XAI decision understandable to an expert or to a common human can
be considered progressive, however, the requirement to explain the outcomes and decision
mechanism of DL architectures remains intact in either case.

Nevertheless, unlike other domains, the medical domain can not merely depend upon
machine trust, technology reliance, mutual understanding, and argumentation about the
XAI methods. In literature, several methods have been proposed for the evaluation and
quantification of XAI methods, however, there is no one compact and generalised method for
quantitatively evaluating the XAI methods on different types of medical images. A common
practice has been seeking help from the clinicians to evaluate the explanations generated by
XAI methods, however, this method is prone to errors, time consuming, labour intensive,
and experience demanding. Nevertheless, the visualisation of top contributing features,
spotlighting the important regions, and computing numerous scores of contribution towards
decision have long been discussed, alongside what is required is a quantitative and qualitative
method to measure the effectiveness of an explanation.

Moreover, one of the most proficient and prudent questions is to define what is a good
explanation. What defines/declares and makes an explanation good is another relevant and
interesting question to raise.
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Additionally, the explanation of explainable methods is also context dependent that arises
another question, i.e. an explanation must be understandable and interpretable but to whom?
To general public? To experts? To machines? Or to whom? An interpretation of the cancer
classification model on breast images is only understandable to physicians and relevant
experts. The evaluation of the XAI methods depends upon the end user of the application and
the sufficiency of the quality of explanation depends upon the application area, explanation
purpose, and the targeted audience. Therefore, all these questions open new horizons and
direct to the context dependent applications.

1.2 Motivation

The revolutionary advent of DL has technologically redefined the working principles of all
spheres of human life. The healthcare domain has also seen marvelous progress in the recent
decade, particularly after the introduction of iconic work by Krizhevsky et al. [35]. On top of
this, the large scale availability of medical imaging data has further boosted the development
of CAD systems.

However, in spite of all the advancements, there still exists plenty of room for further
improvements and innovations in DL applications in CAD, image-guided surgery, and other
autonomous systems for the scientific community. The classification, segmentation, and
identification of various diseases on medical image data have not reached to the full potential.
Apart from the intrinsic bias in the data collection procedures and protocols, which pose
great threat to medical domain, and besides the benign vs malignant cancer classification,
there are several cancer types and stages which additionally vary with respect to shape, size,
and other morphological patterns.

Additionally, the blur images and videos generated by camera are often misinterpreted
and mislabelled by physicians and AI systems, because of the presence of smoke, shade of
tools, shapes of lesion, plasma stains, vessels, and many more [36–39].

The breast cancer is morphologically categorized into several varying shapes based on
cancer growth pattern, named as round, oval, lobulated, irregular, and architectural distortion
[40, 41]. The availability of large scale data for each independent morphological category
is cumbersome, which invites the option of artificial data generation or incorporation of
pretrained networks.

In spite of the enormous success, the blackbox nature of the DL techniques hides any
possible information of the underlying decision mechanism [31, 32], which questions its
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usage in the healthcare domain where explainability holds paramount significance to build a
trust on decisions made by surging AI.

The General Data Protection Regulation (GDPR) by European Union states the concise
and transparent information provision and privacy protection of users [42]. The clause 13
and 14 empower the users (i.e. patients) to ask for decision making mechanism and other
relevant information. XAI brings forward the possibility of explaining the results of DL
models and reveals how the models produce these highly accurate results.

Additionally, as the definition of XAI states, the purpose of XAI is to make the DL deci-
sions understandable to human. Merely relying upon saliency maps and feature contribution
values lack the actual definition. The debate to make the XAI decision understandable to an
expert or to a common human can be considered progressive, however, the requirement to
explain remains intact in either case.

Moreover, unlike other domains, the medical imaging domain can not rely on machine
sense, mutual understanding, and argumentation about the XAI methods, therefore, evaluating
the effectiveness of the XAI techniques is indispensable. In literature, several methods have
been proposed for the evaluation and quantification of XAI methods, however, there is no one
compact and generalised method for quantitatively evaluating the XAI methods on different
types of medical images. A common practice has been seeking help from the clinicians to
evaluate the explanations generated by XAI methods, however, this method is prone to errors,
time consuming, labour intensive, and experience demanding. Nevertheless, the visualisation
of top contributing features, spotlighting the important regions, and computing numerous
scores of contribution towards decision have long been discussed, alongside what is required
is a quantitative and qualitative method to measure the effectiveness of an explanation.

In light of all the aforementioned issues, the concise motivation of this thesis lies in
the conceptualisation, design, development, and validation of an intelligent system that can
be fed with medical images to support the clinical decision systems. The development of
transparent systems under the explainability methods in order to create trust for AI in medical
realm and to provide maximum assistance to the physicians. Finally, a qualitative and
quantitative evaluation of the results produced by XAI methods on the decision mechanism
of DL architectures, so that the explanation and interpretation can be validated in the context
of medical imaging domain.

In this regard, several intelligent applications have been designed, developed, and vali-
dated in this thesis work. The XAI evaluations are additionally presented for the developed
applications to validate the outcomes. Finally, two independent case studies for quanti-
tative and qualitative evaluations of XAI and applications of image based DL models in
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robotic surgery are presented. The datasets employed in this study are either provided by
collaborators or acquired from public repositories.

1.3 Contributions

In light of the above discussed issues, the main objective of the thesis was to design, develop,
and validate an interpretable and transparent intelligent clinical decision support system
based on DL architectures, whose outcomes can be explained with XAI methods. The novel
intelligent systems were aimed to assist the medical experts and physicians in the CAD
systems and surgical procedures. Such intelligent systems have been designed, developed,
and validated with the novel DL techniques and the results are further interpreted with
several XAI models. The developed interpretable diagnostic frameworks offer wide range
of applications and can be extended to several clinical scenarios. The devised intelligent
systems are compared with the state-of-the-art approaches already discussed in the literature.
The applicability of the proposed solutions has also been validated with the help of physicians
and the domain experts where required.

The technical contributions of this study are threefold, each of which are further sub-
divided into several smaller chunks. The initial part of primary contribution includes the
development and validation of a CNN-based DL framework for the classification of breast
lesions according to the shape by analyzing the related Region of Interest (RoI) on DBT
images. Considering the shapes of cancerous masses, the Breast Imaging Reporting &
Data System (BIRADS) classification of the American College of Radiology, which is the
most commonly employed in the clinical and digital breast tomosynthesis settings, has been
considered [43]. Similarly, concerning the surgical procedure part, a framework to address
the tasks of vertebrae segmentation and identification by exploiting both DL and classical
machine learning methodologies is also proposed. The presented solution comprises two
phases: a binary fully automated segmentation of the whole spine, which exploits a 3D CNN,
and a semi-automated procedure that allows locating vertebrae centroids using traditional
machine learning algorithms. Likewise, a novel optimization formulation for automatic
contour delineation of the prostate gland from Transrectal Ultrasound (TRUS) images, to find
the best superellipse a deformable model, that can accurately represent the prostate shape,
is devised. The advantage of the proposed approach is that it does not require extensive
annotations, and can be used independent of the specific transducer employed during prostate
biopsies.
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Furthermore, the second major part of thesis contributions, which has been given a
considerable attention, is the incorporation of interpretability and explanability of the CNN
architectures using two families of XAI methods. This includes investigation on the applica-
bility of both perceptive and mathematical XAI methods; investigation on the reliability of
features and learning processes and correlation with the overall DL model performance; a
comprehensive comparison of the CNN architectures and the XAI methods in order to guide
the engineers and the radiologists interested in implementing DL-driven CAD systems; and
an exhaustive comparison of outcomes of XAI with several different methods.

Moreover, the thesis also comprises two independent case studies to further support
the applications of DL in the medical imaging domain. The former case study has been
performed on image-guided surgical procedures and interventions. The case study also
encompasses a detailed investigative study of public datasets and presents the legal and
ethical issues of image-driven RAS, and further highlights the risks and limitations towards
the autonomous systems.

Finally, considering the sensitive nature of healthcare domain, XAI presents visual and
textual explanations on the outcomes of DL methods applied on medical images. However,
merely visualising the top contributing features and highlighting the important regions
on images seldom make a DL model interpretable. The requirement of a qualitative and
quantitative metric to evaluate the explanation of XAI methods is indispensable. In the
second case study, the qualitative and quantitative evaluation of the XAI techniques has been
studied and investigated in regards to the medical images. The case study also sheds light on
the evaluation measures, metrics for XAI, quality of explanation, types of explanation, and
few more.

These contributions resulted in shape based breast cancer classification framework [44],
vertebrae segmentation and identification [45], prostate segmentation and registration [46],
explainability of CNN models on breast morphological classification [44], DL driven image-
guided surgery [47], and evaluation of XAI outcomes of DL architectures on medical images.

1.4 Thesis Structure

This thesis is presented into two major parts comprising nine chapters in total. The Part I
deals with the applications of RAS and image-guided surgical systems, whereas, the Part II
presents the CAD and clinical decision support systems along with the XAI and evaluation of
XAI. Starting from the introductory background of the domain, motivation towards the study,
and the technical contributions inscribed in the Chapter 1. The second chapter comprises
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the state-of-the-art in the applicability of DL in medical imaging domain with a particular
emphasis on CNNs and performance measuring metrics 2.

The Part I starts by illustrating the Chapter 3, that spans the study on the applications of
DL in the image-guided surgery, followed by the legal, ethical, and technological challenges
towards the autonomous systems. The chapter also discusses the widely applied datasets in
image-guided interventions and the limitations of the existing autonomous systems. Chapter
4 and Chapter 5 present the image-guided surgical applications, where the former inscribes
the prostate segmentation and identification, and the latter contains vertebrae segmentation
based upon traditional machine learning and DL models.

The Part II embraces the CAD systems along with the XAI and evaluation of XAI methods.
Chapter 6 presents the devised morphological classification frameworks for breast cancer
morphology. The chapter also highlights the first set of contributions of this thesis work by
comprehensively explaining the induced methodologies, employed frameworks, achieved
results, limitations, and discussion. Furthermore, the explainability and interpretability of
the DL models applied on the devised workflows along with the outcomes are provided in
the Chapter 7. The chapter sheds light on both, mathematical and perceptive XAI methods
within the realm. The evaluation protocols of XAI methods, the recent contributions, and
the way forward are described in the Chapter 8 with a precise focus on interpretability of
explainable DL models in medical imaging domain.

Finally, Chapter 9 concludes with the final remarks and highlights the prominent findings
and offers a future perspective of the study for potential research community.



Chapter 2

State-of-the-art

2.1 Deep Learning: A Broader Picture

With the advancement in technology and the increasing amount of medical images being
generated, DL has become an essential tool for automating medical tasks such as image
segmentation, diagnosis, and detection of diseases [9, 10]. DL has revolutionized the health-
care realm by enabling faster, more accurate, and cost-effective diagnoses, and ultimately
improving patient outcomes [48].

Applications of DL in medical imaging domain range from automated segmentation
of structures, diagnosis and classification of diseases, detection of tumors, abnormalities,
lesions, and many more [49–52] to support the CAD, RAS, image-guided surgery, and other
intelligent imaging systems [47, 53]. Most common DL methods for medical image analysis
include: CNNs, which are particularly well suited for image analysis tasks, Recurrent Neural
Networks (RNNs), which are useful for processing sequential data such as time-series medical
images, and Generative Adversarial Networks (GANs), which are also getting popularity in
medical imaging, as they can generate new images based on the training dataset, which can
be used to augment the training dataset, and improve the model performance [54–56].

Overall, deep learning is showing great potential in medical image analysis and is
expected to have a significant impact on the field of medical imaging and healthcare in
general.

The section below encircles the fundamental concepts of DL in the context of medical
image analysis and inscribes the formal introduction of the methods and techniques that
appear in the relevant literature of the thesis scope.
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2.1.1 Learning Paradigms

DL is a subset of machine learning that is inspired by the structure and function of the human
brain, specifically, artificial neural networks. There are several different learning paradigms
used in DL, each with their own advantages and disadvantages. These paradigms include
supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning [57, 58].

2.1.1.1 Supervised Learning

Supervised learning is the most common and well-understood paradigm in DL. As the
name suggests, supervised learning algorithms are fed with complete information under the
managed supervision and the model makes decision based on the inputs. A supervised model
is given input data along with the relevant labels and it learns by finding the relevant patterns
in the data [59–61]. It involves training a model on labeled data to make predictions about
new, unseen data. The process of supervised learning can be broken down into several steps:

• Collect and prepare a labeled dataset: This dataset consists of input-output pairs,
where the input is typically a feature vector, and the output is the corresponding label.

• Define a model architecture: This involves defining the structure of neural network to
make predictions. Common architectures include feedforward neural networks, CNN,
and RNN.

• Train the model: Then comes the training of the model over the labeled dataset using
an optimization algorithm, such as stochastic gradient descent. The goal here is to
minimize the difference between the predicted labels and the ground-truth labels.

• Evaluate the model: The performance of the devised model is evaluated on a separate
but labeled test dataset. Most common metrics used to evaluate the performance of a
supervised learning model include accuracy, precision, recall, and F1-score.

• Make predictions: Once the model is trained and evaluated, it can be used to make
predictions on new, unseen data. This is achieved by forwarding the input data through
the trained model and interpreting the output.

Supervised learning is used in a variety of applications, including image classification,
natural language processing, and speech recognition. It is also the foundation for other
learning paradigms, such as semi-supervised learning and reinforcement learning, described
hereunder.
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2.1.1.2 Unsupervised Learning

Unsupervised learning is a learning paradigm in deep learning that involves training a model
on unlabeled data to discover patterns or features in the data. Unlike supervised learning,
unsupervised learning does not have explicit output labels, and the model is not given any
guidance on what the correct output should be. Instead, the model learns to extract useful
information from the input data on its own [59–61].

The process of unsupervised learning can be broken down into several steps:

• Collect and prepare an unlabeled dataset: The dataset here consists of input data
only, without any corresponding labels or any other information.

• Define a model architecture: The architecture of the network employed in unsuper-
vised learning is typically simpler than that used in supervised learning, as it does not
need to make predictions. Common architectures include autoencoders, generative
models, and clustering algorithms.

• Train the model: The model is trained on the unlabeled dataset using an optimization
algorithm, such as stochastic gradient descent. The goal is to discover important
patterns and features in the data.

• Evaluate the model: The performance of the model is evaluated based on the quality
of the patterns or features it has discovered. Common metrics used to evaluate the
performance of an unsupervised learning model include reconstruction error, log-
likelihood, clustering accuracy, among many others.

• Use the model: Once the model is trained, it can be used for tasks such as data
compression, anomaly detection, and data generation.

Unsupervised learning is used in a variety of applications, including dimensionality
reduction, anomaly detection, and feature learning. It can also be used in conjunc-
tion with other learning paradigms, such as supervised learning and semi-supervised
learning, to improve the performance of a model.

2.1.1.3 Semi-supervised Learning

Semi-supervised learning combines the benefits of both supervised and unsupervised learning
paradigms. It involves training a model on a small amount of labeled data and a large amount
of unlabeled data. The idea behind this is that the model can leverage the information
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contained in the large amount of unlabeled data to improve its performance on the labeled
data [60, 61].

The process of semi-supervised learning can be broken down into several steps:

• Collect and prepare a dataset: The dataset consists of a small amount of labeled data
and a large amount of unlabeled data.

• Define a model architecture: The architecture of the network used in semi-supervised
learning can be the same as that used in supervised learning, or it can be a more
complex architecture that can take advantage of the additional unlabeled data.

• Pre-train the model: The model is first pre-trained on the large amount of unlabeled
data using an unsupervised learning algorithm, such as an autoencoder or a generative
model.

• Fine-tune the model: Once the model is pre-trained, it can be fine-tuned on the small
amount of labeled data using a supervised learning algorithm.

• Evaluate the model: The performance of the model is evaluated on a separate test
dataset, which is also labeled. Common metrics used to evaluate the performance of a
semi-supervised learning model include accuracy, precision, recall, and F1-score.

• Make predictions: Once the model is trained and evaluated, it can be used to make
predictions on new, unseen data.

Semi-supervised learning is particularly useful when labeled data is scarce or expensive to
obtain. It can also be used to improve the performance of a model trained on a small amount
of labeled data, by leveraging the information contained in a large amount of unlabeled data.

2.1.1.4 Reinforcement Learning

Reinforcement learning is a DL paradigm where an agent learns to make decisions by
interacting with its environment and receiving feedback in the form of rewards or penalties.
The agent’s goal is to learn a policy, which is a mapping from states of the environment to
actions, that maximizes the cumulative reward over time [60, 61].

The process of reinforcement learning can be broken down into several steps:

• Define the environment: The environment consists of states, actions, and a reward
function. The states represent the current situation of the agent, the actions are the
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choices an agent can make, and the reward function provides a scalar feedback signal
indicating how good or bad the agent’s actions are.

• Define the agent: The agent consists of a policy, which is a mapping from states
to actions, and a value function, which estimates the expected cumulative reward of
a policy. The agent also has a memory or history of its past interactions with the
environment.

• Interact with the environment: The agent starts in an initial state, and at each step, it
selects an action according to its current policy and receives a scalar reward from the
environment. The agent then transitions to a new state, and this process continues.

• Update the agent’s policy: The agent uses the rewards it receives to update the policy
and value function. This process is typically done using a variant of gradient descent
called Q-learning or policy gradient methods.

• Evaluate the agent: The performance of the agent is evaluated by measuring the
cumulative reward it receives over time, or by measuring the asymptotic performance
of the learned policy.

Reinforcement learning is used in a variety of applications, including robotics, game
playing, and decision making. Reinforcement learning is also used in fields like finance,
transportation and logistics, healthcare and manufacturing. Reinforcement learning is partic-
ularly useful when the environment is stochastic or non-stationary, and the agent must adapt
to changing conditions.

2.1.2 Artificial Neural Network

Most of the DL models are based on neural network architecture that is verily inspired by the
complex structure of human brain. At its core, a neural network is a mathematical model that
is designed to recognize patterns in data. The basic building block of a neural network is
the neuron, which is a simple processing unit that takes in inputs, performs a computation
on them, and produces an output. Neurons are connected to one another in layers, and the
output of one layer is fed as input to the next layer. This forms a network of neurons, which
collectively can perform complex computations. A typical architecture of an artificial neural
network is provided in the Figure 2.1.

There are different types of neural networks, such as feedforward neural networks and
recurrent neural networks. Feedforward neural networks have a simple structure where
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Fig. 2.1 Typical architecture of an artificial neural network

information flows in one direction from input layer to output layer. In contrast, recurrent
neural networks have a looped structure where the output of a neuron is fed back into itself,
allowing the network to retain information from previous time steps.

The process of training a neural network involves adjusting the parameters of the network,
such as the weights on the connections between neurons, so that it can accurately perform a
given task. This is done by presenting the network with a set of input-output pairs, called
the training set, and adjusting the weights to minimize the difference between the network’s
output and the desired output. Once the network is trained, it can be used to make predictions
on new, unseen data.

The DL has revolutionized the traditional machine learning by illuminating the manual
feature extraction process. Furthermore, the introduction of the back propagation algorithm
has enabled researchers to compute the impact each parameter imposes on the objective
function [62]. The back propagation has further enriched the neural networks and made the
computation faster, easier and better.

Until the introduction of layer over layer training of deep neural network, the training
of the neural network was widely believed to be quite tedious and ineffective. However,
Bengio et al. [63] proposed a mixed of unsupervised training during layer over layer training
and supervised training while fine tuning at two different stages which showed considerable
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results. The algorithms trained in this manner include autoencoders and belief networks,
which are still considered complex because of hectic process to reach substantial results.

2.1.3 Recurrent Neural Network

The neural network models appear to have another class known as RNN models. An RNN
follows the sequential feeding of the input data. The RNN models are great improvement
for time series sequential input data problems. The internal state in the RNN model, also
called the memory of the neuron, saves the leading information coming from the previous
computations.

The implementation of the RNN in the image driven computer-assisted methods has
not been much appreciated in the literature, however, its successful adoption in the natural
language processing tasks makes it standout. Another worth noting point of the RNN is its
ability to work on variable length input data. The use of the RNN in the robotic systems
driven by images and the kinematic data has been increasing over the time.

2.1.4 Convolutional Neural Networks

The most widely used DL model is CNN which has proven its applicability in image
processing applications [15, 20, 64]. The generally accepted common CNNs based models
include VGG16-19, ResNet, Inception, Xception, MobileNet, EfficientNet and many more.
The key differences between a Multilayer Perceptron (MLP) and a CNN model are the
inclusion of pooling layer in the CNN, sparsely connected layers instead of fully connected,
and small associated weights of the layers that particularly help in dealing with image data.

The main building blocks of the CNN are convolutional layer, pooling layer, normalization
layer, dense layer, dropout layer and activation layer, which along with their nature and
responsibilities are described in the Table 2.1. The optimal number of layers in a network
depends upon the nature of the problem that a network has to deal with, however, in general,
there is no fixed number of layers, and hence, it is a matter of search to figure out the
optimal number given a certain problem. To avoid the possible trade-off between the
computational complexity and the performance, different numbers of the layers and neurons
can be considered over repetitive iterations.

The networks with fewer number of layers and trainable parameters take less time,
however, at the expense of lower accuracy. These type of models may not reach to full
potential by modeling all the required parameters. On the other side, an overly populated
network will provide better accuracy results but can also learn unnecessary features which
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will result in overfitting of the network. This type of model will perform poor on unforeseen
data. The solution of the above problems is provided by the pretrained networks [65].

2.1.5 Major Building Blocks

The major building blocks of a DL architecture are presented hereunder.

2.1.5.1 Layer

As the name suggests, the principal operation of CNN is convolution, however, a number of
additional layers are added namely dense, dropout, pooling layers and few more to the model
to improve performance. The types of layers, the relevant hyperparameters, and their work is
summarized in the Table 2.1.

2.1.5.2 Cost Function

The cost function or the loss function describes how well a model has performed with respect
to the ground truth. A number of loss functions have been used in literature depending upon
the operations to be performed by model over a specific data. The cross-entropy is most
widely used loss function in classification problems [66].

2.1.5.3 Performance Measuring Metrics

The performance measuring metrics are important part of CNN which are the measuring
scales that quantify the performance of the model.

The most commonly used metrics for the classification task include accuracy, precision,
recall, and f1-score. The segmentation and the object detection tasks may have additional
measuring parameters depending upon the nature and the definition of the problem.

2.1.6 Common Frameworks and Libraries

There exist numerous DL frameworks that facilitate to design, train, and validate neural
networks using several interfaces. These frameworks and libraries include but not limited to
TensorFlow, PyTorch, MATLAB, NVIDIA Caffe, Chainer, Theano, and Keras.

These high level interfaces help researchers, mathematicians, scientists, and developers
to implement the complex architectures of deep neural networks to solve the various real
world problems. Few of the most commonly used frameworks and libraries are listed below.
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2.1.6.1 TensorFlow

An end-to-end open source library developed by Google Brain team, supports the numerical
computation and analysis, is extensively used library that works with both CPU and GPU.
The programming interface of TensorFlow is limited to Python and C++ [67].

2.1.6.2 PyTorch

PyTorch has received a tremendous amount of attention by the researchers and the developers
because of its ability of easily implement the complex architectures of DL models [68].
Additionally, it also supports the tensor manipulations, e.g. NumPy computations.

2.1.6.3 MATLAB

MATLAB is well-known mathematical framework which is highly regarded in scientific
society. It offers great visualization tools and is not limited to DL and neural networks [69].
The high-level features in the MATLAB do not require high level of expertise to implement.
The CUDA code is automatically generated by MATLAB from simple code.

2.1.6.4 NVIDIA Caffe

It largely supports the GPU based computations. NVIDIA Caffe is worthy contribution of
Berkeley Vision and Learning Center to the developer community. The main aims behind the
Caffe development were speed and modularity [70].

2.1.6.5 Keras

Keras is another product by Google engineers which is deemed fruitful for beginners. The
four main basic principles were considered during the development of Keras including
modularity, minimalism, extensibility, and Python based [71].

2.2 Deep Learning Models for Classification

2.2.1 Convolutional Neural Networks

CNN are a type of DL neural network that are specifically designed for image classification
tasks. A typical CNN is composed of multiple layers, including convolutional layers, pooling
layers, and fully connected layers, which along with their nature and responsibilities are
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described in the Table 2.1. An architecture of the CNN is provided in the 2.2. The optimal
number of layers in a network depends upon the nature of the problem that a network has to
deal with, however, in general, there is no fixed number of layers, and hence, it is a matter
of search to figure out the optimal number given a certain problem. To avoid the possible
trade-off between the computational complexity and the performance, different numbers of
the layers and neurons can be considered over repetitive iterations.

Fig. 2.2 A typical architecture of a convolutional neural network

• Convolutional layers: The primary building block of CNNs, these layers are responsi-
ble for extracting features from the input image. Convolutional layers use a set of filters
(also called kernels or weights) that are convolved with the input image to produce
feature maps. The filters are learned during the training process.

• Pooling layers: These layers are used to reduce the spatial resolution of the feature
maps produced by the convolutional layers. This reduces the computational complexity
of the network, and also makes it more robust to small translations and deformations
in the input image. Two types of pooling are widely used: max pooling and average
pooling.

• Fully connected layers: These layers are used to classify the image based on the
features extracted by the convolutional and pooling layers. They are composed of
multiple neurons (also called units) that are connected to all the neurons in the previous
layer. The output of these layers is a set of scores for each class in the classification
task.

The CNN has proven its applicability in image processing applications [15, 20, 64]. The
generally accepted common CNNs based models include VGG16-19, ResNet, Inception,
Xception, MobileNet, EfficientNet and many more. The key differences between a MLP
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Table 2.1 The major building blocks of the CNN model along with the nature and the
responsibilities

Hyperparameter Type of Layer Responsibility

Convolutional Layers
Kernel size 1D Convolutional

Feature extractionStride 2D Convolutional
Padding 3D Convolutional

Pooling Layer
Pool size Max pooling Feature extraction
Padding Average pooling Dimension reduction

Global average pool-
ing

Normalization Layer

Momentum Batch normalization

Input standardization
Epsilon Instance normaliza-

tion
Beta Group normalization

Layer normalization
Dense Layer Number of nodes - Fully connected layer
Dropout Layer Rate - Overfitting avoidance

Activation Layer Activation Function
ReLU

Activation functionSigmoid
Softmax

and a CNN model are the inclusion of pooling layer in the CNN, sparsely connected layers
instead of fully connected, and small associated weights of the layers that particularly help in
dealing with image data.

The networks with fewer number of layers and trainable parameters take less time,
however, at the expense of lower accuracy. These type of models may not reach to full
potential by modeling all the required parameters. On the other side, an overly populated
network will provide better accuracy results but can also learn unnecessary features which
will result in overfitting of the network. This type of model will perform poor on unforeseen
data. The solution of the above problems is provided by the pretrained networks [65]. Few
of the most widely applied DL networks in the context of medical imaging are described
hereunder.

2.2.1.1 AlexNet

AlexNet is a CNN that was developed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey
Hinton in 2012 [35]. It was the first CNN to achieve state-of-the-art results on the ImageNet
image classification dataset. AlexNet is composed of 8 layers: 5 convolutional layers, 2 fully
connected layers and a final softmax layer. It uses ReLU as activation function and dropout
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as regularization technique. AlexNet is considered to be the pioneer of DL in computer
vision and is still widely used today. An example architecture of the network is presented in
the Figure 2.3.

Fig. 2.3 A typical architecture of AlexNet

2.2.1.2 VGGNet

VGGNet, another highly successful CNN, was developed by the Visual Geometry Group
(VGG) at the University of Oxford in 2014 [72]. It uses a combination of convolutional
layers, pooling layers, and fully connected layers to classify images. VGGNet is known
for its simplicity and its use of small filters (3x3) with a stride of 1 and a padding of 1.
It uses ReLU as activation function and dropout as regularization technique. An example
architecture of the network is presented in the Figure 2.4.

Fig. 2.4 A typical architecture of VGG network

2.2.1.3 GoogLeNet

GoogLeNet, known for its Inception module, which is a combination of multiple convolu-
tional layers with different filter sizes, pooling layers, and fully connected layers, all in one
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layer, was developed by Google in 2014 [73]. This allows the network to learn multiple
scales of features from the same input. GoogLeNet uses ReLU as activation function and
dropout as regularization technique. An example architecture of the network is presented in
the Figure 2.5.

Fig. 2.5 A typical architecture of Inception module of GooggLeNet

2.2.1.4 ResNet

ResNet, developed by Microsoft in 2015, is famous for its residual block which allows the
network to learn a residual function (F(x)) with reference to the layer input (x) instead of
learning the original mapping (F(x)) directly [74]. This allows the network to be very deep
(up to 152 layers) without suffering from the vanishing gradients problem. ResNet uses ReLU
as activation function and dropout as regularization technique. An example architecture of
the network is presented in the Figure 2.6.

Fig. 2.6 A typical architecture of ResNet network
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2.3 Deep Learning Models for Segmentation

2.3.1 Fully Convolutional Networks

Fully Convolutional Networks (FCNs) are specifically designed for image segmentation tasks
[75]. They are composed of multiple layers, including convolutional layers, pooling layers,
and upsampling layers.

2.3.2 U-Net

U-Net is a FCN, designed for image segmentation tasks, consists of a contracting path, that
is used to extract features from the image, and an expanding path, that allows to generate the
segmentation mask. The contracting path is similar to the encoder part of an autoencoder
and consists of a series of convolutional and max-pooling layers. The expanding path is
similar to the decoder part of an autoencoder and consists of a series of convolutional and
upsampling layers [76].

Fig. 2.7 A typical architecture of U-Net network

Additionally, U-Net uses concatenation of feature maps between the contracting and
expanding path, which allows the network to propagate more context information to the
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deeper layers of the network. U-Net is particularly useful for segmenting images with large
variations in shape and intensity. An example architecture of the network is presented in the
Figure 2.7.

2.3.3 DeepLab

DeepLab is a CNN that is based on the atrous convolution which allows the network to
have a larger field of view and extract more context information. This architecture uses a
combination of convolutional layers, atrous convolution and fully connected Conditional
Random Field (CRF) to generate the segmentation mask. Atrous convolution allows the
network to have a larger field of view and extract more context information. The CRF helps
in refining the segmentation results by taking into account the neighborhood information
[77]. An example architecture of the network is presented in the Figure 2.8.
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Fig. 2.8 A typical architecture of DeepLab network

2.3.4 Mask R-CNN

Mask R-CNN is an extension of the Faster R-CNN object detection network that is used for
instance segmentation [78]. It uses a CNN to extract features from the image and a Region
Proposal Network (RPN) to generate object proposals. It also uses a separate branch to
generate a segmentation mask for each object proposal. This network combines the object
detection and semantic segmentation in a single pipeline, which makes it more efficient for
some tasks. An example architecture of the network is presented in the Figure 2.9.
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Fig. 2.9 A typical architecture of Mask R-CNN network

2.4 Deep Learning Models for Detection

2.4.1 Faster R-CNN

Faster R-CNN is a two-stage object detection method that uses a RPN to generate object
proposals and a CNN to classify and locate objects within the proposals. The RPN is trained
to generate object proposals that are likely to contain objects, while the CNN is trained to
classify and locate objects within the proposals [79].

Region Proposal Network: The RPN is a fully convolutional network that is trained
to generate object proposals. It takes an entire image as input and produces a set of object
proposals, each represented by a bounding box. The RPN is trained to generate object
proposals that are likely to contain objects, based on the features extracted from the image.
An example architecture of the Faster R-CNN network is presented in the Figure 2.10.

2.4.2 RetinaNet

RetinaNet is a one-stage object detection method that uses a CNN to classify and locate
objects within an image. It uses a combination of convolutional layers and Feature Pyramid
Networks (FPNs) to extract features from the image and a separate branch to classify and
locate objects within the image. RetinaNet is particularly useful for detecting small or faint
objects that are difficult to detect with traditional object detection methods [80]. An example
architecture of the RetinaNet network is presented in the Figure 2.11.
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Fig. 2.10 A typical architecture of Faster R-CNN network

2.4.3 Feature Pyramid Network

FPNs are used to extract features at multiple scales. The FPNs are built on top of the
convolutional layers of the network. They are used to extract features from different levels
of the convolutional layers and combine them to create a rich feature map. This allows
the network to detect objects of different scales [81]. An example architecture of the FPN
network is presented in the Figure 2.12.

2.4.4 YOLO

You Only Look Once (YOLO) is a one-stage object detection method that uses a CNN to
classify and locate objects within an image. It uses a combination of convolutional layers to
extract features from the image and a separate branch to classify and locate objects within the
image [82]. An example architecture of the YOLO network is presented in the Figure 2.13.

YOLO uses a grid-based prediction mechanism, where the image is divided into a grid
of cells, and each cell predicts a set of bounding boxes, class probabilities, and confidence
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Fig. 2.11 A typical architecture of RetinaNet network

scores. The grid-based prediction allows the network to handle multiple scales and aspect
ratios of objects in the same image.

Fig. 2.12 A typical architecture of Feature Pyramid Network

2.5 Performance Measuring Metrics

In the context of medical imaging, there are several performance measuring metrics that
are commonly employed to evaluate the performance of DL models. The most commonly
used metrics for the classification task include accuracy, precision, recall, and f1-score based
upon confusion matrix. The segmentation and the object detection tasks may have additional
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measuring parameters depending upon the nature and the definition of the problem. The
section below highlights some commonly applied performance measuring metrics of DL in
the medical imaging. Numerous performance measuring metrics are mutually adopted by
classification, detection, and segmentation tasks. For the sake of concision, the repeating
performance measuring metrics are explained only once (at the first appearance in the text).

Fig. 2.13 A typical architecture of YOLO network

2.5.1 Performance Measuring Metrics for Classification

The performance of a DL classifier is generally evaluated using a confusion matrix, which
provides a comprehensive representation of the model’s ability to accurately predict clas-
sification outcome. The confusion matrix is a commonly used in machine learning and
pattern recognition for assessing the quality of a classifier. A confusion matrix for binary
classification problem is provided in the Table 2.2.

Table 2.2 Binary classification confusion matrix. N and P stand for Negative and Positive,
respectively. T P, T N, FP and FN indicate the number of True Positives, True Negatives,
False Positives, and False Negatives, respectively.

Ground Truth
Positive Negative

Prediction
Positive T P FP
Negative FN T N
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A True Positive (TP) is an outcome where DL model accurately predicts the positive class.
Whereas, a True Negative (TN) is an outcome of a DL model where the model correctly
predicts the negative class. On the other hand, a False Positive (FP) is an outcome where the
model incorrectly predicts the positive class, whereas, a False Negative (FN) is an outcome
where the model incorrectly predicts the negative class.

Considering the TP, TN, FP, and FN provided in the confusion matrix, the accuracy of
a binary classifier can be defined as in the Equation (2.1). Similarly, the recall, otherwise
known as sensitivity, can be defined as given in the Equation (2.3), and the F1-score, otherwise
kown as Dice coefficient, is defined in the Equation (2.2). Lastly, the specificity is defined in
the Equation (2.5).

2.5.1.1 Accuracy

In the context of image classification, accuracy is a measure of how well a DL model is able
to correctly classify images into their corresponding classes. It is defined as the proportion of
correctly classified images to the total number of images in the test set.

Mathematically, it can be represented as:

Accuracy =
T P+T N

T P+T N +FP+FN
(2.1)

The accuracy ranges from 0 to 1, where a value of 1 indicates that the model has correctly
classified all samples in the test set, and a value of 0 indicates that the model has not correctly
classified any of the images in the test set.

It is important to note that accuracy alone does not provide a complete picture of a
model’s performance, as it does not take into account false positives or false negatives. Other
metrics such as precision, recall, and F1 score are also considered when evaluating the
performance of a DL model in image classification tasks.

2.5.1.2 Precision

Precision is a measure of how well a model is able to correctly classify images into their
corresponding classes, among the images it predicted to be in a certain class. It is defined as
the proportion of correctly classified images of a certain class to the total number of images
the model predicted to be in that class.

Mathematically, it is represented as:

Precision =
T P

T P+FP
(2.2)
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Precision is particularly useful when the cost of false positives (images predicted to be in
a certain class but actually not) is high. It gives an idea of how reliable the positive predictions
are. A high precision value indicates that the model has a low rate of false positives and is
providing a high number of accurate positive predictions.

2.5.1.3 Recall

Recall is a measure of how well a deep learning model is able to detect all images of a certain
class, among all images that are actually in that class. It is defined as the proportion of
correctly classified images of a certain class to the total number of images that are actually in
that class.

Mathematically, it can be written as:

Recall =
T P

T P+FN
(2.3)

2.5.1.4 F1 Score

F1 score is a measure that combines precision and recall to give a single metric that describes
the performance of a model in image classification. It is defined as the harmonic mean of
precision and recall.

Mathematically, it can be presented as:

F1 = 2 · Precision ·Recall
Precision+Recall

=
2 ·T P

2 ·T P+FP+FN
(2.4)

2.5.1.5 Specificity

Specificity is a measure of the proportion of negative instances that are correctly identified as
such by the model. It is defined as the proportion of correctly classified negative instances to
the total number of negative instances. A negative instance is an image that is not part of the
target class or the class of interest.

Mathematically, it can be given as:

Speci f icity =
T N

T N +FP
(2.5)

Specificity is often used in conjunction with sensitivity (also known as true positive rate or
recall) to evaluate the overall performance of a binary classification model.
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2.5.2 Performance Measuring Metrics for Segmentation

In medical imaging, image segmentation is often employed to identify and separate different
structures or regions of interest within an image. The performance of a DL model for
segmentation tasks in medical imaging must be evaluated using metrics that take into account
the specific characteristics of the medical images, such as the shape and size of the structures,
as well as the presence of noise and artifacts.

Moreover, semantic segmentation is percieved as pixelwise or voxelwise classification
problem, where additional performance measuring metric come into practice. Some of the
commonly used performance measuring metrics for segmentation tasks in medical imaging
are inscribed below. For all the equations listed hereunder, the letter M denotes the binarized
predicted segmented volume (obtained by thresholding predicted probability maps) and A
indicates the ground truth volume; the cardinality operator for a set is denoted as | · |.

2.5.2.1 Mean Average Precision

Mean Average Precision (mAP) is a metric used to evaluate the performance of object
detection models. It is the average of the average precision for each class, with the precision
calculated for different Intersection over Union (IoU) thresholds. The precision is the number
of true positive detections divided by the number of true positive detections plus the number
of false positive detections. The IoU threshold is used to determine whether a predicted
bounding box is considered a true positive or a false positive. A higher mAP value indicates
better performance of the model.

The mathematical definition can be seen in the Equation (2.6) for the class H.

mAP =
1
H

H

∑
j=1

APj (2.6)

2.5.2.2 Jaccard Index

The Jaccard Index, also known as IoU, is defined as the ratio of the intersection of the
predicted segmentation and the ground truth segmentation to their union. It is important to
note that JI is sensitive to the size of the sets and is not symmetric, meaning that Jaccard(A,B)
is not equal to Jaccard(B,A).

Mathematically, it can written as in the Equation (2.7).

J(M,A) =
|M∩A|
|M∪A|

(2.7)
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2.5.2.3 Dice Coefficient

The Dice Similarity Coefficient (DSC) can be used to compare the pixel-wise agreement
between a predicted segmentation and its corresponding ground truth. Dice coefficient is
2 times the area of overlap divided by the total number of pixels in both the images. DSC
ranges from 0 to 1, with a value of 1 indicating a perfect match between the predicted and
ground truth segmentation.

Mathematically, the DSC can be represented as in the Equation (5.2).

DSC(M,A) =
2 · |M∩A|
|M|+ |A|

(2.8)

2.5.2.4 Volumetric Overlap Error

Volumetric Overlap Error (VOE) is a metric used to evaluate the performance of 3D object
detection models. It is a measure of the difference between the predicted 3D object bounding
box and the ground truth bounding box.

VOE is calculated by taking the ratio of the volume of the intersection of the predicted
bounding box and the ground truth bounding box to the volume of the union of the predicted
bounding box and the ground truth bounding box as reported in the Equation (4.19).

VOE(M,A) = 1− J(M,A) (2.9)

A lower VOE values indicate better performance of the model.

2.5.2.5 Others

The Tversky Index, Tα,β (M,A), is a generalization of the concept of overlap betweenDSC(M,A)

and J(M,A), which can be explained as in the Equation (2.10).

Tα,β (M,A) =
|M∩A|

|M∩A|+α|M−A|+β |A−M|
(2.10)

where it is worth mentioning that the T0.5,0.5(M,A) corresponds to DSC(M,A), and
T1,1(M,A) is equivalent to J(M,A).

A more approximate indication about the relative difference between the volumes is the
Relative Volume Difference (RVD), which is defined as:

RV D(M,A) =
|M|− |A|

|A|
(2.11)
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In image-guided surgical situations, shape and size of organ have crucial impact, therefore,
accurately predicting and evaluating the shape of organ is essential. Maximum Symmetric
Surface Distance (MSSD), Average Symmetric Surface Distance (ASSD), and the Root
Mean Square Symmetric Surface Distance (RMSD) are key metrics in evaluating models
built for surgical procedures.

To calculate these distances, a metric space (X ,d) must be established. In this space, X is
a 3D Euclidean space, and d is the Euclidean distance. The external surfaces of the M and A

volumes, represented as L(M) and L(A) in X , can then be used to define a distance function,
known as the one-sided Hausdorff distance, h(L(M),L(A)), as shown in the Equation (5.8).

h(L(M),L(A)) = sup
lM∈L(M)

{︃
inf

lA∈L(A)
d(lM, lA)

}︃
(2.12)

Furthermore, the MSSD, also known as bidirectional Hausdorff distance, can be defined
as in the Equation (5.7), whereas, the ASSD can be defined as in the Equation (5.5) and
RMSD as in the Equation (2.15).

MSSD(M,A) = max{h(L(M), l(A)),h(L(A),L(M))} (2.13)

ASSD(M,A) =
1

|L(M)+L(A)|

(︄
∑

lM∈L(M)

d(lM,L(A))+ ∑
lA∈L(A)

d(lA,L(M))

)︄
(2.14)

RMSD(M,A) =

√︄
1

|L(M)+L(A)|
·
√︄

∑
lM∈L(M)

d(lM,L(A))2 + ∑
lA∈L(A)

d(lA,L(M))2 (2.15)

A metric based on MSSD, which is also adopted in challenges (https://structseg2019.
grand-challenge.org/Evaluation/) is 95%MSSD, referring to the 95th percentile of MSSD,
with the purpose to eradicate the impact of a small subset of outliers.

2.5.3 Performance Measuring Metrics for Detection

2.5.3.1 Intersection over Union

The IoU is another metric that is commonly used for evaluating the performance of image
detection models. It is defined as the ratio of the intersection of the predicted and ground truth

https://structseg2019.grand-challenge.org/Evaluation/
https://structseg2019.grand-challenge.org/Evaluation/
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segmentation masks to the union of the predicted and ground truth segmentation masks. IoU
also ranges from 0 to 1, with a value of 1 indicating a perfect match between the predicted
and ground truth segmentation.

The mathematical notation of the IoU is given in the Equation (2.16).

IoU(X ,Y ) =
|X ∩Y |
|X ∪Y |

(2.16)

2.5.3.2 Intersection over Minimum

Intersection over Minimum (IoM) is a performance measure that compares the predicted
bounding box of an object to the ground truth bounding box. The IoM is calculated by taking
the ratio of the area of the intersection of the predicted bounding box and the ground truth
bounding box, to the minimum of the two bounding boxes’ areas.

In more detail, the IoM is calculated as reported in the Equation (2.17).

IoM(X ,Y ) =
|X ∩Y |

min(|X |, |Y |)
(2.17)

A value of 1 would mean that the predicted bounding box perfectly matches the ground
truth bounding box, whereas a value of 0 would mean that there is no overlap between the two
bounding boxes. IoM is a mostly employed when the objects in the images are of different
shapes and sizes. Other commonly used metrics for object detection include IoU and mAP.

2.5.3.3 Average Precision

Average Precision (AP) is calculated by computing the precision and recall at different
threshold settings for the object detector. Precision is the number of true positive detections
(correctly identified objects) divided by the number of true positive detections plus the
number of false positive detections (objects that were incorrectly identified as the target
object). Recall is the number of true positive detections divided by the number of true positive
detections plus the number of false negative detections (objects that were not identified by
the detector).

The precision-recall curve is then plotted, with precision on the y-axis and recall on the
x-axis. The AP is then calculated as the area under this curve.

The mathematical formulation of AP is presented in the Equation (2.18).

AP =
∫︂ 1

0
p(r)dr (2.18)
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The relationship between precision and recall in relation to the confidence level e can be
represented using the notation q = Q(e) and t = T (e), where q is the precision and t is the
recall at a given confidence level e.

Q(e) =
T (e) ·Si

T (e) ·Si +D(e)
(2.19)

The value of Si in the Equation (5.3) presents the number of objects in class i, whereas,
the value of D(e) denotes incorrect detections bearing the confidence e.
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Deep Learning for Image-guided Surgical
Applications



Chapter 3

Deep Learning Applications in Image
Guided Surgery

3.1 Introduction and Background

The introduction of AI in the healthcare realm has drawn a tremendous amount of attention
in recent years [83–85]. The subsequent rise of the DL has assisted the surgeons in the
operating room in several different ways [1, 16]. This successful incorporation has paved
the way for RAS [17]. Unlike traditional surgery, a RAS system includes a camera arm and
a few other mechanical arms with surgical instruments attached. The surgeon controls the
arms while seated at a computer console near the operating table. The console gives the
surgeon a high-definition, magnified, 3D view of the surgical site. The purpose of RAS, as
the name suggests, is not to replace the surgeons and physicians but to assist them, in order to
achieve higher proficiency in security and safety of the undergoing patients in preoperative,
intraoperative, and postoperative surgical procedures [18, 19].

Image driven DL methods for robotic surgery have already taken care of the instrument
detection and segmentation [20, 21], gesture recognition [22], workflow analysis [23], skill
assessment [24], and many more [25–28] to facilitate the semi-autonomous RAS.

Moreover, the development of a fully autonomous image-guided surgical system, where
the direct involvement of the surgeon is seldom required, is foreseeable task for the DL
models. The surgical procedures go through several complicated scenes and contain artefacts
and performance variances [24]. Additionally, the blur images and videos generated by
camera are often misinterpreted and mislabelled by physicians and AI systems, because of
the presence of smoke, shade of tools, plasma stains and vessels [36–39].
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Before the advent of the modern image modality capturing systems, the surgeons mostly
relied on simple cameras and naked eyes to study the internal behaviour of the organs. Today,
the most relied imaging modalities include X-rays, CT, MRI, US, and PET [11, 12].

However, even the modern imaging modalities required intensive preprocessing and
feature engineering [13]. Thanks to the DL, this laborious, time consuming, and cost
intensive task is no more as tedious as heretofore. Moreover, the basic underlying principle
of the DL mimics the (functionality of) biological neuron, connects with a complex layered
structure, learns from generalization, and keeps the neuron-associated weights updated. One
of the most powerful models of the DL is believed to be the CNN. The introduction of the
CNN can be traced back to early 1960s [14], which has led to the development of several
highly efficient diagnostic systems [15].

The DL has ultimately proven the enormous success in MIS systems. The very first
RAS system i.e. da Vinci surgical system, introduced in the year 2000, has successfully
performed around 1,594,000 surgical procedures in 2021 [29] with an increase of 28% from
the previous year (1,243,000 in 2020) and is expected to perform 12− 15% more in the
following part of the year.

The MIS reduces the post-surgery trauma, minimises the hospital stay, improves recovery,
and avoids potential risk of contagion [30]. The extreme difficulty of indirect surgical
operation leads to the development of instrument tracking, gaze estimation, gesture and
trajectory recognition, hand-eye coordination, organ and smoke detection, and depth and
pose estimation systems [86–92].

Furthermore, the research in the DL based image driven RAS systems is expanding and
also the availability of recent datasets, i.e. Johns Hopkins University and Intuitive Surgical
Inc. Gesture and Skill Assessment Working Set (JIGSAWS), Medical Image Computing
and Computer-Assisted Intervention (MICCAI), Cholec80, and ATLAS Dione [93–96] has
boosted the interdisciplinary synergies of biomedical engineers and physicians.

Several recent survey articles span the medical domain [97–99], however lack the DL part
in the technical aspects. All the reviewed technical surveys consider a specific application of
deep learning and image processing in the robotic-assisted surgery, such as: surgical phase
recognition [100], skill assessment [101], registration [102], tool tracking or segmentation
and detection phases [103, 104]. For instance, the study by Rivas et al. [105], published
in 2021, considered merely one article published post 2020, and mostly emphasized on
available surgical datasets and future of robotics. Another article by Unberantha et al. [106]
surveyed 2D/3D image registration in workflow analysis. The study was limited to the CNNs
and has not incorporated robotic part and surveyed only one particular subdomain in the
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RAS. In author’s opinion, an updated survey that deals with and encircles all the possible
applications and aspects is required by the research and medical communities, especially for
the new researchers in the field to have the possibility to see the big picture. Another aspect
that encouraged the author to perform a new survey study concerns with the exponentially
growing number of publications in the field, as depicted in the Figure 3.1, since the existing
survey articles are pretty old. Authors in [64] have included merely three articles published
post 2019, and in last couple of years, a great number of worthy articles have contributed
to the domain. Additionally, the main focus of the survey remained limited to tool tracking.
From recent studies, it can clearly be observed that image and video guided DL based robotic
surgery survey dates back quite a few years, and in the meantime, a huge number of studies
have been published on the topic. Therefore, a comprehensive updated survey is missing
that can accommodate the DL part and the clinical part, considering image and video driven
robotic surgery in light of the recent advancements.

After the comprehensive analysis and thorough survey, the selected papers are classified
into 4 different classes, i.e. Surgical Tools, Surgical Processes, Surgical Surveillance, and
Skills/Performance Assessment. Each of these classes are further subdivided, and the details
can be found in the below presented sections. The full text analysis revealed that majority
of the articles included in the survey are published in year 2020 and 2021 as shown in the
Figure 3.1. The most frequently used DL method and dataset are CNN and JIGSAWS,
whereas, the tool segmentation and detection are most studied subcategories within RAS.



3.2 The Literature Search and Survey Methodology 39

3.2 The Literature Search and Survey Methodology

The following section describes the literature survey methodology adopted in this study.
Initially the literature search and inclusion and exclusion protocols are provided, followed by
the article selection process. Moreover, the objectives and the results are also illustrated for
the conducted review. Finally, the survey classification layout is presented.

3.2.1 Literature Search

A thorough literature search is performed on Scopus® database to select the relevant articles
for review and analysis. The conducted search is confined to the literature published in
English language. To retrieve the optimised results, the combination of the keywords is
used interchangeably with slight modifications over repetitive iterations of web search. The
specific query used for the final search is: ("deep learning*" OR "deep-learning*" OR
convolution* OR "deep networks*" OR "neural network*") AND (surg*) AND (robot*). The
survey study is conducted on the published articles (including those accepted and available
online) until August 31, 2022.

3.2.2 Inclusion and Exclusion

The inclusion criteria span the image driven DL models used in any type of robotic surgery.
The search query is constrained to computer science, engineering, biomedical engineering,
and medical disciplines. Only the published articles are included without considering
the books, seminars, doctoral symposiums, and talks. Any article that goes beyond the
aforementioned limits, any study not tackling surgery or a part of surgery, the articles related
to only engineering side of the robot, and the articles related to only medical side of the
surgery (i.e. no intervention of DL) come under the exclusion criteria. The Figure 3.2
illustrates the stages of the inclusion and exclusion process flow with number of studies
included and excluded at each phase.

3.2.3 Article Selection

Initially, the titles of the articles and the venues of the publications (i.e. publishing authority
and domain) are used to decide the relevancy on a general scale. In the further stages, the
abstracts are reviewed, and the contents of each study are skimmed to limit the number of
articles to the decided realm for the survey study. Finally, the full-text review is performed,
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Fig. 3.2 The flow diagram of the paper selection and pruning process according to the
recommendations of the PRISMA method.

and the appropriate articles are selected for further proceedings. The Figure 3.2 illustrates the
selection stages of the survey which is performed under the recommendations of Preferred
Reporting Items for Systematic Review and Meta Analysis (PRISMA).
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3.2.4 Targeted Objectives

The primary objective of the case study is to systematically analyse and summarize the recent
contributions in the field of image-guided robotic surgery accounting the advancements of
the DL. Generally, the study is conducted on RAS systems and specifically on image based
RAS systems.

Additionally, the study aims to comprehensively state DL methods, the future of surgical
robotics, and the challenges to achieve the autonomous surgery. Finally, the secondary
objectives include the introduction of currently available surgical datasets, the legal and
ethical issues, and the limitations of the existing systems.

3.2.5 Results

The aforementioned query resulted in a total number of 879 articles and the minor changes
(upto date search) in the query showed 75 additional results. After the first check i.e. title,
relevancy, and venue, a sum of 482 articles are found appropriate. Another 211 articles are
discarded amid irrelevancy to the scope of the survey. At each of the stages, a considerable
number of the articles is rejected and at the final stage, 184 articles are tagged eligible to the
purview of the study, therefore, 184 articles out of total 954 are appended in this study as
shown in the Figures 3.1 and 3.2.

3.2.6 Classification of the Case Study

After the thorough analysis, the relevant studies are found to be greatly overlapping that can
be organised in numerous different topologies. However, the careful inspection resulted into
four groups, each of which is further classified into several subgroups as depicted in the
Figure 3.3. This classification includes: a) Surgical Tools, b) Surgical Processes, c) Surgical
Surveillance, and d) Surgical Performance/Assessment.

The Surgical Tool section is further subdivided into Tool Detection and Tool Segmentation
sections, the Surgical Processes includes Gesture Segmentation, Trajectory Segmentation,
and Tissue Segmentation categories. The Surgical Surveillance is segregated in Surgical
Planning, Phase & State Estimation, and Activity Recognition phases, and the last but not
least, Surgical Skill Assessment and Surgical Workflow Recognition come under the Surgical
Performance/Assessment group.
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Fig. 3.3 The taxonomy of the case study.

3.3 DL Assisted Image Guided Surgery

In the previous decade, DL methods brought tremendous amount of success, especially in
image-guided CAD systems as illustrated in the Figure 3.1. This enormous triumph gave
birth to the idea of image driven DL models in the field of robotic surgery. The availability of
large amount of image data, the less complicated operational facilities, and the DL algorithms’
performance on image dataset are major knocks towards autonomous surgery.

Based on the results of case study, the articles are classified into four categories, each of
which are subdivided into further groups. These categories include Surgical Tools, Surgical
Processes, Surgical Surveillance, and Surgical Performance. As the names suggest, the
divisions are fundamental and encircle the most relevant parts of surgical scenarios in
computer-assisted autonomous and semiautonomous surgical systems.

An additional fifth category named Others is provided for the applications that either do
not fall in any of the aforementioned categories or the number of found articles were fewer.
The section below inscribes all categories in detail.

3.3.1 Surgical Tools

Surgical tools are the most important actuators in surgery because they are responsible
for performing interventions; however, keeping track of surgical instruments requires real-
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time knowledge of the pose and the movement of the tool. Literature suggests numerous
tool localisation techniques embracing electromagnetic tracking [107], kinematic [108],
optical tracing [109], and image-guided detection [110] among others [111]. Unlike other
approaches, image driven surgical instrument localisation offers attractive benefits including
the knowledge of pose and motion, and does not require instrument design modification [104].

The section below contains the literature studied in this study about image-based surgical
tool detection and segmentation which are most studied areas in robotic surgery with an
average of around 40% of the total publications encompassed in this study.

3.3.1.1 Tool Detection

This section includes the articles that deal with the presence of surgical instruments in
surgical videos. Among the articles studying surgical tools, 55% are about detection and/or
recognition, whereas the other half of the articles belongs to the forthcoming subsection of
tool segmentation. The CNN is the most applied DL method followed by Long Short Term
Memory (LSTM), RNN and autoencoder architectures (Figure 3.4). The CNN model and the
variants, with few modifications in the underlying architecture in some cases, yielded better
performance in [86, 111–114, 117–120, 122, 123, 125–130, 132–136, 138, 141, 143, 144],
whereas autoencoders, RNN, LSTM, and GAN formed another notable synergy [96, 115,
116, 121, 124, 131, 137, 139].

The reason behind CNN being the most applied architecture lies in the ability of multiple
tool detection and localisation which traditional ML models have not been sufficiently
successful at [111]. Among the tool detection, the articles employing public datasets revealed
an accuracy range of 89-100%, whereas, the precision and Dice values vary greatly. The
in-house datasets are incorporated by 18 studies achieving an overall accuracy range of well
above 90% except one study ([86]) that managed to reach around 85%.

The Endoscopic Vision (EndoVis) challenge [94] and m2cai16-tool datasets [96] are
most widely used followed by the ATLAS Dione for the task of tool detection. Furthermore,
accuracy is top used performance measuring metric with precision and Area Under the Curve
(AUC) being the other most important evaluation parameters. The more details about the
year of publication, objective/s, data description and performance outcome can be found in
the Table 3.1.
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Table 3.1 The summarised results of the articles dealing with the tool detection task

Objective DL Model Dataset Data Description Results Year Ref

Microsurgery Tool
Tracking

LeNet RMIT 1171 Frames
480 × 640 Pixels
3 Surgeries

Accuracy:
99.13%

2016 [112]

Line Tracking CNN In-house 1000 Frames
2500 Training Images

Accuracy: 99.7% 2017 [113]

Surgical Tool Detec-
tion

CNN YOLO M2CAI16-
Tools
Dataset

10 Procedures
2532 Frames

Recall: 80.62%
Precision: 84%
mAP: 72.26

2017 [114]

Tool Landmark De-
tection

Encoder-
Decoder
CNN

In-house 10 Sequences
1500 HD Images

RMSE: 25.479
µm

2017 [115]

Robotic Tool Detec-
tion

Faster RCN
RPN

ATLAS
Dione

10 Surgeons
99 Videos total
854 × 480
22,467 Images

Precision: 91% 2017 [96]

Tool Joint Detection 3D FCNN
U-Net

EndoVis
UCL dVRK

10 Videos
1083 Frames
720 × 576 Resolution
8 Videos
3075 Frames

DSC: 88.6%
DSC: 86.9%
Dice: 85.1%

2019 [116]

Tool Localization &
Detection

ResNet-18
50-152
AlexNet
VGG-16

cataRACT 50 Videos
10 Min & 56 Sec
Duration

AUC:
0.65
0.68
0.64
0.58

2019 [117]

Guidewire Tip Track-
ing

U-Net In-house 11 Videos
11268 Frames

Dice: 88.07%
IoU: 85.07%

2019 [118]

Needle Localization ResNet-18
RetinaNet

In-house 19,200 Images
512 × 1024 Resolu-
tion

Accuracy: 99.2% 2019 [119]

Surgical Tool Detec-
tion

Hourglass
VGG-16

ATLAS
Dione
EndoVis

99 Video
10 Surgeons
22467 Frames
1083 Frames
720 × 576 Resolution

mAP: 91.60%
mAP: 100%

2019 [120]

Surgical Tool detec-
tion

CNN
VGG-M

M2CAI16-
Tools
Dataset

10 Procedures
2532 Frames

Accuracy: 89% 2019 [121]

Instrument Detection YOLO9000
CNN

M2CAI16-
Tools
Dataset

10 Procedures
2532 Frames

mAP: 84.7 2019 [122]

Surgical Tool Detec-
tion

ResNet-18
ResNet-101
Hourglass-
104

ATLAS
Dione
EndoVis

99 Video
10 Surgeons
22467, 1083 Frames
720 × 576 Resolution

mAP: 98.5%
mAP: 100%

2020 [123]

Needle Detection LSTM
CNN

In-house NA 100% TPR 2020 [124]
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Objective DL Model Dataset Data Description Results Year Ref

Instrument Detection VGG-16
CNN

ATLAS
Dione

10 Surgeons
99 Videos total
854 × 480
22,467 Images

Precision:
90.08%

2020 [125]

Surgical Tool Naviga-
tion

ResNet-18 In-house 4500 Image Accuracy: 137
µm

2020 [126]

Instrument Detection ConvNet EndoVis 300 Frames
640 × 480 Size
400 Frames
640 × 480 Size

Accuracy: 91.2%
Accuracy: 75%

2020 [127]

Needle Insertion
Tracking

U-Net In-house 30 Porcine Eyeballs
300 Training Images
1024 × 640 Pixels

Errors:
7.4 µm
10.5 µm
3.6 µm

2020 [128]

Object Recognition CNN In-house 5670 Images
3968 × 2976 Size

Accuracy: 98% 2020 [129]

Needle Detection Faster RCN In-house 27 Videos
9 Subsets

Precision: 89.2%
IoU: 73.9%

2020 [130]

Tool Presence Analy-
sis

Multitask RCN
LSTM

Cholec80 80 Videos
13 Surgeons
854 × 480 Resolution

mAP: 89.1%
F1 Score: 87.4%

2020 [131]

Tool Tracking GAN EndoVis15 3 Videos
44s Long

Accuracy: 95.2% 2020 [132]

Surgical Tool Detec-
tion

CNN Cholec80
EndoVis

80 Videos
13 Surgeons
854 × 480 Resolution
1083 Frames
720 × 576 Resolution

mAP: 91.6%
mAP: 100%

2021 [133]

Tool Tip Detection RetinaNet
YOLOv2

In-house 2310 Frames
9 Videos
640 × 480 Resolution

Recall: 1.000
Precision: 0.733
F1 Score: 0.846
Recall: 0.864
Precision: 0.808
F1 Score: 0.835

2021 [134]

Needle Detection &
Segmentation

CNN
NN

In-house 2D US Images
Terason uSmart 3200
T NexGen US system
22-gauge
0.7 mm diameter
80 mm length

Accuracy: 99.7%
Precision: 86.2%
Recall: 89.1%
F1-score: 0.87

2021 [135]

Instrument Tracking TernausNet-11
TernausNet-16
MobileNet-V3
ShuffleNet-V2

In-house 1846 Images
640 × 480 Size

Accuracy:
85.87%

2021 [86]
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Objective DL Model Dataset Data Description Results Year Ref

Object Detection YOLOv4 M2CAI16-
Tools
Dataset

10 Procedures
2532 Frames

Recall: 79.1%
Precision: 96.7%

2021 [136]

Tool Detection &
Segmentation

YOLACT In-house 5,319 Frames
70 Videos
1920 × 1080 Resolu-
tion

Accuracy: 91.2%
Precision: 56.5%
Dice: 48.2%

2021 [137]

Needle Tracking NN
YOLO-v3

In-house 778 & 332 Images Accuracy:
1.98mm

2021 [138]

Instrument Detection Faster R-CNN In-house 5085 Images IoU: 0.825
Recall: 0.950
Precision: 0.950

2022 [139]

Instrument Tracking YOLO-v4 In-house 6243 Images Accuracy:
95.12%

2022 [140]

Tool Detection YOLO-v5 In-house 20 Videos
7500 Frames

Precision:
89.5–91.4%

2022 [141]

Instrument Triplet SIR-Net EndoVis18 16 Videos
1280 × 1024 Pixels
8 Instruments

Average Preci-
sion: 0.6515

2022 [142]

Micro-robot Detec-
tion

VGG Net In-house 15000 Ultrasound Im-
ages

Accuracy: 0.95 &
0.93

2022 [143]

Object Detection ResNet-101
Back Projec-
tion

Data Genera-
tion
from Video

380 Images Accuracy:
94.12%
Recall 86.23%

2022 [144]

Object Detection YOLO-v4
Faster-RCNN
MobileNet
EfficientDet

In-house 196.55 Minute Videos
870 Images

mAP: 29.3, 22.2,
23.4, 33.6
F1 Score: 75.86,
82.34, 82.49,
93.50

2022 [111]

3.3.1.2 Tool Segmentation

Surgical instrument segmentation is different from surgical instrument detection in terms of
binary, semantic, and instance segmentation. Generally, tool detection either looks for the
presence of any tool (recognition) or the location of a particular tool (tool tip or landmark
detection), whereas the segmentation distinguishes (i.e. segments) the tools from other organs
and also differentiates among numerous tools. It involves the individual identification of
each instrument within an image. As mentioned in the above subsection, tool segmentation
is second most common researched field inside the image-guided RAS. Instead of only
tool presence recognition, numerous articles focus on the type of tool available in the
surgical procedure with semantic segmentation [103, 145–170]. A noteworthy point arises
when articles dealing with organ/object segmentation (see Section 3.3.5) also consider tool
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18.44%
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GAN

Others

Fig. 3.4 Percentage of the articles with respect to employed DL model. Articles which
adopted two or more models are counted accordingly.

segmentation [171], therefore forming another interconnected relation between two different
but relevant tasks.

Additionally, real-time instrument segmentation has gained ample amount of attention in
recent studies [172–177]. Numerous authors also consider the semantic segmentation of a
part of a particular instrument, such as tool tip segmentation, guide-wire segmentation and
needle segmentation [178–180].

Likewise, semantic segmentation by using unsupervised DL methods is another grow-
ing concept [181, 182]. The data provided by EndoVis robotic instrument segmentation
challenge [96] is most frequently used dataset for segmentation, whereas the Dice score is
common performance measuring metric. Out of total 38 studies, merely 4 studies incorpo-
rated in-house datasets and 2 assimilated both in-house and public datasets. The description
of the input, results and other relevant information is provided in the Table 3.2.
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Table 3.2 The summarised results of the articles dealing with the instrument segmentation
task

Objective DL Model Dataset Data Description Results Year Ref

Surgical Tool Seg-
mentation

CNN
RNN
Auto Encoder-
Decoder

EndoVis16 4 Videos
45-seconds Each
720 × 576 Resolution
25 Frames

Accuracy: 93.3%
Jaccard Index:
82.7%

2017 [147]

Automatic Instru-
ment
Segmentation

U-Net
TernausNet-
11
LinkNet

EndoVis17 8 Sequences
225 Frames
Test Set 8 × 75
Frames
2 × 300 Frames
Videos

IoU: 83.60
Dice: 90.01
Time: 184

2018 [103]

Guidewire Tip Seg-
mentation

Faster R-CNN In-house
COCO
PASCAL
VOC

22 Sequences
2D X-ray Images
1080 × 1080 Pixels

Precision: 0.532
F1 Score: 0.939

2018 [178]

Binary Segmentation ResNet-18
FNN

EndoVis17 8 Sequences
1280 × 1024 Resolu-
tion
225 Frames
8 Sequences
75 Frames

IoU: 0.764 2019 [145]

Instrument Segmenta-
tion

CNN EndoVis17 225 Frames
8 Surgeries

Dice: 0.916
Hausdorff: 11.11
Specificity: 0.989
Sensitivity: 0.928

2019 [172]

Semantic & Instance
Segmentation

U-Net EndoVis17 8 Sequences
225 Frames
Test Set 8 × 75
Frames
2 × 300 Frames
Videos

Dice: 90.20% 2019 [146]

Realtime Instrument
Segmentation

MobileNet-
v2

EndoVis17
Cata7

8 Sequences
225 Frames
Test Set 8 × 75
Frames
2 × 300 Frame Videos

Dice: 96.91%
IoU: 94.10%
Dice: 58.30%

2020 [175]

Object Extraction for
Instrument Tracking

U-Net
ResNet-18

M2CAI16-
Tools
Dataset

10 Procedures
2532 Frames
1280 × 720 Pixels

Accuracy: 100% 2020 [152]

Surgical Instrument
&
Workflow Recogni-
tion

Bayesian
AlexNet
LSTM

Cholec80 80 Videos
13 Surgeons
25 fps
854 × 480 Resolution

Bipolar:
wMAE: 0.76
pMAE: 0.96
Scissors:
wMAE: 0.51
pMAE: 0.76

2020 [153]

Tool Segmentation FCNN
ResNet-50
U-Net

In-house 14 Videos
300 Frames
720 × 576 Pixels
4200 Annotations

IoU: 81.80/7.74 2020 [176]
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Objective DL Model Dataset Data Description Results Year Ref

Synthetic Image
Segmentation

U-Net In-house 160 Frames
5 Videos

mIoU: 0.235
mIoU: 0.458
mIoU: 0.729

2020 [154]

Multi-Angle Instru-
ment
Segmentation

TernausNet-
16
VGG-16

Sinus-
Surgery-C
Dataset

10 Videos
5-23 Minute
320 × 240 Resolution

mDSC: 90.2±0.%
mIoU: 85.6±1.2%

2020 [155]

Unsupervised Learn-
ing for
Instrument Segmenta-
tion

CycleGAN
DRN

EndoVis17 8 Sequences
225 Frames
2 × 300 Frames
Videos

mIoU: 0.732 2020 [181]

Ultrasound Needle
Segmentation

LinkNet In-house 996 Images
102 Videos
3 fps

IoU: 41.01%
Dice: 56.65%
F1 Score: 36.61%
RMS: 13.3

2020 [179]

Instrument Segmenta-
tion

GAN EndoVis18
EndoVis17

8 Sequences
225 Frames
19 Sequences

Accuracy:
76.29%

2020 [156]

Tools Collision
Avoidance
using Segmentation

U-Net EndoVis17 8 Sequences
225 Frames
2 × 300 Frames
Videos

MAE: 0.126 ±
0.08 mm

2020 [160]

Instrument Segmenta-
tion

ResNet-18 EndoVis17 8 Sequences
225 Frames
2 × 300 Frames
Videos

IoU: 0.852
Time: 11.8 ms
IoU: 0.729
Time: 11.8 ms.

2020 [161]

Image-to-Image
Translation for
Instrument Segmenta-
tion

GAN
CNN

Sinus-
Surgery-C

10 Videos
320 × 240 Resolution

mDSC: 82.7
mIoU: 75.5

2020 [159]

Unsupervised Instru-
ment
Segmentation

Vanilla U-Net EndoVis17 8 Sequences
225 Frames
2 × 300 Frames
Videos

IoU: 0.71
Dice: 0.81

2020 [182]

Instrument Segmenta-
tion

CycleGAN Cholec80
EndoVis15

80 Videos
13 Surgeons
854 × 480 Resolution
300 Images & 6
Videos

Dice: .80 2020 [162]

Surgical Instrument
Segmentation

CycleGAN
U-Net

EndoVis17 8 Sequences
225 Frames
Test Set 8 × 75
Frames
2 × 300 Frames
Videos

Dice: 92.8%
IoU: 84.7%

2021 [148]

Real-Time Instru-
ment
Segmentation

LSTM EndoVis18
EndoVis17

8 Sequences
225 Frames
Test Set 8 × 75
Frames
2 × 300 Frames
Videos
19 Sequences
15 Training Videos
4 Test

mDice: 61.03%
mIoU: 53.89%
mDice: 77.53%
mIoU: 67.50%

2021 [173]
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Objective DL Model Dataset Data Description Results Year Ref

Multi-Instance Seg-
mentation

Encoder-
Decoder
CNN

EndoVis17 8 Sequences
225 Frames
Test Set 8 × 75
Frames
2 × 300 Frames
Videos

mAP: 0.481 ±
0.099
mIoU: 0.657

2021 [149]

Real-Time Instru-
ment
Segmentation

VGG
MobileNet
ResNet

UW-Sinus-
Surgery-C/L
ROBUST-
MIS

10 Videos
5-23 Minute
320 × 240 Resolution
3 Videos
12-66 Minute
1920 × 1080 Res

mDSC: 3.1%
9.5%
mIoU: 3.3%
10.7%

2021 [174]

Instrument Segmenta-
tion

U-Net EndoVis17
ISBI2018

8 Sequences
225 Frames
Test Set 8 × 75
Frames
2 × 300 Frames
Videos

mAUC: 0.6819
IoU: 83.70%
Dice: 90.24%

2021 [150]

Surgical Tool Seg-
mentation

GAN
U-Net

EndoVis17 8 Sequences
225 Frames
Test Set 8 × 75
Frames
2 × 300 Frames
Videos

IoU: 0.867
Dice: 0.924

2021 [151]

Robot Positioning Us-
ing
Instrument Segmenta-
tion

YOLOv3
ResNet

EndoVis17 8 Sequences
225 Frames
2 × 300 Frames
Videos

IoU: 86.6% 2021 [157]

Real-Time Instru-
ment
Semantic Segmenta-
tion

MobileNet-
v3

EndoVis17 8 Sequences
225 Frames
2 × 300 Frames
Videos

IoU: 69.74%
Dice: 79.88%
Hausdorff: 11.36

2021 [177]

Guide Wire Segmen-
tation

MobileNet
U-Net

In-house 1050 Images
1440 × 1560 Pixels

Accuracy:
97.81%

2021 [180]

Instrument Segmenta-
tion

Modified
CNN

MICCAI
2018

15 Videos IoU: 0.4354
Accuracy: 0.9638

2022 [163]

Instrument Segmenta-
tion

Modified
CNN

EndoVis &
In-house

10 & 20 Videos
4 & 5 Scenarios
720 × 576 & 1920 ×
1080 Pixels & 5000
Frames

Average Accu-
racy: 93.31%

2022 [163]

Instrument Segmenta-
tion

U-Net &
VGG-16

Hamlyn’s &
Proprietary

1920 × 1080 Pixel
8 × 255 Frames

IoU: 0.708 &
0.826

2022 [164]

Instrument Segmenta-
tion

SurgiNet &
MobileNet-
v2

EndoVis
2017 &
CataIS

10 & 9 Videos
3000 & 2671 Images
7 & 11 Instruments

Mean IoU:
89.14% &
63.30%

2022 [165]

Surgical Tool Seg-
mentation

DenseNet
ResNet-18

Kvasir-
Instrument
EndoVis17

590 Videos
2 × 300 Frames
Videos

Mean IoU: 0.900 2022 [166]



3.3 DL Assisted Image Guided Surgery 51

Objective DL Model Dataset Data Description Results Year Ref

Instrument Segmenta-
tion

Modified
CNN

EndoVis &
In-house

10 & 20 Videos
4 & 5 Scenarios
720 × 576 & 1920 ×
1080 Pixels & 5000
Frames

Average Accu-
racy: 93.31%

2022 [163]

Instrument Segmenta-
tion

U-Net &
VGG-16

Hamlyn’s &
Proprietary

1920 × 1080 Pixel
8 × 255 Frames

IoU: 0.708 &
0.826

2022 [164]

Instrument Segmenta-
tion

SurgiNet &
MobileNet-
v2

EndoVis
2017 &
CataIS

10 & 9 Videos
3000 & 2671 Images
7 & 11 Instruments

Mean IoU:
89.14% &
63.30%

2022 [165]

Surgical Tool Seg-
mentation

DenseNet
ResNet-18

Kvasir-
Instrument
EndoVis17

590 Videos
8 Sequences
225 Frames
Test Set 8 × 75
Frames
2 × 300 Frames

Mean IoU: 0.900 2022 [166]

Semantic Segmenta-
tion

Modified
U-Net

Dsia

Dpor
48702 Images Structural Similar-

ity: 77.53
IoU: 74.92
Dice: 85.63

2022 [167]

Semantic Segmenta-
tion

RNN
Attention
Module
Encoder-
Decoder

kvasir-
instrument
UW-Sinus-
Surgery-C/L

590 Images
768 × 576 Resolution
4345 Images
5-23 Minute Videos
320 × 240 Resolution

Dice: 96.27
mIoU: 92.82

2022 [168]

Tool Tip Segmenta-
tion

U-Net UW-Sinus-
Surgery-C/L

8360 Images
5-23 Minute Videos
30 fps
256 × 256 Resolution

mDice: 0.9522
mIoU: 0.9088

2022 [169]

Instrument Segmenta-
tion

Mask R-CNN
CNN
Swin-
Transformer

EndoVis
2017

8 Sequences
225 Frames
Test Set 8 × 75
Frames
2 × 300 Frames
Videos

mIoU: 0.5873
mIoU: 0.7408

2022 [170]

3.3.2 Surgical Processes

Surgical process is a nontechnical parent terminology induced to explain those sub-tasks of
MIS which are not directly relevant to incision but lead to the understanding and developing
the next generation autonomous medical robotic systems. The surgical process section is
subdivided into three sections, i.e. Gesture Recognition, Trajectory Segmentation, and Tissue
Segmentation, based on the contribution of the authors towards the field.

In addition, numerous studies employ these terminologies interchangeably, however,
considering the in-depth analysis, the suturing task cannot be confused with unique movement
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of surgical instrument. The former can be perceived as series of analogous gestures, whilst
latter can be described as the movement in and around a particular region.

3.3.2.1 Gesture Segmentation

Surgical gesture recognition has been perceived in several different overlapping contexts i.e.
path planning, needle positioning, continuous tip detection, etc. and therefore, numerous DL
methods have been applied in respective perspectives. The gesture segmentation is generally
implemented for suturing tasks, therefore, it is a cumbersome job because of the similarity
and repetition of analogous suturing steps.

The gesture recognition can be either live or in-vitro environments, however for suturing
tasks, it is broadly available as in-vitro experiment in the literature [22, 27, 183–189]. The
live suturing task involves risks and requires close consideration and high costs, therefore
fewer studies adopt live suturing [190–192].

The LSTM model is adopted by five out of total thirteen studies, whereas, CNN and
RCN are other most applied models by several authors. Moreover, all thirteen articles used
accuracy to measure the performance of the DL models along with other metrics and nine out
of thirteen studies incorporated JIGSAWS [93] dataset and three employed in-house datasets
(among these two studies used both JIGSAWS and other datasets also).

However, the outcome of these research studies is evident that fusion of different types of
data (i.e. video and kinematic data) yields better accuracy as compared to only image/video
data. The further technical details extracted from the gesture segmentation works are enlisted
in the Table 3.3.

3.3.2.2 Trajectory Segmentation

The task of trajectory segmentation also involves the motion analysis and pattern recognition
of the involved surgical tools. Similar to the gesture segmentation task, the in-vitro experi-
ments are generally used [194–203]. To improve the results of segmentation, authors also
incorporate the kinematic data along with the video and image data [194, 199–202, 204]. The
kinematic data has particular importance because it leads to the learning from demonstration.

Likewise, not only the thread detection but also knot tying and path planning are largely
associated with trajectory segmentation tasks [195, 196, 198, 201, 202, 205, 206]. It is worth
mentioning that instead of using one single architecture, authors used combination of DL
architectures to produce better performance results (e.g. CNN and LSTM). The Table 3.4
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Table 3.3 The summarized results of the surgical gesture recognition and segmentation
articles.

Procedure DL Model Dataset Input
Datatype

Input Data De-
scription

Results Ref Year

Laparoscopy NN In-house Video Data 7 Gestures
2 Tools

Accuracy:
100% & 80%

2006 [187]

In-vitro Suturing RCN
LSTM

JIGSAWS Video & Kine-
matic

11 Gestures
14 Sequences

Accuracy:
71% & 67%

2019 [185]

In-vitro Suturing 3D CNN JIGSAWS Video & Kine-
matic

39 Videos
11 Gestures

Accuracy:
84.3%

2019 [186]

In-vitro Suturing CNN JIGSAWS Image Data 10 Gestures
39 Sequences

Accuracy:
81.67%

2020 [183]

Live Suturing RCN
LSTM

JIGSAWS Video Data 10 Gestures
39 Sequences

Accuracy:
85.5%

2020 [190]

Live Suturing CNN JIGSAWS Video Data 10 Gestures
39 Sequences

Accuracy:
90.1%

2020 [191]

In-vitro Suturing 3D CNN
LSTM

JIGSAWS Image Data 10 Gestures
39 Sequences

Accuracy:
76.3%

2020 [22]

Prostatectomy
Suturing

AlexNet
LSTM
ConvLSTM

In-house Video & Kine-
matic

2395 & 511
Videos
5 Gestures

Accuracy:
78% & 62%

2021 [27]

Suturing Tasks LSTM JIGSAWS
In-house

Video & Kine-
matic

12 Gestures Accuracy:
75%

2021 [192]

In-vitro Suturing SD-Net JIGSAWS Video Data 10 Gestures
39 Sequences

Accuracy:
90.5%

2021 [184]

Prostatectomy
Suturing

TCN JIGSAWS
RARP-45

Video & Kine-
matic

39 & 45 Videos
12 & 7 Gestures

Accuracy:
86.8% & 81%

2022 [193]

Hand Gesture Modified
MobileNet-
v2

In-house
Jester

Video 30 Subjects
2*30 Gesture
148,092 Videos
7 Gestures

mAP: 96.82% 2022 [188]

In-vitro Suturing ResNet-50
TCN

JIGSAWS Video & Kine-
matic

39 Videos
10 Gestures

Accuracy:
89.8%

2022 [189]

highlights the salient features of the trajectory segmentation task and the employed DL
models.

3.3.2.3 Tissue Segmentation

The tissue segmentation appears to be the third largest studied task in this study comprising
around 12% of the total articles (see Table 3.5). This section comprises all the studies
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Table 3.4 The summary of the results of the trajectory segmentation publications

Objective DL Model Dataset Data Description Results Year Ref

Trajectory Segmen-
tation

Deep CNN
VGG
AlexNet

JIGSAWS 10 Gestures
39 Sequences

Silhouette
Score:
0.733±0.056,
0.716±0.097

2016 [199]

Pattern Cutting Deep Reinforce-
ment
Learning

In-house NA IoU: 0.833 2017 [198]

Trajectory Planning CNN In-house NA Accuracy:
91.25%

2017 [201]

Trajectory Segmen-
tation

Convolutional
Auto-Encoder

JIGSAWS 10 Gestures
39 Sequences

Accuracy:
78.2%
Accuracy:
92.1%

2018 [200]

Trajectory Segmen-
tation

Dense Convolu-
tional
Encoder-Decoder
Network

JIGSAWS 28 Videos
8 Video 11 Voices
38 Video
10 & 19 Voices

Accuracy:
70.8%
Accuracy:
62.1%

2018 [194]

Trajectory Genera-
tion

CNN In-house 60 & 10
Cable Images

IoU: 0.754
IoU: 0.583

2018 [204]

Thread Tip Detec-
tion

CNN
LSTM with RNN

NA 1278 & 1215
Labeled Images

Precision:
99.63
Recall: 98.89

2019 [195]

Pedicle Screw
Path Planning

CNN based 3D
U-Net

NA 21 Spinal CT
Images

Dice: 95.55
Jaccard:
91.92
MSE: 1.340

2019 [196]

Trajectory Planning NN LumSeg
SpiSeg
xVertSeg

105 CT Scans Positioning
Error
± Std:
2.37±0.97

2020 [205]

Trajectory Genera-
tion

DNN, FC
DenseNet

LumSeg
SpiSeg
xVertSeg

105 CT Scans Positioning
Error
± Std:
2.37±0.97

2021 [197]

Path Planning 3D U-Net In-house
MICCAI

15 & 8 CT Scans Accuracy:
93%

2022 [206]

Path Planning GAN
CNN
LSTM

In-house NA Accuracy:
72.94%

2022 [202]

Motion Prediction TCN
Attention Module

In-house 33 + 25 Subjects RMSE: 1.02 2022 [203]
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performed on tissues including vessel segmentation, edge detection, healthy and cancerous
tissue classification, uncertainty inference segmentation, and tissue retraction [207–218].

The applicability of tissue segmentation spans the liver to the brain to the kidney to the
lungs and to several other organs [218–225]. It also includes the binary classification of
healthy and cancerous tissues [213, 215, 226].

The aforementioned division of the segmentation phase is placed under the same category
because of the overlapping interest and the main task involved in the article. The individual
categories can be assumed in a study that only encircle the tissue segmentation task regardless
of the input type. The basic reason behind including the smaller categories (even with fewer
published papers found) is the significant contribution discussed in the robotic surgery field.

The U-Net architecture is the most applied network among all studies with being adopted
by eleven out of seventeen articles, as evident in the Table 3.5. The U-Net is often applied
in conjunction to the other networks including LSTM, GAN [224] and other variants of
CNN [208, 210, 213, 214, 216, 221, 223]. Because of the unavailability of large scale public
datasets, a significant majority of the studies (13 out of 18) incorporated in-house dataset.
Considering the proprietary datasets, authors have used varying performance measuring
metrics including accuracy, IoU, Dice and AUC. The further insights about the datasets,
performance, and the DL techniques are provided in the Table 3.5.

3.3.3 Surgical Surveillance

The increasing introduction of biomedical images facilitates the surgical surveillance and
the navigation during the surgical process. This section surveys the articles that monitor the
surgical situation with respect to the patient and the ongoing procedure.

3.3.3.1 Surgical Planning

Surgical planning is largely considered as preoperative planning, where the steps are per-
formed in advance in order to pre-visualise the intervention. The application has a large
benefit in emergency situations and war field areas where reaching the hospital requires
time. The vessel detection and needle insertion are prominent and attractive applications,
and surgical robots are made to achieve timely fashioned aid [227]. The recent trends in
surgical planning have shown great interest in the 2D, 3D, and 4D model construction for the
interventional guidance [227–235]. Due to the unavailability of the large amount of data for
preoperative planning, majority of the articles rely upon in-house data [228–231, 233–235]
which includes CT scans and MRI scans [228–230, 232, 233].
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Table 3.5 The concise results of the tissue segmentation papers

Procedure DL Model Dataset Data Description Results Year Ref

In-vitro Experi-
ment

FFNN In-house 144 Samples IoU: 0.911 2016 [222]

Laproscopy CNN In-house 2050 Video Frames Dice≥0.95 2017 [219]

Ex-vivo
Experiment

AlexNet
VGG19
Inception-v3

In-house 250000 Frames Accuracy%:
99.47
99.52, 99.71

2018 [213]

Spondylectomy GAN, DCNN
U-Net, VNet

DeepLesion 282 Images
3863 Images

IoU: 0.9584 2019 [224]

Laproscopy U-Net, LinkNet
SegNet, FCN

EndoVis19 Videos 1 & 2
EndoVis19
12 Videos

IoU: 78.31 2020 [214]

Arthroscopy U-Net In-house 18278 2D Images Dice: 0.87% 2020 [215]

Arthroplasty U-Net
U-Net++

In-house 3868 Images Dice: 0.64% 2020 [208]

Lobectomy DNN
U-Net

In-house 1080 Images
62 Minutes Video

Accuracy:
83.4% ± 3.3%

2020 [210]

Arthroscopy Bayesian
CNN

In-house 16973
17944 Images

AUC: 90.0
AUC: 89.2

2020 [211]

In-vivo Experi-
ments

U-Net EndoVis17 150 Images from
da Vinci

IoU: 0.3 2020 [220]

Arthoplasty GoogLeNet In-house 500 Images Accuracy:
97.8%

2020 [225]

In-vivo & Ex-
vivo
Experiments

SVM
RF
CNN

In-house 53 Patients
67893 In-vivo
89695 Ex-vivo

ROC-AUC: 0.88 2020 [226]

Nephrectomy FCNN
2D U-Net
3D U-Net
NephCNN

Nephrec9 8 RAPN videos
1871 Frames

Dice: 71.76% 2021 [221]

Prostatectomy U-Net
ResNet
MobileNet

In-house 5 Videos
15570 Images

IoU: 0.894 2021 [223]

Gastrectomy U-Net In-house 33 Videos
30 fps

Mean Recall: 0.606
Mean Dice: 0.549

2021 [216]

Abdominal
Surgery

U-Net
LSTM

FlapNet 2736 Sequences Accuracy:
83.77%±2.18%

2021 [207]

Neurosurgery Modified U-Net In-house
Proprietary

25 fps
40, 34, 41 Frames
224x288 Pixels

Dice: 0.97, 0.86
0.87 0.77

2022 [217]

In-vivo Experi-
ments

CNN In-house 9059 Images
17777 Annotations

Accuracy: 0.95 2022 [218]
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As can be seen in the Table 3.6, the majority of the authors use Dice performance
measure. Along with the surgical planning, the articles [228, 234, 235] also deal with
the depth estimation, motion detection and path planning, which are also crucial parts of
RAS. The articles are enlisted under the surgical planning section considering their major
contribution towards the category.

3.3.3.2 Phase and State Estimation

The surgical phase and state estimation subgroup a particular surgical process into several
chunks of phases and establish a system that recognises the phase or state of the surgical
process on a given set of inputs. The task is largely applied in several domains including
cholecystectomy, endovascular, and esophagectomy procedures [131, 236–243], however, it
appears to have less generalization for other types of surgical procedures.

Dissimilar to the surgical planning, the availability of the data for phase recognition
makes majority of the articles rely upon public datasets [131, 236, 238–240, 243] which
include kinematic data with images and videos. The CNN and LSTM are two most frequently
applied methods with accuracy being the top performance measuring parameter. Phase and
state estimation are directly related to identifying the status of the process at certain time,
therefore, the accuracy is used by almost all studies to evaluate the performance of employed
DL models. The Table 3.7 provides further details on the phase and state estimation studies.

3.3.3.3 Activity Recognition

The automatic surgical activity recognition before the surgical procedure and in the operating
room during the surgical intervention gained considerable attention in the recent past [245,
246]. The surgical activity recognition involves the real-time followup of the procedure under
consideration. The integration of CNN and LSTM networks helped surgeons draw reasonable
conclusions, however, the unavailability of large datasets has led to use the pretrained DL
models [247–250]. The pretrained DL models are highly trained on ImageNet dataset [251].

Recently, surgical activity recognition has been considered the essential part of surgical
planning and state estimation, therefore, as can be observed from the above two subsections,
the activity recognition comes under the umbrella of surgical procedure planning. Apart
from the video and image data, the kinematic data is integrated to generate better results,
whereas, the accuracy is considered the reasonable performance measure. The Table 3.8
highlights the main concepts, methods, datasets, and other relevant information about the
articles addressing the surgical activity recognition tasks.
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Table 3.6 The summary of the studies related to the surgical planning

Objective DL Model Dataset Data Description Results Year Ref

Preoperative Model Tract ANN In-house 10 Patients
3 Months

Kapa Index: 0.78 2016 [230]

Syndrome Planning CNN
LSTM

In-house MRI & 3D US
12 Monochorionic
Twin Pregnancies

Dice: 0.85 ± 0.06
& 0.79 ± 0.05
Jaccard: 0.73 ± 0.10
& 0.66 ± 0.08
AUC: 0.88 ± 0.06
& 0.84 ± 0.03
Sensitivity: 0.77 ±
0.10
& 0.73 ± 0.07
Specificity: 1.0 &
0.99

2018 [233]

Stent Graft Modeling &
Planning

U-Net In-house 78 Images Distance Error:
1–3 mm

2018 [234]

Intraoperative Liver View CNN
VGG16

In-house 2016 Liver View
9504 Live Liver
View
100 Patients

mAP: 85.9% 2020 [235]

4D Guidance &
Construction

U-Net In-house 600 Scans Dice: 0.5 mm
Precision:
0.794 ± 0.065
Recall:
0.803 ± 0.047
Z-coverage:
0.790 ± 0.087

2021 [229]

3D Reconstruction of
Wound Edge

ANN LumSeg
xVertSeg
SpiSeg

Camera Images
Kinematic Info

MSE: 0.67 2021 [231]

Vascular Access Plan-
ning

YOLO-v3 In-house 19000 Images Mean Time: 53 ± 36s 2021 [227]

Laminae Planning SegReNet
DenseSeg
FC-
DenseNet

In-house 10 Scans
15 Scans
10 Scans

Dice: 96.38% 2021 [232]

Automatic Ablation
Planning

LeNet-5 In-house 20 OCT Volumes Precision: 1.16 mm
Error 0.74 mm

2021 [244]

3.3.4 Surgical Performance/Assessment

The performance and skill assessment of surgeon in a surgical procedure is one of the most
crucial aspects of autonomous robotic surgery because it lays down the steppingstone for
computer-aided autonomous systems. The skill evaluation of the surgeons along with the
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Table 3.7 The summary of the studies dealing with the task of phase and state estimation
using DL models

Objective DL Model Dataset Data Description Results Year Ref

State Perception CNN JIGSAWS 39 Sequences
8 Users
10 Gesture Classes

Accuracy: 96% 2019 [237]

Action Recognition ResNet
Encoder-
decoder

JIGSAWS 39 Sequences
8 Users
10 Gesture Classes

Accuracy: 81.71%
Edit Score: 91.74
F1: 80.08

2020 [236]

Tool Presence Analysis RCN
LSTM

Cholec80 80 Videos mAP: 89.1%
F1 Score: 87.4%

2020 [131]

Pull State Recognition
Needle Detection

YOLOv3
CNN

In-house 15505 Images Accuracy: 72.4%
Accuracy: 93.2%

2020 [241]

Phase Recognition CNN
RCN

Bypass40 40 Surgical
Procedures

Accuracy: 90.9 ± 3.2
Precision: 85.6 ± 4.5
Recall: 84.0 ± 4.2
F1 Score: 84.2 ± 4.2

2021 [240]

State Estimation DNN
U-Net
LSTM

HERNIA 20 20 Inguinal Hernia
Repair Surgeries
on da Vinci

Accuracy: 80.4% 2021 [238]

State Estimation LSTM HERNIA 20
RIOUS+
JIGSAWS

20 Inguinal Hernia
Repair Surgeries
on da Vinci
40 Uson da Vinci
39 Sequences
8 Users
10 Gesture Classes

Accuracy: 82.7%
Accuracy: 89.5%
Accuracy: 85.6%

2021 [239]

Phase Recognition Temporal
CN

In-house 31 Patients’ Videos Accuracy: 84% 2022 [242]

Phase Recognition Temporal
CN
ResNet-50

M2CAI16
Cholec80

10 Procedures
2532 Frames
1280 × 720 Pixels
80 Videos

Accuracy: 91.8 ± 8.1
Precision: 90.3 ± 6.4
Recall: 90.0 ± 6.4
Jaccard: 81.2 ± 5.5

2022 [243]

workflow recognition from a surgical video allows to compute the dexterity and precision.
Therefore, building a robotic surgical system requires the beforehand understanding of the
skill assessment and flow during the procedure.

3.3.4.1 Skill Assessment

The manual skill assessment and skill development monitoring of the doctors, surgeons, and
trainees is burdensome tasks and requires a great deal of time and expertise. This usual task
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Table 3.8 The summary of the articles incorporating DL methods for the task of activity
recognition

Objective DL Model Dataset Data Descrip-
tion

Results Year Ref

Action Segmentation VGG &
AlexNet

JIGSAWS
&
50 Salad

39 Sequences
8 Users
10 Classes
50 Instances
25 Users
2 Trials

Accuracy:
74.22%
Accuracy:
72%

2016 [249]

Activity Recognition RP-Net &
Inception-v3

In-house 100 Videos
12 Tasks Each

Precision:
80.9%
Recall: 76.7%

2018 [250]

Activity Recognition 3D ConvNet &
LSTM

In-house 400 Surgical
Videos
103 Procedures
8 Surgeons

Precision: 88% 2020 [245]

Surgery Type Recogni-
tion

CNN & LSTM Laparo425 425 Videos
9 Surgeries

Accuracy:
75%

2020 [246]

Surgical Action Recog-
nition

Deep CNN &
pretrained CNN

Lapgyn4DS 30,682 Frames
8 Actions
500 Surgeries

Accuracy:
99.20%
AUC: 99.12%

2020 [247]

Surgical Activity
Recognition

Multitask CNN
&
ResNet-18

CholecT40 40 Videos
Cholec80
128 Triplets

Accuracy:
89.7%
Action Triplet
Recognition:
24.78%

2020 [248]

comes under the responsibility of expert doctors, which is not only arduous but also prone to
errors. The automatic surgical skill evaluation for the RAS is indispensable.

The surgical skill assessment and skill level assessment are widely realised using CNN
models driven by video and kinematic data [252–258]. The JIGSAWS [93] is most common
dataset for skill evaluation since it provides both video frames and kinematic data (Table 3.9).
All the studies included in this section evaluated the models on accuracy and/or AUC. The
skill assessment also handles the instrument tracking in some cases where the dexterity of
surgeons carries extreme importance. The other performance measures, dataset description,
and DL models are provided in the Table 3.9.
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Table 3.9 The summary of the articles incorporating DL methods for the task of skill
assessment

Objective DL Model Dataset Data Descrip-
tion

Results Year Ref

Surgical Skill Assessment CNN JIGSAWS 39 Sequences
8 Users
10 Gesture
Classes

Accuracy:
100%

2018 [252]

Subjective Skill Assess-
ment

3D ConvNet JIGSAWS 39 Sequences
8 Users
10 Gesture
Classes

Accuracy:
95.1%
Accuracy:
100%

2019 [253]

Surgical Skill Evaluation Mask-RCN
RPN

BABA
In-house

84 Frames
454 Frames
1766 Frames

RMSE: 3.52
mm
AUC: 1 mm
Accuracy: 83%

2020 [254]

Skill Level Assessment 1D CNN
LSTM

JIGSAWS 39 Sequences
8 Users
10 Gesture
Classes

Macro Avg:
0.9917 &
0.0802
Micro Avg:
0.9844 &
0.0442

2020 [255]

Surgical Performance As-
sessment

DNN In-house 254 Videos
2 Simulation Ex-
ercise

Accuracy:
83.1%
Accuracy:
80.8%

2021 [256]

Objective Skill Assess-
ment

RNN JIGSAWS 39 Sequences
8 Users
10 Gesture
Classes

Accuracy:
95.74%
Accuracy: 83.54
Accuracy:
84.23%
Accuracy:
81.58%

2021 [257]

Surgical Skill Assessment Domain-
Adapted Model

JIGSAWS 39 Sequences
8 Users
10 Gesture
Classes

Accuracy:
96.27%

2022 [258]

3.3.4.2 Workflow Recognition

Surgical workflow analysis describes the steps involved during the surgical interventions.
Automatizing the surgical workflow has great importance in the modern operating room.
Autonomous workflow recognition is vital in developing computer-aided autonomous and
semiautonomous surgical frameworks. These systems have the ability to supervise the surgery
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within operating room by scheduling the tasks and resources and providing the seamless
assistance to clinicians.

The interpretation of the recorded video of the surgical procedures requires expertise,
focus, and huge amount of time. The technological advances automatically extract the
valuable information by analysing the videos. The cholecystectomy procedure videos are
largely used in literature to understand the workflow and surgery type recognition [153, 259–
262], followed by nephrectomy [246, 263–265]. The CNN and the LSTM are common
methods used to study the workflow in the videos [153, 246, 259–267] because of their high
performance. Eight out of ten studies used accuracy as a performance measuring metric
along with others. The workflow recognition also overlaps with the future state prediction
and phase recognition [265, 268]. The Table 3.10 contains the other necessary and relevant
details about the section of the study.

3.3.5 Others

This section describes the articles that do not come under the major categories, however
their contribution towards the image-guided RAS is not negligible. The other reason of this
distinctive but amalgam section formation is the small number of found publications for the
relevant subclass. Therefore, this section highlights the objective, contribution, DL methods
adopted, and other significant details of each study.

In [269], the authors proposed dual neural network based models for organ recognition
and presence or absence of internal organ in endoscopy image data. The second neural
network model testifies the presence of the organ on series of images on the live screen. The
in-house generation of small dataset resulted in 92% of the accuracy with only 200 randomly
selected images for testing.

Similarly, the segmentation of organs [171, 270, 271] and tissues is also well studied
task in RAS [214]. The Mask-RCN and CNN based YOLO, U-Net, TernausNet, LinkNet,
and SegNet are applied on famous EndoVis Challenge and in-house datasets. The aforemen-
tioned articles coincide with the tool detection and segmentation category because of the
segmentation of tool during organ detection.

In another similar study, the volume of organ segmentation in intraoperative guidance is
studied using U-Net and V-Net architectures [272]. Two publicly available datasets namely
VISCERAL and SLiver07 datasets are used in this study and 12.6% and 6.2% IoU for the
aortic and liver segmentation are achieved.
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Table 3.10 The summarised results of the flow recognition articles

Objective DL
Model

Dataset Data Description Results Year Ref

Workflow Recognition RNN
CNN
ResNet
LSTM

Cholec80
MICCAI
2016

80 Videos
13 Surgeons
25 fps
854 × 480 Resolu-
tion
41 Videos
25 fps
1920 × 1080 Reso-
lution

Accuracy: 90.7%
Accuracy: 92.4%

2018 [261]

Self Supervised Workflow
Analysis

ResNet-
50

Cholec80 80 Videos
13 Surgeons
25 fps
854 × 480 Resolu-
tion

Accuracy: 92.7 ±
4.3
Recall: 87.0 ± 4.0
Precision: 87.6 ±
5.3
F1 Score: 84.6 ±
5.4

2018 [262]

Surgery Type Recognition CNN
LSTM

Laparo425 425 Videos
9 Surgeries

Accuracy: 75% 2019 [246]

Automatic Workflow Anal-
ysis

CNN
LSTM

In-house 9 Videos
24 Hz
82:49 ± 37:54
Minutes Length

Accuracy: 100%
Precision: 100%
Recall: 100%

2019 [264]

Flow & Context Recogni-
tion

RNN
LSTM

In-house 9 Videos
24 Hz
82:49 ± 37:54
Minutes Length

Accuracy:
74.29%
Accuracies:
Clamping: 100%
Dissection: 83%
Suturing: 87%
Drainage: 100%
Ultrasound: 43%

2019 [263]

Surgical Workflow Recog-
nition

ResNet-
50

In-house 8 Videos
1920 × 1080 Reso-
lution
30 fps

Accuracy:
0.9482%
Loss = 0.0765

2020 [259]

Optical Flow Prediction U-Net Inhouse
RIDE

66 Patients
700 Sequences
1920 × 1080 Reso-
lution
25 fps

s-EPE: 2.6 (2.6)
l-EPE: 14.7 (7.9)
Grid EPE 15.8
(7.9)

2020 [266]

Surgical Workflow Analy-
sis

RNN
ResNet-
50

Cholec80 80 Videos
13 Surgeons
25 fps
854 × 480
1920 × 1080 Reso-
lution

Accuracy: 85.73
± 6.96
Precision: 82.94 ±
6.20
Recall: 85.04 ±
5.15
Jaccard: 69.96 ±
8.83
F1 Score: 82.08 ±
6.45

2020 [260]



3.4 Publicly Available Datasets 64

Objective DL
Model

Dataset Data Description Results Year Ref

Instrument and
Workflow Recognition

Bayesianc
AlexNet
LSTM

Cholec80 80 Videos
13 Surgeons
25 fps
854 × 480 Resolu-
tion

Bipolar:
wMAE: 0.76
pMAE: 0.96
Scissors:
wMAE: 0.51
pMAE: 0.76

2020 [153]

3D Workflow Analysis U-Net
ResNet-
50

In-house 9 Videos
20 Minutes Length

Mean IoU: 80% 2022 [268]

Workflow Detection CNN
Mask
R-CNN

M2CAI2016 10 Procedures
2532 Frames
1280 × 720 Pixels

mAP: 96.8 2022 [265]

The gaze estimation has an important role in tele-robotic surgery, however fewer studies
have incorporated image data to support autonomous surgical systems. The [273] proposed a
dense CNN architecture to control the surgical robot using gaze estimation. The local dataset
generated from camera images is manually labelled in nine different gaze directions. The
accuracy of the direction based gaze estimation reached 90%.

Smoke detection is another less common but growing application within the robotic
surgery domain. The authors in [274–276] use intraoperative images to detect and remove
smoke using U-Net, GoogLeNet, and CycleGAN. The obtained results are considerable and
detailed in the Table 3.11 for further reading.

An image based gauze detection and segmentation approach is proposed by Sanchez et al.
[277] where pretrained models are employed to test the novel dataset of 4003 video provided
by authors. The InceptionV3, MobileNetV2, and ResNet-50 managed to reach an accuracy
value of 77.68%, 75.67%, 90.16%, respectively.

3.4 Publicly Available Datasets

The impressive outcomes of the DL are underscored by the large amount of available datasets
because of the intrinsic nature of neural networks. Neural network based models require
training which follows the principle of more the data is available, better the results are.
During this case study, a decent number of articles is found to have used publicly available
datasets, however, numerous studies are conducted on proprietary datasets. The publicly
available datasets do not only provide benchmark for DL model development but also support
in evaluation and comparison of several models.
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Table 3.11 The summary of the articles incorporating DL methods for miscellaneous tasks in
robotic surgery realm

Objective DL Model Dataset Data Description Results Year Ref

Gaze Estimation
to Control Robot

Dense CNN In-house 9 Gaze Direction Accuracy: 90% 2018 [273]

Organ Recognition NN In-house 200 Images
Endoscopy
Records

Accuracy: 92% 2019 [274]

Volume Segmentation
in CT Images

3D DCNN
U-Net
V-Net

VISCERAL
SLiver07

20 CT Volumes
20 CT Volumes

IoU: 12.6%
IoU: 6.2%

2020 [269]

Pixel-wise Smoke
Detection

U-Net Hamlyn
Cholec80
m2cai16-
workflow

21000 Images
91 Videos
10 Procedures
2532 Frames

MSE: 0.002 ±
0.001

2020 [214]

Smoke Detection GoogLeNet In-house 4500 Images
8 Surgeries
30000 Images

ROC: 0.98
AUC: 0.92-0.97

2020 [272]

Organs Segmentation U-Net
TernausNet
LinkNet
SegNet
FCN

EndoVis
2019

12 Videos
25 Hz
960 × 540 Resolu-
tion

IoU: 78.31%
Time: 28.07 ms

2021 [275]

Object Detection YOLO-v4 In-house 5 Videos 398 Im-
ages

Accuracy: 90% 2022 [171]

Organ Segmentation Mask R-
CNN

In-house 55 Videos
8 Hospitals
1578 Images

Dice Score:
97.65%

2022 [270]

Smoke Removal CycleGAN In-house 10 Videos
6000 Images

Accuracy: 93% 2022 [276]

Organ Segmentation U-Net
EfficientNet-
b5

In-house 20 Subjects
506 Images

mDSC: 0.90 2022 [271]

Gaze Detection &
Segmentation

YOLOv3
U-Net
InceptionV3
MobileNetV2
ResNet-50

In-house 4003 Videos Accuracy: 77.68,
75.67, 90.16
IoU: 0.85

2022 [277]

This section illustrates the datasets employed by the articles encompassed in this study.
Furthermore, around 35 datasets are adopted by the surveyed articles, however, for the
purpose of concision, only 10 datasets are described. The Table 3.12 contains the information
of publicly available datasets including name, year of publication, modalities, and a short
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description. According to this study, the JIGSAWS is the most employed dataset in the RAS
that encompasses video and kinematic data (Figure 3.5).

3.4.1 JIGSAWS

The well-known gesture and skill assessment dataset JIGSAWS comprises of kinematic and
video data for suturing, needle passing and knot-tying tasks. This dataset was recorded by 8
experts on da Vinci surgical system performing the five repetitions of suturing, knot-tying and
needle passing procedures [93]. The Figure 3.5 shows that the JIGSAWS is most extensively
applied dataset by the studies included in this case study, however, not all the authors have
utilized the complete dataset but a part of the dataset. The JIGSAWS dataset contains 163
videos and kinematic data. The brief description of the dataset is provided in the Table 3.12.

3.4.2 MICCAI Datasets

The Medical Image Computing and Computer Assisted Intervention (MICCAI), officially
known as The MICCAI Society was established in July 2004 [94] as a non-profit organisation.
The MICCAI Society holds the annual competitions with the purpose to bring the researchers,
clinicians, and engineers together to advance in the field of biomedical engineering. The
MICCAI offers a wide range of datasets each year with different objectives and holds the
competitions. A worth considering number of articles take advantage of datasets provided by
challenges for biomedical analysis.

The most common challenge of MICCAI is EndoVis challenge, which is organised every
year since 2015. The sub-challenges of EndoVis contain datasets for wide variety of tasks
including instrument detection, segmentation, boundary detection, workflow analysis, skill
assessment, etc. Further information about the MICCAI and its EndoVis challenge can be
found in the Table 3.12.

3.4.3 Cholec80

The Cholec80 is another famous cholecystectomy dataset. It comprises of 80 cholecystectomy
surgery videos recorded during the surgical interventions performed by 13 experts at 25
Frames Per Second (FPS) [95]. The Cholec80 data is widely used for tool presence detection
and phase recognition as evident by the Figure 3.5 and Table 3.12. The original data contains
the videos where the tool cannot be easily visualised by naked eye which makes the detection
and segmentation a challenging task.
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The Cholec80 dataset is further split into two groups of 40 videos each, namely for
training and testing. Several different versions of Cholec80 are also available in literature.

3.4.4 ATLAS Dione

The ATLAS Dione dataset contains the video data of ten surgeons having different expertise
level and record six different surgical procedures on da Vinci surgical system at Roswell Park
Cancer Institute, Buffalo, New York, USA [96]. The surgical procedures include basic robotic
surgery task to high-level surgical processes. The motivation behind this data generation was
unavailability of annotations in JIGSAWS dataset. The videos in the dataset are annotated in
the frames of 854×480 pixels each and the annotations are provided in XML format. Further
details about the ATLAS Dione dataset can be found in the Table 3.12.

3.4.5 UCL dVRK Dataset

The UCL da Vinci Research Kit (dVRK) comprises 14 videos of 300 frames each of segmen-
tation task. It also contains six videos of robotic kinematic recorded at 300 frames each. All
the recorded frames are 720x576 pixels. The frames contained the camera artefacts which
are later cropped at 720x576 pixel resolution. The dataset is recorded using four consecutive
steps that are repeated to record the video and kinematic data. For the further information on
the setup and the data acquisition methods, interested reads are referred to the [176].

3.4.6 M2CAI16 Dataset

The M2CAI16 challenge is a satellite event of MICCAI offering two different datasets
including workflow and tool detection, which are enlisted hereunder as well as in the Table
3.12.

3.4.6.1 M2CAI16-Tools Dataset

This dataset was generated with the collaboration of University Hospital of Strasbourg and
the Hospital Klinikum Rechts der Isar in Munich, Germany [96]. The dataset contains 41
laparoscopic procedural videos of the cholecystectomy with eight distinct phases. Out of the
total 41 videos, 27 and 14 videos are for training and testing purposes, respectively.
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Table 3.12 The summary of the publicly available datasets used by the articles included in
this study

Name Data Data Description Procedure Purpose Year Ref

MICCAI Video 41 Videos
25 fps
1920 × 1080 Reso-
lution

Subject to Change Detection
Recognition
Segmentation

2004 [94]

JIGSAWS Video
Kinematic
Data

103 Videos
39 Sequences
8 Users
10 Gesture
Classes

Suturing
Knot Tying
Needle Passing

Gesture
Recognition
Skill Assess-
ment

2014 [93]

Cholec80 Video 80 Videos
13 Surgeons
25 fps
854 × 480 Resolu-
tion

Cholecystectomy
Surgery

Phase Recog-
nition
Tool Detec-
tion

2016 [278]

M2CAI16 Tool Video 15 Procedures
2532 Frames

Cholecystectomy
Surgery

Tool Detec-
tion

2016 [279]

M2CAI16 Work-
flow

Video 41 Videos Cholecystectomy
Surgery

Workflow Analysis 2016 [280]

M2CAI16 Loca-
tion

Video 3141 Annotations
7 Instrument
10 Videos

Cholecystectomy
Surgery

Tool Detec-
tion
Skill Assess-
ment

2016 [279]

ATLAS Dione Video 10 Surgeons
6 Tasks on
daVinci
99 Videos
854 × 480 Pixels
22467 Images

6 Different
Surgeries

Tool Detec-
tion
Action Recog-
nition

2017 [96]

DeepLision CT Images 32000 Images
4400 Patients

Whole Body Lesion Detec-
tion
Semantic Seg-
mentation

2018 [281]

Lapro425 Video 425 Videos
9 Surgeries

Laparoscopy Flow Analy-
sis

2019 [246]

UCL dVRK Video
Kinematic
Data

14+6 Videos
300 Frames Each
720 × 576 Pixels

Different Surgeries Tool Segmentation 2020 [176]

CholecT40 Video 40 Videos
13 Surgeons
25 fps
854 × 480 Resolu-
tion

Cholecystectomy
Surgery

Action Recognition 2020 [248]

Sinus Surgery-C Image &
Video

10 Videos
5-23 Minute
320 × 240 Resolu-
tion
30 fps

Sinus Endoscopy Smoke Detec-
tion
Tool Shadow
Instrument
Segmentation

2020 [282]

FlapNet Video 62 Minute Videos Lobectomy Tissue Seg-
mentation
Tool Segmen-
tation

2020 [210]
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Fig. 3.5 Frequency of the used datasets by the number of studies. Articles that adopted two
or more datasets are counted respectively.

3.4.6.2 M2CAI16-Workflow Dataset

The M2CAI16-Workflow dataset was generated at University Hospital of Strasbourg [278].
Similar to the previous data, this dataset also contains laparoscopic videos of cholecystectomy.
A total of 15 procedures were recorded, ten and five for training and testing purposes,
respectively.

3.4.6.3 M2CAI16-Location Dataset

The M2CAI16-Location dataset is extension of the aforementioned M2CAI16-Tool dataset
[279]. It additionally contains the annotations of the tools and locations.

3.4.7 Laparo425

The Laparo425 dataset contains the laparoscopy videos of nine distinctive classes. The
dataset was recorded at the University Hospital of Strasbourg. As its name suggests, it
contain 425 procedures recorded at 25 FPS and down-sampled at one FPS for experiments.
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3.4.8 CholecT40

The CholecT40 datasets comes from the Cholec80 dataset. It contains 40 videos from the
Cholec80 dataset and annotates them to action triplets. The 128 different action triplets are
introduced and recognised using video data [248].

3.4.9 Sinus-Surgery-C Dataset

This dataset contains the endoscopic sinus surgery images which are annotated for surgical
tool segmentation task. The dataset comes from the BioRobotics Lab at the University of
Washington, USA [282]. The segmentation of the dataset is not easy since it contains smoke
and shadows of the instruments. As soon as the movement occurs, the blue images generate
that make the dataset more challenging for instrument segmentation tasks.

3.4.10 DeepLesion

The DeepLesion dataset is large dataset of National Institute of Health of USA that contains
32000 lesions of the CT images. The total number of 4400 unique patients were involved
during the data generation [281]. This dataset offers a great diversity because of its diverse
collection of images from liver, lungs, lymph, and many more human body organs. The
further details about all datasets are also provided in the Table 3.12.

3.5 Risks and Challenges

This section describes the potential pitfalls that hinder the development of autonomous
robotic surgical systems. The first part of the section illustrates the technical and technological
challenges that are either under development phases or soon will be. However, the second part
demonstrates the legal and ethical concerns of the DL guided computer-aided interventions.

A big thanks to the advancement in the AI, the healthcare industry has not only improved
the diagnostic methods but also moved to surgical robots. However, the other side of the
DL in medical domain is still darker. The technical risks include the design of the robotic
components, the precision in complex scenarios, and unpredictability of the amount of
surgical procedure assignment [283] among numerous others. The success rate of surgical
systems is increasing day by day [283], nevertheless the high associated costs are not
negligible [284]. These costs can be traced back to component design and continue through
the operating room to the maintenance expenditures.
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Additionally, the surgical systems are designed with limited allowed movement and the
dexterity, which have a positive and a negative side. The controlled movement will fail if any
unscheduled task originates during the surgery because of no or less adaptability expertise
[285]. In the meantime, a robotic system can physically harm the patient and damage the
involved components. The safety of the patient under the surgery is at risk, not only by
hardware part of the robotic system but also by the software [286].

In a semi-autonomous surgical system, a minute human error can put the life of patient
in danger [287]. The training and the testing capabilities of human are not as precise as
machine, however completely relying on machine with present day technology could produce
less efficient outcomes in general [288, 289]. Therefore, all these concerns require detailed
studies and considerations.

Similarly, all the perks DL offers are appreciable, however, there are few things beyond
technology. The legal and ethical issues concern the privacy of the medical data of the
patients [290–292]. Another potential threat is cybercrime involving the genetic information
of the patient and potential hack of the robotic system [293]. The prospective cyber attacks
to seize the control of surgical system can lead to devastating results including lethal physical
harm to patients, as discussed by Bonaci et al. [294]. The software designer and the
developers should come forward and certify that the delivered products are not vulnerable to
attacks. An automatic rescue service should be activated in cases of emergency i.e. power
cuts, jamming, transmission, etc. Unlike autonomous driving, there exist no legal standard
methods to define the level of degree to which a robotic system can be autonomous [295].
The National Health Service (NHS) of the United Kingdom came under similar attack back
in 2017 which affected medical devices nationwide [296]. Moreover, the transparency is
another worrisome issue because of the blackbox decision making nature of the DL models.
The recent advent of eXplainable AI has taken care of transparency and interpretability
problems, however, the field is growing and requires further exploration. Finally, all the
aforementioned applications are accelerating the dread of physical harm by the AI systems
and eventually reduce the human involvement. The additional intervention of government
and giant companies spreads fear among the undergoing patient that demands and requires a
code of conduct.

The General Data Protection Regulation (GDPR) by European Union also states the
concise and transparent information provision and privacy protection of users [42]. This
ensures the maximal control, however the full enforcement of the law across the board is yet
to be experienced.
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Furthermore, the fully autonomous robotic surgical system should first go through several
security checks to answer the concerns of physicians, engineers, patients and general public.
Who will be responsible in case of harm to the undergoing patient or patient’s data? Is it
the robot? Or the engineer developing the robot? Or anyone else? Successfully building
the autonomous robotic systems will leave nothing to human but the responsibility which
brings culpability and liability. The author, in no case, is against the development of fully
autonomous robots, rather demands a proper regulation before the train is missed.

Conclusively, the cyber-security of the robotics and particularly the surgical robotics is
big market where researcher need to explore because a medical robotic system can not be
judged based on average results but best possible outcomes are indispensable (better than
human), otherwise, a medical robot looses the whole point to be developed for surgical
applications.

3.6 Discussion

During the recent decade, the DL models have made substantial impact on healthcare domain
(e.g. CAD systems). The large scale availability of surgical datasets and straightforward
data acquisition protocols encourage cross-domain research synergies in order to reach fully
autonomous robotic surgery. Recently, numerous DL models have been applied on medical
images to capture the relevant information and provide to the RAS system for surgical
procedures (Figure 3.1).

This case study analyses and summarises the contribution of the DL architectures in the
field of image-driven surgical robots. The analysis reveals the current interests of researchers
in image-guided DL based RAS is increasing over time. Inside the RAS, the majority of
articles contribute to the tool detection and segmentation tasks. One reason behind detection
and segmentation task selection is the serene accessibility to enormous surgical tool data.
The other reason can be the working mechanism of DL models. Since the DL models learn
from patterns, the tools segmentation tasks are arduous because of the presence of smoke,
reflection of instruments, and vessels in the surgical dataset.

During this study, the author found that the CNN is most commonly employed DL method
because of its successful history with image data. The Figure 3.4 and Table II through Table
XI are evident of the aforementioned claim. Not only the CNN is most applied method, but
also it outperforms other techniques. However, as depicted in the Table 3.1, the combination
of several different models yields improved results. Most of the articles dealing with action
recognition applications (e.g. surgical gesture recognition and segmentation, trajectory
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segmentation, phase and state estimation, etc.) consider the combination of traditional
static CNN architectures along with the RNN/LSTM models. The combination of CNN
and RNN lies in the fact that CNN are able to automatically extract spatial features within
images, whereas RNN have been designed to capture the temporal information. However,
it is worth noting that not all the articles related to action segmentation employ a RNN. In
fact, some authors choose 3D CNNs that are able to simultaneously capture both spatial
and temporal features of the action/motion behaviour. These kind of solutions can directly
extract information from multiple video frames through 3D convolutions. Comparing the
two different approaches it is not easy to determine which approach is the best, a future work
might investigate deeper this aspect. However, it can surely stated that the main limitation of
3D CNN is related to the increased dimension due to 3D convolutions, thus a bigger amount
of data and time is needed for training such models.

Similarly, the most widely used dataset is JIGSAWS that contains video and kinematic
data (Figure 3.5 and Table 3.12). Authors proved that the fusion of video data into the
kinematic data leads to better performance outcomes. The annual competition organised by
MICCAI for several varying imaging tasks also brings new datasets. Although huge number
of studies employ in-house datasets, a total number of 35 different publicly available datasets
are used either partially or fully.

This fact reveals that the amount of available data is significant and has attracted scientists
and boosted the research. Another benefit of extensive data availability is the possibility of
comparison between the novel conducted studies.

A considerable number of papers have taken benefit of pretrained networks, as can be
seen through the Table 3.1 and Table 3.10. These models are heavily trained on ImageNet
dataset [251]. The biggest reason of using pretrained nets is the unavailability of sufficient
amount of data to train a DL architecture from the scratch. In the surgical workflow analysis
task, numerous authors adopted in-house datasets which led them to use pretrained models.
Since these models are pretrained, therefore, they come with the added benefit of lower time
consumption. The most commonly used pretrained net remained VGG architecture followed
by the ResNet and MobileNet.

With the increasing development of DL models, and the massive success with image
modalities, the research in the field of image-guided robotic surgery is inevitably growing.
Firstly, image data acquisition methods are smooth with least harm (tolerable) and do not
require colossal acquisition cost. Secondly, image data contains bulk of information about the
patient and helps understand internal state of patient without incision or physical injection.
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Moreover, analysis and preprocessing on the image modalities is relatively easy and also,
the DL methods work better with the image data. Therefore, the future of MIS, RAS and
computer-aided interventions relies mainly on the image and video data, and of course DL.

Finally, based on the exhaustive analysis, the study points out to the two major concerns,
first for the medical experts and the other for DL engineers. The recorded image modalities
and videos contain smoke, instrument reflections, and surgeon’s movements (i.e. hands,
reflections), therefore, the DL algorithms learn from the unnecessary features which may
bias the results. Secondly, not only the DL methods require huge amount of time for training
purposes that needs to be optimized, but also DL is blackbox in decision making mechanism
which concerns the clinicians and the patients.

3.7 Summary

In this study, technical articles concerning image driven computer-assisted interventions incor-
porating DL models are selected for the case study. The intensive text assessment indicated
that the selected 184 articles can be grouped into four categories including: 1) Surgical Tools,
2) Surgical Processes, 3) Surgical Surveillance, and 4) Surgical Performance/Assessment.
The key findings include: a) Surgical Tools is most studied topic which comprises Surgical
Tool Detection and Surgical Tool Segmentation (45% of total articles), b) CNN is most
widely applied DL topology (roughly 54% of total articles), c) the gesture recognition articles
incorporate JIGSAWS dataset (around 77% of articles in relevant subcategory), whereas
MICCAI datasets are top consideration for detection and segmentation tasks (around 60% of
articles in relevant subcategory), d) VGG remains the widely accepted pretrained network
especially when available dataset was not large enough, f) the most studied applications
appear to be cholecystectomy and prostatectomy, g) for gesture and trajectory applications,
suturing task is frequently studied application area, h) the fusion of kinematic data with
image data yields better results. Considering the characteristics of the proposed case study,
the author believes that the main limitation of the study concerns the lack of deep details of
the pre-processing and processing approaches proposed in the reviewed papers to solve the
problems related to each application category. However, this was not the original scope of
the case study, since providing the general overview of the topics under discussion required
gigantic efforts. In the context of future direction, the development of fully autonomous RAS
system appears highly promising and fascinating research topic. Additionally, self-supervised
learning based models can greatly improve the environment in operating room. Finally, a
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steady walk from the weak AI to strong AI and to the super AI can lead to the notable
breakthroughs.



Chapter 4

Deep Learning Driven Fusion Biopsy for
Prostate Morphology

4.1 Deep Learning framework for Prostate Segmentation

In this section of the work, the accurate, reliable, fast, and hence semiautomatic approach for
prostate segmentation from TRUS images has been proposed. The pipeline can be exploited
without having acquired a specific dataset for the transducer in consideration. The approach,
like other existing works, is based on the theory of deformable superellipses. Two kinds of
methodologies can be exploited for achieving segmentation with superellipses. In the first,
image characteristics, such as edge maps or region energy, are employed for performing
automatic image segmentation. In the second case, the geometry of the prostate is inferred
from user-defined points.

Though extensive experiments have been carried out to outline the best guidelines that
a human operator should take into consideration when using the proposed algorithm for
performing a procedure in order to minimize the number of points required and maximize

Table 4.1 Prostate gland datasets description. As imaging modalities, only ZENODO
contains TRUS images, even in a very limited quantity, being only 3. Fiducial points are also
present only in the last dataset. Seg stands for Segmentation, Reg for Registration.

Dataset Imaging Task Number Ground Truth Fiducial File
modality of images segmentation points format

PROMISE12 [297] MR (T2W) MR Seg 50 ✓ ✗ NIfTI
SAML [298, 299] MR (T2W) MR Seg 116 ✓ ✗ NIfTI
ZENODO [300] MR (T2W), TRUS TRUS Seg, MR/TRUS Reg 3, 3 ✓ ✓ NRRD
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the segmentation accuracy. In any case, carrying out a second iteration can mitigate eventual
problems that arise after the suboptimal placing of points in the first iteration.

Lastly, an application of the proposed method in an image fusion setup with MRI is shown.
The segmentation module for the MRI relies on the nnU-Net framework. Segmentation
masks from both domains are then registered to attain the image fusion task.

4.2 Introduction and Background

Prostate cancer is a major health problem and represents the most common cancer in the
male population, accounting for 18.5% of all the cancers diagnosed in humans [301]. The
number of new cases worldwide crossed 1,275,000 and caused approximately 360,000 deaths
merely in year 2018 (3.8% of all deaths caused by cancer in men) [302].

Numerous imaging modalities are exploited for prostate cancer diagnosis, treatment and
follow-up. The TRUS, MRI, and CT are the most common employed imaging modalities
[303]. Each technique provides different information and is used for several divergent
clinical scopes. During biopsy procedures, TRUS is commonly employed since it is an
inexpensive, portable and real-time methodology [304]. MRI is mainly adopted for diagnosis
and treatment planning [305]. In fact, this modality has a better soft tissue contrast and
allows a more efficient lesion detection and staging in patients affected by prostate cancer.

As can be seen from Figure 4.1, the TRUS images suffer from problems as speckle, low
contrast and shadow artifacts [306]. Calcification and acoustic shadowing make the automatic
segmentation of prostate region a very complex task [307]. The prostate usually appears
like a hypoechoic mass encompassed by a hyperechoic region [308]. CT scans are useful in
determining if prostate cancer has spread to bone tissues or to assess the effectiveness of the
brachytherapy [309].

In the clinical practice, majority of prostate cancer cases are diagnosed, prior to symptoms
development, thanks to the Prostate-Specific Antigen (PSA) [310] levels in the blood and
rectal examination. In order to achieve more satisfactory information, MRI is the election
modality, with PI-RADS v2.1 being the standard for finding interpretation [311].

The standard prostate biopsy involves the extraction of 10 to 12 tissue samples. Since
there is no guarantee that sampling prostate in these regions is the most effective way to
obtain the regions with cancerous tissue, fusion guided prostate biopsy is becoming now the
preferred modality for most urologists and surgeons. In this way, suspicious areas found
in the MRI of the prostate can be targeted during the prostate procedure exploiting the
fusion with the real-time TRUS imaging, also allowing a better view of the biopsy needle.
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Advantages of this approach comprise of the following: more accurate sampling of the
cancerous tissue in the prostate gland; less amount of patient tissue is extracted; less pain
and less risks for the patient, including faster recovery time [312].

In order to implement a fusion prostate biopsy framework, segmentation of prostate gland
must be obtained from both TRUS and MRI domains. Exceptions involve systems in which
images are manually registered by the user at procedure time, by superimposing MRI over
the TRUS.

Since MRI is acquired days before the prostate biopsy, it is not fundamental that its seg-
mentation is performed real time. Even though, manual segmentation of prostate from MRI
is a tedious task and prone to inter- and intra-radiologist variation [297], so the exploitation
of an automatic method grounded on the nnU-Net framework [313] for this task can further
ease the procedure and improve its diagnostic accuracy.

It is worth noting that nnU-Net does not denote a novel network topology, loss function,
or training procedure. Indeed, nnU-Net stands for "no new net". The strength of the nnU-Net
framework comes from the systematization of all the steps which were usually manually tuned
in the training pipeline of semantic segmentation architectures, including data augmentation,
hyperparameters’ tuning, test-time augmentation, and ensembling.

Instead, manual segmentation of the prostate gland from TRUS has to be realized real-
time during the prostate procedure, therefore the need for a fast and effective methodology
for this task is really fundamental in the clinical practice.

Ghose et al. performed a comprehensive survey which focused on methods for prostate
segmentation in TRUS, MR, and CT images [303]. Prostate gland segmentation eases multi-
modal image fusion for tumor localization in biopsy. Manual annotation of radiological
images is a tedious and error prone task, which also has problems like inter- and intra-
radiologist variability. Fully automatic methods, as those based on DL, require huge annotated
data, usually of the same transducer that will be used for the procedures, since there is a high
variability in ultrasound image quality across vendors. Nonetheless, when data is available,
DL methodologies show their strength, as is the case for Deep Attentional Features (DAF)
[314] and DAF 3D [26]. The shortcoming of these techniques is that they cannot be applied
before having acquired a dataset with images of the same ultrasound device that will be
adopted during procedures.

Mahdavi et al. [315] proposed a semi-automatic prostate segmentation method that can be
applied in prostate brachytherapy setups. The 3D geometric model of the prostate is created
based on prior knowledge of the shape of the gland and on the assumption that the prostate
has a tapered ellipsoidal shape and is slightly warped posteriorly due to the presence of the
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TRUS probe. They used, as prior shape of prostate gland, a tapered and warped ellipsoid.
The proposed segmentation algorithm requires a manual initialization of the physician: on
the mid-gland image the user selects six boundary points following a specific criterion. The
main disadvantage of this method is that it requires the user to put initialization points in
a very precise way, and relies deeply on these points, posing problems if they are slightly
inaccurately placed or when the prostate region has an irregular shape.

Gong et al. [316] incorporated deformable superellipses in a Bayesian segmentation
framework, exploiting an edge detection algorithm for discovering prostate boundaries.
They show the capacity of deformable superellipses to capture the prostate shape in various
anatomical zones. The main limitation of this method is that it requires to have an initial
contour that is similar to the real boundaries of the prostate gland. To overcome this issue,
Saroul et al. [317] proposed a variational approach, exploiting the implicit representation of
a superellipse for modeling the active contour.

Fig. 4.1 Prostate gland in TRUS image. Prostate apex (ground truth mask in green) is not
well distinguishable from the rest of the image (red dashed box). Yellow circle represents an
example of region with low signal-to-noise ratio. Blue arrow denotes a shadow artifact.
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4.3 Materials

Fedorov et al. made a publicly available dataset containing anonymized imaging data of
the human prostate of N=3 patients [300]. This dataset will be referred to as ZENODO
throughout this section. For each patient, both MRI and TRUS examinations have been
acquired. The former serves the purpose of staging the disease and the latter of allowing
volumetric examination for preparing brachytherapy implant. Both modalities are 3D scalar
images. Annotations provided by Fedorov et al. include manual segmentation of the whole
prostate gland for both MRI and TRUS, and fiducial points placed in specific anatomical
sites to improve subsequent image registration and fusion. In detail, fiducials are placed at
urethra entry into the prostate at the base (UB), verumontanum (VM), and urethra entry into
the prostate at the apex (UA).

In order to validate DL models for the task of MRI prostate segmentation, also the
datasets PROMISE12 [297] and SAML [298, 299] have been included in the analysis.

The ZENODO dataset has been exploited to test the proposed method for TRUS segmen-
tation, MRI segmentation, and TRUS-MRI registration, whereas PROMISE12 and SAML
have been employed to validate the nnU-Net model for MRI segmentation.

Sample images for both domains, TRUS and MRI, are reported in Figure 4.2. A summa-
rized table for the considered materials is provided in Table 4.1.

Fig. 4.2 Samples of images from MRI and TRUS modalities. (Top) Prostate MRI. From left to
right, a sample image for each of the datasets PROMISE12, SAML, and ZENODO is shown.
(Bottom) Three sample prostate TRUS from the ZENODO dataset.
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4.3.1 Workflow

The workflow employed for achieving image fusion, starting with segmentation for both
imaging modalities, namely TRUS and MRI, is reported in Figure 4.3. In clinical practice,
segmentation does not happen at the same time, since MRI segmentation can be achieved
preoperatively, whereas TRUS segmentation has to be obtained intraoperatively, at the start
of the prostate biopsy procedure.

Segmentation from MRI involves a pre-processing stage so that images can be fed to a
deep learning architecture, the nnU-Net. Lastly, post-processing is performed, with the aim
to remove noisy elements from images (e.g., only one connected component is expected),
increasing segmentation accuracy. The described operations can be carried out in a fully
automatic way. MR images are especially important for identifying the target region for
biopsy since they have better contrast than other imaging modalities. Details are described in
Section 4.3.2.

Segmentation from TRUS is achieved with a semiautomatic algorithm, which requires
input points from the user. The physician has to annotate points in at least three slices of the
prostate gland in axial planes, taking care when placing points in the deformed zones (the
transducer itself introduces deformation). Starting from this point, a deformable superellipse
is fitted with an optimization algorithm. Then, interpolation is employed to achieve the 3D
reconstruction of the prostate gland. The entire procedure is explained in Section 4.3.3.

Then, with both segmentation masks from TRUS and MRI modalities available, regis-
tration can be performed, enabling image fusion, which allows tissue coming from both
modalities to be seen at the same time. Optionally, a set of anatomical landmarks can be
inserted by the user to ease and constrain the registration optimization step. The procedure is
presented in Section 4.3.4.

4.3.2 MRI Segmentation

The semantic segmentation of the prostate gland from MRI can be efficiently met via DL
techniques, as fully convolutional neural networks [318]. Semantic segmentation, which
poses the basis for subsequent classification and characterization tasks [44, 319], is essen-
tial in numerous clinical applications including artificial intelligence in diagnostic support
systems, therapy planning, intraoperative assistance, and monitoring of tumor growth.

As introduced in Section 2.1, semantic segmentation is a Computer Vision task that
can be computed with DL algorithms and consists in labeling each pixel of an input image,
without recognizing the different instances of objects [320, 321]; it is possible to see semantic
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Fig. 4.3 Workflow for TRUS and MRI segmentation and subsequent image fusion. Seg-
mentation from TRUS is achieved in a semiautomatic way by fitting a 3D model based on
deformable superellipses starting from user-defined points in at least three slices. Segmenta-
tion from MRI has been performed fully automatically by exploiting the nnU-Net framework.
Registration can be either performed in an automatic way, or the user can add anatomical
landmarks to constrain the space of transformations.

segmentation as a problem of conversion from image to image, where the input image is the
original image and each pixel intensity value of the output image indicates the relation of
that pixel to the associated class [322].

Most semantic segmentation architectures are based on encoder-decoder networks. The
process of feature extraction or sub-sampling is carried out by the encoder. Decoding is
an up-sampling operation, in which the spatial information output from the encoding layer
is reconstructed, increasing the spatial resolution. The encoder-decoder structures have
been implemented in different convolutional network architectures, including SegNet [323],
U-Net [324], U-Net 3D [325] and V-Net [326]. Besides prostate segmentation, applications
in medical imaging tasks of those architectures encompass liver vessels delineation [327],
segments classification [328], lung COVID-19 lesions segmentation [329], and vertebrae
segmentation [330].

In the work presented in this section, to perform the semantic segmentation of the
prostate gland from MRI, the nnU-Net framework has been exploited. In this way, semantic
segmentation tasks can be tackled with standardized pipelines [313, 331]. The employed
architecture is based on those of U-Net and U-Net 3D. The nnU-Net framework was originally
conceived during the Medical Decathlon Segmentation Challenge [332], where it emerged
as the leading approach in all tasks. The advantages of this method consist of automatic
configurations of pre-processing, data augmentation, training, inference, and post-processing.
Parameters to set for training nnU-Net include the number of epochs, initial learning rate,
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batch size, patch size, and the combination of dice loss and cross-entropy to implement as
the model loss function.

4.3.3 TRUS Segmentation

Segmentation of anatomical structures in noisy data, such as TRUS images, is a complex
task since boundaries are not clearly defined, as shown in Figure 4.1. Therefore, the adoption
of prior information about the geometric structure of interest is useful to constrain the model
deformation [333, 334]. Deformable models can be used to achieve this result.

Geometry, physics, and mathematical optimization lie the foundation for the segmentation
algorithms based on deformable models [333]. The constraint on the model shape is derived
from geometry, the evolution of the shape in space is governed by physical theories, and the
operation of fitting the model to the accessible data is made possible by optimization theory
[335]. Segmentation of anatomical structures in deformable models is achieved by exploiting
an energy minimization framework. Two kinds of mathematical terms are considered:
internal and external energies. The deformable model is propagated in the direction of the
object contours by external energies, whereas the smoothness of the boundaries is preserved
by internal energies.

The deformable model framework includes various methodologies, such as deformable
mesh, active shape models, level sets, active contour models, and curve fitting [303]. More
advanced approaches may include a mixture of these techniques, with the idea that merging
information concerning boundaries known a priori, region, shape, and features of the prostate
region can provide more accurate models, like the deformable superellipse formulation of
Gong et al. [316].

4.3.3.1 Shape Models

In a wide variety of medical imaging scenarios, the general location, orientation, and shape
of the objects of interest are known a priori. As reported by previous studies concerning
TRUS images, prostate contours appear smooth and with a closed-near convex shape [316].
This information can be embedded into the deformable model in different forms: initial
conditions, way of constraining model shape parameters, and the procedure for model fitting.
Global shape properties can be modeled with parametric shape models. The advantage of
this technique is not requiring the presence of anatomical landmarks.

Furthermore, representation of the shapes can be tackled with many different methods
[336, 337]. For instance, Tutar et al. [338] proposed to model the 3D prostate boundaries
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with spherical harmonics of degree eight. Local deformations can be controlled, thanks to
the exploitation of parameters, leading to the capacity of modeling complex shapes. On the
other side, there is an increment in the computational complexity.

Similarly, reducing the number and range of parameters can allow modeling the global
shape in approaches that are stable and rapid from a numerical perspective, leading to more
compact representations. In the following section, the deformable superellipse, a powerful
model for the geometry of the prostate gland [316], is introduced. When the deformable
superellipse is not capable of properly capturing all the nuances of the prostate region in a
2D slice, bidimensional B-splines [339] can be exploited in the proposed approach, obtaining
very refined results but not losing the possibility to model a regular 3D shape with a relatively
low number of parameters.

4.3.3.2 Deformable Superellipses

Superellipses consent to obtain a natural generalization of the ellipses’ shapes. Different base
geometrical shapes can be modeled through superellipses, such as ellipses, parallelograms,
rectangles, and pinched diamonds by handling a small number of parameters [340, 341].
Examples of shapes that can be modeled by superellipses are portrayed in Figure 4.4.
The straightforward 3D generalization of the superellipse, the superellipsoid, has not been
considered since it makes assumptions about the 3D regularity of the prostate shape which
are too simplistic.

A centered superellipse can be expressed in the following parametric form, as reported
in Equation (4.1): ⎧⎨⎩x = ax · |cos(θ)| 2

ε · sign(cos(θ))

y = ay · |sin(θ)| 2
ε · sign(sin(θ))

(4.1)

where the size parameters ax > 0, ay > 0 define the length of the semi axes, and ε > 0
specifies the squareness in 2D plane, as shown in Figure 4.4. The corresponding implicit
form is given by the Equation (4.2): ⃓⃓⃓⃓
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The inside-outside function is reported in Equation (4.3):
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where: if f (x,y) = 1, then the point (x,y) belongs to the superellipse; if f (x,y) > 1, then the
point (x,y) lies outside the superellipse; if f (x,y) < 1, then the point (x,y) lies inside the
superellipse.

The superellipse model does not permit, in this version, molding all deformations which
are required to build a proper representation of the prostate gland. Nonetheless, geometric
deformations, such as translation, rotation, tapering, and bending, can result in a broad
range of shapes that are modeled by the deformable superellipse [342, 343]. Moreover,
these transformations can be modeled with a few parameters, given that translation with
respect to an axis, rotation, tapering, and bending are described each with a single parameter.
Deformable superellipse can then be characterized by a parameter vector p, defined as in
Equation (4.4):

p = {ax,ay, lx, ly,r,ε, t,b} (4.4)

where ε is the squareness parameter and ax, ay are the semi-axes lengths defined above.
Other parameters are those involved in the global similarity transformations for superellipses
[316]: lx, ly are the translations along x and y axes, r is the rotation angle, t and b model the
tapering and circular bending on the y-axis, respectively.

Details of all these geometric transformations are reported in Paragraph 4.3.3.2-Geometric
Transformations, whereas inverse transformations are reported in Paragraph 4.3.3.2-Inverse
Transformations. Examples of deformable superellipse modeled by variations in tapering
and bending are reported in Figure 4.4.

Fig. 4.4 Deformable superellipse modeling capabilities examples. The left image represents
the superellipse varying squareness ε parameter, whereas the middle one depicts the de-
formable superellipse varying tapering t parameter, and the right one portrays the deformable
superellipse varying circular bending b parameter.
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Geometric Transformations Translation (lx, ly):⎧⎨⎩x′ = x+ lx

y′ = y+ ly
(4.5)

Rotation (r): ⎧⎨⎩x′ = x · cos(r)− y · sin(r)

y′ = x · sin(r)+ y · cos(r)
(4.6)

Linear tapering along y-axis (t):⎧⎨⎩x′ = x ·
(︂

t·y
ay
+1
)︂

y′ = y
(4.7)

Circular bending along the y-axis (b):⎧⎪⎪⎨⎪⎪⎩
x′ = (

ay
b − y) · sin

(︃
x

ay
b −y

)︃
y′ = ay

b −
(︁ay

b − y
)︁
· cos

(︃
x

ay
b −y

)︃ (4.8)

Inverse Transformations Inverse translation (lx, ly):⎧⎨⎩x = x′− lx

y = y′− ly
(4.9)

Inverse rotation (r): ⎧⎨⎩x =+x′ · cos(r)+ y′ · sin(r)

y =−x′ · sin(r)+ y′ · cos(r)
(4.10)

Inverse linear tapering along y-axis (t):⎧⎪⎨⎪⎩
x = x′

t·y
ay +1

y = y′
(4.11)
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Inverse circular bending along the y-axis (b):⎧⎨⎩x =−sign(b) ·arctan
(︂

x′
y′−c

)︂
·
√︂

(x′)2 +(y′− ay
b )

2

y = ay
b − sign(b) ·

√︂
(x′)2 +(y′− ay

b )
2

(4.12)

4.3.3.3 Optimization Framework

In the Bayesian framework proposed in Gong et al. [316], the authors assumed that some
parameters (those concerning shape) have a Gaussian distribution as prior, N(ps), whereas
others (those concerning pose) have a Uniform distribution as prior, U(pp). The edge strength
likelihood is denoted as E. Then, according to the Bayes rule, the posterior probability can
be modeled as in Equation (4.13):

Pr(p | E) =
Pr(p) ·Pr(E | p)

Pr(E)
=

Un(pp) ·N(ps) ·Pr(E | p)
Pr(E)

∝ Un(pp) ·N(ps) ·Pr(E | p)

(4.13)
This results in optimizing the log-likelihood in Equation (4.14):

L = ln(Pr(ps))+ ln(Pr(E|p)) (4.14)

4.3.3.4 Proposed Approach

In the proposed approach, the deformable superellipse is modeled as specified in Section
4.3.3.2-Deformable Superellipses. Geometric deformations to the fundamental superellipse
shape can be obtained as reported in Section 4.3.3.2-Geometric Transformations.

The problem of modeling Pr(p | E), as in Equation (4.13), is that it requires to have prior
data on edge maps from images of the same kind of those obtained with the ultrasound device
that will be used for carrying out the procedures. When it is not feasible to collect such
images in advance, it may be preferable to model Pr(p |U), where U is a set of user-defined
points. If the model does not need to make rigid assumptions about U , it can provide a
fast and reliable system for achieving prostate gland segmentation with only moderate user
interaction and without the need to build a large training set.

Therefore, in the proposed formulation, the posterior probability can be written as
reported in Equation (4.15):

Pr(p |U) =
Pr(p) ·Pr(U | p)

Pr(U)
∝ Un(pp) ·N(ps) ·Pr(U | p) (4.15)
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The prior about shape parameters can be optimized by maximizing Equation (4.16) [316]:

ln(Pr(ps)) =−∑
j

[︄
(p j −m j)

2

2 ·σ2
j

]︄
(4.16)

Instead, the likelihood linked to the term Pr(U | p) can be maximized by optimizing the
energy in Equation (4.17), where U is the set of user-defined points, C is the polygon
representing the prostate mask boundaries, d is the point-to-polygon distance, and E(C;U)

is the energy function to minimize.

E(C;U) = ∑
(x,y)∈U

d (C,(x,y))2 (4.17)

A 3D model can be reconstructed by performing linear interpolation of the parameters
involved in the vector p, after that 2D superellipses have been fit to the slices where the user
has inserted points. To build a 3D model of the prostate gland, a minimum of three slices
have to be labeled. The annotated slices must include the base, apex, and mid-gland regions
of the prostate gland. On the base and apex, a minimum of 4 points must be inserted by the
user, whereas on the mid-gland a minimum of 6 is recommended. For mid-gland cases which
have irregular shapes, a number of points up to 12 may be beneficial.

Since the user can add more than three slices, shapes that are more complex than one
tapered and warped superellipsoid or two semi-superellipsoids can be obtained. The following
paragraph describes how the optimization procedure is executed when an operator is involved.

4.3.3.5 Implementation Details

The general workflow employed for TRUS segmentation is reported in Figure 4.5.
First, the user is asked to select points from at least three slices of the TRUS volume. In

every slice, the user has to select a variety of points ranging approximately from 4 to 12,
as detailed at the end of Section 4.3.3.4. In order to ease this process for the experiments
realized during this research, a JSON interface with the popular 3D Slicer software [344] has
been realized for this research work.

The user can enter two types of models when inserting points. The first is the superel-
lipse, whereas the second exploits bidimensional B-splines (as implemented by the method
scipy.interpolate.splprep). For the purposes of 3D modeling, a superellipse is then fitted to the
spline in the second case. For mid-gland slices, the B-spline configuration, especially when
10-12 points are annotated by the user, is the recommended way to proceed. When there are
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Fig. 4.5 Workflow for TRUS segmentation with the developed methodology. The operator
needs to annotate some points in at least the apex, base, and mid-gland of the prostate. Then,
a JSON file is fed as input to an optimization routine that fits the best 2D superellipse in
every annotated slice. Then, a 3D model is built by linearly interpolating 2D models. 3D
Slicer has been exploited as GUI to speed up and ease the process.

few annotated points, deformable superellipse is more likely to properly work, considering
that it has a relatively low number of parameters. In particular, in the configuration with
the least possible number of points, where the user places 4 points at the base, 6 points at
mid-gland, and 4 points at the apex, the deformable superellipse should be exploited.

In order to effectively implement the optimization procedure of the 2D superellipse to
the slice points, an iterative minimization procedure has been carried out. At every iteration,
the optimizer passes a vector p of parameters to a superellipse class, which has the twofold
purpose to (i) build an object with the given parameters, (ii) measure its energy with respect
to the user-defined points.
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After the object is created, the inside-outside function reported in Equation (4.3) is used
to create a mask of points that satisfies the condition for the centered superellipse. Then, these
points are transformed by using deformations in the following order: rotation, as defined in
Equation (4.6); linear tapering along y-axis, as defined in Equation (4.7); circular bending
along y-axis, as defined in Equation (4.8); translation, as defined in Equation (4.5).

The mask obtained by these transformations is subject to the morphological closing opera-
tor since holes arise during the transformation process. Then, energy for the built superellipse
can be defined as the sum of distances from user-defined points to the polygon of the mask
boundary. The point-to-polygon distance can be calculated with the pointPolygonTest method
from the OpenCV library. At the end of the minimization procedure, the optimizer will find
the best vector p for the input points given by the user.

Lastly, the 2D Deformable Superellipse models fit in multiple slices (at least three includ-
ing base, apex, and mid-gland) are exploited to reconstruct the 3D volume by performing
linear interpolation of the parameters contained in the vector p. The program also returns a
list of JSON files which can be loaded in 3D Slicer to refine the segmentation results and
eventually perform a second iteration. In the second user iteration, B-splines are exploited
for providing the contour of the prostate gland, since the user only needs to adjust boundary
points provided by the previous iteration of the algorithm.

4.3.4 MRI-TRUS Registration

The described registration algorithm is segmentation-based. Indeed, both MRI and TRUS
segmentation masks are required for performing the procedure. Other authors considered
this step fundamental too [345, 346]. The particular challenge of MRI-TRUS registration is
that the anatomical areas visible in one modality may not be visible in the other.

Before starting with the registration procedure, pre-processing has been performed with
the purpose to improve and ease the fusion algorithm results. First, the 3D images have been
cropped into 3D bounding boxes (i.e. Volume of Interest (VOI)) that extend for 10mm over
the margin delineated by the segmentation mask. Then, the VOIs have been resampled to
make them isotropic and with the same resolution for both modalities.

For the binary segmentation mask, the Nearest Neighbour interpolator has been employed
to perform the resampling. Output resolution has been set to 0.3mm × 0.3mm × 0.3mm.
Segmentation masks have been smoothed with a gaussian kernel with σ = 3 [346]. Lastly,
the Maurer signed distance transformation, which exploits the Euclidean Distance transform
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[347], has been applied to the segmentation masks. The steps involved in the registration
pre-processing are reported in Figure 4.6.

Fig. 4.6 Image registration pre-processing. Original ground truth segmentation masks are
reported in the top row. Then, they are smoothed with a gaussian filter, as depicted in the
middle row. Lastly, Distance Maps are obtained from the smoothed masks, as shown in the
bottom row.

The purpose of the initialization is to simplify the calculation of the center of rotation
and translation needed for the rigid transformation. Two kinds of initialization have been
considered: (i) based on the center of images; (ii) based on a set of landmarks.

In the first case, centers of images are calculated in the coordinate spatial system consider-
ing the origin, dimensions, and spacing of images. The geometric center of the moving image
is given as the initial center of the rigid transformation, and the vector that goes from the
center of the fixed image to the center of the moving image is given as the initial translation
vector.

The second approach, instead, determines an initial transformation by considering a set
of landmarks. It determines the optimal transform that can map the fixed image and the
moving image with respect to the least square errors of the levels of intensity [348].

Since the proposed approach aims to perform the registration of distance maps whose
intensity values have the same range of values and meaning, the dissimilarity measure
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employed is the sum of squares of intensity differences (SSD). Lower values of the said
metric correspond to better results. The optimizer employed is based on gradient descent,
and is targeted at finding the set of parameters that define a transformation that optimizes the
metric as better as possible. The overall workflow employed for the registration with all the
various components described in this section is portrayed in Figure 4.7.

Fig. 4.7 Proposed registration workflow. It starts with pre-processing segmentation masks, to
make them isotropic and at the same resolution. Thereafter, SSD is exploited as the metric to
perform the registration, whereas gradient descent is adopted as the optimizer. Two kinds of
initialization have been considered: one based on centers and the other based on landmarks.

4.3.5 Performance Metrics

The performance of the segmentation and registration algorithms analyzed for this study is
evaluated by calculating metrics based on the overlap of volumes and metrics based on the
distances of the external surfaces points. The metrics used for volumetric overlap require to
introduce the predicted volume, P and the ground truth volume, G. They were Dice Similarity

Coefficient (DSC), Volume Overlap Error (VOE), Relative Volume Difference (RVD), defined
as in Eq. (5.2), Eq. (4.19), and Eq. (4.20).

DSC(P,G) =
2 · |P|∩ |G|
|P|+ |G|

(4.18)

VOE(P,G) = 1− |P∩G|
|P∪G|

(4.19)

RV D(P,G) =
|P|− |G|

|G|
(4.20)
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The metrics based on the concept of surface distances include Hausdorff Distance (HD)
and Average Symmetric Surface Distance (ASSD). Definitions for these metrics can be found
in [349].

4.4 Results

4.4.1 Segmentation

The results achieved for the segmentation of MRI and TRUS are illustrated below.

4.4.1.1 MRI

Quantitative results for MRI segmentation with nnU-Net are reported in Table 4.2, whereas
qualitative results, as segmentation masks, are depicted in Figure 4.8. The nnU-Net model
trained on the PROMISE12 challenge has been used for obtaining the best results [297, 313].
The SAML-V dataset has been obtained by sampling 24 images for validation from the
SAML dataset. It is worth noting that the Dice coefficient is higher than 88 % and ASSD is
less than 1 mm for both validation sets under consideration, showing the reliability of the
nnU-Net framework for automatic MRI segmentation of the prostate region.

Table 4.2 Quantitative metrics results for MRI prostate segmentation with nnU-Net. Perfor-
mance has been measured on two validation sets.

Train Set Epochs Test Set Dice [%] RVD [%] HD [mm] ASSD [mm]

PROMISE12 1000 SAML-V 88.18 ± 10.53 17.58 ± 31.61 21.03 ± 51.06 0.86 ± 1.14
PROMISE12 1000 ZENODO 91.17 ± 1.19 4.13 ± 8.79 16.11 ± 3.56 0.26 ± 0.01

4.4.1.2 TRUS

Quantitative results for TRUS segmentation with the developed methodology based on
deformable superellipses are reported in Table 4.3, whereas sample segmentation images
are depicted in Figure 4.9. Three experiments have been conducted for each case, placing 4
points on the base and 4 on the apex, using only the superellipse to fit the contours. Instead,
on the mid-gland, a number of points varying from 10 to 12 has been considered, exploiting
B-splines before fitting the superellipse to finally achieve the 3D modeling of the prostate
gland. Results are reported as mean ± std of the experiments done on each case. It is possible
to see that results are overall considerable, being the Dice coefficient greater than 87% in
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Fig. 4.8 Results for prostate segmentation from MRI. The top row contains images from the
SAML dataset, whereas the second row encloses slices from ZENODO. The ground truth is
represented in red, whereas the predictions from the nnU-Net models are colored in green.
The middle image shows the prediction mask for the nnU-Net trained for only 10 epochs,
whereas the right image depicts the prediction mask for the one trained on the PROMISE12
dataset.
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all cases. Moreover, the proposed implementation is iterative, so that the user can refine
the results until it reaches the desired performance. For the purposes of this research, the
experiments stopped at the second iteration, which allowed the enhancement of results in all
cases.

Table 4.3 Quantitative metrics results for TRUS prostate segmentation with the proposed
superellipse-based approach. Results are reported for both the 1st and the 2nd iterations of
the algorithm execution.

Metrics Dice [%] RVD [%] HD [mm] ASSD [mm]

Case 9
1st 87.15 ± 2.41 -13.27 ± 8.34 25.12 ± 5.58 0.53 ± 0.120
2nd 88.56 ± 2.66 -9.44 ± 8.88 16.10 ± 7.12 0.38 ± 0.022

Case 10 1st 89.31 ± 1.13 -12.21 ± 3.06 9.25 ± 2.41 0.23 ± 0.020
2nd 92.57 ± 0.45 -4.86 ± 0.36 9.37 ± 2.53 0.17 ± 0.015

Case 12
1st 90.76 ± 1.39 -5.46 ± 3.61 23.30 ± 9.58 0.30 ± 0.049
2nd 92.47 ± 0.30 -1.87 ± 1.24 21.26 ± 8.22 0.23 ± 0.048

4.4.2 Registration

Quantitative results for registration across the two considered imaging modalities, TRUS
and MRI, are reported in Table 4.4 for the configurations with and without landmarks,
respectively. An example of the workflow for the image fusion is depicted in Figure 4.10.
The Dice coefficient is higher than 91 % for all the cases, and HD is less than 4 mm,
demonstrating that the developed registration method is promising.

Table 4.4 Quantitative registration results. Results are shown in two different configurations.
The first exploits as the initializer the center of the images, whereas the second employs a set
of landmarks.

Experiments Dice [%] Jaccard [%] RVD [%] HD [mm]

case10-center 91.77 84.79 -0.86 3.77
case10-landmarks 91.78 84.80 -0.87 3.77
case12-center 94.82 90.15 -5.79 2.12
case12-landmarks 94.85 90.21 -5.79 2.09
case9-center 93.61 87.99 -1.86 3.55
case9-landmarks 93.60 87.98 -1.88 3.60
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Fig. 4.9 Qualitative results for prostate segmentation from TRUS. The left image portrays
the ground truth prostate mask in red. The right one instead depicts the segmentation results
both after the first and second iteration in green and yellow colors, respectively.

Fig. 4.10 Image fusion workflow. Segmentation masks are obtained for both domains: TRUS
and MRI. Then, the registration is performed as described in Section 4.3.4, so that images
can be fused. Both masks have been shown after the registration procedure.



4.5 Discussion 97

4.5 Discussion

Prostate segmentation is a pivotal, but strenuous to accomplish, task that is required for
targeted prostate biopsy procedures. Moreover, every transducer for TRUS can produce
different images, resulting in a variety of conditions that makes it difficult to transfer what
has been learned on one dataset to another. Lastly, the lack of annotated datasets for TRUS
segmentation adds to the peculiarity of the task. Indeed, the ZENODO dataset, which consists
of merely 3 images, was the only one disposable for the research work herein described.

The deformable superellipses are shape models that allow modeling a variety of geometry
deformations starting from ellipses, which can resemble the most common prostate shapes.
In fact, the prostate shape can be well approximated by a tapered ellipsoid [315]. When
the procedure is performed, the transducer induces a slightly posterior deformation in the
patient’s prostate which can be modeled, for instance with the bending parameter b.

Therefore, this work proposed a novel formulation of the deformable superellipse to
make it a suitable method for TRUS segmentation, also in the absence of training data from
a given transducer. Other approaches, like that of Gong et al. [316], require edge detection
algorithms, so that could be exploited for automatic segmentation, but on the other side,
demand training data from the specific transducer. The advantage of the proposed method is
that it can be applied in any circumstance, only necessitating a moderate interaction with the
physician, and always yields considerable results.

In the experiments carried out for this study, the proposed method required 41 ± 7 s
for placing the points in three or four slices, whereas it took 5 ± 1 s to build the 3D model.
The time needed for the second iteration was more variable—74 ± 32 s. The superellipse
implementation of Mahdavi et al. [315] took 32 ± 14 s for initialization, which is similar to
the time needed to place the initial user-defined points in the proposed approach. On the
computational side, it needed 14 ± 1 s, which is more than the considered implementation.
Furthermore, in their case, segmentation refinement can be performed by the user, with a
time ranging between 1 and 3 minutes. It is not possible to directly compare the proposed
approach with the work of Gong et al. [316] since their method is capable of performing
segmentation in less than 5 s per slice, but it only delineates 2D boundaries.

The developed methodology managed to achieve respectable results, reaching the Dice
coefficient a value higher than 87% in all images considered in the test set, composed by the
ZENODO dataset. Then, the research focused on proving the applicability of this module
in a targeted biopsy setup. So, the nnU-Net framework has been exploited for the task of
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performing segmentation from MRI, achieving a Dice coefficient of more than 88% on the
SAML-V dataset and higher than 91% on the ZENODO dataset.

Lastly, a custom registration procedure has been developed, which consented to reach a
Dice coefficient higher than 91% and HD lower than 4mm in all cases, showing the effective-
ness of the proposed framework in a clinical application. In the registration framework, two
initializers have been considered: (i) one based on centers of images and (ii) one which relied
upon a set of landmarks. From the obtained results, it is possible to note that the former
allowed to reach Dice coefficients of 91.77%, 94.82%, 93.61%, and HD of 3.77mm, 2.12mm,
3.55mm, whereas the latter managed to achieve Dice coefficients of 91.78%, 94.85%, 93.60%,
and HD of 3.77mm, 2.09mm, 2.29mm. Hence, the two methods provide similar results.
Therefore, also a simpler center-based initialization can be adopted for the affine registration
procedure.

Overall, the obtained results, for both segmentation methods, are satisfactory for the
implementation in a targeted prostate biopsy setup. The registration framework can eventually
be improved, by exploiting deformable models also in this stage, eventually allowing better
results for the image fusion procedure.

4.6 Summary

Prostate segmentation from MRI and TRUS is a complex challenge but may have a huge
impact on clinical setups for fusion biopsy. For what concerns MRI, with the advent of the
nnU-Net framework, the challenge is more easily met since a standardized pipeline can be
employed for semantic segmentation. However, there is still a lack of substantial data and
standardized methodologies for TRUS images. In this thesis section, an approach that can
be employed in the absence of training data is proposed; the underlying concept mainly
relies on the theory of deformable superellipses. With the only requirement of moderate user
interaction, the developed methodology reliably segments the prostate from TRUS images.

To show the effectiveness of the overall workflow, as well as the feasibility of implemen-
tation in a real-world clinical scenario, an image fusion procedure which relies on image
registration between TRUS and MRI was developed. Hence, a semiautonomous segmentation
framework for prostate cancer from TRUS images has been successfully realized, without
relying on a large-scale dataset. Furthermore, the proposed framework can be employed as
an annotation tool to ease and speed up the construction of prostate segmentation datasets,
easing the future development of fully automated methods. Finally, another direction to
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investigate comprehends deformable registration techniques to further improve the image
fusion step.



Chapter 5

Deep Learning for Vertebrae Morphology

5.1 Deep Learning based Vertebrae Identification and Seg-
mentation

The work described in this section aims to propose a novel algorithm for vertebrae identifica-
tion, which is simpler than more sophisticated methods already proposed in the literature. In
addition, the advantage of the proposed approach is that it does not require single vertebrae-
level annotations to be trained. A method for binary spine segmentation based on 3D
FCNs is also developed and described in this section. Finally, a visualization tool has been
implemented to qualitatively assess the results of the considered methodologies.

The developed method fuses traditional machine learning techniques with DL to achieve
state-of-the-art results. The availability of a great deal of spine CT datasets enables the
possibility to train DL models for the spine segmentation task. The proposed two-fold
approach first exploits a 3D CNN that automatically segments the whole spine; subsequently,
traditional machine learning algorithms take the responsibility to locate centroids in the
final stage. The k-means algorithm with morphological operators and shape descriptors
analysis, which starts from the binary segmentation results, enables recovering the masks of
the individual vertebrae. This method permits achieving respectable results without needing
any single vertebrae-level annotations for training.

One of the limitations of the proposed methodology is its semi-automaticity. However,
it offers potential benefits over simple 3D component analysis of the segmented region, as
it may result in the spine being considered a unique connected component. In addition,
the unavailability of a dataset large enough is always a considerable problem; thus, the
proposed methodology can be useful also when there is little or no annotated data. A tabular
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comparison of the proposed approach with existing research methods is listed in the Table
5.1. Further comparison information can be found in later sections.

Table 5.1 Comparison between the proposed method and related works. Results are reported
in terms of Dice coefficient (DSC). CT stands for computed tomography, CNN stands for
convolutional neural network, PaDBN stands for patch-based deep belief networks, PCNN
stands for pulse coupled neural network, APCNN stands for adaptive pulse coupled neural
network, MLPNN stands for multi-layer perceptron neural network and MLPNN1f means
MLPNN considering only the intensity level of each voxel as a feature.

Reference Method Test Sample DSC [%]

Proposed 3D V-Net 50 CT scans 89.17±3.63
Kim et al. [350] U-Net 14 CT scans 90.40
Vania et al. [351] CNN 32 CT scans 94.28±3.25
Qadri et al. [352] PaDBN 3 CT scans 86.1

Lessmann et al. [353] 3D U-Net 25 CT scans 84.6±6.9

Zareie et al. [354]

PCNN 17 CT scans 65.7±15.4
APCNN 17 CT scans 95.0±2.3
MLPNN 17 CT scans 91.1±2.9

MLPNN1F 17 CT scans 77.3±4.7
APCNN (noise 3%) 17 CT scans 94.3±2.6
MLPNN (noise 3%) 17 CT scans 87.8±4.1

5.2 Introduction and Background

The spine plays a primary role in sustaining and supporting the human body and shielding
organ structures while allowing the full body mobility. It also protects the spinal cord from
injuries and mechanical shocks due to impacts [355]. The anatomic complexity of the spine,
which consists of 33 vertebrae, 23 intervertebral disks, the spinal cord and connecting ribs,
often leads to an under-diagnosis of spinal pathologies [356]. The spinal surgeon is faced
with the need of robust algorithms to segment and create a spine model, leading to the
development of Computer-Assisted Surgery (CAS) systems [351]. The knowledge of the
shape of single vertebrae can aid early diagnosis of degenerative disorders, spinal deformities
or trauma and support surgical planning [357]. CT is the most spatially accurate imaging
modality to assess the three-dimensional morphology of the vertebra [358].

The most significant challenges in the context of vertebrae segmentation and identification,
including large-scale vertebrae segmentation challenges (VerSe‘19 and VerSe‘20), have
been organized during the MICCAI international conferences [359, 360]. The data of
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Verse‘19 are composed of 160 CT scans, whereas that of Verse‘20 comprise 300 CT scans.
Previously available datasets from other challenges in the spine imaging domain are much
smaller. Examples include the Computational Spine Imaging 2014 Workshop, targeted at the
segmentation of the thoraco-lumbar spine, which consists of 20 images [358, 361], and the
online challenge xVertSeg, targeted at the segmentation of the lumbar spine, composed of 25
samples [357].

When elaborating spine imaging data, vertebrae classification and vertebrae segmentation
are two pivotal tasks. Applications span from diagnosis (detecting and grading of vertebral
fractures, spinal curve estimation, identification of spinal deformities), to biomechanical
modeling and surgical planning for metal insertions. As a radiological imaging technique,
CT scans are the gold standard for assessing the ‘bone’ part of the spine, since they guar-
antee high bone-to-soft-tissue contrast [355]. Several methods have been proposed in the
literature for vertebrae segmentation and labeling. Traditionally, spine segmentation has
been approached predominantly as a model-fitting problem; however, more recent spine
segmentation techniques focused on DL-based methods [353].

5.3 Related Studies

Kim et al. developed a web-based tool for spine imaging data segmentation from CT scans
[350], exploiting deep learning-based methodologies, especially the U-Net architecture [324].
The tool was implemented in Python with the Keras library for the data processing side,
whereas a Flask server framework was developed for providing accessibility over the web.
The U-Net was trained on 310 images from CT scans, validated on 20 images and tested on
only 14 images. This approach allowed the authors to obtain a Dice coefficient of roughly
90% for the binary spine segmentation task.

Vania et al. proposed a method for the automatic spine segmentation from CT scans
using CNN via the generation of redundant class labels [351]. The implemented architecture
consisted of two convolutional layers and three fully connected ones. Besides classes for
background and spine, two redundant classes were generated by dilating the spine mask.
This approach allowed the authors to obtain a Dice coefficient of 94% for the binary spine
segmentation task.

Qadri et al. developed an automatic approach, named patch-based deep belief networks
(PaDBNs), for vertebrae segmentation in CT images [352]. Deep belief networks (DBNs)
are DL models composed of stacked Restricted Boltzmann Machines (RBMs) [362]. Their
proposed model allowed them to automatically select the features from image patches and
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measure the difference between classes. Unsupervised learning was exploited for weight
initialization, whereas supervised fine-tuning was used to update weights. One strength
offered by this methodology is the considerable reduction in the computational cost while
retaining good performances.

Zareie et al. [354] proposed two methods for vertebrae segmentation in 3D CT images.
The first is based on a multi-layer perceptron neural network (MLPNN), which used seven
gray-level statistical features to classify each voxel as vertebrae or background. The second
method implemented an Adaptive Pulse Coupled Neural Network (APCNN) to segment
vertebrae and used a median filter to refine the results. This network was a modified version
of the one proposed by Chang et al. [363], in which the parameters were adjusted adaptively
according to the input image. The performances of both systems were calculated in terms of
DSC on seventeen 3D vertebrae CT images of the thoracic and lumbar spine of both normal
and abnormal cases. The results compared four different models: the PCNN developed by
Chang et al. [363], the APCNN, the MLPNN with all seven features and the MLPNN using
only the intensity level of each voxel as a feature (MLPNN1f). In addition, the robustness of
APCNN and MLPNN was evaluated by adding salt-and-pepper noise to the images. It was
shown that the APCNN performed better than the other methods with a DSC of 95%, being
less sensitive to noise than the MLPNN and more adjustable to each image than a classic
PCNN.

All the works considered so far did not address the recognition of the different vertebrae,
which is a considerably more complicated task than the binary spine segmentation. Slightly
more sophisticated approaches can allow vertebrae identification as a post-processing step
after the spine segmentation stage, using simple and not-trainable techniques, which do not
require apposite dataset preparation.

Bae et al. proposed a fully automated approach for 3D segmentation and separation of
multiple cervical vertebrae in CT images exploiting a 2D CNN [364]. The authors trained
a 2D U-Net model for performing the spine segmentation, considering two classes for the
superior and the inferior part of the vertebra, obtaining accuracies comparable with the inter-
and intra-observer variability of the manual segmentation performed by human experts. In
order to separate the vertebrae, the authors proposed a post-processing stage. In the first part,
each class region continuity is assessed by using the connected component analysis to correct
mis-labeling errors. Then, a technique for detecting separation points across the superior and
inferior region was implemented. After having identified these points, voxels belonging to
superior and inferior part of the same vertebrae were merged, leading to a final segmentation
with distinct vertebrae.
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In the realm of the methods proposed for the VerSe challenges, it is worth considering the
top three works from the VerSe‘19 challenge [353, 355, 360, 365] for their accurate results.
All the methods that have been proposed for these challenges also considered the vertebrae
identification problem.

Sekuboyina et al. [360] proposed a pipeline to localize and identify the vertebrae
on multidetector CT scans employing an improved version of the Btrfly Net [366]. The
Btrfly fully convolutional neural network works on sagittal and coronal 2D projections and
incorporates the spine localization and anatomic prior information using the adversarial
discriminators. The approach was tested on both a public dataset of 302 CT scans and two
in-house datasets with a total of 238 CT scans. On the public dataset, the network achieved
a vertebrae identification rate of 88.5%. On the in-house datasets, instead, with a higher
interscan data variability, an identification rate of 85.1% was obtained. One of the principal
limitations of the study was that it only considered 24 labels for C1-L5 and did not account
for segmentation anomalies, such as L6, or transitional vertebrae, such as a lumbarized S1
vertebra.

Lessman et al. proposed iterative FCNs. The idea was that an instance memory keeps
information about previously segmented vertebrae. This memory was then combined with
an FCN. This network iteratively analyzed image patches, searched for the first not yet
segmented vertebra, which was recognized as completely or partially visible, so that partially
visible vertebrae were excluded from further analysis [353].

Payer et al. proposed a cascaded approach which involves three stages. In the first step, a
U-Net [324] variation was exploited to regress a heatmap of the spine centerline, which was
generated by combining Gaussian heatmaps of all the individual landmarks; this allowed to
locate the approximate position of the spine. In the second phase, SpatialConfiguration-Net
was employed to localize centers of the vertebrae bodies. It effectively combines local aspect
of reference points with their spatial configuration. In the last stage, a U-Net trained with
cross-entropy was exploited for the binary segmentation of single separated vertebrae [365].
A more detailed list of approaches considered for the VerSe challenges is presented in [355].

5.4 Materials

The main publicly available datasets concerning spine segmentation are: VerSe‘19 and
VerSe‘20 [355, 359, 360], CSI-Label 2014 [367, 368], CSI-Seg 2014 [358, 361] and xVertSeg
[357]. The latter three are listed by SpineWeb (http://spineweb.digitalimaginggroup.ca/, last

accessed: 6 June 2021), an important online archive for multi-modal spine imaging data. A

http://spineweb.digitalimaginggroup.ca/
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summary of the available datasets is presented in Table 5.2. xVertSeg is a collection of 25
lumbar-only CT scans with voxel-level annotations that include fractured vertebrae. CSI-Seg
2014 and CSI-Label 2014 have become available during the MICCAI 2014. While the former
includes segmentation masks, the latter is provided with centroid annotations.

The VerSe‘19 and VerSe‘20 challenges enabled the adoption and benchmarking of
deep learning-based techniques for spine segmentation since they have an adequate sample
size with a variety of conditions, fields of view, and labeled vertebrae. For instance, the
VerSe‘19 data include a variety of fields of view (e.g., cervico-thoraco-lumbar and thoraco-
lumbar scans), a compound of isotropic and sagittal reformations, and subjects with metallic
implants or vertebral fractures. The Verse‘20 dataset includes atypical anatomies such
as transitional vertebrae and other vertebrae, i.e., L6, sacralization of L5 and C7 with
cervical ribs. For running the experiments, a dataset of 214 spine multi-detector CT scans
has been extracted from VerSe‘20 challenges data. The images can be downloaded from
the OSF repository (https://osf.io/t98fz/, last accessed: 6 June 2021) and are available in
Neuroimaging Informatics Technology Initiative (NIfTI) format. The dataset is split as
follows: 148 CT scans for training, 16 CT scans for validation, and 50 CT scans as the final
test set. 12 CT scans collected from Medica Sud s.r.l. were also considered, in order to assess
the performance of the vertebrae labeling algorithm on patients with scoliosis, ranging from
mild to severe cases.

Table 5.2 Spine segmentation datasets. In the labels column, C stands for centroids’ labels,
M for masks, and S for scoliosis severity. Medica Sud s.r.l. (https://www.medicasud.it/, last
accessed: 6 June 2021) is a local medical clinic that provided 12 CT scans. Please note that
this dataset is not publicly available.

Dataset Spine Tract Sample Size Modality Labels
xVertSeg [357] Lumbar n = 25 CT scans C

CSI-Seg 2014 [358, 361] Thoraco-lumbar n = 20 CT scans M
CSI-Label 2014 [367, 368] Whole spine n = 302 CT scans C
Verse‘19 [355, 359, 360] Whole spine n = 160 CT scans C + M
Verse‘20 [355, 359, 360] Whole spine n = 300 CT scans C + M

Medica Sud s.r.l. Whole spine n = 12 CT scans S

https://osf.io/t98fz/
https://www.medicasud.it/
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5.5 Methods

DL methodologies are emerging in the medical imaging community for tasks such as segmen-
tation and classification. DL refers to the adoption of computational models with hierarchical
level of abstractions capable to jointly extract feature and process them to predict an outcome,
and DL methodologies excel in tasks where it is hard to design handcrafted algorithms, as
computer vision ones [369]. Convolutional neural networks are a powerful methodology
for addressing image segmentation problems, especially with fully convolutional neural net-
works [370] and encoder-decoder architectures as U-Net [324], U-Net 3D [325], and V-Net
[326]. For major details, surveys about U-shaped architectures and semantic segmentation
approaches can be considered [322, 371].

To ensure the reproducibility of the algorithms introduced in Sections 5.5.1 and 5.5.2,
and the visualization tool presented in Section 5.5.3, the code has been made publicly
available on GitHub (https://github.com/Nicolik/Segm_Ident_Vertebrae_CNN_kmeans_knn,
last accessed: 6 June 2021).

5.5.1 Spine Segmentation

The images have been pre-processed according to the method proposed by Payer et al. [365],
which consists of reorienting, smoothing, and clamping. In the work herein described, the
clamping has been performed in the range [−150, 1000], instead of [−1024, 8192], since
high atomic number structures such as bone have HU values in the range [250, 1000] [372].
Images and the related masks have been cut with the smallest bounding box containing the
spine. Images have been resampled to an isotropic resolution of 1 mm, as in the work from
Payer et al. [365]. The workflow followed for the spine segmentation is depicted in Figure
5.1.

The binary segmentation stage is performed by exploiting the V-Net architecture proposed
by Milletari et al. [326]. The Dice loss function formulation adopted is the same adopted
in the work of Altini et al. [327]. V-Net is an encoder–decoder architecture. The first
part of the network is devoted to the feature extraction process; the second reconstructs
high resolutions masks, exploiting also skip connections across the encoder–decoder paths.
Compared to U-Net, it is worth noting that V-Net exploits down-convolutions, with stride
2× 2× 2 and kernel-size 2× 2× 2, instead of fixed downsampling realized by 2× 2× 2
max-pooling, adding trainable parameters also in this stage. As differences between the
original V-Net architecture and that implemented for this thesis, there is the adoption of
ReLU non-linearities instead of PReLU ones [373] and the adding of a Batch-Normalization

https://github.com/Nicolik/Segm_Ident_Vertebrae_CNN_kmeans_knn
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(BN) layer after each convolutional layer, as also done in Altini et al. [327] and Shen et al.
[374].

The network has been trained for 500 epochs with data augmentation (random noise
with µ = 0,σ2 ∈ [0,0.1], p = 0.1). Every 100 epochs, the trained model has been saved
to check for overfitting issues. With the aim to implement the patch-based pipeline and
the augmentation operation, the TorchIO library has been utilized [375]. The parameters
for the patch sampler were: uniform sampling, 8 patches per volume, and patch size of
64×64×64. The original V-Net architecture processed input volumes of 128×128×64,
but it was decided to limit the dimension for allowing larger batches to benefit from BN
layers.

Fig. 5.1 Vertebrae segmentation workflow.

5.5.2 Vertebrae Identification

Determining vertebrae centroids is a prerequisite for achieving vertebrae identification.
Indeed, centroids can be then exploited to recover single vertebrae masks. This task has to be
carried out after the binary segmentation of the spine. A 3D connected component analysis
of the segmented region will not solve the problem of vertebrae labeling, since the spine
will likely form a unique connected component. For this reason, the chosen approach is a
semi-automated workflow that consists of different steps, two of which require input from
the user. The workflow followed for vertebrae identification is depicted in Figure 5.2.
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The sequence of the involved operations is listed below:

• Vertebrae Number Selection. This step requires input by the user, which has to insert
the number of visible vertebrae given the binary segmentation. The user has to provide
the name of the first vertebra (from the top to the bottom) in order to perform the
correct labeling according to the legends provided by VerSe.

• Slice Extraction. The algorithm extracts a 2D sagittal slice from the binary segmenta-
tion, starting from the middle of the image since it has a higher probability of showing
well-clustered vertebrae. Kindly note that, in some cases, e.g., patients affected by
severe scoliosis, this consideration may not hold, resulting in lower segmentation
performances. Inside the selected slice, the following sub-steps have been carried out:

– Morphological and Connected Components Analysis. The morphological
analysis aims at removing small points which can be wrongly considered as
standalone components, whereas the purpose of the connected components’
analysis is to label each component with a different value.

– Shape Descriptor and Clustering for Arches and Bodies. It is worth noting
that every single component is either a vertebral body or a vertebral arch, so it is
important to correctly assign each component to the appropriate category. This
stage carries out the above process by considering the proper shape descriptors
of the individual components.

– Arch/Body Coupling. This step connects each vertebral arch to the nearest
vertebral body, by assigning the same label to both.

– Centroids’ Computation and Slice Showing. If the output vertebrae number
matches the input number from the first step, the algorithm goes further with the
computation of centroids’ positions for each vertebra; otherwise, the process has
to be repeated from another slice.

• Best Slice Selection and Centroids’ Storage. The algorithm repeats the workflow
until it reaches a slice without connected components. Then, the user chooses the best
slice among the displayed ones, and the algorithm stores the centroids’ position.

• 3D Multi-class Segmentation. Centroids are used in a k-NN classifier to produce a
3D segmentation map in which each vertebra has its own label.

In the next paragraphs, the non-trivial steps of this process are described.
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Fig. 5.2 Vertebrae identification workflow. Steps that require user interaction have blue
borders.

5.5.2.1 Morphological and Connected Components Analysis

As mentioned in Section 5.5.2, the morphological analysis is targeted at removing outliers,
i.e., small points that are not connected to vertebral arches or bodies. To carry out this process,
the ErodeObjectMorphologyImageFilter and the DilateObjectMorphologyImageFilter were
exploited, which are provided by the SimpleITK library.

The former filter erases every component contour, whereas the latter enlarges the com-
ponent contours. It means that if a component is relatively small, erosion will completely
remove it; the combination of both removes the small components without affecting the
bigger ones. The morphological analysis has been performed with a kernel radius of 2 for
both erosion and dilatation.

Figure 5.3 shows the effects of the morphological analysis.
The connected components analysis substage employs the SimpleITK library too, which

offers the ConnectedComponentImageFilter that labels each component with a different
intensity value. Figure 5.4 shows the output of this filter.
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Fig. 5.3 Workflow of the morphological analysis. Note that small components are removed in
the erosion phase, and they do not appear in the final output.

Fig. 5.4 Sample ConnectedComponentImageFilter output.
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5.5.2.2 Shape Descriptor and Clustering

This step creates a shape descriptor for each component so that arches and bodies can be
clustered in different subsets.

The shape descriptor sub-stage exploits the Scikit-image library that provides the re-

gionprops and the regionprops_table methods which automatically compute several de-
scriptors for each component. Some of these descriptors are used to set up a Pandas
(https://pandas.pydata.org/, last accessed: 6 June 2021) DataFrame which is used to group
all similar components in two clusters, i.e., arches and bodies. The chosen feature set is
composed of the following descriptors (definitions in italics are taken from the Scikit-image
documentation):

• Area: The number of pixels of the region.

• Centroid: The centroid’s position of the region.

• Extent: Ratio of pixels in the region to pixels in the total bounding box of the region.

• Perimeter: Approximation of the perimeter of the region.

• Eccentricity: Ratio of the focal distance (distance between focal points) over the

major axis length.

• Solidity: Ratio of pixels in the region to pixels of the convex hull image (the smallest

convex polygon that encloses the region).

These features have been selected with a heuristic process, choosing the subset which
better discriminates bodies and arches. It is also worthy of note that, for scoliosis patients,
adding Inertia Tensor (Inertia tensor of the region for the rotation around its mass) to this
feature set leads to an improvement in the results.

The k-means clustering algorithm was exploited for realizing the clustering of vertebral
arches and bodies. The drawback is that it is sensible to outliers; however, after the mor-
phological analysis, the probability of retaining outliers is largely reduced. The k-means
clustering is a popular algorithm for cluster analysis that finds commonalities in data and
groups them without the need for ground truth. Cluster analysis, in fact, belongs to the
unsupervised learning branch of machine learning. At the start of the algorithm, k centroids
are initialized (randomly, from k data points or from other prior knowledge) in the feature hy-
perspace. Then, every sample is assigned to the nearest centroid according to some distance

https://pandas.pydata.org/
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metric. Centroids for the next iteration are computed as the average of the coordinates of the
points of each cluster. The process is repeated until convergence [376].

The Scikit-learn library provides its own implementation of the k-means clustering model.
The only parameter to tune is the number of clusters, which is set to two. Before fitting the
model, it is important to normalize the DataFrame using the Z-score normalization. The
main hyper-parameter to tune for k-means clustering is the number of clusters. Since the
purpose is to distinguish between arches and bodies, the n_clusters hyper-parameter has
been set to 2. Other hyper-parameters are set to their default values. Experiments where
the init, n_init, algorithm and max_iter hyper-parameters were changed did not result in
improvements.

After performing the clustering, it is essential to determine which cluster regards vertebral
bodies and which cluster concerns vertebral arches. This step is required because the cluster
analysis does not know the nature of the samples, but only produces the two groups. For
this purpose, the distinction is made by looking at the total area of the clusters: the greatest
one represents the vertebral bodies. The cluster analysis is not always successful: cervical
vertebrae’s shape is not well distinguishable from the arch, and this can lead to an inaccurate
outcome.

5.5.2.3 Arch/Body Coupling

As mentioned before, this step assigns each vertebral arch to the nearest vertebral body. For
each vertebral arch, the Euclidean distance between the arch and every vertebral body is
computed. Let Nv be the number of vertebrae and Na the number of segmented arches. Then,
the sets of vertebral arches and bodies can be denoted as {a j}Na and {vi}Nv , respectively, with
j = 1, ...,Na and i = 1, ...,Nv. Distance between pairs of a j,vi can be defined as in Equation
(5.1).

d(a j,vi) =
√︂

(a jx − vix)2 +(a jy − viy)2 +(a jz − viz)2 (5.1)

First, the distance between every a j and vi is computed. Then, iteratively, the vertebral body
which has the minimum distance from the arch is linked to the vertebra body, and the labels
are merged. Figure 5.5 depicts the output of cluster analysis and coupling.

5.5.2.4 Multi-class Segmentation

Once the centroids have been computed, every point of the volume which is not part of the
background is assigned to the same label as the nearest centroid according to Euclidean
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Fig. 5.5 Sample outputs of cluster analysis and arch/body coupling.

distance. To accomplish this procedure, a non-parametric method, the k-NN classifier, which
is based on distances between samples, was exploited. The workflow of this algorithm can
be summarized into three main steps [377]:

• The learning phase, which is not mandatory, results in the partitioning of the hyperspace
in clusters based on samples’ positions.

• The distance computation phase consists of the computation of all the distances between
samples and centroids (the most used distance metric is the Euclidean Distance, as
in the proposed pipeline, but it is also possible to use Manhattan Distance or other
distances).

• The classification phase assigns each sample to the class of the nearest cluster’s
centroid.

For the purposes of this research, the learning phase has not been performed since the
centroids have already been computed in the k-means clustering stage.
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5.5.3 Visualization Tool

In this study, a visualization tool, that enables displaying the CT scans and masks through a
graphic user interface (GUI) based on the Qt framework, ITK, VTK, and OpenCV libraries
[378–380], was also developed. It offers multiple functionalities, such as image contrast
adjustment, mask visualization, and mesh reconstruction.

As depicted in Figure 5.6, the interface is composed of three major parts. The toolbox
section facilitates the loading and reading of the CT images from a local folder and permits
smoothly navigating through the slices. The toolbox comprises a windowing option to set
custom values of window-width and window-level and adjusts image contrast for optimized
visualization of the anatomical regions of interest. The segmentation results are overlaid on
the original images and each vertebra is colored differently so that identifying vertebrae is
convenient for the user. Furthermore, the vertebrae’s centroids and names are shown in the
sagittal and coronal views. Three of the four windows in the views section show the CT scan
in the axial, sagittal, and coronal planes. A fourth window is used to show a reconstruction
of the volume obtained from the segmentation masks. The aforementioned task is achieved
by using the VTK discrete marching cubes algorithm.

Fig. 5.6 Visualization tool for visualizing CT scans and masks.
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5.6 Results

5.6.1 Quality Measures

The quality measures considered, analogously to those adopted in other segmentation works
[381–383], can be grouped in two classes:

• measures based on volumetric overlap, such as Dice Coefficient (DSC), Precision and
Recall. Such metrics help to compute a similarity degree between the prediction and
the ground truth;

• measures based on the concept of surface distance, such as Maximum Symmetric
Surface Distance (MSSD) and Average Symmetric Surface Distance (ASSD).

DSC, Precision and Recall can be expressed in terms of True Positives (T P), False
Negatives (FN) and False Positives (FP). They are defined in Eq. (5.2), Eq. (5.3) and Eq.
(5.4), respectively.

DSC =
2T P

2T P+FP+FN
(5.2)

Precision =
T P

T P+FP
(5.3)

Recall =
T P

T P+FN
(5.4)

In surgical planning applications, it is important to have precise meshes of the anatomical
site of interest. In order to properly assess this aspect, a collection of really important quality
measures are the one based on the concept of external surface distance. Let P be the predicted
volume and G the ground truth volume, then ASSD can be defined as in Eq. (5.5).

ASSD(P,G) =
1

|S(P)+S(G)|

(︄
∑

sP∈S(P)
d(sP,S(G))+ ∑

sG∈S(G)

d(sG,S(P))

)︄
(5.5)

where d is a distance measure and d(sP,S(G)) (d(sG,S(P))) is the distance between
every point on the surface of the prediction and the ground truth surface (every point on the
surface of the ground truth and the prediction surface). The distance between a point and a
surface is defined as in Eq. (5.6).

d(sP,S(G)) = min
sG∈S(G)

||sP − sG|| (5.6)
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The MSSD is defined as in Eq. (5.7).

MSSD(P,G) = max{h(S(P),S(G)),h(S(G),S(P))} (5.7)

In Eq. (5.7), h(S(P),S(G)) denotes the one side Hausdorff distance between the surface
of the predicted volume S(P) and the surface of the ground truth volume S(G), as defined in
Eq. (5.8):

h(S(P),S(G)) = sup
sP∈S(P)

{ inf
sG∈S(G)

d(sP,sG)} (5.8)

5.6.2 Experimental Results

Regarding the binary segmentation task, 3D V-Net obtained the results reported in Table 5.3
considering a test set of 50 images. Quality measures are reported for the CNN trained every
100 epochs, showing that convergence for the considered model can be achieved after 200
epochs. These results allowed the achievement of a realistic segmentation of the whole spine,
as can be seen from Figure 5.7.

For what concerns the multi-class vertebrae identification, a multi-class DSC of 90.09 ±
3.14% was obtained. The multi-class DSC score for the vertebrae labeling task was calculated
in an ideal condition, i.e., starting the vertebrae identification procedure from ground truths
of spine segmentation. Results are reported as mean ± standard deviation. Multi-class DSC

is computed as the average of the binary DSCs for each vertebra class. Kindly note that the
vertebrae identification algorithm proposed in this section may not work optimally for the
C1, C2, and C3 vertebrae, since the shapes of the bodies of these vertebrae can be easily
mistaken with their arches. The centroids’ predictions examples are shown in Figure 5.8.
The following vertebrae labeling, obtained with k-NN, is depicted in Figure 5.9.

In order to assess the quality of the vertebrae labeling stage on scoliosis cases, a collection
of 12 CT scans coming from Medica Sud s.r.l. was exploited. Four out of the 12 CT scans
belong to patients with severe scoliosis, 4 to patients with moderate scoliosis, and the
remaining 4 to patients with mild scoliosis. For these images only information about the
severity of the scoliosis was available. Therefore, the method of Payer et al. [365] was
exploited as the gold standard for the segmentation masks. The multi-class DSC has been
considered as a similarity measure across the two methodologies. The same binary spine
segmentation was achieved for both algorithms, obtained by exploiting Payer’s pre-trained
models, therefore focusing the comparison on the labeling stage.
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Fig. 5.7 Examples of binary spine segmentation.

Fig. 5.8 Samples of the final output of the centroids’ prediction.
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Table 5.3 Spine binary segmentation results. ASSD stands for average symmetric surface
distance, whereas MSSD stands for maximum symmetric surface distance. The best result
for each of the reported measures is in bold font.

Epochs DSC [%] Recall [%] Precision [%] ASSD [mm] MSSD [mm]

100 85.07 ± 3.02 94.25 ± 3.79 77.65 ± 3.78 2.46 ± 0.81 63.16 ± 23.27
200 88.20 ± 2.66 93.46 ± 4.03 83.61 ± 2.65 1.89 ± 0.61 60.87 ± 23.46
300 88.44 ± 2.69 93.85 ± 4.49 83.78 ± 2.81 1.91 ± 0.56 64.03 ± 28.96
400 88.34 ± 2.35 94.51 ± 3.31 83.02 ± 2.81 1.85 ± 0.63 62.77 ± 27.67
500 89.17 ± 3.63 93.60 ± 6.27 85.43 ± 2.75 1.43 ± 0.63 56.69 ± 18.07

Multi-class DSCs have been determined separately for each scoliosis category, obtaining
43.40 ± 30.03%, 70.61 ± 18.50%, and 83.38 ± 12.51%, for severe, moderate, and mild scol-
iosis patients, respectively. After adding Inertia Tensor to the feature set for discriminating
between arches and bodies, multi-class DSCs grown, managing to obtain 49.79 ± 24.90%,
77.76 ± 15.05%, and 83.48 ± 12.56%. These results show a clear improvement for severe
and moderate scoliosis cases.

The proposed vertebrae identification stage appears to have promising results on mild
and moderate scoliosis; however, the identification phase for severe scoliosis cases can be
further improved in future works. This problem arises from the fact that the k-NN model has
a too low complexity for modeling severe scoliosis cases. Example results on this dataset
are shown in Figure 5.10. A comparison between the proposed method and related works is
reported in Table 5.1.

Fig. 5.9 Sample outputs of meshes of multi-class vertebrae segmentation. These meshes have
been obtained exploiting ITK-Snap (http://www.itksnap.org/, last accessed: 6 June 2021).

http://www.itksnap.org/
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5.7 Summary

Several methods have been proposed in the literature for the purpose of vertebrae segmenta-
tion and labeling. Many of these address only the binary spine segmentation, as in Kim et
al. [350] and Vania et al. [351]. However, the methods which involve individual vertebrae
segmentation are characterized by complex architectures and require tons of labeled data
to be correctly implemented, as for the top scoring architectures in VerSe challenges, e.g.,
Payer et al. [365] and Lessman et al. [353].

The method for vertebrae labeling proposed in this thesis can be considered a novel
approach, implementing k-means clustering for separating vertebral arches from bodies and
k-NN classification in the context of vertebrae labeling. It is a simple yet effective solution
and, most importantly, it does not require a specific training procedure. Therefore, it can also
be performed without having masks provided by domain experts.

The developed algorithm addresses the issues of vertebrae identification and segmentation,
which are two essential steps in understanding spine imaging data. Vertebrae segmentation is
a challenging and time-consuming task, due to the size of the problem. The proposed work
provides accurate results in a fast and straightforward way.

The clinical implications of this study also include the possibility of improving the
functionalities of surgical navigators for minimally invasive spine procedures. This can help
spine surgeons to operate even in unideal conditions, such as with restricted field-of-views.
Moreover, the proposed method can be exploited to pre-label larger CT scan datasets with
individual vertebrae annotations, so that purely supervised approaches can be enhanced. The
DSC obtained is quite good, also if it has to be noted that the proposed approach is less
general than those involved in the VerSe challenges, which covered all kinds of orientation,
spacing, and field-of-view for CT spine imaging data.
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Fig. 5.10 Comparison between Payer et al. and the proposed method for the vertebrae
labeling task. The first row shows original CT scans, the second row shows predictions from
Payer et al. [365], and the third row shows predictions with the proposed vertebrae labeling
method. Columns: (a,b) are of patients with severe scoliosis, (c) of a patient with moderate
scoliosis and (d) of a patient with mild scoliosis. It is important to note that for case (a) the
proposed method did not provide an accurate result.
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Chapter 6

Deep Learning based Breast Cancer
Morphology and Classification

6.1 Breast Shape Classification using CNN

In this study, a novel CNN based DL framework for the classification of breast lesions
according to the shape by analyzing the related RoI on DBT images is designed and validated.
Considering the shapes of cancerous masses, the Breast Imaging Reporting And Data System
(BIRADS) classification of the American College of Radiology, which is the most commonly
employed methodology in the clinical and digital breast tomosynthesis settings, has been
considered [43]. Such kind of taxonomy refers to the following three classes (see Figure 6.1):

• Regular opacity (Oro) which includes the round, oval, and lobulated shapes;

• Irregular opacity (Ori);

• Architectural distortion shape (Ost).

The clinical importance of the three BIRADS classes consists of the possibility of
identifying regular masses or irregular masses/architectural distortions which is the principal
purpose of the clinical breast setting for early diagnosis of breast cancer. In fact, it is well
known that the Oro lesions are usually benign, whereas Ori and Ost lesions are malignant.
Finally, it is also worth mentioning that in this study the None class, i.e., images that do not
contain any lesion, is also included (see Figure 6.1).

Moreover, the study employs eight state-of-the-art pretrained CNN architectures that have
been compared both with and without fine-tuning. Two different online data augmentation
routines have been tested to study the impact of several augmentation methods on the
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(a) (b)

(c) (d)

Fig. 6.1 The ready-to-classify RoIs on the images. (a) Example of image with no lesions
(None); (b) example of image with irregular opacity (Ori); (c) example of image with regular
opacity (Oro); and (d) example of image with stellar opacity (Ost).

performances. The dataset used in this study comprises 39 breast DBT exams of 16 patients.
Interested readers are kindly referred to such study to explore more about the data acquisition
and composition [384].
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6.2 Introduction and Background

Breast cancer, which is the second most widespread cancer among women worldwide, has
turned into global public health concern due to its complex intrinsic aetiology [385]. The
early diagnosis and monitoring of the cancer significantly reduces the death risks, leads to
better prognosis and therapy, and lowers the treatment cost.

Mammography wears the crown of being the gold standard among several imaging
modalities, because it offers the potential of early detection of pathology [386]. On the other
hand, mammography is a 2D method that reduces the ability to visualize lesions in case of
prevalent glandular component in dense breast. Moreover, the mammography represents
a 2D projection of a 3D structure for which, geometrically, tissues belonging to different
planes are superimposed in the radiographic image.

Other imaging techniques including MRI, CT, and DBT are strong candidates where
in-depth analysis of hazardous cases is required. Among these, the DBT is proven to have
higher accuracy with respect to the 2D imaging methods [9]. After acquisition of the multiple
thin and high-resolution images, the DBT system produces a quasi-three-dimensional format
of the reconstructed breast images aiming to reduce the effect of tissue superimposition.

Additionally, the required radiation dose is not high, contrary to the conventional imaging
techniques, and the generated images appear to have greater resolution and contrast [387].
The DBT represents a more accurate diagnostic indicator than 2D imaging for evaluating
the morphological features, e.g., shape and margin of the different immunophenotypes
of the breast cancer, thus being able to play a crucial role in the molecular imaging and
prognosis [388–392].

Over the last decade, DL has emerged as a promising computational approach for the
automatic detection, classification, and segmentation of cancerous masses thorough the
analysis of diagnostic medical images, thus enabling the CAD and clinical decision support
systems [8, 329, 393, 394]. The DL methods along with the traditional image processing
techniques have already been established as an effective approach to automatically analyze
diagnostic images for breast cancer diagnosis and monitoring [7, 9, 10]. Numerous studies
dealt with automatic detection, segmentation, and classification of the breast lesions that
achieved considerably moderate to high performances [395–404].

However, the automatic classification of the breast lesions according to shape, size, and
physical appearance remains a challenging task due to the varying shape that refers to different
type and stage of the cancer [405] (see Figure 6.2). The breast cancer is morphologically
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Fig. 6.2 The morphological division of the breast cancer shapes according to the growth
pattern [40].

categorized into several varying shapes based on cancer growth pattern, named as round,
oval, lobulated, irregular, and architectural distortion [40, 41].

Numerous existing studies deal with the shape-based breast cancer classification [405–407],
however, most of these consider the mammogram instead of the DBT that offers several
advantages as discussed above. A deep discussion of the state of the art is presented in the
subsection 6.3.

6.3 Related Studies

Over the last decade, because of the superior aptitude to capture cancers, the DBT has
become the new gold standard for the digital mastography [408]. Alongside this, machine
learning has revolutionized the medical field by offering automatic detection, segmentation,
and classification of the cancer [403, 404, 409–412].

The shape of the breast tumors leads to diagnosis of the different types and stages of the
cancer [405]. Generally, the breast cancer is morphologically categorized into five shapes
based on tumor growth pattern, named round, oval, lobulated, irregular, and stellar [40],
as depicted in Figure 6.2. Numerous authors claim that the transition from the round shape
to stellar shape of the cancer is the journey from benign to malignant cancer [405, 406, 413].

The shape-based breast cancer classification of mammogram images at RoI level using
GAN and CNN is presented by Singh et al. [406]. The authors used a publicly available
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dataset for validation and achieved an overall classification accuracy of 80% for irregular,
lobular, oval, and round shape classes.

Similarly, Kisilev et al. [41] proposed a multi-task loss CNN architecture based on the
Faster R-CNN model to detect tumor lesions by considering irregular, round, and oval shapes
of the breast cancerous lesions using in-house and publicly available datasets. Their approach
generated bounding boxes around the tumor, and then used the semantic descriptors to identify
the lesion shape inside the RoI. The accuracy on in-house and public datasets reached 88%
and 82%, respectively, where both accuracy values were computed on accurately labeled
data for testing purposes.

In a previous study by authors [384], two different approaches for the classification
of DBT images into four lesions, i.e., irregular opacity, regular opacity, stellar opacity
lesions, and no lesions, were implemented and tested on an in-house dataset. The first
approach utilizes an artificial neural network that takes morphological and hand-crafted
features extracted from the RoI images and performs classification. The second framework
encompasses the pretrained CNNs without requiring the hand-crafted features. The authors
claimed that the VGG network outperformed the other pretrained architectures by reaching
91.61% and 81.49% accuracy with and without augmentation.

A GAN-based interpretable CAD system for the classification of oval, round, irregular,
and lobular shapes on the mammogram images was devised by Kim et al. [407]. The CAD
system was tested on a public dataset that managed to achieve 71% accuracy on the lesion
shape classification.

A study on mammogram and MR scans on three publicly available datasets was conducted
by Shrivastava et al. [405] to classify the shapes of the tumorous regions using geometrical
feature-based classifier. Since the authors merely considered the binary classification problem
(benign lesion vs. malignant lesion), unlike previously explained methods, the reported
accuracy, i.e., 91.4%, was pretty high.

A recent study by Sakai et al. used SVM, random forests, naive Bayes, and multilayer
perceptron methods to classify the breast lesions on tomosynthesis images [414]. The authors
also considered radiomic features along with the shape of the lesion. All the round and oval
tumors were labeled benign, whereas the irregular and the stellar were labeled malignant
on an in-house dataset. The best achieved accuracy value was 55% for round vs. oval
classification, and 84% in case of irregular vs. stellar classification.

Said et al. [415] adopted the genetic algorithm to select the most significant hand-crafted
features out of the total 130. Finally, the back-propagation neural network was employed
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for the classification task on round, oval, lobular, and irregular shapes that reached 84.5%
accuracy on the digital database for screening mammography dataset.

6.4 Materials and Methods

6.4.1 Dataset

Back in 2016, a total number of 16 patients participated in breast tomosynthesis examination.
The average age of all the considered subjects was 49.8 years with a standard deviation of
9.2 years. The patient with minimum age was 35, whereas the patient with maximum age
was 65 years. Since few subjects underwent multiple trials, the total number of examinations
summed up to 39.

This study inherits the RoI-level images generated in a previous study [384] aimed
at constructing a dataset of RoIs that can be fed to the DL models for the shape-based
classification, where the machine learning algorithms are employed to generate the tiles from
the original images. Figure 6.1 shows the RoIs over the images after the segmentation phase,
where in the case of None class (i.e., no lesion class), random images were taken from the
area of the breasts containing no lesion.

A radiologist (University of Bari Medical School, Bari, Italy) with fifteen years of
experience in the field of breast imaging labeled the images. In order to verify labeling
accuracy, all radiological reports were assessed, including the histological reports for all
detected lesions and 2 years’ follow up with DBT for negative cases. The images were
labeled and classified into four classes, comprising no lesions (None); irregular opacity (Ori);
regular opacity (Oro); and stellar opacity (Ost). The None class contained 1000 images,
whereas the Ori, Oro, and Ost classes contained 391, 654, and 480 lesion images, respectively,
constituting a total number of 2525 samples.

6.4.2 CNN Models

In the subsection below, the CNN architectures considered for the classification task are
briefly introduced.

• VGG

The VGG [72] comes in two famous versions, with 16 and 19 layers comprising
144 million parameters. This study considers the earlier VGG-16, which consists of
several number of channels, 3 × 3 receptive fields, and a stride of 1. This model
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is composed of convolution layers, max pooling layers, fully connected layers with
5 blocks and each block with a max pooling layer, and extra convolutional layers
contained in the last three blocks.

• ResNet

The deep neural networks suffer from the gradient vanish problem, which led to the
development of Residual Network (ResNet) architecture. The ResNet takes care of
the gradient vanishing problem and makes sure the performance remains satisfactory
over the top and lower layers. ResNet comes with several variants where the number
of layers is the distinguishing parameter among numerous architectures, however the
underlying mechanism remains similar. This architecture utilizes skip connections
between layers. The ResNet-34 and ResNet-50 [74] contain 34 and 50 layers and
implement residual learning. This net is efficient to train and also improves the accuracy,
which led to utilize the two versions of network for multiclass classification purposes
in this work.

• ResNeXt

The ResNeXt, a counterpart of ResNet, is a specifically designed image classification
network with very few tuneable parameters. It contains a series of blocks with a set of
aggregations of similar topology with an additional dimension called cardinality. This
cardinality, which creates major difference between its brother networks, competes
with the depth and width of the network [416]. The simpler architecture based on VGG
and ResNet with fewer parameters yields better accuracy on ImageNet classification
dataset. The word NeXt in the name of the network refers to next dimension which
surpasses ResNet-101, ResNet-152, ResNet-200, Inception-v3, and ResNet-v2 on the
ImageNet dataset in accuracy.

• DenseNet

The DenseNet [417], or in other cases, dense convolutional network, is a type of CNN
designed to guarantee the maximum information flow between all layers in the network.
The layers are subjected to align the feature map size and connect among each other,
forming a dense network. The DenseNet works on feed-forward principle. Each
layer in the network receives the input from the preceding layer, grabs the additional
input, and hands it over to the following layer along with the feature map. All the
layers follow a similar analogy. Differently from ResNets, in which the features are
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not combined through summation before they are passed into a layer, the feature
combination is performed by the concatenation of these ones.

DenseNet comes with several variants where the number of layers is the distinguishing
parameter among numerous architectures, however the underlying mechanism remains
similar. The DenseNet-121 and DenseNet-161 contain 121 and 161 layers and follow
the feed-forward method. This net is efficient to train and also improves the accuracy,
which led to utilize the two versions of network for multiclass classification purposes.

• SqueezeNet

The SqueezeNet is another popular CNN model particularly known for its smaller size.
The major motivations and reasons that caused this network to be smaller include the
following: (a) during the procedure of training, the communication over the servers
is shortened, (b) the minimum requirement of bandwidth for exporting a model from
cloud to any other device is also cut, and (c) the smaller a model is, the less hardware
and memory it requires to run.

The SqueezeNet architecture is also simple; it contains 8 fire modules sandwiched
between two convolutional layers. The sandwiched fire modules also contain a squeeze
convolution layer with numerous filters of varying sizes. Each fire module comprises
several filters that increase with respect to the network progression, being fewer in the
start and more in the end. The SqueezeNet also utilizes the max pooling operation at
several levels, including first and last layers.

The SqueezeNet appears to achieve comparable accuracy to AlexNet on the ImageNet
dataset with fifty-times-reduced number of parameters. It also offers scalability that
implies that the size of SqueezeNet model can also be compressed to as low as 0.5 MB.

• MobileNet-v2

The MobileNet-v2 [418], a depthwise separable convolutional network aimed at down-
sizing the model, is an architecture based on inverted residual connections. These
residual connections appear between bottleneck layers. The total number of residual
bottleneck layers in MobileNet-v2 count to 19 which follow the fully convolution layer
comprising 32 filters. The network brings several benefits, including the time and
memory savings with higher accuracy of results. The output of the model speaks to
the validity of the architecture.
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6.4.3 Experimental Workflow

Figure 6.3 shows the overall flow diagram of the experimental approach. As depicted,
the experimental setup starts by fine-tuning the considered pretrained networks with three
different datasets, i.e., the original one and two datasets obtained with two different data
augmentation procedures. Thereafter, the features extracted by the features maps of all
versions of fine-tuned and pretrained networks were analyzed with both t-SNE and UMAP.
Finally, Grad-CAM and LIME were applied to the RoI images.

Features Extraction
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Fig. 6.3 The overall flow diagram of the experiments. The experimental setup starts by
fine-tuning the considered pretrained networks with three different datasets, i.e., the original
one and two datasets obtained with two different data augmentation procedures. Thereafter,
the features extracted by the feature maps of all versions of fine-tuned and pretrained networks
were analyzed with both t-SNE and UMAP. Finally, Grad-CAM and LIME were applied to
the RoI images.

6.4.3.1 Data Augmentation Procedures

Due to the unavailability of large datasets, two types of augmentation were considered,
i.e., basic and advanced. The basic augmentation comprises rotation and flip, whereas
the advanced augmentation also includes color jittering. Numerous configurations with
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respect to data augmentation were considered, as reported in the Table 6.1 and described
hereunder. By exploiting the transforms.Compose interface provided by PyTorch [68],
the augmentations are sequentially performed on the fly, each with a given probability that
has been set to 0.25.

No Aug refers to the adoption of no augmentation, with the exception of normalization,
by rescaling intensity values of images from integers ranging [0,255] to float values in [0,1].
Basic Aug consists of performing random rotation by the degrees in multiples of 90, and per-
forming random horizontal and vertical flips. Adv Aug takes advantage of ColorJitter
transformations in addition to the previous configuration of basic augmentation. The ad-
vanced augmentation comprises random perturbations of brightness, contrast, saturation, and
hue. Finally, normalization is performed similar to No Aug.

6.4.3.2 Training Procedures and Cross-Validation

This study also implements the Transfer Learning (TL) paradigm using the weights of
eight well-known CNN architectures, which not only saves the computational time but also
produces higher performance outcomes. The major benefit of using TL comes into practice
when the available dataset is not sufficiently large, whereas the performance also remains
considerable on small datasets. For the classification problems, applying a pretrained model
seems more rational rather than developing a model from scratch. This approach is also
referred to as TL because the pretrained models’ weights are transferred to other models to
address the similar image classification problems.

Moreover, since the manual tuning of parameters is a time-consuming and less efficient
process, this study encompasses the grid search to initially select, but later on settles to the
learning rate of 1×10−5, batch size of 32, and number of epochs to 50. Furthermore, a range
of optimizers is available which can be selected depending upon the nature of problem;
however, in this work, the Adam optimizer is used due to the simplicity and effectiveness
on the classification problems. The used loss function was the cross entropy. Additionally,
moving towards the train–test split, 5-fold cross-validation with stratification is performed in
such a manner that approximately 80% of the data belonging to each class resides in train
partition, whereas the remaining 20% dwells in the validation set.

6.4.4 Classification Performance Assessment

The results of all pretrained and fine-tuned nets are analyzed based on AUC. The mean and
standard deviation of AUC are computed for each classifier among 5-fold results. The AUC
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Table 6.1 Data augmentation summary. All augmentations are done on-the-fly with 0.25
probability in the order they are presented in the table. Normalization is always performed at
the end after all other augmentations. ColorJitter refers to the random alterations of the
brightness, range: [0.8,1.2]; contrast, range: [0.8,1.2]; saturation, range: [0.8,1.2]; and hue,
range: [−0.2,0.2]

Transform No Aug Basic Aug Adv Aug

RandomRotation90 ✗ ✓ ✓

RandomRotation180 ✗ ✓ ✓

RandomRotation270 ✗ ✓ ✓

RandomHorizontalFlip ✗ ✓ ✓

RandomVerticalFlip ✗ ✓ ✓

ColorJitter ✗ ✗ ✓

Normalization ✓ ✓ ✓

and the standard deviation are also computed for each individual class against all architectures
in three augmentation configurations.

Furthermore, the training and validation losses during the experimental procedure are
also plotted to investigate the eventual problems that arise during the potential overfitting
at each epoch. All the experiments are performed on a machine running on Windows 10
operating system, and a Python 3.7 environment is exploited with PyTorch (torch v1.10.0,
torchvision v0.11.0), grad-cam v1.3.6, and lime v0.2.0 libraries for DL and XAI. To this
end, CUDA 11.3 is used to take advantage of the GPU power.

6.5 Experimental Outcomes

The section below illustrates the experimental results of the study in terms of the classification
performance, XAI outcomes, and the relevant training and validation trends. The section
contains a comparative analysis of the employed techniques and highlights the identified
significant trade-offs.

6.5.1 Performance Module

The summary of the experimental results of all eight CNN models considered in this study in
terms of AUC with 5-fold cross-validation is provided in Table 6.2 for the three conceived
experimental configurations, i.e., without augmentation (No Aug), with basic augmentation
(Basic Aug), and with advanced augmentation (Adv Aug), respectively.
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Table 6.2 The summary of the results obtained for No Aug, Basic Aug, and Adv Aug config-
urations is provided hereunder. The bold text represents the best value of the corresponding
parameter among all CNN models, that is mean over all four classes

Architecture

Area Under the Curve (AUC)
No Aug
(None, Ori,

Oro, Ost)

Basic Aug
(None, Ori,
Oro, Ost)

Adv Aug
(None, Ori,
Oro, Ost)

MobileNet-v2

91.9 ± 1.1 92.4 ± 0.9 93.6 ± 1.2
97.4 ± 0.4 98.0 ± 0.6 97.6 ± 0.9
95.2 ± 1.3 95.9 ± 1.1 96.3 ± 0.9
95.8 ± 0.7 96.6 ± 0.5 96.5 ± 0.7

95.1 95.7 96.0

DenseNet-121

90.1 ± 1.2 93.9 ± 1.9 94.5 ± 1.3
94.2 ± 1.4 98.5 ± 0.6 98.2 ± 0.8
89.9 ± 1.7 95.5 ± 0.6 96.7 ± 0.8
92.9 ± 1.8 97.1 ± 0.8 97.2 ± 1.2

91.8 96.2 96.6

DenseNet-161

94.8 ± 0.9 95.8 ± 1.0 96.4 ± 0.5
97.6 ± 1.4 99.1 ± 0.7 99.4 ± 0.2
95.8 ± 1.3 97.8 ± 1.0 98.7 ± 0.7
97.0 ± 0.9 98.2 ± 0.3 98.0 ± 0.7

96.3 97.7 98.2

SqueezeNet

50.9 ± 3.0 56.6 ± 5.6 62.7 ± 8.1
85.9 ± 3.2 84.3 ± 1.4 86.4 ± 2.9
68.9 ± 5.6 67.6 ± 3.8 71.7 ± 7.2
83.8 ± 2.6 86.2 ± 3.7 87.6 ± 3.1

72.4 73.7 77.1

ResNet-34

92.0 ± 0.8 94.5 ± 1.0 95.4 ± 0.6
96.2 ± 0.8 98.6 ± 0.5 98.9 ± 0.5
94.7 ± 1.7 97.6 ± 0.4 97.4 ± 1.0
96.1 ± 1.3 97.6 ± 0.7 97.7 ± 0.7

94.8 97.1 97.3

ResNet-50

93.8 ± 1.1 95.3 ± 1.2 96.2 ± 0.6
98.0 ± 0.5 99.4 ± 0.3 99.3 ± 0.3
95.8 ± 0.8 97.8 ± 0.6 97.9 ± 0.7
97.0 ± 1.0 97.8 ± 0.9 98.5 ± 0.4

96.1 97.6 98.0
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Architecture

Area Under the Curve (AUC)
No Aug
(None, Ori,

Oro, Ost)

Basic Aug
(None, Ori,
Oro, Ost)

Adv Aug
(None, Ori,
Oro, Ost)

VGG-16

90.6 ± 1.7 92.5 ± 1.4 93.6 ± 1.3
98.1 ± 0.6 98.9 ± 0.6 97.7 ± 0.7
96.1 ± 0.7 96.7 ± 0.7 97.2 ± 0.7
96.6 ± 0.4 97.7 ± 0.6 98.1 ± 0.6

95.3 96.4 96.6

ResNeXt

94.1 ± 1.0 96.1 ± 0.7 95.8 ± 0.7
97.7 ± 0.7 99.3 ± 0.2 99.0 ± 0.7
96.0 ± 0.8 97.9 ± 0.7 98.2 ± 0.8
97.1 ± 0.5 98.3 ± 0.3 98.2 ± 0.9

96.2 97.9 97.8

6.5.1.1 Classification Results

In the case of No Aug configuration, it can be observed from Table 6.2 that DenseNet-161 is
the architecture with the highest mean AUC of 96.3%. The ResNeXt and ResNet-50 networks
are slightly behind, with AUC of 96.2% and 96.1%, respectively. The MobileNet-v2, ResNet-
34, and VGG-16 collectively form a third cluster with AUC of around 95%. Conversely,
the SqueezeNet is the worst-performing model in this experimental setup, managing to
achieve merely 72.4% AUC.

In the case of the Basic Aug configuration, all architectures performed considerably
better than the previous No Aug configuration. The results reveal that ResNeXt obtained the
highest AUC of 97.9%, beating all other architectures. The DenseNet-161 and ResNet-50
achieved similar performances with the AUC of 97.7% and 97.6%, respectively. Once again,
the performance of the SqueezeNet failed to present significant outcomes, thus abiding by
the No Aug configuration.

The second augmentation setup, called Adv Aug, emerged to be even better than both
previously conceived No Aug and Basic Aug setups. The DenseNet-161 reached the top AUC
of 98.2%. The ResNet-50 appeared to be the second best model, with a slightly lower AUC
of 98.0%.

Finally, as noted during the No Aug and Basic Aug configurations, the SqueezeNet is
the model which offers least reliability with the largest inter-fold variability; however, it
improved the AUC from the previous setups.
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Therefore, it can be summed up that the ResNeXt and DenseNet-161 remain the top-
performing models, and the augmentation configurations considerably improved the perfor-
mance of all CNN architectures. However, the SqueezeNet failed to produce convincing re-
sults.

6.5.1.2 Train and Validation Loss Trends

The training and validation losses fluctuate with respect to each epoch. All models were run
at different values of epoch starting from 10 up to 50; however, for the purpose of clarity and
concision, only the results obtained considering the 50 epochs are illustrated.

The loss curves demonstrate important trends to monitor in order to clearly distinguish
the working mechanism of the CNN architectures over the repeated iterations. In Figure 6.4,
it is distinctive to visualize the loss on both train and validation sets (first fold) for the best,
i.e., DenseNet-161, and the worst, i.e., SqueezeNet, CNN architectures in the case of No Aug

configuration.
Although the SqueezeNet shows decreasing loss on both train and validation sets in

Figure 6.4b, the training loss curve becomes constant right after fewer epochs in DenseNet-
161 in Figure 6.4a. Moreover, the validation curve depicts increasing behavior after fewer
than ten epochs for the DenseNet-161. Such behavior could be motivated by the huge number
of parameters that might cause the overfitting problem on the train set.

The train and validation loss curves considering the advanced data augmentation configu-
ration are provided in Figure 6.5. The augmentation helped the DenseNet-161 to overcome
the increasing validation loss, as shown in Figure 6.5a. This evidences that incorporating on-
the-fly data augmentation solved the overfitting issues. However, the SqueezeNet struggles to
keep the loss low, as depicted in Figure 6.5b, and ends up with even worse performance than
the no augmentation configuration. Differently from DenseNet-161, the SqueezeNet does
not seem to take advantage of the on-the-fly augmentation, possibly due to lower number
of parameters.

Additionally, the reported behavior of the loss trends on both train and validation sets is
comparable to the other folds. With the intention of concision, only the outcomes of the best
and the worst performing architectures are depicted, i.e., DenseNet-161 and SqueezeNet,
respectively, in terms of AUC and loss.
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Fig. 6.4 The train and validation loss for the fold = 0 of cross-validation. (a) DenseNet-161
with No Aug configuration; (b) SqueezeNet with No Aug configuration. The reported behavior
of train and validation loss trends is comparable to that of the other folds.

6.5.2 Area under the Curve and Number of Parameters Trade-Off

During the experimental phase, the author came across an interesting trend between the mean
AUC (computed on the test set) and the number of parameters of the employed architectures.
A plot illustrating the relationship between AUC and the number of parameters for the eight
considered CNNs is presented in Figure 6.6. It is observable that the VGG-16 holds a gigantic
number of parameters but without yielding the corresponding improvement in the AUC.
The SqueezeNet, on the contrary, is a small architecture in terms of number of parameters,
but fails to realize commendable AUC among the contemplated models. The best trade-off
between the number of parameters and the performance can be seen in ResNet-like models,
with ResNet-50 winning the dispute.
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Fig. 6.5 The train and validation loss for the fold = 0 of cross-validation. Figure (a) DenseNet-
161 with Adv Aug configuration; (b) SqueezeNet with Adv Aug configuration. The reported
behavior of train and validation loss trends is comparable to that of the other folds.

6.6 Discussion

This study proposes a novel, visually explainable DL-driven multiclass shape-based breast
cancer classification framework for tomosynthesis lesion images. For the task of morphologi-
cal classification, eight DL models are employed on tomosynthesis breast images and two
families of XAI methods, i.e., perceptive interpretability and mathematical interpretability,
are incorporated to explain the results acquired during the validation study in order to create
the trust among the clinicians and AI. The relevant material to the XAI and the results are
described in the next chapter of the thesis.

The CAD system developed in this study is able to encircle the potential growth pattern
of the tumorous regions on the DBT images and results in the improved diagnostic and
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Fig. 6.6 The relationship between area under the curve and number of trainable parameters
for the eight CNN architectures considered throughout this study.

prognostic performance. The successful implementation also enhances the trustworthiness
among the clinical field and the high-accuracy-yielding DL architectures. The subsection
below comparatively discusses the shape-based breast cancer classification.

6.6.1 Shape-based Breast Cancer Classification

Quantitatively, the extensive experimental results are elaborated, considering the pretrained
DL methods on both with and without data augmentation configurations. The mean AUC
values of the developed models improved during the augmentation phases. The crown of
overall best performing algorithm belongs to DenseNet-161 due to persistent performance,
i.e., reaching higher than 96.0% across No Aug, Basic Aug, and Adv Aug setups.

In particular, the best-performing model, i.e., DenseNet-161, increases by 1.45% and
1.97% in the mean AUC from No Aug to Basic Aug and Adv Aug, respectively. It impres-
sively increases by 33.01%, 33.28%, and 27.10% over the SqueezeNet in configuration-
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to-configuration comparison, i.e., No Aug to No Aug, and so on. In the case of Basic Aug,
the ResNeXt outperforms all other architectures with a percent increase of 33.56 from the
worst-performing model.

Since the results are comparable, any particular model performing best in terms of AUC
and loss may not perform ideally in all aspects. The reason is the primitive learning and
weight updating mechanism of the CNN models. For example, in the No Aug phase, three out
of four individual AUC values of ResNeXt among classes remain higher than the respective
individual AUC values of the DenseNet-161, despite the equal mean AUC.

The utilization of the augmentation techniques revamped the trends of the validation
loss, as shown in Figures 6.4 and 6.5; however, the improvement in the validation loss is
negative for the worst-performing model, i.e., SqueezeNet, which fluctuates between 0.3 to
1.3 and 0.7 to 1.3 for No Aug and Adv Aug configurations, respectively. Both the training and
validation losses increased.

The illustrated loss values are evidently coherent to the fact that a huge model such as
DenseNet-161, with tons of parameters, overfits when it is trained with no augmentation
over an increasing number of epochs in this experimental setup. Instead, SqueezeNet has
the opposite problem, being unable to even properly comprehend the fundamental patterns,
resulting in an underfit behavior. After augmentation, underfitting problem of SqueezeNet
cannot be resolved, as shown by comparing Figures 6.4b and 6.5b, but the overfitting issue
of the DenseNet-161 is mitigated as presented by comparing Figures 6.4a and 6.5a.

A noteworthy consideration arises when considering the performance of a model in
relation to its size and complexity. In Figure 6.6, a noteworthy trend exists between the
number of parameters and the AUC, the models having a huge number of parameters
compromised at the mean AUC at certain levels. On the contrary, the models with an
extremely low number of parameters may result in bad generalization performance, since
with reduced number of parameters, the model is hardly able to learn simple patterns in
this study.

Nevertheless, the two different augmentation configurations and three different execution
setups (i.e., 10, 30, and 50 epochs) disclose a clear improvement with augmentation in
DBT classification framework. The basic augmentation improves performance compared
to no augmentation, and the advanced augmentation plays its part and further increases the
AUC outcomes. One major reason reckoned is the considerably high visually noticeable
resemblance between the training and the validation data, whereas the state-of-the-art ar-
chitectures, the significant clinical data, and the RoI-level cropped images may possibly be
other driving causes. Finally, from several above discussed dimensions, the study proves
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the applicability of the CNN models in the classification task of DBT lesions on RoI level.
Taking the advantage of TL, the framework reaches efficient results with fine-tuning of
several parameters, and paves the way towards autonomous CAD systems.

6.7 Limitations

In this work, the pretrained DL models are employed for the classification tasks using a
5-fold cross-validation strategy. Since the train and validation data come from the same
source, few models suffer from generalizability and overfitting problems. The models can
be validated on the external datasets after training for better understanding. Additionally,
the dataset used in the study is relatively small; this is a major reason to incorporate the
pretrained models and perform fine-tuning also with data augmentation. The used models
could be trained and tested with large-scale datasets acquired from different cohorts.

6.8 Summary

Breast cancer is the leading deadly ailment in women, and its inevitable progression has
become a major concern for the healthcare industry. However, timely diagnosis can signifi-
cantly improve the medication and prevent the further expansion of the cancerous regions.
DL offers great success in automatic detection and classification using medical imaging data.
However, the black-box nature of the decision-making mechanism of the DL architectures
hampers the trust among the clinicians. The XAI techniques uncover the black-box and
hidden nature of the DL and provide useful apprehension of the high-accuracy-yielding DL
models. This builds confidence in machine learning in the clinical domain and paves the way
towards DL-centered image-guided CAD systems.

In this work, a robust visually and mathematically explainable DL framework for multi-
class shape classification of tomosynthesis breast lesion using eight pretrained CNN models
using an in-house dataset is proposed. Due to small-scale data availability, the data augmen-
tation was incorporated. The best fine-tuned model achieved mean AUC values of 98.2%
and 96.3% with and without considering the data augmentation, respectively.



Chapter 7

Explainable Artificial Intelligence

7.1 XAI for DL in Medical Imaging

In spite of the enormous success, the complex nature of the DL techniques hides any possible
information of the underlying decision mechanism [31, 32], which questions its usage in
the healthcare domain where explainability holds paramount significance to build a trust on
decisions made by surging AI. XAI brings forward the possibility of explaining the results of
DL models and reveals how the models produce these results. Generally, XAI is supposed to
fit a model onto four basic attributes [33]:

• Transparent : open to the degree where humans can understand the decision-making
mechanism.

• Justifiable: the decision can be supported or justified along each step.

• Informative: to provide reasoning and allow reasoning.

• Uncertainty yielding: does not follow hard-coded structure, but open to change.

XAI has drawn a tremendous amount of attention in the recent past (see Figure 7.1) and it
is not hard to comprehend the importance of such methodologies in the clinical field, where
AI is expanding enormously [34]. Such new research topic is extremely fascinating yet
challenging, because as it can be easily envisaged, a more complex AI model that can reach
high-level performance is less interpretable than, for example, a simple rule-based model
(see Figure 7.2).

Numerous XAI methods and relative updated versions have been proposed in the litera-
ture [34]. The presented approaches can be classified into two major categories: perceptive
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Fig. 7.1 The popularity index of the term ’explainable AI’ over the period of 2017–2022.
Google Item Search indicates the queries in Google search engine, whereas Google Scholar
Search points out the published studies available at Google Scholar (* results until March
2022 are extracted).

interpretability and mathematical interpretability. The former includes visual interpretability
that can be visually perceived by humans, for example, the heatmaps that report the impor-
tance of input and their contribution to that decision. The mathematical-interpretability-based
methods usually rely on simple models, e.g., linear models, or on correlation/clustering
methods that analyze the extracted features. When visual evidence is not useful or erro-
neous, the mathematical evidence can also be used as a complement for the interpretability.
Therefore, various methods should be applied simultaneously in order to provide reliable
interpretability [419].

In this part of the study, the XAI methods are applied to evaluate the results of DL models
on the previously proposed breast cancer classification pipeline presented in the Chapter 6.
The developed framework is a CNN based DL framework for the classification of lesions
according to the shape pattern by analyzing the RoI on DBT images.

The trained DL models and related results have been further interpreted by incorporating
two different methodologies for each of the two explanation mechanisms. Gradient-weighted
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Fig. 7.2 The complex models are less explainable as compared to the simple models, be-
cause of the increasing number of hidden layers and parameters. The more simple a model
is, the more interpretable it is.

Class Activation Mapping (Grad-CAM) method and Local Interpretable Model-agnostic
Explanations (LIME) have been used to visually interpret the results, whereas t-distributed
Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projec-
tion (UMAP) techniques have been utilized to study the mathematical interpretability of the
features automatically extracted by all eight CNN architectures [34].

7.2 XAI and Breast Cancer

Several studies in the literature dealt with the breast cancer imaging and XAI. Riccia-
rdi et al. proposed a binary classification framework based on AlexNet and VGG-19 architec-
tures to recognize the presence or absence of mass lesion on DBT image of two in-house
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datasets [420]. The authors adopted the Grad-CAM method to study the behavior of the
classifiers, i.e., whether they align with the delineated lesion labeled by the expert radiologists.
Employing the Grad-CAM method, the authors concluded that central areas of the lesion
contribute more towards classification, whereas the branches of the tumor bring less impact
on classification.

Masud et al. performed multiclass classification of ultrasound breast images considering
benign, malignant, and normal classes on two public datasets [421] using eight pretrained
CNNs and a custom model. The highest accuracy among the pretrained architectures was
achieved by ResNet-50 with a value of 92%, whereas the customized model achieved 100%
accuracy. For explaining the classification mechanism and to study the performance of the
customized model, the Grad-CAM heat map visualization was also incorporated.

Suh et al. compared the binary classification performance of DenseNet-169 and EfficientNet-
B5 models on predicting the availability of malignancy of the lesions from the mammogram
images on an in-house dataset [422]. The former network achieved an accuracy of 88.1%,
whereas the latter reached to 87.9%. The Grad-CAM method was used merely to spotlight
the important regions over an image that lead to the classification. The authors claimed that
Grad-CAM also spotlights the surrounding areas of the tumor, which shows the importance
of not only the tumorous region but also the nearby regions.

Similarly, Lou et al. [423] proposed a framework driven by a custom model and a
pretrained (ResNet-50) architecture to classify the benign and malignant masses on two
publicly available mammogram datasets. The authors reached an accuracy of 83.75%.
The Grad-CAM is employed to examine the spatial position of the object located by the
CNNs. The authors claim that in case of successful classification, the XAI method highlights
the mass correctly, however, it may also focus on the irrelevant regions due to spots that are
not lesions.

Apart from the unavailability of explainability in majority of the existing articles dealing
with DBT image classification task, only few authors [41, 406, 407, 415] considered the
shape-based cancer classification of the lesion, which not only distinguishes among the
normal and abnormal images but also highlights the growth pattern of the tumor shapes.

Unlike the proposed multi-class morphological CAD classification framework in this
study, most of the authors merely focused on malignant vs. benign classification of the
lesion [405, 409–412, 414] and provided no, or unsatisfactory, XAI discussion in some cases.
The only two authors which provided XAI in their CAD system [420, 422], limited it to the
Grad-CAM method, and did not consider more complex classifications of the breast cancer,
such as the shape one investigated by this study.
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The main contributions of the study can be stated as (i) to investigate the applicability
of both perceptive and mathematical XAI methods at RoI level in the DBT images; (ii) to
investigate the reliability of features and learning process and correlate it with the overall DL
model performance; (iii) to perform a comprehensive comparison of the CNN architectures
and the XAI methods in order to guide the engineers and the radiologists interested in
implementing DL-driven CAD systems.

7.3 Materials and Methods

The interpretability and explainability have largely been achieved by applying two families of
methods, namely, perceptive interpretability and mathematical interpretability [34]. The per-
ceptive XAI is responsible for bringing a straightforward view of the top contributing features
that affect the final predictions, whereas the mathematical interpretability provides insights
into the used models and portrays the features that are employed to make the final predictions.
The former is used to study the feature-level classification behavior (the importance of a
particular region towards classification) of the DL architectures, whereas the latter is used to
study the clustering capabilities of the networks.

7.3.1 Perceptive XAI

This study adopts two of the most widely admired XAI-based perceptive explanation methods
called Grad-CAM and LIME [34] in order to explain the decisions made by the CNN
architectures. Both the models are post hoc (i.e., they take as input an already trained
model [34]) and can be extended to any DL network for explanation without any alteration in
the rudimentary mechanism of the DL methods. Below, a brief description of the Grad-CAM
and the LIME models is reported.

7.3.1.1 Grad-CAM

According to Das et al. [424], Grad-CAM can be classified as a back-propagation-based
method, meaning that the algorithm makes several forward-passes (one or more) through the
neural network and generates attributions during the back-propagation stage using partial
derivatives of the activations. Contrary to the CAM, which requires a particular pattern of
network under analysis, the Grad-CAM is the generalization that can be applied without any
modifications in the DL model [425].
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The Grad-CAM produces a heatmap of the class activation in response to the input image
and a class. In other words, for a particular provided class, the Grad-CAM produces approxi-
mate and comprehensible representations of the network’s decision-making mechanism in the
form of a heatmap that translates to the feature importance. Specifically, in the last layers of
a CNN, neurons look for semantic information associated with a specific class. In this layer,
Grad-CAM uses the gradient flowing into it to assign a weight to each neuron according to its
contribution to the decision in the classification task. The computed information is translated
into a jet color scheme to depict the saliency zones, where the red color represents the higher
intensity, i.e., pixels on which the network is focusing more for performing the classification,
while the blue color represents the lower intensity of the focus. The neuron-importance
weights can be computed as inscribed below [425]:
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(7.1)

Where:

• 1
S ∑i ∑ j is the global average pooling (i, j are respectively the indexes of width and
height dimensions and S is the total number of cells in a feature map).

• yc is the activation class score for target class c.

• ∂yc

∂Mk
i j

is the gradient computed via backpropagation, for a target class c, with Dk
i j as the

activation of cell at spatial location i, j for a feature map Mk.

Then the weighted combination of forward activation maps is performed, followed by a
ReLU, obtaining the class-discriminative localization map Grad-CAM:
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(7.2)

7.3.1.2 Local Interpretable Model-Agnostic Explanations

In this study, another well-known explanation technique based on model-agnostic phenomena
known as LIME is incorporated. The approach can be applied to any DL model. Specifically:

• Local: states that LIME explains the behavior of the model by approximating its local
behavior;

• Interpretable: emphasizes the ability of the LIME to provide an output useful to
understand the behavior of the model from a human point of view;
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• Model-Agnostic: means that LIME is not dependent on the model used; all models are
treated as a black-box.

In this classification problem, the explanation of LIME remains simple. It takes the
superpixels (a patch of pixels) of the original input image after generating a linear model,
and generates several samples by exploiting the superpixels. The quick-shift algorithm is
responsible for the computation of superpixels of an image. Thereafter, the perturbation
images are generated and the final prediction is made.

Afterwards, a heatmap appears over the image that highlights the important pixels, i.e., re-
gions that contribute in classification. The positively contributing features are highlighted in
green while the negatively contributing superpixels are colored in red. The LIME also allows
to pick a threshold value to select the number of top contributing pixels, either positively or
negatively.

7.3.2 Mathematically Explained XAI

This section introduces two widely adopted and useful techniques for performing the task
of mathematical interpretability implemented in the presented work. The mathematical
interpretability offers t-SNE and UMAP techniques to represent the high-dimensional graph
into lower dimensional space without compromising on the clustering structure.

Primarily, both the t-SNE and UMAP are meant for visualization; however, the main
difference lies in the interpretation of the distance between the clusters. The t-SNE merely
preserves the local structure in the data, whereas the UMAP can preserve both local and
global structure in the data, which means that unlike the UMAP, the dissimilarity and the
distance between clusters can not be interpreted with the t-SNE.

7.3.2.1 T-Distributed Stochastic Neighbor Embedding

The t-SNE [426] is a variation of the SNE technique that makes the visualization of high-
dimensional data possible by associating with each datum a location in lower dimensional
space of two or three dimensions. It has been developed to face two issues that affect
SNE technique:

1. The optimization of the cost function, by using a variation of SNE cost function
(symmetrized) and using a Student’s t distribution for the computation of similarity
between two datapoints in the lower-dimensional space.
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2. The so-called “crowding problem”, by using a heavy-tailored distribution in low-
dimensional space.

7.3.2.2 Uniform Manifold Approximation and Projection

The UMAP [427] is a nonlinear technique for the dimensionality reduction. It is based on
three assumptions:

1. Data are uniformly distributed on an existing manifold;

2. Topological structure of the manifold should be preserved;

3. Manifold is locally connected.

The UMAP method can be divided into two main phases: learning a manifold structure
in a high-dimensional space and finding the relative representation in the low-dimensional
space. In the first phase, the initial step is to find the nearest neighbors for all datapoints,
using the nearest-neighbor-descent algorithm.

Then, UMAP constructs a graph by connecting the neighbors identified previously; it
should be noticed that the data are uniformly distributed across the manifold, so the space
between datapoints varies according to regions where data are denser or sparse. According
to this assumption, it is possible to introduce the concept of ’edge weights’: from each point,
the distance with respect to the nearest neighbors is computed, so the edge weights between
datapoints are computed, but there exists a problem of disagreeing edges.

7.3.3 Performance Assessment Module

At this stage, the saliency maps using Grad-CAM algorithm are analyzed, and superpixel
importance (both positive and negative) with the LIME technique is used to inquire what
aspects the classifiers are focusing on, so as to build a trust for CAD systems that can be
exploited to support the radiologists’ diagnostic workflow are computed. Generally, these
methods identify which features oblige a DL model to discriminate among different lesions
present on the image.

Particularly, to generate the heatmap visualizations from the Grad-CAM, all the archi-
tectures, except the VGG-16, utilize the last layer before the global average pooling layer.
In case of VGG-16 architecture, the Grad-CAM is run at the maxpool layer before the first
fully connected layer. Note that VGG16 is the only CNN among the considered architectures
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in this study that does not implement global average pooling, since it is an old architecture
based on stack of fully connected layers at the end.

On the other hand, the LIME is a model-agnostic method; therefore, it creates the
perturbations once the CNN finishes the classification task. In both cases, the specific class
modeled as base class differs for all the networks; therefore, the labeled and the targeted
classes are provided within figures. Moreover, the t-SNE and UMAP embeddings, before and
after the fine-tuning of all architectures on the DBT image training set, are computed to
understand how well TL approaches work on the radiological image scenario. The feature
sets considered for t-SNE and UMAP are the same as for Grad-CAM discussed above.

7.4 Experimental Outcomes

This study employed XAI techniques from two families comprising mathematical inter-
pretability, i.e., t-SNE and UMAP, and perceptive interpretability, i.e., Grad-CAM and LIME.
The experimental outcomes of both XAI approaches on all CNN models are explained here-
under.

7.4.1 t-SNE and UMAP

The extracted features from both pretrained and fine-tuned networks are visualized in order to
understand what patterns emerge in low-dimensional spaces after having employed nonlinear
dimensionality reduction techniques such as t-SNE and UMAP.

In Figure 7.3, the t-SNE embedding plots for both pretrained and fine-tuned DenseNet-161
and SqueezeNet architectures are pictorially represented. Similarly, Figure 7.4 presents the
UMAP embedding plots for both pretrained and fine-tuned DenseNet-161 and SqueezeNet
models. In the pretrained version, no clear patterns arise from both embedding plots, showing
that features learned from ImageNet dataset are not necessarily well discriminative for
radiological image applications.

Nonetheless, after 50 epochs of fine-tuning on the designated train set, the clusters
appear more distinctive. In fact, with trained CNN features, both UMAP and t-SNE allow to
visualize different clusters for all four considered classes: None, Ori, Oro, and Ost.

As described in Section 7.3, the distance between the clusters cannot be interpreted by
using the t-SNE visualizations. For instance, it cannot be inferred from Figure 7.3 that
clusters are dissimilar to each other when one cluster is closer to the other. However, it can
be stated that points closer to each other are more similar objects than the points at farther
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Fig. 7.3 The t-SNE embedding plots of the features extracted from pretrained (a,c) and fine-
tuned (b,d) DenseNet-161 and SqueezeNet, respectively, on the validation set of 1st fold.
It is clearly visible that the fully TL paradigm does not allow a clear clustering of the
features in low-dimensionality space, whereas the finetuned model is able to discover more
discriminative features with respect to its pretrained-only version.

ends, whereas Figure 7.4, thanks to the local and global feature representation capability of
the UMAP, clearly plots the points that can be interpreted as distinguishing clusters and the
position of the points.

7.4.2 Class Activation Mapping

The visual explanation of all eight fine-tuned networks is pictorially depicted in Figure 7.5,
considering the Grad-CAM as reference method. In the figure, two sample images for every
class are depicted, and the corresponding saliency maps are reported for every network.
This figure considers only images for which every network makes the correct prediction,
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Fig. 7.4 The UMAP embedding plots of the features extracted from the pretrained (a,c) and
fine-tuned (b,d) DenseNet-161 and SqueezeNet, respectively, on the validation set of 1st
fold. It is distinctly visible that the fully TL paradigm does not allow a clear clustering of the
features in low-dimensionality space, whereas the finetuned model is able to discover more
discriminative features with respect to its pretrained-only version.

in order to visualize the link between the highlighting of the lesion area and the network
performance. The saliency maps of the approximate features are generated considering the
ground truth/predicted class view.

Interestingly, the CNN architectures that find troubles in correctly identifying the le-
sion areas also appear to have worse performance in the classification task. For instance,
SqueezeNet, which is the worst-performing network in terms of AUC, and VGG-16, which
also appears to have a trade-off between AUC and the number of parameters, as shown
in Figure 6.6, fail to spotlight the relevant lesion area. Here, the trade-off refers to the
fact that the increasing number of parameters seldom yields increased AUC. In contrast,
DenseNet-161, DenseNet-121, and ResNet-50 correctly highlight the lesion on the images.
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Fig. 7.5 The visualization of the Grad-CAM method with the eight different CNN architec-
tures considered throughout the study. To illustrate the better view, two examples for each
class are portrayed, and the ground truth class label is provided above the set of each image.
As the jet color scheme is employed for depicting saliency zones, the red color represents
the higher intensity, i.e., pixels on which the network is focusing more for performing the
classification, whereas the tendency towards the blue color represents the lower intensity of
focus. The header bar is used to distinguish among several classes and is colored uniquely.
The similar color of header for two images represents the samples chosen from the same class.
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Thus, this XAI-based CAD system unveils the potential applicability of the reliable and
suspicious candidates to adopt in the CAD systems.

7.4.3 Local Interpretable Model-Agnostic Explanations

It is worth mentioning that the visual results of the Grad-CAM and LIME must not be
confused. Unlike the Grad-CAM method, which emphasizes the lesion area with the intensity
of the color closer to the center, the LIME method works differently by providing the top
contributing s that resulted in the classification of the image into any given class. However,
in both cases, the images were generated by observing the ground truth/predicted class view.

The s perturbations performed by the LIME are shown in Figure 7.6. The observations
experienced with respect to the performance of the LIME technique are similar to the Grad-
CAM method. The figure reports the exact images that were compared in Figure 7.5 for
the Grad-CAM method, to create a robust and clear comparison. The class considered for
performing the LIME perturbations is the ground truth class, which, in this case, corresponds
also to the prediction of all the CNNs. The regions which are positively correlated with the
decision made by the CNN are highlighted in green, whereas those negatively correlated are
colored red.

However, it has to be noted that reasoning in terms of superpixels can result in explana-
tions which are visually less clear to understand than those of their CAM-based counterpart.
Comparing the Figures 7.5 and 7.6, one can see that some superpixels which are correlated to
the prediction according to the LIME method are not considered relevant in the corresponding
Grad-CAM activation maps. Therefore, the study suggests to consider both methods when
trying to devise an explanation for a CAD system, in a way that complementary information
can be extracted from both sources to obtain a broader view of how the model is working.

7.5 Discussion

This study proposes a novel, visually explainable DL-driven multiclass shape-based breast
cancer classification framework for tomosynthesis lesion images, as presented in the Chapter
6. For the task of morphological classification, eight DL models are employed on tomosynthe-
sis breast images. However, the blackbox nature of DL hides the decision making mechanism,
which hinder the incorporation of DL in medical domain. Therefore, to build the necessary
trust of physicians and health experts, the explainability of the DL driven CAD systems is
essential.
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Fig. 7.6 The visualization of LIME superpixels positive and negative regions with the eight
different CNN architectures considered throughout this study. To illustrate the better view,
two examples for each class are portrayed and the ground truth class label is provided above
the set of each image. The red color highlights the negatively contributing superpixels,
whereas the green represents otherwise. The header bar is used to distinguish among several
classes and is colored uniquely. The similar color of header for two images represents the
samples chosen from the same class.



7.5 Discussion 155

In this context, two families of XAI methods, i.e., perceptive interpretability and mathe-
matical interpretability, are incorporated to explain the results acquired during the validation
study of breast classification discussed in the Chapter 6 in order to create the trust among the
clinicians and the AI.

The perceptive interpretability models are responsible for visually explaining the top
contributing features towards the classification, whereas the mathematical interpretability
methods portray feature clustering capabilities of the DL architectures.

The CAD system developed in this study is able to improve the diagnostic and prognostic
performances. The successful implementation also enhances the trustworthiness among
the clinical field and the high-accuracy-yielding DL architectures. The sections below
comparatively discuss the interpretation of the DL models using XAI techniques.

7.5.1 Explainable AI in Breast Cancer Classification

Concerning the mathematical explanation, as emerged from the visualization of the feature
embeddings, one can discern that both t-SNE and UMAP are able to extract meaningful
relationship in the low-dimensionality spaces when the features are representative of the
underlying patterns in the sample images. In Figures 7.3 and 7.4, four clusters are clearly
visible for the DenseNet-161 architecture. On the contrary, when the model is less accurate,
as in the case of fast and light SqueezeNet (in terms of number of parameters), the clus-
ter formation behaves differently, with UMAP resulting in more compact representations.
As a general suggestion, therefore, the study recommends to use these mathematical XAI
techniques to visualize if considered features for a problem under consideration are relevant.

With respect to the perceptive XAI techniques, the performance results of the CNN
models are aligned with the complementary information that can be extracted from Grad-
CAM and LIME methods. While the first allows to detect which regions have a gradient
that is deemed relevant for performing the prediction, the second permits to understand,
for each superpixel, if it is positively or negatively correlated to the prediction. Moreover,
the LIME method has an adjustable parameter for deciding the number of top contributing
features to show over the original image. Since the intensity values from the saliency maps
of Grad-CAM are already available, every positively correlated region is marked in green
color and every negatively correlated region is highlighted with red color, so that the mixed
information obtained can be exploited to obtain an intuitive understanding of which regions
are more important (higher intensity values in CAM maps), and which are positively or
negatively correlated to the final outcome (green and red, respectively).
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Interestingly, the CNN architectures that find trouble in correctly identifying the lesion
areas also appear to have a lower AUC. Thus, on a general scale, the higher AUC can
be explained by using XAI methods. For instance, the SqueezeNet, which is the worst-
performing network in terms of AUC and validation loss, and VGG-16, which has a trade-off
between the AUC and the number of parameters, as shown in Figure 6.6, fail to spotlight
the relevant lesions as illustrated in Figure 7.5. In contrast, DenseNet-161, DenseNet-121,
ResNeXt, and ResNet-50, which feature higher AUC values, correctly highlight the lesion
when tested with the Grad-CAM method.

Moreover, as the loss trends and the AUC tables show, none of the CNNs yielded 100%
performance, which means the misclassified examples are also present. These samples of
the misclassified images are also presented to the XAI methods in order to dive into the
features that resulted in misclassification. The reason behind misclassification of one type of
cancerous image to another type might be related to the homogeneity of the shapes of a few
examples with other classes. Figure 7.7 illustrates the results of both Grad-CAM and LIME
methods regarding examples of misclassified images.

The labels provided above the samples represent the ground truth, whereas the labels
provided under the saliency maps are the predictions made by the CNNs. This figure proves
that XAI could also help the physician understand why the AI is failing.

For instance, the None image in the Figure 7.7 contains a mesh that is not lesion according
to the expert radiologists. However, it fools the CNN to misclassify the image as Ori. Both
the CAM and LIME methods highlighted the regions that carry analogous properties, thus
explaining the cause of the misclassification. It is worth noting that a similar discussion
emerges from the other examples provided in Figure 7.7.

In order to understand how the results of two XAI perceptive methods vary according
to the different target classes, Figure 7.8 reports the explanation results of both methods
considering eight different correctly classified images. It is worth noting that the CAM results
did not differ among the four XAI target classes. Interestingly, the results are different when
LIME is analyzed. For instance, when considering None as target class and visualizing its
explanation outcome on an Ori class image, the LIME-highlighted lesion area has a region
that contributes negatively towards the classification of the chosen target class. In the same
image, the LIME explanation with the Ori target class highlighted the lesion region as green
(positively correlated) since the image belongs to the Ori class. This kind of comment could
also be easily applied to other images of Figure 7.8, thus confirming the difference and the
utility of more than one perceptive XAI method.
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Fig. 7.7 The examples of the misclassified samples due to the relevancy of one type of shape
to other type of shape for all four classes. The labels provided above the samples represent
ground truth, whereas the labels provided under the saliency maps are the predictions made
by CNNs.

Finally, from several discussed dimensions, the presented study proves the applicability
of XAI methods and the black-box nature of the DL models is successfully unveiled to build
the trust of radiologists to emerge towards the reliable CAD systems for the diagnostic tasks.

7.6 Limitations and Future Directions

The study unleashes the hidden classification mechanism of DL techniques by integrating
numerous XAI techniques. The Grad-CAM methods produce a coarse localization map.
In the experimental outcome section, it can clearly be observed that at a certain point the
XAI methods explain the DL methods’ results with slightly different regions. This is because
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Fig. 7.8 Grad-CAM and LIME comparison. One sample image is used for every class; then,
the results of the XAI perceptive method are shown, considering each of the four possible
target classes.

of the model overfitting. A robust investigation may demonstrate productive conclusions.
The CAM method only focuses on a general region of the image instead of focusing on
minute peculiarities, such as that LIME technique generates the perturbations and highlights
the top features. Similarly, the SHapley Additive exPlanations (SHAP) model quantifies the
exact amount of contribution made by a particular region, and can be added in future studies.

More importantly, there exists no particular method to quantitatively and qualitatively
evaluate the outcomes of XAI methods. Merely visualising the heatmaps and portraying the
top contributing features may not make a DL model completely interpretable in medical di-
agnosis and treatment context. Therefore, investigating quantitative and qualitative measures
to evaluate the results of XAI techniques is the precise future target.
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7.7 Summary

In this work, a robust visually and mathematically explainable DL framework for multiclass
shape classification of tomosynthesis breast lesion using eight pretrained CNN models using
an in-house dataset is proposed. Due to small-scale data availability, the data augmentation
was incorporated. The best fine-tuned model achieved mean AUC values of 98.2% and 96.3%
with and without considering the data augmentation, respectively.

Furthermore, considering the hypersensitive clinical realm, two families of XAI meth-
ods, i.e., perceptive interpretability and mathematical interpretability, were incorporated to
visually explain the CNN models’ classification performance. The former interpretability
method includes Grad-CAM and LIME, which are responsible for visually explaining the
experimental outcomes in terms of feature-level contribution towards classification, whereas
the latter method comprises t-SNE and UMAP techniques that portray feature clustering
capabilities of the DL architectures. The performances of all models were aligned with the
visual and mathematical interpretations, hence developing the necessary trust between the
healthcare industry and the DL architectures. The results proved the usability of XAI to
understand the mechanism of employed AI models, also in the cases of failures.

In future, the aim is to further enhance the interpretability of the CNN models by
calculating the single feature-level weightage towards classification. The other plan is
to investigate the performance of the proposed framework on unforeseen datasets and to
integrate the novel DL models. However, more importantly, investigating quantitative and
qualitative measures to evaluate the results of XAI techniques is the precise future target.



Chapter 8

Evaluation of Explainable Artificial
Intelligence

8.1 Visualisation is not Explanation

The DL has started romance with almost all fields of human life and beyond. None of these
fields know how DL works and many seldom bother because of the perks DL offers. However,
the medical domain has a suspicion that DL may cheat in this romantic partnership. Therefore,
before indulging into serious relationship, healthcare demands some sort of guarantee and
assurity in terms of interpretability, transparency, explanation, and evaluation of the DL
methods. Eventually, the XAI, a good mediator, has offered some degree of transparency,
mainly by visualisation, to ensure trustworthiness. The healthcare industry, sensitive and
gorgeous darling because of having the direct correlation with human life, questions the
authenticity of XAI, and demands a qualitative measure to evaluate the explainable methods.
Therefore, in the greater interest of XAI led DL relation with medical domain, this part
of the study investigates the evaluation methods and measuring metrics to quantitatively
and qualitatively evaluate the XAI methods in medical imaging domain. The retrospective
survey focuses beyond the visual explanations and saliency maps and further investigates the
quantitative and qualitative methods to judge whether the explanation itself is worth trusting.
Most of the DL based studies in medical images compute the heatmaps and claim the models
to be interpretable. In the author opinion, the visualisation is not explanation. Very few
studies go beyond and adopt methods like intersection over union, which is most commonly
used performance evaluation metric. This retrospective study found that there exists no single
generalised quantitative method to evaluate the XAI in medical imaging domain. Therefore,
the author expresses the dire need for a generalised method to quantitatively and qualitatively
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interpret the explainable methods within XAI domain for medical images and look forward
to the scientific community.

8.2 XAI Evaluation Background

In literature, several methods have been proposed for the evaluation and quantification of
XAI methods, however, there is no one compact and generalised method for quantitatively
evaluating the XAI outcomes on different types of medical images. A common practice has
been seeking help from the clinicians to evaluate the explanations generated by XAI methods,
however, this method is prone to errors, time consuming, labour intensive, and experience
demanding. Nevertheless, the visualisation of top contributing features, spotlighting the
important regions, and computing numerous scores of contribution towards decision have
long been discussed, alongside what is required is a quantitative and qualitative method to
measure the effectiveness of an explanation.

Additionally, as the definition of XAI states, the purpose of XAI is to make the DL
decisions understandable to human. A number of studies merely relying upon saliency maps
and feature contribution values lack the actual definition. The debate to make the XAI
decision understandable to an expert or a common human can be considered progressive,
however, the requirement to explain remains intact in either case.

Moreover, unlike other domains, the medical imaging domain can not rely on common
sense, mutual understanding, and argumentation about the XAI methods, therefore, very
limited number of studies have been found interested in evaluating the effectiveness of the
XAI techniques. Numerous authors provide different kinds of evaluation including visual,
textual, example based, and few more.

8.3 Medical XAI: A Quick Look

This section further elaborates the categories of XAI methods applied on medical image
diagnosis and analysis using the DL. The literature study suggests few major groups including
post-hoc XAI vs model based XAI; model specific XAI vs model agnostic XAI; and global
explanation vs local explanation, as explained hereunder. The in-depth picture and exhaustive
review of the XAI methods and applications do not fall in the scope of this study, and can be
found in the literature [428, 429].



8.3 Medical XAI: A Quick Look 162

8.3.1 Post-hoc XAI vs Model-based XAI

The prominent difference between post-hoc and model-based is the approach both models
follow. The former is applied to a trained DL model and the insights (i.e. feature learning,
features importance, other model behaviour, etc.) of the DL model are explained mainly using
the saliency maps and other visualisation techniques [430]. Several post-hoc models also
work by perturbing the input to understand the significance of a particular feature towards
output, and the degree of contribution towards classification.

The latter aims at making the model more interpretable. The traditional machine learning
techniques e.g. decision tree, support vector machine, and regression fit onto the model
based explanation, where the process between input and the output remains linear and
explainable [430]. These models are also commonly known as intrinsic models due to their
white-box nature (i.e. results are explainable and understandable to human). As stated in
the introduction section, this study targets to explain the blackbox behaviour of DL models,
therefore, the model-based XAI techniques are not given priority.

8.3.2 Model Specific vs Model Agnostic XAI

This interpretability definition of model specific versus model agnostic comes from the limits
on the selection of models they can be applied to. Model specific approach can only to be
applied to a particular set of architectures that allow interpretability models to access and
alter (if required) the internal working mechanism of network. This access to the internal
information is not easily available on vast majority of DL models, therefore, making the
model specific explanation less desirable choice in practice. Additionally, according to Adadi
et al. [431], all model based explanation are by default also model specific, however, a model
specific explanation may not necessarily be the model-based explanation. This claim can
be justified by the applicability of certain class of post-hoc methods, i.e. saliency mapping
models, that are applicable to only particular class of CNN.

Conversely, bearing no restriction, the model agnostic methods do not require the selection
of a certain network from a pool of neural networks, but allow a open range of choice for
network selection [432]. The model agnostic explanations are more concerned with the input
to the output and hence, perturb the input to acquire the information about the importance of
a particular region and contribution to the decision.
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8.3.3 Global Explanation vs Local Explanation

This subsection defines the scope of an explanation provided by an XAI methods over the
network. The global explanation, also referred as dataset level explanation, yields insights
into the learned behaviour of the whole network [433]. A global explanation reveals what
algorithm has learned in terms of features, feature importance, and upto what extent. An
example consideration can be, the same set of features extracted against all the images in a
particular dataset. These features are advocate of the decision made by the architecture.

On the other hand, local explanation describes the output of the model against a single
instance of the input. Here, the behaviour of the model is examined against one example that
has been classified into a certain class [434]. An example of the local explanation model
can be considered as heatmap generation on the localisation of a breast tumor on a single
tomography image.

8.4 Explainability Methods in Medical Imaging

There exist several explanation methods, which in reality are visualisation methods to merely
highlight and showcase the important regions. These methods include various CAM based
techniques, a perturbation method called LIME, a game theory based approach named
SHAP, a propagation method titled LPR, and many more. Few of these methods and salient
distinctions are briefly described in the below subsections.

8.4.1 Grad-CAM

The Grad-CAM, a post-hoc explanation method, is a generalised variant of CAM method
proposed by Selvaraju et al. [425]. Unlike CAM method, that requires global average
pooling by replacing fully connected layers, the Grad-CAM can be applied to anyof the
CNN architectures for heatmap generation. The same authors also proposed an extension of
Grad-CAM called Guided Grad-CAM that works on element wise multiplication.

One of the most important points to note is that attention maps generate positive and
negative values and the keeping both types of values is crucial to understand the contribution
for decision prediction. The CAM methods imitate the behavior of ReLU activations and
ignore the negative values coming from the attention maps, whereas, the Gradient based
techniques focus on calculating the absolute value.
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8.4.2 LIME

Another famous model agnostic explanation method called LIME is proposed by Ribeiro et al.
[435]. The LIME model works by generating several local explanations of the complex model,
perturbing the input, making several different modifications in the input, and approximating
the complex model into a linear model. The usage of LIME method in medical images
remains simple and quite effective, however, similar to other explanation methods, LIME too
can be fooled and it also suffers from adversarial attacks [436].

8.4.3 LPR

The LRP, introduced by Bach et al. in 2015 [437], highlights the important regions in the
voxels by generates the heatmaps and computes the computes the classification score that
ranges between 0 and 1. This classification score, sometimes referred as relevance score,
propagates back to the network and directly spotlights the positive value for the classification
decision.

8.4.4 SHAP

Another model agnostic explanation approach is proposed by Lundberg et al. [438]. The
SHAP technique is based on the Shapley values of game theory approach. The SHAP
generates the values that compute the contribution of the desired features (usually top
contributing features). These features are evaluated individually. However, similar to LIME,
the SHAP is also prone to the adversarial attacking problem [436].

8.5 Evaluation Measures and Metrics for XAI

In literature, several different explanation types are generated i.e. visual, textual, example-
based, etc., therefore, the the measures and metrics vary depending upon the explanation
type provided. Moreover, within one type of explanation e.g. visual explanation, numerous
explanation methods exist, thus the metrics to quantify the explanation may change from
modality to modality and model to model. Additionally, it is worth mentioning that context
of the application matters. For instance, an XAI method for breast cancer classification
network on 3D images must not be evaluated on the same grounds as an XAI method for
report generation for whole slide images. In this study of evaluation of XAI for medical
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images, the most common interpretations are visual and textual explanation. The subsections
below further shed some light on the topic.

8.5.1 What is Quality/Enough Explanation?

Explaining the explanations has been well searched topic in recent years, however, one
of the most proficient and prudent questions is to define what is good explanation. What
defines/declares and makes an explanation good is another relevant and interesting question
to raise. Several studies have been conducted to answer these question and to define the
criteria for goodness of an explanation [439, 440].

Additionally, the explanation of explainable methods is also context dependent that arises
another question, i.e. an explanation must be understandable and interpretable but to whom?
To general public? To experts? Or to whom? An interpretation of the cancer classification
model on breast images is only understandable to physicians and relevant experts. These
queries are addressed in an interesting study by Tomsett et al. [441]. Therefore, all these
questions open new horizons and direct to the context dependent applications. The evaluation
of the XAI methods depends upon the end user of the application and the sufficiency of
the quality of explanation depends upon the application area, explanation purpose, and the
targeted audience. The coming sections define some metrics in the context of visual and
textual explanation of XAI methods applied on medical images.

8.5.2 Measures for Visual Explanation

In light of the aforementioned concerns, the most commonly applied quantitative measure
to objectively evaluate the heatmaps and attentions generated by XAI models for visual
explanation has been IoU [33]. The saliency maps highlight the important regions on the
images, these maps are compared to the ground-truth images, and the intersecting regions is
measured to quantify the performance.

Another similar method to assess the performance of saliency maps is to compute the
area of the perturbing curve with respect to the first most relevant perturbation is proposed by
Samek et al. [442]. The strategy is somehow similar to the LIME method in a way that the
method perturbs the different regions over repetitive iterations and computes the sensitivity,
importance, and relevance of the regions towards the decision.

A delete and insert strategy to evaluate the performance of XAI models in an effort
to explain the blackbox neural networks is proposed by Petsiuk et al. [443]. The method
computes the probability of each pixel towards the class using the deletion and insertion
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Table 8.1 The recent survey articles and their highlights

Objective Year Evaluation
XAI Explanation Type

Ref
Visual Textual Others Post-hoc Ante-hoc

Explaining XAI in medical images 2020 ✗ ✓ ✗ ✗ ✓ ✓ [34]
XAI for healthcare 2020 ✗ ✓ ✓ ✓ ✓ ✓ [446]
DL based XAI for image analysis 2020 ✗ ✗ ✗ ✓ ✓ ✓ [447]
Medical image interpretation 2021 ✗ ✗ ✓ ✗ ✗ ✓ [448]
XAI in image cancer detection 2021 ✗ ✓ ✗ ✗ ✓ ✓ [33]
Interpretability of neural networks 2021 ✗ ✓ ✗ ✗ ✓ ✓ [449]
DL based XAI for image analysis 2022 ✗ ✓ ✓ ✓ ✓ ✓ [450]
XAI in medical image diagnosis 2022 ✗ ✓ ✓ ✓ ✓ ✓ [451]
Evaluating XAI for Xray images 2022 ✓ ✓ ✗ ✗ ✓ ✓ [452]

metric and discards the least probable pixels in terms of information yielding regions.
The insertion and deletion metrics were used to calculate the increasing and decreasing
probability of a pixel towards explanation, respectively. However, the strategy has not been
quite successful because of single measure to calculate the model performance degradation.
The model can also reveal poor performance in the presence of artefacts, bias, and imbalance
in the data.

Following the similar drawback, a remove and retrain strategy named ROAR (RemOve
And Retain) has been proposed by Hooker et al. [444], in which the features on an image
were randomly drooped and the accuracy of the model was rechecked. The features that
brought significant decline in model performance were retained and other discarded and so
on. The model required several iterations of retraining and reevaluation.

Similarly, Eitel et al. [445] presented positive and negative relevance scores of the lesion
areas towards the classification and decision making. A higher value of the relevance score
advocates the importance of the regions in classification.

In spite of the availability of several evaluation measuring metrics, the requirement for a
well established and generic protocol to assess performance of the saliency maps is intact,
which invites the scientific research community to develop one.

8.5.3 Measures for Textual Explanation

The textual explanation involves the interpretation of caption generation and report generation
on medical image analysis and diagnosis. The similar domain also falls under the category of
natural language processing, therefore, the most commonly applied XAI evaluation metrics
comes from the language processing domain. These metrics are sometimes used along with
saliency maps to further strengthen the explanation claim.
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The most common performance measuring metric is Bilingual Evaluation Understudy
(BLEU) that computes the matching of the generated text with the ground-truth [453]. The
BLEU score is computed between the range 0 and 1, where 1 means a 100% match with the
ground-truth. The similar score is calculated over a range of ’N’ iterations of BLEU score.
In this study, the author found that BLEU-1, BLEU-2, BLEU-3, and BLEU-4 are most most
commonly computed values with 4 iterations.

Another well-known quality assessment measure for the text explanation is Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) [454]. The ROUGE is pretty old
method, in fact before the modern advent of XAI methods, however, it still remains active
due to its applicability. It compares the generated text with the ground-truth text (sometimes
referred as reference text) in terms of length of common string and computes recall and
precision. The longest the string in the ground-truth and the generated text, the better the
explanation is.

Unlike other approaches, the Metric for Evaluation of Translation with Explicit Ordering
(METEOR) works by assigning a particular weight to the position of text or a term in the
document [455]. Lastly, a very well-known and frequently employed technique in many other
domains, including the compression algorithms and transcription, is Term Frequency Inverse
Document Frequency (TF-IDF). A TF-IDF based Consensus-Based Image Description
Evaluation (CIDEr) approach is proposed by Agarwal et al. [456]. It works on a very simple
and intuitive mechanism that the terms that appear quite frequently (i.e. is, am, also, are, etc.)
may not be as important as other terms that appear regular but less frequent.

8.6 XAI Evaluation Literature

This section presents the studies that incorporate different local methods to explain and
evaluate the outcomes of XAI methods in medical imaging tasks. The summarised results of
the studeis are also presented in the Table 8.2.

8.6.1 Visual Explanation Evaluation

A weakly supervised multiple brain lesion detection method on MRI images using UNet
architecture is presented by Dobust et al. [457]. Several CAM based visualisation methods
are adopted to attain the attention maps. The 2D slices are extracted from the attention maps
to compare with the annotated images. The Hungarian algorithm is used to match the lesion
with the annotation. Considering the intrinsic nature of the Hungarian algorithm, that yields
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the confidence scores, the area under the ROC curves is presented as a measure to evaluate
the results obtained by XAI methods. The authors presented numerous experiments with
varying structures of UNet model, therefore, the average ROC reached 72.0±13.3.

Eitel et al. [445] presented an explainable network for the diagnosis of multiple sclerosis
on MRI images using 3D-CNN and the well-known LRP for the explanation. Authors
proposed and calculated relevance score (both positive and negative) to the lesion area to
quantify the explanation generated by XAI method. The mean and the standard deviation
remain in the range of −1.05e−60.0013 for negative relevance sum in comparison of 3.07e-
06 ± 0.0014 for a sum of positive relevance. The sum of the relevance of the area for the
multiple sclerosis patients was 9.71%, of which 5.15% was attributed to lesion area.

The authors in [458] proposed a 3D CNN based framework for the detection of coronary
artery atherosclerosis in CT images. The output of the framework, i.e. discriminatory
features, are visualised using Grad-CAM based saliency map at the final convolutional layer.
To explain and quantitatively evaluate the highlights of XAI based Grad-CAM method, the
authors computed the pixel level overlap of ground-truth image with the model prediction and
achieved the results of Dice 0.58, accuracy 0.63, and sensitivity 0.77. Further information
on how the definition of these metrics is slightly altered for the computation purposes is
provided in the article [458].

An DNN based classification pipeline on Xray images to identify the known as well
as unknown diseases in COVID-19 patients is presented by Tang et al. [459]. The CAM
and a variant named DisCAM explanation methods are applied on two datasets (i.e. skin
lesion and chest Xray images). Similar to the aforementioned methods, the evaluation of the
CAM method is performed by comparing the highlighted regions of CAM method to the
ground-truth images. The article claimed that the CAM method does not necessarily spot
the important regions for the unknown disease classification. This fact also questions the
implementation of the DNN model in the given context.

An attention based CNN workflow for the glaucoma detection along with glaucoma
database are developed by Li et al. [460]. The attention maps are computed not only to spot
the salient regions but also to improve the detection of glaucoma. The attention maps and
the CAM methods are applied and the Pearson correlation coefficients are computed on the
ground-truth images to testify the performance of XAI methods. The correlation coefficient
reached the value of 0.581 and a variance of 0.028. Apart from the transparent model, the
detection accuracy and AUC values were also pretty impressive during the experimental
phase.
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Similarly, another attention maps and DL driven stenosis localization and classification
framework on coronary angiography images is proposed by Cong et al. [461]. For the sake of
evaluating the employed stenosis activation maps explanation method, the mean squared error
and the localization sensitivity with respect to the generated bounding boxes are computed
as measuring metrics. The sensitivity score reached 0.72, whereas, the mean squared error
remained 69.6 for the stenosis positioning.

Another LPR for DNN based so-called explainable approach for the classification of
Alzheimer’s disease on MRI data is introduced by the [462]. Similar to Grad-CAM visu-
alisation technique, the LPR generates the heatmaps over the salient regions/features that
positively contribute towards the classification and localisation decision. The regional overlap
between the ground-truth and the prediction and the sum of importance of the Alzheimer’s
disease area were considered two measuring metrics to quantitatively evaluate the heatmaps
indicating the relevance of image to disease. The impressive results reached over 90%
accuracy in accessing and visualising the outcomes.

korbar et al. [463] presented an explainability oriented ResNet architecture to indicate
the salient features and regions that led to classification task in the whole slide images of
the colon polyps. The Grad-CAM and Guided Grad-CAM visualisation techniques are
used to generate heatmaps, and the pixel area to be inside the RoI, and IoU are considered
the evaluation metrics for XAI. The achieved results of IoU for the Grad-CAM, Guided
Grad-CAM and Guided Grad-CAM with boxes reached 0.24, 0.47, 0.55, respectively.

A model agnostic multi-scale segmentation network based on CNN techniques to visually
explain the results is explained in the study of Seo et al. [464]. The authors proposed a generic
pipeline for evaluating the XAI results, especially CAM methods, on several different types
of images. The maximum IoU and the mean IoU are computed for quantitative evaluation
of the explainable method and the heat maps generated. The maximum IoU remained 55,
whereas, the mean IoU reached 42.9 over numerous thresholding values.

A UNet architecture to segment the craniocerebral regions of transventricular and tran-
scerebellar fetal brain planes on ultrasound images is studied by Xie et al. [465]. The famous
Grad-CAM visualisation method is employed to spotlight the important regions containing
the lesions. The model was run on the expert annotated dataset and the bounding boxes are
predicted for only abnormal images by fitting the network’s learned RoI over the ultrasounds.
The IoU on the predicted bounding boxes and the ground-truth images is calculated to
statistically evaluate the XAI method. The standard deviation and the mean IoU on lesion
localisation are 0.497 and 0.126, respectively.
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An investigation of different types of biases towards the binary classification to discrimi-
nate and explain the tumour tissue is studied by Hagele et al. [466]. The incorporation of
public dataset of haematoxylin-eosin-stained images and the LRP method to provide pixel
level explanation are what made the system explainable. However, as the authors clearly
stated, visualisation merely seldom brings any explanation, therefore, the ROC curves are
computed to evaluate the explanations. Since the LRP yields pixel level explanation, the
relevance value for each cell is computed, and the resultant AUC reached 0.76.

Each pixel carries some information towards the classification and detection, for which,
several traditional methods have been proposed in literature. A novel visual attribution
approach, unlike existing ML and DL approaches, uses Wasserstein Generative Adver-
sarial Networks (WGAN) to study the interpretability on mild cognitive impairment and
Alzheimer’s disease on publicly available images [467]. The WGAN based technique fea-
tures the capability to detect and label the specific area on the image to the relevant class. The
authors computed normalised cross correlation as an evaluation metric to the XAI method.
The visual attribution WGAN achieves better results than competitors CAM, Integrated
Gradients, and Guided Backprop with the mean normalised cross correlation and standard
deviation of 0.07 over the ground-truth and the predicted maps.

Lin et al. proposed ResNet-50 based deep CNN to provide an explainable and inter-
pretable model for multiple image types [468]. The authors employed several different XAI
methods including LIME, SHAP, Gradients, and GSInquire to evaluate the performance of
DL model and the visualisations. Two statistical measures, namely Impact Score and Impact
Coverage, are introduced to quantitatively evaluate the outcome (saliency maps and/or region
highlighting) of XAI models. The acquired results for Impact Score and Impact Coverage
against LIME: 38.05% 35.12%, SHAP: 44.15% 40.24%, Gradients: 51.22% 47.80%, and
GSInquire: 76.10% 50.73%, respectively, remained satisfactory.

8.6.2 Textual Explanation Evaluation

The explanation of DL models on medical images is not solely provided with visual tech-
niques like heatmaps and attentions. Several textual representation and example oriented
explanation methods are also described in the literature. Spinks at al. presented a neural
network for visual and textual interpretable model to obtain and then explain the medical
diagnosis on Xray images [472]. The employed measures for the image captioning are
BLEU, ROUGE, METEOR, and CIDEr, whereas, the sileancy maps are also computed to
further elaborate the results. The inter-annotator agreement is computed in terms of Fleiss’
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Table 8.2 The summarised results of the studies evaluating the XAI results using different
methods

Application Objective DL
Model

XAI Model Performance Scores Year Ref

Fundus Photogra-
phy

Glaucoma Detec-
tion

CNN Attention Maps CC: 0.934
Veriance: 0.0032

2019 [460]

Gastrointestinal Polyps Classifica-
tion

ResNet Grad-CAM IoU:
Grad-CAM: 0.24
Guided Grad-CAM:
0.47
Guided Grad-CAM
with Boxes: 0.55

2017 [463]

Skin and Chest Multiple Disease
Classification

ResNet CAM Overlapping 2020 [459]

Histology Tumour Tissue Dis-
crimination

GoogLeNet Layer-wise Rele-
vance Propagation
(LRP)

AUC: 94% 2020 [466]

Cardiovescular Coronary Artery
Atherosclerosis
Detection

3D CNN Grad-CAM GT and annotation
Overlapping. Pixel
Level overlap Score.
Dice: 0.58
Accuracy: 0.63
Sensitivity: 0.77

2020 [458]

Brain Multiple Lesion
Detection

CNN CAM based Meth-
ods
Trainable Atten-
tions

Avg AUC: 72.0 + /-
13.3

2020 [467]

Brain Multiple Sclerosis
Diagnosis

CNN LRP Lesion Relevance
Score: Accuracy:
96.08%

[457]

Cardiovascular Stenosis Detection
and Classification

Inception
V3
LSTM

Grad-CAM Sensitivity (IoU): 0.72
Mean Square Error
(MSE): 69.6

2019 [445]

Brain Alzheimer’s Dis-
ease Detection

CNN LRP
Guided Backpropa-
gation

Relevance per Brain
Area, e.g., relevance
density or relevance
gain. >90%

2019 [461]

Brain Region Discrimina-
tion

Pretrained
CNN

Prediction Differ-
ence Analysis

Max IoU: 54.6%
Mean IoU: 43.5%

2020 [465]

Brain Fetal Brain Aabnor-
mality Detection

CNN Grad-CAM Avg Mean IoU: 0.497
Std of IoU: 0.126

2020 [462]

Brain Alzheimer’s Disease
Detection

GAN CAM Normalised Cross
Corelation
Mean and Std for
CAM: 0.48, 0.04
Mean and Std for
VA-GAN: 0.94, 0.07

2018 [464]

Chest Diagnostic Justifica-
tion of DL

Pretrained
Nets and
GAN

Image Captioning Justification: 2.39
Understanding: 2.45
Agreement: 0.88
Human certainty: 3.75

2019 [469]

Chest Medical Report Gen-
eration

CNN CIDEr
ROUGE
BLEU

CIDEr: 0.280
ROUGE-L: 0.339
B1-B2: 0.482, 0.325
B3-B4: 0.226, 0.162
Hit (%): 57.425

2019 [470]
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Application Objective DL
Model

XAI Model Performance Scores Year Ref

Chest Medical Report Gen-
eration

CNN
LSTM

CIDEr
ROUGE
BLEU
METEOR

B1-B2: 37.40, 22.41
B3-B4: 15.27, 10.99
CIDEr: 35.97
METEOR: 16.35
ROUGE: 30.76

2019 [471]

Bladder Medical Image Diag-
nosis

CNN
LSTM

CIDEr
ROUGE
BLEU
METEOR

B1-B2: 91.2, 82.9
B3-B4: 75.0, 76.7
M: 39.6
R: 70.1
C: 2.04

2017 [472]

Chest Pathologies Location DenseNet-
121
LSTM
MLP

BLEU Atelectasis: 0.61
Effusion: 0.59
Pneumonia: 0.45
Ptx: 0.27

2019 [473]

Chest Medical Report Gen-
eration

CNN
LSTM

CIDEr
ROUGE
BLEU
METEOR

B1-B2: 0.517, 0.386
B3-B4: 0.306, 0.247
M: 0.217
R: 0.447
C: 0.327

2018 [474]

Misc XAI Evaluation ResNet LIME
SHAP
Gradients
GSInquire

LIME: 38.05% 35.12%
SHAP: 44.15% 40.24%
Gradients: 51.22%
47.80%
GSInquire: 76.10%
50.73%

2019 [468]

kappa which resulted in 0.33, 0.42 and 0.55 respectively for three different experiments.
The additional human evaluation scores on the scale of 1-4 for the parameters Justifica-
tion, Understanding, Agreement, and Human Certainty reached 2.39, 2.45, 0.88, and 3.75
respectively.

Numerous other articles applied the same performance measuring and evaluation metrics
while generating the textual explanation and reporting the diagnostic performances on
medical images. These articles studied the DL models for chest Xray and histology images
and yielded the performances for CIDEr: 0.280, ROUGE-L: 0.339, BLEU-1: 0.482, BLEU-2:
0.325, BLEU-3: 0.226, BLEU-4: 0.162, and Hit (%): 57.425, respectively by Li et al. [471];
BLEU-1: 37.40, BLEU-2: 22.41, BLEU-3: 15.27, BLEU-4: 10.99, CIDEr: 35.97, METEOR:
16.35, ROUGE: 30.76, respectively by Singh et al. [470]; BLEU-1: 91.2, BLEU-2: 82.9,
BLEU-3: 75.0, BLEU-4: 76.7, METEOR: 39.6, ROUGE: 70.1, CIDEr: 2.04, respectively by
Zhang et al. [474]; BLEU-1: 0.684, BLEU-2: 0.610, BLEU-3: 0.542, BLEU-4: 0.477, and
the IoU for bounding boxes with parameters Atelectasis: 0.61, Effusion: 0.59, Pneumonia:
0.45, Ptx: 0.27, respectively by Roding et al. [473]; and finally BLEU-1: 0.517, BLEU-2:
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0.386, BLEU-3: 0.306, BLEU-4: 0.247, METEOR: 0.217, ROUGE: 0.447, CiDEr: 0.327,
respectively by Jing et al. [469].



Chapter 9

Conclusion

The objective of the thesis was to design, develop, and validate interpretable and transparent
intelligent clinical decision support systems based on DL architectures. The devised systems
were sought to be transparent and interpretable on the accounts of mathematical and percep-
tual explainable techniques. The novel intelligent systems were aimed to assist the medical
experts and physicians in the CAD systems and surgical procedures. Such intelligent systems
have been designed, developed, and validated with the novel DL techniques and the results
are further interpreted with several XAI models. The developed interpretable diagnostic
frameworks offer wide range of applications and can be extended to several clinical scenarios.
The devised intelligent systems are compared with the state-of-the-art approaches already
discussed in the literature. The applicability of the proposed pipelines has also been validated
with the assistance of physicians and the domain experts where required.

Conclusively, this thesis has presented the applications of DL for classification, segmenta-
tion, and identification tasks and incorporated the XAI methods to increase the interpretability
and transparency of CNN models. Through the conceived studies, it has been demonstrated
that DL can be a powerful tool for intelligent imaging systems to support the clinicians and
physicians in the routine medical tasks. The conjunction of XAI methods help to improve the
understanding of DL models and their decision-making processes which builds the necessary
trust of medical domain on DL. In light of these contexts, below the concise but independent
remarks on the each of the conducted studies are provided.

Breast cancer is the leading deadly ailment in women, and its inevitable progression
has become a major concern for the healthcare industry. However, timely diagnosis can
significantly improve the medication and prevent the further expansion of the cancerous
regions. As part of the thesis work, a robust visually and mathematically explainable DL
framework for multiclass shape classification of tomosynthesis breast lesion using eight
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pretrained CNN models employing an in-house dataset is proposed. The best fine-tuned
model achieved mean AUC values of 98.2% and 96.3% with and without considering the
data augmentation, respectively.

Moreover, a novel method for segmentation and identification of vertebrae is introduced.
The method yields highly accurate results, with an average multi-class Dice coefficient
above 90%, with efficiency and ease of use. The framework utilizes unsupervised learning,
therefore, it does not require any training data and only needs minimal input from the user.
This method has potential clinical value because it can improve the navigation tools used in
minimally invasive spine surgery.

Similarly, another proposed pipeline is the fusion prostate biopsy procedure, which
involves segmenting TRUS and MRI images using deformable superellipses and nnU-Net,
respectively, and registering the two types of images. This procedure is more reliable and
accurate than traditional prostate biopsy, which only takes a few samples from specific areas
of the prostate without considering the MRI annotations. The segmentation results for both
TRUS and MRI images have a Dice coefficient above 88% and 87%, respectively. The image
registration step, which is essential for proper image fusion, has a Dice coefficient above
91% for all cases.

The blackbox nature of the decision-making mechanism of the DL architectures hampers
the trust among the clinicians. The XAI techniques uncover the blackbox and hidden nature
of the DL and provide useful apprehension of the high-accuracy-yielding DL models. This
builds confidence in machine learning in the clinical domain and paves the way towards
DL-centered image-guided CAD systems.

Therefore, considering the hypersensitive clinical realm, two families of XAI methods,
i.e., perceptive interpretability and mathematical interpretability, were incorporated to vi-
sually explain the CNN models’ classification performance. The former interpretability
method includes Grad-CAM and LIME, which are responsible for visually explaining the
experimental outcomes in terms of feature-level contribution towards classification, whereas,
the latter method comprises t-SNE and UMAP techniques that portray feature clustering
capabilities of the DL architectures. The performances of all models were aligned with the
visual and mathematical interpretations, hence developing the necessary trust between the
healthcare industry and the DL architectures. The results proved the usability of XAI to
understand the mechanism of employed AI models, also in the cases of failures.

Furthermore, concerning the case study about image guided surgical applications of DL,
four categories including: 1) Surgical Tools, 2) Surgical Processes, 3) Surgical Surveillance,
and 4) Surgical Performance/Assessment have been devised. The key findings include: a) Sur-
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gical Tools is most studied topic which comprises Surgical Tool Detection and Surgical Tool
Segmentation (45% of total studies), b) CNN is most widely applied DL topology (roughly
54% of total studies), c) the gesture recognition studies incorporate JIGSAWS dataset (around
77% of studies in relevant subcategory), whereas MICCAI datasets are top consideration
for detection and segmentation tasks (around 60% of studies in relevant subcategory), d)
VGG remains the widely accepted pretrained network especially when available dataset
was not large enough, f) the most studied applications appear to be cholecystectomy and
prostatectomy, g) for gesture and trajectory applications, suturing task is frequently studied
application area, h) the fusion of kinematic data with image data yields better performance.

In the healthcare domain, it is imperative to provide clear explanations for the outcomes
of DL methods applied to medical images. However, simply visualizing the top contributing
features and highlighting important regions on images is not enough to make a DL model
completely interpretable. It is therefore necessary to have both qualitative and quantitative
measures to evaluate the explanations provided by XAI techniques to build the trust of AI in
healthcare industry. The second case study performed during this thesis work examines and
investigates such evaluation measures and metrics for XAI, including the quality and types
of explanations on medical data.

Unlike other domains, there exists no single generalised quantitative and qualitative
method to evaluate the outcomes of XAI in medical imaging domain. Therefore, the future
work of the thesis aims to develop and validate a generic pipeline that can be incorporated to
explain and evaluate the results of XAI methods. This will not only build the trust among
clinicians and DL techniques, but will also abolish the barricade towards completely AI
supported autonomous systems.
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