
03 May 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Applications of Bar Code to Involutive Divisions and a “Greedy” Algorithm for Complete Sets / Ceria, Michela. - In:
MATHEMATICS IN COMPUTER SCIENCE. - ISSN 1661-8270. - STAMPA. - 16:4(2022). [10.1007/s11786-022-00548-1]

This is a pre-print of the following article

Original Citation:

Applications of Bar Code to Involutive Divisions and a “Greedy” Algorithm for Complete Sets

Published version
DOI:10.1007/s11786-022-00548-1

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/264681 since: 2024-01-14

Applications of Bar Code to involutive divisions and a greedy
algorithm for complete sets.

Michela Ceria

Abstract. Given a finite set of terms U in n variables, we describe an algorithm which finds – if it exists – an
ordering on the variables such that U is a complete set according to Janet involutive division. The algorithm,
based on Bar Codes, is able to adjust the variables’ ordering with a sort of backtracking technique, thus allowing
to find the desired ordering without trying all the n! possible ones.
keywords: Janet division, Bar Codes, Completeness.

In memory of Vladimir Gerdt

1. Introduction
Involutive divisions and involutive bases are a very important topic in Computer Algebra. Their theory dates
back to the works by Janet [34, 35, 36, 37]. Given the polynomial ring P := k[x1, ..., xn] in the n variables
x1, ..., xn and coefficients in the field k, the semigroup of terms T ⊂ P, is given by

T := {xγ1
1 · · · x

γn
n | γ1, ..., γn ∈ N}.

In [34], Janet considers a semigroup/monomial ideal J ⊂ T and its minimal set of generators G(J). He
associates to each generator a subset of variables, that are called multiplicative. Moreover, he decomposes J
in disjoint subsets called cones and describes a procedure (called completion) to construct this decomposition.
For each term v ∈ T , there is a unique way to write v = tu, with t ∈ G(J) and u a product of powers of t’s
multiplicative variables. In this context, while reducing a term w modulo an ideal whose initial ideal is J, the
polynomial to use is the only one whose leading term generates the cone containing w.

In [34], Janet aims to describe Riquier’s formulation [42] of the description for the general solutions of
a PDE problem, and for this aim he gives also an analogous decomposition for the escalier associated to J,
namely N(J) := T \ J.

In his following works [35, 36, 37], he gives a new decomposition, named involutive, which is behind
both Gerdt-Blinkov [21, 22, 23] procedure to compute Groebner bases and Seiler’s involutivity theory [45]. His
first aim is to give an interpretation by means of multiplicative variables of Cartan’s solution to PDE problems
[1, 2, 3] (whence the name involutive). The second aim is to evaluate in his theory’s framework the notion
of generic initial ideal introduced by Delassus [15, 16, 17] and the correction of his mistake by Robinson
[44, 43] and Gunther [29, 30], who remarks that the notion requires J to be Borel-fixed (an equivalent modern
reformulation has been proposed by Galligo [20], who merges Hironaka and Grauert’s ideas [33, 27]; see also
[28, 18]).

In [36] Janet presents, as nouvelle formes canoniques, Delassus, Robinson and Gunther’s results. More-
over, he gives a comparison with the canonical forms one can deduce from an involutive basis. In [37, p.62],
given a homogeneous ideal I of P in generic coordinates, he restates Riquier’s completion in terms of a

2 M.Ceria

Macaulay-like construction, iteratively computing the vector spaces Id := { f ∈ I : deg(f) = d} until a pre-
cisely stated formula, called Cartan test, grants that Castelnuovo-Mumford regularity D [39, pg.99] has been
reached. Thus Castelnuovo-Mumford regularity was obtained for the first time by Janet via this explicit algo-
rithm. This would allow him to consider the semigroup ideal T(I) of the leading terms with respect to deg-lex
(in the sense of Groebner basis theory) and get the involutive reduction required by Riquier’s procedure. The
formal definition of involutive division is due to Gerdt-Blinkov [21, 22].

Bar Codes, introduced in [5, 6], are a compact, bidimensional representation for finite sets of terms
M ⊂ T in any number of variables. In particular, if M = N(I) is the lexicographical Groebner escalier of a
zerodimensional ideal I of P, many of the ideal’s properties can be directly read from its Bar Code. As an
example, in [9], Bar Codes are the main tool to develop a combinatorial algorithm which, given a finite set
of simple points, computes the lexicographical Groebner escalier of its vanishing ideal. This algorithm is an
alternative to those by Cerlienco-Mureddu [12, 13, 14] and by Felszeghy-Ráth-Rónyay [19], which keeps the
former algorithm’s iterativity, though reaching a complexity which is near to that of the latter one. In [5], we
use Bar Codes to define and prove a bijection between zerodimensional (strongly) stable ideals in two or three
variables and some partitions of their (constant) affine Hilbert polynomial.
Now, we are focusing on the properties of Bar Codes connected to involutive divisions, for which Bar Codes
have already proved to be a good technology [7, 8]. For a general overview of Bar Codes’ applications see [6].

In this paper, we discuss how the Bar Code associated to a finite set of terms (which is non-necessarily
an order ideal) allows to decide whether that set is complete according to Janet’s definition [34]. Moreover, we
give an algorithm to check whether there is a variables’ ordering such that a given set of terms is complete. We
remark that the aim of this paper is not to build a completion, as it was for [22, 45], but to check whether there
is need of a completion for every variables’ ordering.

We need to remark that such a topic has some connections to the study of Stanley decompositions and
Stanley depth. Indeed, Janet decomposition for a complete set is exactly a Stanley decomposition which can be
easily read off from that set. Anyway, as stated by Herzog [32],

Janet decompositions from the viewpoint of Stanley depth are not optimal. They rarely give Stanley
decompositions providing the Stanley depth of a monomial ideal. However one obtains the result
that the Stanley depth of a monomial ideal is at least 1.

and, actually, this paper places itself in the field of study mainly developed by Gerdt-Blinkov [21, 22, 23] and
Seiler [45], which has aims and language that are different from those of Stanley depth.
After Section 2, devoted to notation (see Section 2.1) and to a recap on Bar Codes (Section 2.2), we describe
Janet decomposition into multiplicative/non-multiplicative variables (Section 3), recalling how to use the Bar
Code to get it from a finite set of terms. Moreover, we deal with complete sets, explaining how also complete-
ness can be read from a suitable Bar Code. In Section 4, then, we explain an algorithm to detect a variable
ordering (if it exists) such that a given set of terms is complete according to that ordering. The algorithm con-
structs a Bar Code from the maximal to the minimal variable, adjusting the variables’ ordering with a sort
of backtracking technique, and allowing to construct the desired ordering without trying all the n! possible
orderings.

2. Notation and preliminaries
2.1. Some general notation
The principal reference for the notation used in this paper are the books [38].
We start considering a field k and defining over it the polynomial ring P := k[x1, ..., xn] in the n variables
x1, ..., xn; we also consider the semigroup of terms in the same variables T := {xγ1

1 · · · x
γn
n | γ1, ..., γn ∈ N}. If

A ⊆ {1, ..., n} then T [A] := {xγ1
1 · · · x

γn
n ∈ T | γi , 0 ⇒ i ∈ A}. The degree of a term t = xγ1

1 · · · x
γn
n is defined as

deg(t) =
∑n

i=1 γi, while its h-degree, for h ∈ {1, ..., n}, is degh(t) := γh.

Applications of Bar Code to involutive divisions and a greedy algorithm for complete sets. 3

We call semigroup ordering on T a total ordering < such that it holds

t1 < t2 ⇒ st1 < st2, for each s, t1, t2 ∈ T .

A semigroup ordering which has also the property to be a well ordering is called term ordering; the only
term ordering we consider in this paper is the lexicographical ordering (also called Lex) with1 x1 < ... < xn:
xγ1

1 · · · x
γn
n < xδ1

1 · · · x
δn
n if and only if there is j such that γ j < δ j, γi = δi, for each i > j. Given t ∈ T , we call

max(t) (resp. min(t)) the maximal (resp. minimal) variable dividing t. Once fixed a semigroup/term ordering <
on T , for each f ∈ P we define its leading term T(f) to be its maximal term with respect to <.
We call semigroup ideal a subset J ⊆ T such that, if a term t is in J, then the product st is in J as well, for
each s ∈ T ; an order ideal is instead a subset N ⊆ T such that, if t ∈ N, then s ∈ N, for each s|t. It is quite
straightforward to show that N ⊆ T is an order ideal if and only if T \ N = J is a semigroup ideal.
The minimal generating set of a semigroup ideal J ⊂ T is called monomial basis and denoted by G(J). We
associate to J also the order ideal N(J) := T \ J.
Now, considered a set of polynomials G ⊂ P, we define T{G} := {T(g), g ∈ G} and T(G) := {tT(g), t ∈ T , g ∈
G}; the latter is the semigroup ideal of leading terms. If I is an ideal of P, the monomial basis of T(I) = T{I} is
named monomial basis of I and denoted again by G(I), while the order ideal N(I) := T \T(I) is called Groebner
escalier of I.

2.2. Bar Code for monomial ideals: a light recap
In this section we give a brief summary of the main definitions, facts and properties concerning Bar Codes. For
more details, see [5, 6].

Definition 2.1. A Bar Code B is a diagram composed by segments, (the bars), superimposed in horizontal rows,
satisfying the Condition a. below. Denote by B(i)

j the j-th bar (from left to right) of the i-th row (from top to
bottom), 1 ≤ i ≤ n, i.e. the j-th i-bar and by µ(i) the number of bars of the i-th row:

a. ∀i, j, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ µ(i), ∃! ∈ {1, ..., µ(i + 1)} s.t. B(i+1)

lies under B(i)
j .

We denote by l1(B(1)
j) := 1, for each j ∈ {1, 2, ..., µ(1)}, the 1−length (or length for short) of the 1-bars and

by li(B
(k)
j), 2 ≤ k ≤ n, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ µ(k) the i-length of B(k)

j , i.e. the number of i-bars lying over B(k)
j .

Example 2.2. The picture below represents a Bar Code
1

2

3

♦

Now we briefly sketch how to construct a Bar Code associated to a finite set of terms, following2 [6].
We start considering a term t = xγ1

1 · · · x
γn
n ∈ T ⊂ k[x1, ..., xn] and defining the term πi(t) := xγi

i · · · x
γn
n ∈ T ,

for each i ∈ {1, ..., n}. We can define πi(t), i ∈ {1, ..., n}, for each term t of an ordered set of terms M = [t1, ..., tm],
in particular ordered increasingly with respect to Lex, getting M

[i]
:= πi(M) := {πi(t)|t ∈ M}. We point out that,

while in M there are no repeated elements, they can occur in any of the lists M
[i]

. If it happens, the repeated
elements are clearly adjacent, being each M

[i]
a lexicographically ordered list. We continue computing the n×m

matrix of termsM, defined so that its i-th row is M
[i]

, i = 1, ..., n.

Definition 2.3. The Bar Code diagram B associated to M (or, equivalently, to M) is a n ×m diagram, made by
segments such that the i-th row of B, 1 ≤ i ≤ n is constructed as follows:

1. take the i-th row ofM, i.e. M
[i]

2. consider all the sublists of repeated terms, i.e. [πi(t j1), πi(t j1+1), ..., πi(t j1+h)] such that πi(t j1) = πi(t j1+1) =

... = πi(t j1+h), noting that3 0 ≤ h < m

1In this paper, the ordering on the variables will be fundamental. Unless otherwise specified we will consider x1 < ... < xn.
2An alternative construction has been given in detail in [5].
3Clearly if a term πi(t j) is not repeated in M

[i]
, the sublist containing it will be only [πi(t j)], i.e. h = 0.

4 M.Ceria

3. underline each sublist with a segment
4. delete the terms of M

[i]
, 2 ≤ i ≤ n, leaving only the segments (i.e. the i-bars).

Each 1-bar B(1)
j , j ∈ {1, ..., µ(1)} remains labeled with the term t j ∈ M

[1]
.

We point out that a Bar Code diagram satisfies the condition of Definition 2.1 so it is a Bar Code.

Example 2.4. From the set M = {x1, x4
1, x

6
1, x

9
1x2, x3, x1x3, x4

1x3}, we get the Bar Code of Example 2.2. ♦

Bar Codes have been implemented in C and the implementation discussed in detail, also with a testing, in
[11]. Essentially we use lists that are linked by pointers. Three different lists are needed: one for containing the
monomials, one for the single bars and finally one for the levels of the Bar Code, which represent the variables.

3. Janet decomposition and completeness.
Janet, in [34], considered a monomial/semigroup ideal J ⊂ T and the related monomial basis G(J), introduced
the concept of multiplicative variable, as well as the decomposition of J into disjoint cones, characterizing
what Gerdt-Blinkov would have called an involutive division.

Definition 3.1. [34, ppg.75-9] Let U ⊂ T be a set of terms and t = xα1
1 · · · x

αn
n be an element of U. A variable

x j is called multiplicative for t with respect to U if there is no term in U of the form t′ = xβ1
1 · · · x

β j

j xα j+1

j+1 · · · x
αn
n

with β j > α j. We denote by M(t,U) the set of multiplicative variables for t with respect to U.
The variables that are not multiplicative for t with respect to U are called non-multiplicative and we denote by
NM(t,U) the set containing them.

Once stated this definition, we can explicit the divisibility relation characterizing the involutive division.
Given t ∈ U and w ∈ T , t | w with respect to Janet division, if and only if

w = tv and ∀x j | v, j ∈ {1, ..., n}, x j ∈ M(t,U).

The term t is called involutive divisor of w with respect to Janet division and we will write t |J w.
Definition 3.1 is dependent on the variables’ ordering, as shown in the following example.

Example 3.2. Consider the set U = {x1, x2
2} ⊂ k[x1, x2]. If x1 < x2, then M(x1,U) = {x1}, NM(x1,U) = {x2},

M(x2
2,U) = {x1, x2}, NM(x2,U) = ∅. If, instead x2 < x1, then M(x1,U) = {x1, x2}, NM(x1,U) = ∅, M(x2

2,U) =

{x2}, NM(x2
2,U) = {x1}. ♦

Definition 3.3. With the previous notation, the cone of t with respect to U is the set

C(t,U) := {txλ1
1 · · · x

λn
n |where λ j , 0 only if x j ∈ M(t,U)}.

Example 3.4 ([7]). For the set U = {x1x3, x2x3} ⊆ k[x1, x2, x3], we have M(x1x3,U) = {x1, x3} and M(x2x3,U) =

{x1, x2, x3}, so C(x1x3,U) = {xi
1x j

3 : i, j ∈ N \ {0}} and C(x2x3,U) = {tx2x3 : t ∈ T }. ♦

Remark 3.5. Note that we have C(t,U) ∩ U = {t}, by definition of multiplicative variable: if s ∈ T \ {1} and
ts ∈ U, then max(s) < M(t,U) and so ts < C(t,U).

In [34], Janet introduced also the notion of complete system, together with the completion procedure,
namely the procedure to produce a complete system with respect the decomposition in cones. Clearly, also the
completion is dependent on the variables’ ordering.

Definition 3.6. [34, ppg.75-9] A set of terms U ⊂ T is called complete if for every t ∈ U and x j ∈ NM(t,U),
there exists t′ ∈ U such that x jt ∈ C(t′,U), namely there is an involutive divisor of x jt with respect to Janet
division.

Remark 3.7. If U ⊆ k[x1..., xn] has cardinality one, then it is always a complete set. Indeed, its unique element
has no non-multiplicative variables.

Applications of Bar Code to involutive divisions and a greedy algorithm for complete sets. 5

Also the order ideal N(J), associated to a monomial/semigroup ideal J, can be decomposed into disjoint
cones. The related decomposition has been introduced in [34], where Janet was describing Riquier’s way to
represent the general solution of a PDE problem [42].

Given a finite set of terms U ⊂ T ⊂ k[x1, ..., xn], x1 < x2 < ... < xn, it is possible to associate to it a
Bar Code B. The diagram allows to read directly which are the Janet-multiplicative variables of the terms in U.
First (see [6, 7]), we place a star symbol ∗ in the following positions4:

a) on the right of B(i)
µ(i), ∀1 ≤ i ≤ n;

b) between two consecutive bars B(i)
j and B(i)

j+1 not lying over the same (i + 1)-bar, ∀1 ≤ i ≤ n − 1, ∀1 ≤ j ≤
µ(i) − 1.

Consider then a term t ∈ U; to detect its multiplicative variables we only have to check the presence/absence
of stars just after bars over which t lies, as stated in the following proposition (see [7] for its proof).

Proposition 3.8. Let U ⊆ T be a finite set of terms and let us denote by B its Bar Code. For each t ∈ U xi,
1 ≤ i ≤ n is multiplicative for t if and only if, in B, the i-bar B(i)

j , over which t lies, is followed by a star.

Example 3.9. Let us consider the set U = {x1, x2
1, x2, x1x3} ⊂ k[x1, x2, x3], with x1 < x2 < x3. The correspond-

ing Bar Code is

0

1

2

3

x1 x2
1

x2 x1x3

∗ ∗ ∗

∗ ∗

∗

According to Proposition 3.8, x1 has no multiplicative variables. Indeed, following Definition 3.1, x1 is
not multiplicative since x2

1 ∈ U, x2 is not multiplicative since x2 ∈ U and x3 is not multiplicative since x1x3 ∈ U.
Therefore, C(x1,U) = {x1}.

♦

Remark 3.10. In the context of detecting multiplicative variables, we can see the Bar Code as a reformulation
of Gerdt-Blinkov-Yanovich Janet tree [26], with the characteristic of being more similar to the (equivalent)
presentation given by Seiler [45]. However, for a given finite set of terms U, the algorithms to produce its Janet
decomposition which can be deduced from both the formulations above of the Janet tree, are different from the
algorithm naturally arising from the previous Proposition 3.8 (see [7] for more details).

Completeness of a given finite set U can be detected by means of the Bar Code, as stated in the following
proposition (see also [8], for a very similar proposition for Janet-like division [24, 25]).

Proposition 3.11. Let U ⊆ T be a finite set of terms and B be its Bar Code. Let t ∈ U, xi ∈ NM(t,U) and B(i)
j

the i-bar under t.
Let s ∈ U; it holds s |J xit if and only if

1. s | xit
2. s lies over B(i)

j+1 and
3. for each variable x j′ appearing with nonzero exponent in xit

s there is a star after the j′-bar under s.

Proof. “⇐” We want to prove that an s which satisfies the Conditions 1., 2., 3. is indeed an involutive divisor of
xit. By 1. s divides xit. Thanks to 3. and Proposition 3.8, all the variables in xit

s are multiplicative. The variable
xi does not appear in w := xit

s and it does not need to be multiplicative for s, since, by 2., s lies over B(i)
j+1, so

degi(s) = degi(t) + 1. Therefore sw = xit and w contains only multiplicative variables for s; therefore s is the
required involutive divisor for xit.
“⇒” Let s ∈ U be the involutive divisor of xit. We prove that for s, the three conditions stated are verified. First
of all, s divides xit by definition of Janet division5, this proving the first condition.

4In [6, 7] a set of terms is constructed with an analogous procedure; the paper [10] links this set with Pommaret bases [40, 41].
5And actually of involutive division, see [21, 22, 23].

6 M.Ceria

Let us consider Condition 2. If s would lie over B(i)
j , then degl(s) = degl(t) for l = i, ..., n. Then, being s a

divisor of xit, xi should be an element of Vs := {x j, 1 ≤ j ≤ n : x j | w := xit
s }, so xi should be multiplicative

for s, this meaning having a star after B(i)
j , which is impossible by hypothesis, since in this case it would be

xit ∈ C(s,U) ∩C(t,U).
If s lies over B(i)

l , l > j + 1, there exists h ∈ {i, ..., n} such that degh(s) > degh(xit), so s would not divide xit,
which is again a contradiction.
If s lies over B(i)

l , l < j, then s <Lex t and it cannot happen that degl′ (s) = degl′ (t) for l′ = i, ..., n (since
otherwise s would have been over B(i)

j). Let xk := max{xh, h = 1, ..., n| degh(s) < degh(t)}; then, since t ∈ U
and degn(t) = degn(s), ..., degk+1(t) = degk+1(s) and degk(t) > degk(s), by definition of multiplicative variable
according to Janet division, xk ∈ NM(s,U). Then s must lie over B(i)

j+1. For being s involutive divisor of xit, all
the variables appearing with nonzero exponent in xit

s must be multiplicative for s, and this implies that for each
variable x j′ appearing with nonzero exponent in xit

s there is a star after the j′-bar under s, by Proposition 3.8,
thus proving 3. �

From Proposition 3.11 we finally get the following theorem.

Theorem 3.12. Let U ⊆ T be a finite set of terms and B be its Bar Code. Then U is a complete set if and only
if for each t ∈ U and each xi ∈ NM(t,U), called B(i)

j the i-bar under t, there exists a term s ∈ U satisfying
Conditions 1, 2, 3 of Proposition 3.11.

According to Proposition 3.11 and Theorem 3.12, given a finite set of term U ⊆ T , to check its completeness
we take, for each t ∈ U and each xi ∈ NM(t,U), the i-bar B(i)

j , 1 ≤ j ≤ µ(i) under t and we look for an involutive

divisor among the terms over B(i)
j+1, checking Conditions 1,3 above. We see now two simple examples of this

procedure.

Example 3.13. Consider the set U = {x3
1, x

3
2, x

4
2x3, x2

3} ⊆ k[x1, x2, x3] and its Bar Code

0

1

2

x3
1 x3

2 x4
2x3 x2

3

3

∗ ∗ ∗ ∗

∗ ∗ ∗

∗

Take t = x3
1 and x2 ∈ NM(t,U) = {x2, x3}; t lies over B(2)

1 and the
only term over B(2)

2 is x3
2 - x3

1x2 = tx2, so tx2 has no involutive
divisor on U and this implies that our set is actually non-complete.

♦

Example 3.14. Consider the set U = {x2
1, x1x2} ⊂ k[x1, x2], x1 < x2. Its Bar Code is as follows.

0

1

2

x2
1

x1x2

∗ ∗

∗

Looking at the stars, we can deduce M(x2
1,U) = {x1}, NM(x2

1,U) = {x2},
M(x1x2,U) = {x1, x2}, NM(x1x2,U) = ∅. Now, t = x2

1 lies over B(2)
1 and over

B(2)
2 there is only x1x2 such that x1x2 | x2

1x2.

Since x1 ∈ M(x1x2,U), x1x2 |J x2
1x2 and we can conclude that U is complete, with respect to the given

ordering on the variables. ♦

4. A greedy algorithm for complete sets.
In this section, given a finite set of terms U = {t1, ..., tm} ⊆ T , we try to find out whether there exists an ordering
on the variables x1, ..., xn such that U is complete. As explained in Section 3, the Bar Code allows to detect the
completeness of U. Clearly, such a construction depends on the variables’ ordering, so if we want to solve the
problem, in principle, we should draw and check n! different Bar Codes, which turns out to be rather tedious
and time consuming. We show now that we can look for the solution of our problem in a “greedy” way, so that
most of the tests can be skipped. In order to do so, we first come back to [34].

Let U = {t1, ..., tm} ⊆ T be a finite set of terms, ti = x
α(i)

1
1 · · · x

α(i)
n

n and t′i = x
α(i)

1
1 · · · x

α(i)
n−1

n−1 = ti/xα
(i)
n

n , for
i = 1, ...,m. Let α = max{α(i)

n , 1 ≤ i ≤ m}. For each λ ≤ α, we define Iλ := {i : 1 ≤ i ≤ m|α(i)
n = λ}, the set

indexing the terms in U with n-th degree equal to λ, and U′λ := {t′i |i ∈ Iλ} ⊂ T [{1, ..., n − 1}]. Being U′λ a finite
set of terms in T [{1, ..., n − 1}], we can define Janet division on it and we can observe that, by Definition 3.1,

Applications of Bar Code to involutive divisions and a greedy algorithm for complete sets. 7

• for each t′ ∈ U′λ, M(t′,U) ∩ {x1, ..., xn−1} = M(t′,U′λ);
• if t = xα1

1 · · · x
αn
n ∈ U, U is complete and αn < α, then xn ∈ NM(t,U) and the involutive divisor of xnt

according to Janet division is a term s ∈ U such that s′ ∈ U′λ+1.
These are the main observations leading to the following Proposition, first stated in [34] and then explicitly
proved in [37].

Proposition 4.1 ([34, 37]). With the notation above, U is complete if and only if the two conditions below hold:
1. For each λ ∈ {α(i)

n , 1 ≤ i ≤ m}, U′λ is a complete set;
2. ∀t′i ∈ U′λ, λ < α, there exists j ∈ {1, ...,m} such that

a) t′j ∈ U′λ+1.

b) t′i ∈ C(t′j,U
′
λ+1).

Now, using the Bar Codes and the above Proposition 4.1, we can check whether there is an ordering on
the variables making a given set U complete.

The idea consists in constructing the Bar Code B of the set U = {t1, ..., tm} ⊂ T from the maximal variable
to the minimal one, checking if, with the choice made up to the current point on the variables’ ordering, the
conditions of Proposition 3.11 hold for each term in U, and going back retracting our steps in case of failure,
so modifying previous choices.
We describe now the algorithm, together with some examples; the whole list of procedures is displayed in
Appendix A. In particular, the main procedure is Ordering (Algorithm 5) while Algorithms 1,2,3,4 are the
subroutines on which it depends.
Let X = {x1, ..., xn} be the set of all variables. First of all, the procedure Ordering looks for the subset Y ⊆ X of
good candidates for being the maximal variable, scanning the elements of X (Algorithm 5, line 2). In particular,
it relies on the subroutine Candidates (Algorithm 2) for this task.
The procedure Candidates considers the set of all variables and deletes all those that are not good candidates
for being the maximal one.

It takes as input a list of terms L (in this case L = [U], so |L| = 1 and L[1] = 1) and a list of variables C
(in this case C = [x1, ..., xn]) and returns the list of good candidates for being the maximal one.

In order to decide whether a variable is a good candidate or not, Candidates scans L and, for each list
of terms in L, applies the subroutine CandidateVar (Algorithm 2, lines 2-4), returning the good candidates in
Algorithm 2, line 5. For i = 1, ..., |C|, CandidateVar computes the sets Di := {β ∈ N|∃t ∈ U, degi(t) = β}
(Algorithm 1, lines 3-4) and excludes from the good candidates all variables xī, ī ∈ {1, ..., |C|}, for which there
exists γ ∈ Dī such that γ < max(Dī) and γ + 1 < Dī (Algorithm 1, lines 5-6) . This procedure is justified by the
following Lemma, strongly depending on Proposition 4.1.

Lemma 4.2. Let U ⊆ T be a finite set of terms. For i = 1, ..., n, consider the sets

Di := {degi(t) : t ∈ U}.

Suppose that for some ī, ī ∈ {1, ..., n}, there exists γ ∈ Dī such that γ < max(Dī) and γ + 1 < Dī. Then U is not
a complete set for any ordering on the variables with xī as maximal variable.

Proof. In order to be complete, the set U should satisfy the conditions of Proposition 4.1. Under our hypotheses,
we have α > γ+1, Iγ , ∅ and Iγ+1 = ∅. To each i ∈ Iγ corresponds a term t′i ∈ U′γ and it must exist j ∈ {1, ..., |U |}
such that t′i ∈ C(t′j,U) and t′j ∈ U′γ+1, but this is impossible since, being Iγ+1 = ∅, also U′γ+1 = ∅. �

If Y = ∅, no variable is suitable for being the maximal one and making U complete; this implies that U is not
complete for any variables’ ordering (Algorithm 5, line 20).

Example 4.3. Consider U = {x1x3
2, x

3
1x2} ⊂ k[x1, x2]. Such a set is not complete since D1 = D2 = {1, 3}. As a

confirmation, we can see that, if x1 < x2, we have
0

1

2

x3
1x2 x1x3

2

∗ ∗

∗

Then M(x3
1x2,U) = {x1}, M(x1x3

2,U) = {x1, x2} and x3
1x2

2 does not be-
long neither to C(x3

1x2,U) nor to C(x1x3
2,U).

On the other hand, if x2 < x1, we have

8 M.Ceria

0

2

1

x1x3
2 x3

1x2

∗ ∗

∗

Thus M(x1x3
2,U) = {x2}, M(x3

1x2,U) = {x1, x2} and x2
1x3

2 does not be-
long neither to C(x3

1x2,U) nor to C(x1x3
2,U).

♦

Suppose now ∅ , Y ⊆ X; Ordering picks a variable xi ∈ Y and considers it as the maximal variable
(Algorithm 5, line 3). Then it starts the construction of the last row6 of the Bar Code associated to U (Algorithm
5, line 4). In particular, the elements of U are rearranged increasingly with respect to their i-degree, imposing,
in addition, t < t′ when t | t′ for some t, t′ ∈ U with degi(t) = degi(t′). Denote the i-degrees of the terms in U
by λ1 < λ2 < ... < λµ(i), 1 ≤ µ(i) ≤ |U |. The i-bars are B(i)

1 , ...,B
(i)
µ(i) and they are drawn under the terms, grouping

them according to their i-degree: the terms of i-degree λ1 are underlined by B(i)
1 , those of i-degree λ2 by B(i)

2 and
so on.
By construction, then, there is an obvious bijection φ(i)

j between the set A(i)
j of terms over B(i)

j , 1 ≤ j ≤ µ(i) and
the set U′λ j

of Proposition 4.1.

Example 4.4. Let us consider the set U = {x1, x2
1, x2, x1x3} ⊂ k[x1, x2, x3]; we first compute D1 = {0, 1, 2},

D2 = D2 = {0, 1}. All the variables are good candidates for being the maximal one. We pick, for example, x3,
so we have

0

3

x1 x2
1

x2 x1x3

∗

λ1 = 0, λ2 = 1, so A(3)
1 = U0 = {x1, x2

1, x2} and A(3)
2 = U1 = {x1x3}.

We remark that we could also have picked another variable, obtaining a different Bar Code; for example,
picking x1, we would have got:

0

1

x2 x1 x1x3 x2
1

∗

♦

Afterwards, Ordering (Algorithm 5 line 5) launches the subroutine Friends (Algorithm 3), whose aim is essen-
tially to mimic Condition 2 of Proposition 4.1. In particular, it adds requirements on what variables should be
multiplicative for the terms to make Condition 2 hold and it checks whether the requirements on the variables
imposed by its previous executions are met.

This is the first time in which Friends is run by the algorithm, so there are no previously imposed require-
ments on the multiplicative variables (we only have imposed xi as maximal variable) so the part of Friends
that checks such requirements (Algorithm 3, lined 11 - 31) is skipped for now. It only lists the requirements
imposed by the choice of xi as maximal variable, so that Condition 2. of Proposition 4.1 holds.

For each 1 ≤ j < µ(i), consider the bar B(i)
j and the corresponding set of terms A(j1)

j .

For each t ∈ A(i)
j , Friends computes the set U(t, xi) = {(u,V)|u ∈ A(i)

j+1 and V : txi = um, m ∈ T [V]}.
The elements in U(t, xi) are the candidates for being the involutive divisor of txi (or, in other words, are the
candidate terms for satisfying Condition 2 of Proposition 4.1) while V is the set of variables – smaller than xi

– that must belong to M(u,U) for u being the involutive divisor of txi (Algorithm 3, lines 2–10). Indeed, due to
the bijections φ(i)

j , φ
(i)
j+1, t′ := t/xλ j

i ∈ U′λ j
and u′ := u/xλ j+1

i ∈ U′λ j+1
and, if the variables in V are multiplicative for

u, then t′ ∈ C(u′,U′λ j+1
). If one of the sets U(t, {xi}) is empty, then there is no candidate for being the involutive

divisor of txi; therefore xi is not a good candidate for being the maximal variable, so we come back to Y and
we start again with a new maximal variable (Algorithm 5, lines 6 - 8).

6Remember that the last row of a Bar Code, namely that on the bottom, is the row associated to the maximal variable (see Section 2.2).

Applications of Bar Code to involutive divisions and a greedy algorithm for complete sets. 9

Example 4.5. Coming back to example 4.4, we have U(x1, x3) = {(x1x3, ∅)}, U(x2
1, x3) = {(x1x3, {x1})} and

U(x2, x3) = ∅, so x3 was a bad choice for being the maximal variable. We try with x1, getting

0

1

x2 x1 x1x3 x2
1

∗

Now, U(x2, x1) = {(x1, {x2})}, U(x1, x1) = {(x2
1, ∅)} and U(x1x3, x1) = {(x2

1, {x3})}, so x1, at least for now, is a
good choice for the maximal variable. ♦

Suppose to be in the non-failure case. If, in addition, for 1 ≤ j ≤ µ(i) there is only one term over B(i)
j , all

the bars are unitary, so we say that we are in the unitary case (Algorithm 5, lines 9 - 12). In this special case,
each variable ordering such that xi is the maximal variable makes U a complete set of terms.

Indeed, in this case, for each choice on the ordering of the following (and so, smaller) variables, their
corresponding bars will be unitary again and, by the construction of the stars, all of them will be followed by a
star. In other words, for each t ∈ U, and for each x j , xi, x j ∈ M(t,U). Moreover, for each t ∈ U, |U(t, {xi})| = 1,
so let (u,V) be the only element in U(t, xi), then xi < V , so all variables in V are multiplicative for u and this
makes u the required involutive divisor of xit, ensuring the completeness of U.

Example 4.6. For U = {x3
1, x1x2, x2

2} ⊂ k[x1, x2], D1 = {0, 1, 3} and D2 = {0, 1, 2}, so Y = {x2}. Chosing x2 as
maximal variable the Bar Code becomes:

0

1

2

x3
1

x1x2 x2
2

and we have U(x3
1, x2) = {(x1x2, {x1})}, U(x1x2, x2) = {(x2

2, {x1})}. All the 2-bars are unitary, so, completing
the Bar Code we get

0

1

2

x3
1

x1x2 x2
2

∗ ∗ ∗

∗

We can easily check from the diagram that (x3
1) · x2 ∈ C(x1x2,U) and

(x1x2) · x2 ∈ C(x2
2,U). Therefore U is complete.

♦

If we are not in the unitary case (Algorithm 5 line 13), we have to choose the next variable and continue
drawing the Bar Code, using the routine Common (Algorithm 4).

To get the candidates for being the next variable, we execute the procedure CandidateVar to each i-bar
and (procedure Candidates) we intersect the results. Indeed, we want that the next variable is a good candidate
to make all the sets Uλi complete, according to Condition 1. of Proposition 4.1.

If the intersection is empty (Algorithm 4, lines 4 - 5) there are no such good candidates, then xi was not
a good choice for being the maximal variable and we have to come back and repeat the whole procedure for
another maximal variable (Algorithm 5 line 17).

Otherwise, we choose some xl among the variables in the intersection (Algorithm 4 line 6), and for each
1 ≤ j ≤ µ(i), we order the terms over B(i)

j in increasing order according to the l-degree, imposing in addition
t < t′ when t | t′ for some t, t′ ∈ U with degl(t) = degl(t′) (exactly as we did for xi). Then we draw all the l-bars
(Algorithm 4 line 8).

Employing again the routine Friends, separately for each i-bar, we look for candidate involutive divisors
when xl is not multiplicative (Algorithm 3, lines 2 - 10). Moreover, we check whether the choice of xl is a good
one, by checking that xl is multiplicative for all terms we imposed it to be in the previous application of the
routine Friends (Algorithm 3, lines 11 - 31).

More precisely, for each t over B(i)
j , 1 ≤ j < µ(i), we have constructed a set U(t, {xi}) of candidate

involutive divisors for txi. Given (u,V) ∈ U(t, xi), if xl < V , then the multiplicativity of xl is irrelevant for u, so
(u,V) still remains a good candidate for being an involutive divisor. It is still a good candidate also if xl ∈ V
and the l-bar of u is in one of the conditions for being followed by a star (see section 2.2), since it means that

10 M.Ceria

xl is multiplicative for u. Otherwise, we remove (u,V) from the candidates. If for some t, its candidate list is
empty, we have to revoke the choice of xl and come back to pick another variable in place (Algorithm 4 line
11).

If the procedure Friends gives a positive outcome, then a new variable has been settled and the routine
Common keeps calling itself until (Algorithm 5, lines 13 - 21)

• all variables have been placed (positive outcome)
• the unitary case is reached (positive outcome)
• continue revocations of choices lead to failure, in the sense that there are no more variables to pick

(negative outcome, there is no ordering on the variables making the set complete).

Example 4.7. We conclude now examples 4.4 and 4.5. From

0

1

x2 x1 x1x3 x2
1

∗

we choose now x2 as following variable and we get

0

2

1

x2 x1 x1x3 x2
1

∗ ∗ ∗

∗

With Friends we do not impose any condition on the terms over the 2-bars. Indeed, over each 1-bar there
is only one 2-bar and so, that 2-bar is followed by a star, this implying that x2 is multiplicative for all terms.
Moreover, we have only to check U(x2, x1) = {(x1, {x2})}; being x2 ∈ M(x1,U), the procedure gives a positive
outcome. Finally choosing x3, we get

0

3

2

1

x2 x1 x1x3 x2
1

∗ ∗ ∗

∗ ∗ ∗

∗

Now, x3 is multiplicative for x2
1 as required by U(x1x3, x1) and we have U(x1, x3) = {(x1x3, ∅)}, so U turns out

to be complete with the variables’ ordering x3 < x2 < x1.
We point out that this is not the only ordering making U complete, in particular, for x1 < x3 < x2 U is complete
again:

0

1

3

2

x1 x2
1

x1x3 x2

∗ ∗ ∗

∗ ∗

∗

Indeed

• M(x1,U) = ∅, NM(x1,U) = {x1, x2, x3}, with x2
1 ∈ C(x2

1,U), x1x2 ∈ C(x2,U), x1x3 ∈ C(x1x3,U) ;
• M(x2

1,U) = {x1}, NM(x2
1,U) = {x2, x3}, with x2

1x2 ∈ C(x2,U), x2
1x3 ∈ C(x1x3,U);

• M(x1x3,U) = {x1, x3}, NM(x1x3,U) = {x2}, with x1x2x3 ∈ C(x2,U);
• M(x2,U) = {x1, x2, x3}, NM(x2,U) = ∅.

♦

We see now a complete example for the execution of the whole procedure.

Applications of Bar Code to involutive divisions and a greedy algorithm for complete sets. 11

Example 4.8. Consider the set

M = {x2x3, x2
1, x

2
3, x

2
2, x1x2, x1x2x4, x2

1x4, x4x3, x2
2x4, x2

1x3} ⊂ k[x1, x2, x3, x4].

First, we compute D1 = D2 = D3 = {0, 1, 2}, D4 = {0, 1}, deducing that each variable is a good candidate for
being the maximal one, so Y = {x1, x2, x3, x4}. We choose, for example, x3, getting

x2
1

x1x2 x2
2 x2

1x4 x1x2x4 x2
2x4 x2

1x3 x2x3 x4x3 x2
3

3 ∗

Now, running Friends for the first time, we get
• U(x2

1, x3) = {(x2
1x3, ∅)};

• U(x1x2, x3) = {(x2x3, {x1})};
• U(x2

2, x3) = {(x2x3, {x2})};
• U(x2

1x4, x3) = {(x2
1x3, {x4}), (x3x4, {x1})};

• U(x1x2x4, x3) = {(x2x3, {x1, x4}), (x3x4, {x1, x2})};
• U(x2

2x4, x3) = {(x2x3, {x2, x4}), (x3x4, {x2})};
• U(x2

1x3, x3) = {(x2
3, {x1})};

• U(x2x3, x3) = {(x2
3, {x2})};

• U(x3x4, x3) = {(x2
3, {x4})}.

The procedure gives a positive outcome, so, since we are not in the unitary case, we apply Common. All
the variables are good candidates for being the second in order of magnitude and, for example, we choose x4,
getting:

x2
1

x1x2 x2
2 x2

1x4 x1x2x4 x2
2x4 x2

1x3 x2x3 x3x4 x2
3

4

3

∗ ∗ ∗

∗

We have:
• U(x2

1, x4) = {(x2
1x4, ∅), (x4, {x1})};

• U(x1x2, x4) = {(x1x2x4, ∅)};
• U(x2

2, x4) = {(x2
2x4, ∅)};

• U(x2, x4) = {(x4, {x2})}.
We check that the choice of x4 is suitable for the conditions imposed in the previous step:

• for U(x2
1x4, x3) = {(x2

1x3, {x4}), (x3x4, {x1})} note that x2
1x3 does not lie on the rightmost 4-bar, so x4 is not

multiplicative. Since we have more than one term associated to x2
1x4, we only delete x2

1x3 and keep x3x4.

The same argument holds for x1x2x4, x2
2x4.

• For U(x3x4, x3) = {(x2
3, {x4})}, since x2

3 lies on the rightmost 4-bar, x2
3 passes the test, remaining a good

candidate for being an involutive divisor.

So we have
• U(x2

1, x3) = {(x2
1x3, ∅)};

• U(x1x2, x3) = {(x2x3, {x1})};
• U(x2

2, x3) = {(x2x3, {x2})};
• U(x2

1x4, x3) = {(x3x4, {x1})};
• U(x1x2x4, x3) = {(x3x4, {x1, x2})};
• U(x2

2x4, x3) = {(x3x4, {x2})};
• U(x2

1x3, x3) = {(x2
3, {x1})};

• U(x2x3, x3) = {(x2
3, {x2})};

• U(x3x4, x3) = {(x2
3, {x4})};

• U(x2
1, x4) = {(x2

1x4, ∅), (x4, {x1})};
• U(x1x2, x4) = {(x1x2x4, ∅)};
• U(x2

2, x4) = {(x2
2x4, ∅)};

• U(x2, x4) = {(x4, {x2})}.

We continue choosing x2 as next variable and we get:

12 M.Ceria

x2
1

x1x2 x2
2 x2

1x4 x1x2x4 x2
2x4 x2

1x3 x2x3 x3x4 x2
3

2

4

3

∗ ∗ ∗∗∗

∗ ∗ ∗

∗

This way, all the 2-bars are unitary. We check on the 2-bars to have nonincreasing exponents for x1 and this is
true. Moreover, we check that x2 is multiplicative where it is marked, i.e. for x2x3, x3x4 but it clearly holds. The
set M is complete for x1 < x2 < x4 < x3 and its final Bar Code with respect to the chosen ordering is

x2
1

x1x2 x2
2 x2

1x4 x1x2x4 x2
2x4 x2

1x3 x2x3 x3x4 x2
3

1

2

4

3

∗ ∗ ∗∗∗∗ ∗ ∗ ∗ ∗

∗ ∗ ∗∗∗

∗ ∗ ∗

∗

♦

The algorithm terminates since there is a finite number of variables and each time we pick a variable
as candidate, we remove it from the candidates’ list, so we do not choose a variable in some position of the
ordering more than once.

The correctness, instead is an easy consequence of Proposition 4.1, since the algorithm executes the tests
imposed by that proposition.

Remark 4.9. We point out that, even in the case in which the given set U is not complete for any variables’
ordering, it is possible to store the state in which most of the variables have been settled, before retracting due
to some failure condition. This - though not being a warranty of minimality for the terms one has to add in
order to get the completion - can reduce the number of tests one has to do in the first step of completion.

References
[1] Cartan E. Sur l’intégration des systèmes d’équations aux différentielles totals. Ann. Éc. Norm. 3e série 18 241, 1901.

[2] Cartan E. Sur la structure des groupes infinis de transformations. Ann. Éc. Norm. 3e série 21 153, 1904.

[3] Cartan E. Sur les systèmes en involution d’équations aux dérivées partielles du second ordre à une fonction inconnue
de trois variables indépendentes. Bull. Soc. Marth. 39 356, 1920.

[4] Ceria, M., A proof of the ”Axis of Evil theorem” for distinct points, Rendiconti del Seminario Matematico
dell’Università e del Politecnico di Torino, Vol. 72 No. 3-4, pp. 213-233, 2014.

[5] Ceria, M., Bar Code for monomial ideals, DOI:https://doi.org/10.1016/j.jsc.2018.06.012 Journal of Symbolic Com-
putation, Vol 91, 30-56, 2019.

[6] Ceria, M., Bar code: a visual representation for finite set of terms and its applications.,Mathematics in Computer
Science, 14(2), 497-513 (2020), online in 2019 doi:10.1007/s11786-019-00425-4

[7] Ceria, M,. Bar Code versus Janet tree, Atti dell’Accademia Peloritana dei Pericolanti, Vol 97, No 2 (2019).

[8] Ceria, M. Bar Code and Janet-like division, submitted.

[9] Ceria M., Mora T. Combinatorics of ideals of points: a Cerlienco-Mureddu-like approach for an iterative lex game,
arXiv:1805.09165 [math.AC].

[10] Ceria M., Mora T. and Roggero M., Term-ordering free involutive bases, DOI:10.1016/ j. jsc.2014.09.005, Journal of
Symbolic Computation, Volume 68, Part 2, May–June 2015, Pages 87–108.

[11] Ceria M., Mora T. and Visconti A., Degroebnerization and its applications: A new approach for data modelling,
preprint submitted.

[12] Cerlienco L., Mureddu M., Algoritmi combinatori per l’interpolazione polinomiale in dimensione ≥ 2, Publ. I.R.M.A.
Strasbourg, 1993, 461/S-24 Actes 24e Séminaire Lotharingien, p.39-76.

Applications of Bar Code to involutive divisions and a greedy algorithm for complete sets. 13

[13] Cerlienco L., Mureddu M., From algebraic sets to monomial linear bases by means of combinatorial algorithms,
Discrete Math. 139, 73 − 87, 1995.

[14] Cerlienco L., Mureddu M., Multivariate Interpolation and Standard Bases for Macaulay Modules, J. Algebra 251
(2002), 686 − 726.

[15] Delassus E., Extension du théorème de Cauchy aux systèmes les plus généraux d’équations aux dérivées partielles.
Ann. Éc. Norm. 3e série 13 (1896) 421–467

[16] Delassus E., Sur les systèmes algébriques et leurs relations avec certains systèmes d’equations aux dérivées partielles.
Ann. Éc. Norm. 3e série 14 (1897) 21–44

[17] Delassus E., Sur les invariants des systèmes différentiels. Ann. Éc. Norm. 3e série 25 255–318, 1908

[18] Eisenbud D., Commutative Algebra: with a view toward algebraic geometry, 150, Springer, 2013.

[19] Felszeghy B., Ráth B., Rónyai L., The lex game and some applications, J. Symbolic Computation 41, 663−681, 2006.

[20] Galligo, A., A propos du théorem de préparation de Weierstrass, L. N. Math.40, Springer, 543–579, 1974.

[21] Gerdt V.P., Blinkov Y.A. Involutive bases of Polynomial Ideals, Math. Comp. Sim. 45, 543–560, 1998

[22] Gerdt V.P., Blinkov Y.A. Minimal involutive bases, Math. Comp. Sim. 45, 519–541, 1998

[23] Gerdt V.P., Blinkov Y.A. Involutive Division Generated by an Antigraded Monomial Ordering L. N. Comp. Sci 6885,
158-174, Springer (2011).

[24] Gerdt V.P., Blinkov Y.A. Janet-like monomial division, International Workshop on Computer Algebra in Scientific
Computing, 174–183, Springer (2005)

[25] Gerdt V.P., Blinkov Y.A. Janet-like Gröbner bases, International Workshop on Computer Algebra in Scientific Com-
puting, 184–195, Springer (2005)

[26] Gerdt V., Blinkov Y. and Yanovich D., Construction of Janet Bases I. Monomial Bases, in Computer Algebra in
Scientific Computing CASC 2001, 233-247.

[27] Grauert, H., Über die Deformation isolierter Singularitäten analytischer Mengen. Inventiones mathematicae 15
(1971/72), 171-198

[28] Green M., Stillman M., A tutorial on generic initial ideals, in Buchberger B., Winkler F. (Eds.) Groebner Bases and
Application (1998) 90–108 Cambridge Univ. Press

[29] Gunther, N., Sur la forme canonique des systèmes déquations homogènes (in russian) [Journal de l’Institut des Ponts
et Chaussées de Russie] Izdanie Inst. Inz̆. Putej Soobs̆c̆enija Imp. Al. I. 84 (1913) .

[30] Gunther, N., Sur la forme canonique des equations algébriques C.R. Acad. Sci. Paris 157 (1913), 577–80

[31] Gunther, N. Sur les modules des formes algébriques Trudy Tbilis. Mat. Inst. 9 (1941), 97–206

[32] Herzog, J. . A survey on Stanley depth. In Monomial ideals, computations and applications (2013). Springer, Berlin,
Heidelberg 3-45.

[33] Hironaka, H. Idealistic exponents of singularity In: Algebraic Geometry, The Johns Hopkins Centennial Lectures
(1977) 52-125

[34] Janet M., Sur les systèmes d’équations aux dérivées partelles, J. Math. Pure et Appl., 3, (1920), 65-151.

[35] Janet M., Les modules de formes algébriques et la théorie générale des systemes différentiels, Annales scientifiques
de l’École Normale Supérieure, 1924.

[36] Janet M., Les systèmes d’équations aux dérivées partelles, Gauthier-Villars, 1927.

[37] Janet M., Lecons sur les systèmes d’équations aux dérivées partelles , Gauthier-Villars,1929.

[38] Mora T., Solving Polynomial Equation Systems 4 Vols., Cambridge University Press, I (2003), II (2005), III (2015),
IV (2016).

[39] Mumford D., Lectures on Curves on an Algebraic Surface (1966) Princeton Univ. Press

[40] Pommaret J. F., Systems of partial differential equations and Lie pseudogroups, Gordon and Brach (1978)

[41] Pommaret J. F., Akli H. Effective Methods for Systems of Algebraic Partial Differential Equations, Progress in Math-
ematics 94 (1990), 411–426, Birkhäuser

[42] Riquier C., Les systèmes d’équations aux dérivées partielles (1910), Gauthiers-Villars.

[43] Robinson, L.B. A new canonical form for systems of partial differential equations American Journal of Math. 39
(1917), 95–112

[44] Robinson, L.B. Sur les systémes d’équations aux dérivées partialles C.R. Acad. Sci. Paris 157 (1913), 106–108

14 M.Ceria

[45] Seiler, W.M., Involution: The formal theory of differential equations and its applications in computer algebra, Vol.24,
2009, Springer Science & Business Media

Appendix A. List of all procedures
Before listing all procedure, we recall that a Bar Code is given by a concatenation of lists via pointers. We have
one list for the levels (i.e. the variables), one for the bars within any level and finally one for the terms.
Constructing a bar, then, means adding a new element to the list of bars, connecting it in the right position by
means of pointers.
When we put a star at the end of a bar, we are putting a star symbol at the end of the corresponding bar, therefore
we suppose known a procedure Star(xi, t), which takes a variable xi and a monomial t as input and returns true
if at level i, the bar under t (therefore placed in correspondence to its exponents from level n to level i) has a
star as its last entry, and false otherwise.

Algorithm 1 Procedure to generate the candidate list for the current maximal variable (subroutine).

1: procedure CandidateVar(M,C) . M is a list of terms; C is a list of variables.
2: Y := C
3: for i = 1, ..., |C| do
4: Di := {β ∈ N|∃t ∈ M, degC[i](t) = β}
5: if for some γ1 ∈ Di, γ1 < max(Di), γ1 + 1 < Di then
6: Delete C[i] from Y
7: end if
8: end for
9: return Y

10: end procedure

Algorithm 2 Procedure to generate the candidate list for the current maximal variable.

1: procedure Candidates(L,C) . L is a list of lists of terms; C is a list of variables.
2: for i = 1, ..., |L| do
3: Y[i] :=CandidateVar(L[i],C);
4: end for
5: return

⋂
i Y[i]

6: end procedure

Applications of Bar Code to involutive divisions and a greedy algorithm for complete sets. 15

Algorithm 3 Friends

1: procedure Friends(A,Y, xi,T) . T is the output of a previous execution of Friends (or it is empty), so it is
formed by sets of the form T (t, x j), t terms in the given set, and x j variables.

2: for j = 1, ..., µ(i) − 1 do
3: B′ = A(i)

j+1 . We directly consider the set of terms associated to a bar.
4: U = ∅

5: for t ∈ A(i)
j do

6: U(t, xi) = {(u,V)|u ∈ B′ and V : txi = um, m ∈ T [V]}
7: if U(t, xi) = ∅ then return ∅
8: end if
9: end for

10: end for
11: if T , ∅ then
12: for j = 1, ..., µ(i) do
13: for t ∈ A(i)

j do
14: for y ∈ X \ Y do . These are the variables that are already been ordered.
15: U(t, y) = ∅

16: for (u,V) ∈ T (t, y) do
17: if xi < V then
18: U(t, y) = {(u,V)} ∪ U(t, y), U = U ∪ U(t, y)
19: else
20: if xi ∈ V and Star(xi, t) =true then . Star(xi, t) =true means that there is a star after the i-bar

under t.
21: U(t, y) = {(u,V)} ∪ U(t, y), U = U ∪ U(t, y)
22: end if
23: end if
24: end for
25: if U(t, y) = ∅ then
26: return ∅
27: end if
28: end for
29: end for
30: end for
31: end if
32: return U
33: end procedure

16 M.Ceria

Algorithm 4 Common

1: procedure Common(A, X, xi,T) . T is the output of a previous execution of Friends (or it is empty), so it is
formed by sets of the form T (t, x j), t terms in the given set, and x j variables.

2: Y = X \ {xi}

3: Y ′ =Candidates(A,Y)
4: if |Y ′| = 0 then return ∅
5: end if
6: for xl ∈ Y ′ do
7: for j = 1, ..., µ(i) do
8: construct the l-bars C = {A(l)

m } over A(i)
j ;

9: end for
10: U =Friends(C,Y, x j,T)
11: if U = ∅ then continue
12: end if
13: if |A(l)

m | = 1, ∀1 ≤ m ≤ µ(l) then ord = Y ∪ {xl} return ord
14: end if
15: if Y , ∅ then
16: C =Common(C,Y, xl,U)
17: else
18: if Y = ∅ then ord = ord ∪ {xl}

19: return ord
20: end if
21: end if
22: if ord , ∅ then ord = ord ∪ {xl}

23: else continue
24: end if
25: end for
26: return ∅
27: end procedure

Applications of Bar Code to involutive divisions and a greedy algorithm for complete sets. 17

Algorithm 5 Ordering

1: procedure Ordering(M, X) . M is a given list of terms; X is the list of all variables
2: Y =Candidates(M, X)
3: for xi ∈ Y do
4: A = {A(i)

j }, 1 ≤ j ≤ µ(i) . Construct the sets of terms associated to the i-bars.
5: T =Friends(A, X \ {xi}, xi, ∅)
6: if T = ∅ then
7: continue
8: end if
9: if |A(i)

j | = 1, 1 ≤ j ≤ µ(i) then . Unitary case.
10: ord = Append(X \ {xi}, xi) . We append xi at the end of the list X \ {xi}, namely the list X from

which xi has previously been pruned. This way xi is the last (and so maximal) variable.
11: return ord
12: end if
13: C =Common(A, X, xi,T)
14: if C , ∅ then
15: ord = Append(C, xi)
16: return ord
17: else continue
18: end if
19: end for
20: return ∅
21: end procedure

Michela Ceria
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
e-mail: michela.ceria@gmail.com

