
PHYSICAL REVIEW B 94, 064422 (2016)

Current-driven periodic domain wall creation in ferromagnetic nanowires

Matthias Sitte,1 Karin Everschor-Sitte,1 Thierry Valet,1 Davi R. Rodrigues,2 Jairo Sinova,1 and Ar. Abanov2

1Institute of Physics, Johannes Gutenberg-Universität, 55128 Mainz, Germany
2Department of Physics & Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA

(Received 2 December 2015; revised manuscript received 21 July 2016; published 19 August 2016)

We predict the electrical generation and injection of domain walls into a ferromagnetic nanowire without the
need of an assisting magnetic field. Our analytical and numerical results show that above a critical current jc

domain walls are injected into the nanowire with a period T ∼ (j − jc)−1/2. Importantly, domain walls can be
produced periodically even in a simple exchange ferromagnet with uniaxial anisotropy, without requiring any
standard “twisting” interaction such as Dzyaloshinskii-Moriya or dipole-dipole interactions. We show analytically
that this process and the period exponents are universal and do not depend on the peculiarities of the microscopic
Hamiltonian. Finally we give a specific proposal for an experimental realization.
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Recent proposals for the next generation of magnetic mem-
ory devices [1–3] rely on the ability to manipulate the position
and orientation of domain walls (DWs) in ferromagnetic
nanowires by electric current [4–8]. These proposals have led
to an intense research activity in the area of current-induced
DW dynamics in both anti- and ferromagnets [9–13]. However,
to manipulate DWs one needs to first create them. Currently,
DWs are injected from one end into a nanowire by applying
a magnetic field. In this work we propose a technique to
controllably and reliably inject the DWs into nanowires by just
applying a dc electric current without the need of magnetic
fields. Our finding leads to the possibility to make an “all
electric” DW-dynamics-based spintronic device.

Within this paper we consider a magnetic nanowire where
at one end the magnetization is fixed (e.g., by an adjacent
permanent ferromagnet or by a strong pinning center) along
a different direction than the anisotropy direction of the wire
(see Fig. 1). Close to the fixed end, the magnetization will twist
naturally on a length scale defined by the interplay of the fixed
magnetization and the anisotropy strength and in the plane
defined by the direction of the fixed magnetization and the
anisotropy direction. We show analytically and numerically
that for dc currents larger than a critical current jc even such
a simple structure becomes unstable, and DWs are produced
periodically with a period T ∼ (j − jc)−1/2.

The instability and the phenomena of periodic, current-
induced DW production can be easily explained (see Fig. 1):
When ramping up the current strength, the current will (i) twist
the magnetic structure around the anisotropy direction and (ii)
elongate the texture close the pinned end. For currents j > jc

the magnetic structure is “twisted off” and produces a DW
which then moves along the wire.

We demonstrate that under broad conditions this effect
does not depend on the details of the microscopic magnetic
Hamiltonian and does not require any “twisting” terms in
the Hamiltonian such as Dzyaloshinskii-Moriya (DMI) or
dipole-dipole interactions. We compute the critical current
analytically and confirm the results numerically for a specific
microscopic Hamiltonian [14]. In the limit of a current strength
just above the critical value, j � jc, the dynamics of the DWs
is very slow and dissipation only plays a minor role.

In the following, we first describe the setup for the magnetic
nanowire and review the standard Landau-Lifshitz-Gilbert

equation to describe magnetization dynamics. Next we show
analytically and via simulations that a pinning center in
a magnetic nanowire constitutes a dynamic instability in
the system for currents above a critical one. We determine
the critical current density analytically and numerically and
our numerical and analytical results agree within a few
percent. By mapping the magnetic problem to an effective
one-dimensional model of a particle in a potential, we can
easily interpret the magnetic texture for currents below the
critical one as part of a DW. This analysis also guides us to the
ferromagnetic instability, where above an even larger current
the ferromagnetic solution becomes unstable. In Sec. IV we
discuss the dynamics of the DW creation. Finally, we discuss
the problem of minimization of Ohmic losses in the injection
process as well as the relevance of the presented calculation
for the dynamics around a strong pinning center relevant to
experiments.

I. MICROMAGNETIC MODEL AND
MAGNETIZATION DYNAMICS

We emphasize that our results do not depend on the specific
details of the micromagnetic model. The only requirements are
exchange interactions and uniaxial anisotropy along a different
direction than the pinned magnetization at the one end of the
wire. Note that uniaxial anisotropy must be present in order to
stabilize a DW in a nanowire.

However, to be specific and to explicitly show the essential
part of the analytic calculation, we propose for the current-
induced injection of DWs into the ferromagnetic nanowire
the simple geometry as shown in Fig. 1: We assume that the
nanowire is thin enough so that the magnetic configuration
is one-dimensional. The easy axis is directed along the wire
which is taken to be semi-infinite going from x = 0 to x = ∞.
At the start of the wire the magnetization is fixed along the
z direction, M(0) = ez (e.g., by an adjacent ferromagnet with
a large uniaxial anisotropy along the z direction, or by a
strong pinning center, or by change of anisotropy by the use
of metamaterials).

Therefore, the free energy is given by

F [M] =
∫ ∞

0

[
J

2
(∂x M)2 + λ�(Mx)

]
dx, (1)
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FIG. 1. Magnetization texture for increasing currents. Without
current (j = 0, top) the configuration is half of a planar DW centered
at x = 0; for j < jc the domain wall is tilted out of the xz plane;
for currents larger than jc (bottom panel) domains move along the
nanowire. The black arrow at one end of the wire is fixed. The color
code is chosen such that gray arrows lie in the xz plane, while red
(blue) arrows have a finite component out of the xz plane in ±y

direction, respectively.

where M is the local magnetization direction with the (local)
condition M2(x) = 1. The first term is the exchange term
with exchange constant J and the second one describes
the anisotropy term with strength λ. The uniaxial magnetic
anisotropy along the nanowire is typically described by the
term λ(1 − M2

x ), where λ is the anisotropy strength, and the
constant term is chosen such that the free energy density of
the nanowire at infinity is zero. In Eq. (1) we use a more
general form λ�(Mx), where � is a monotonic function with
�(0) = 1, �′(0) = 0, and �(1) = 0. The boundary conditions
are summarized in Table I. To compare with numerics note that
J and λ are the exchange constant and anisotropy strength per
unit length, respectively, and one has to divide them by the
cross section area σ of the wire to obtain the bulk parameters:
Jbulk = J/σ and λbulk = λ/σ .

To describe the current-induced magnetization dynamics
we use the standard Landau-Lifshitz-Gilbert (LLG) equation
with current:

(∂t + vs∂x)M = −γ M × Heff + α

Ms

M ×
(

∂t + β

α
vs∂x

)
M,

where γ is the gyromagnetic ratio, Ms is the saturation magne-
tization per unit length with Mbulk

s = Ms/σ , and α and β are the
adiabatic and nonadiabatic damping parameters. The effective
magnetic field is given by Heff = −M−1

s (δF [M]/δM), and
the applied current along the x direction enters the equation
via the effective spin velocity:

vs = PμB

eMs[1 + (β/α)2]
j, (2)

where P is the current polarization, μB is the Bohr magneton,
e is the electron charge, and j is the current with the
corresponding current density j/σ . For simplicity we assume

TABLE I. Boundary conditions of magnetization components Mx

and Mz, and of the uniaxial anisotropy � for the chosen nanowire
geometry.

Mx Mz �(Mx)

x = 0 0 1 1
x = ∞ 1 0 0

in the following β = 0. However we checked numerically that
a finite β does not change qualitatively the results.

Next we discuss the instability and at which critical
current it arises, followed by detailed analytical and numerical
calculations of the static case below the critical current and the
dynamic case above the critical current.

II. INSTABILITY AND CRITICAL CURRENT

In this section we show that for currents j < jc there is
a static configuration which becomes unstable at a specific
critical current jc computed below. Since for a current
density slightly larger than the critical current density jc,
the magnetization dynamics is a slow and quasiadiabatic
process, we can simply ignore dissipative terms to determine
jc analytically. Therefore, we can use the simplified equation

∂t M = −γ M × Heff − vs∂x M, (3)

which can be rewritten in the following form,

∂t M = γ

Ms

M × δFeff[M,vs]

δM
, (4)

where

Feff[M,vs] = F [M] +
∫ ∞

0

dx

with

γ

Ms

M × δ

δM

(∫ ∞

0

dx

)
≡ −vs∂x M.

The Berry-phase-like term 
 can be written in terms of the
CP1 representation of the unit vector field M(x), but its exact
form is not required here.

Equation (4) shows that any finite dissipation will ensure
that the physical [15] static solution minimizes Feff . Let us
now change perspective and consider the effective free energy
Feff as an action of some model and the coordinate x as time.
The corresponding Lagrangian of this model is given by

L = J

2
(∂x M)2 + λ�(Mx) + 
. (5)

The translational invariance of Feff—the analog of the fact
that effective free energy Feff does not explicitly depend on
“time” x—implies that the Hamiltonian corresponding to the
Lagrangian (5) is conserved. This Hamiltonian is given by [16]

H = ∂L
∂(∂x M)

· ∂x M − L = J

2
(∂x M)2 − λ�(Mx). (6)

On a physical solution this Hamiltonian is conserved; i.e.,
it does not depend on “time” x. Because at x → ∞ the
magnetization is assumed to be parallel to x̂ we find that
the Hamiltonian has to vanish everywhere due to translational
invariance,H ≡ 0. Consequently, the static configuration must
satisfy the following relation for all x:

J

2
(∂x M)2 − λ�(Mx) ≡ 0. (7)

Furthermore, note that the x component of the total angular
momentum is conserved. This can be derived explicitly by
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multiplying Eq. (3) by the unit vector in the x direction:

∂tMx = − γ

Ms

J x̂ · (M × ∂2
x M) − vs∂xMx

= −∂x

[
γ

Ms

J x̂ · (M × ∂x M) + vsMx

]
.

In the static case, ∂tMx ≡ 0, we can compare the right-hand
side with its value at infinity to obtain

γ

Ms

J x̂ · (M × ∂x M) + vsMx = vs. (8)

Combining Eqs. (7) and (8) allows us to calculate the static
magnetization configuration for currents smaller than the
critical current jc, as discussed in Sec. III below.

To determine jc we now evaluate Eqs. (7) and (8) at x = 0.
Taking our boundary condition M(x = 0) = ẑ into account,
we get

J

2
(∂x M)2

∣∣
x=0 − λ = 0 and − γ

Ms

J ∂xMy

∣∣
x=0 = vs.

Furthermore, at x = 0 we have ∂x M ⊥ ẑ, and therefore
(∂x M)2 = (∂xMx)2 + (∂xMy)2. Consequently we find 0 <

J 2(∂xMx)2 = 2Jλ − (vsMs/γ )2. Therefore, a static solution
is possible if and only if the effective spin velocity vs is smaller
than the critical spin velocity:

vc
s ≡ γ

Ms

√
2λJ , (9)

corresponding to the critical current jc,

jc ≡ eMs

PμB

vc
s = eγ

PμB

√
2λJ = eγ σ

PμB

√
2λbulkJbulk. (10)

In the last part of this equation we have explicitly written the
critical current in terms of bulk parameters for comparison to
the numerical results [17], as shown in Fig. 3. Note that jc is
smaller than the current above which a uniform ferromagnetic
state becomes unstable; see below Sec. III C.

III. MAGNETIZATION CONFIGURATION FOR j < jc

In this section, we find a general, static solution for currents
below the critical current. We show that such a magnetization
configuration actually corresponds to a virtual DW that would
be centered around a negative x value when fictitiously
extending the magnetic nanowire also to negative x values,
as shown in Fig. 2.

For the magnetization described by a unit vector field,
M2 = 1, the derivative of the field is orthogonal to the
field itself, i.e., M ⊥ ∂x M. Hence the vector field ∂x M is
two-dimensional and can be parametrized by two functions
�(x) and �(x) as

∂x M = (x̂ × M)�(x) + [M × (x̂ × M)]�(x), (11)

whose x component reduces to ∂xMx = �(x)(1 − M2
x ). To

simplify the notation we write � and � instead of �(x)
and �(x), respectively. The following calculation reveals
that both � and � are finite for 0 < j < jc, implying
that the current leads to a nonzero y component of the
magnetization texture, as can be seen from the simulation

FIG. 2. Upper graph (a): The solid black line is a sketch of a
potential P (x̃) for j < jc. The allowed region for the particle in
the potential with total energy zero is shown by the blue interval.
The dotted line shows the same function for j > jc. Lower graph
(b): Sketch of the function x̃(t) or, translated into the language of the
magnetic model, of Mx(x).

results plotted in Fig. 1. In this parametrization, Eqs. (7) and (8)
read

J

2

(
1 − M2

x

)
(�2 + �2) = λ�(Mx), (12)

�
(
1 − M2

x

) = [Ms/(γ J )]vs(1 − Mx). (13)

Eliminating � in the above equations and using ∂xMx =
�(1 − M2

x ) results in a partial differential equation,

(∂xMx)2 =
(

Ms

γ J

)2[(
vc

s

)2
�(Mx)

(
1 − M2

x

) − v2
s (1 − Mx)2

]
,

(14)

which we can solve by separating variables:

x = γ J

Ms

∫ Mx

0
dMx

[(
vc

s

)2
�(Mx)

(
1 − M2

x

) − v2
s (1 − Mx)2

]−1/2
.

(15)

The above integral can be computed for any uniaxial magnetic
anisotropy �(Mx) and thus provide the full DW profile.

A. Mapping the magnetic problem to an effective
one-dimensional model of a particle in a potential

Let us take a closer look at Eq. (14) by changing the
perspective and regarding the position x along the wire as
time t , and the magnetization Mx in the x direction as the new
spatial coordinate x̃. Equation (14) then transforms into

1

2
˙̃x2

(
γ J

Ms

)2

+ P (x̃) = 0, (16)

which describes a one-dimensional fictitious particle of mass
(γ J/Ms)2 and total energy 0 moving in the potential (see upper
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part of the Fig. 2):

P (x̃) = v2
s

2
(1 − x̃)2 −

(
vc

s

)2

2
�(x̃)(1 − x̃2). (17)

At the end of the wire, the magnetization direction aligns along
the uniaxial anisotropy direction, Mx(x → ∞) = 1, which
translates into x̃(t → ∞) = 1. This implies

P (x̃ ∼ 1) ≈
[
v2

s

2
+ (

vc
s

)2
�′(1)

]
(1 − x̃)2.

This gives us an important physically relevant insight into
the stability of the solution. The function P (x̃) has the
following properties: P (0) = [v2

s − (vc
s )2]/2, P (1) = 0, and

P ′(1) = 0. P ′′(1) is negative for v2
s < −(vc

s )2�′(1) [according
to our definition �′(1) is negative] and becomes positive
for v2

s > −(vc
s )2�′(1). However at current v2

s > (vc
s )2, P (0)

becomes positive. Note that for any reasonable physical system
−�′(1) > 1, so there are a range of currents (vc

s )2 < v2
s <

−(vc
s )2�′(1) at which x̃ (i.e., Mx) is never zero during the

motion, see Fig. 2, so that in the magnetic system the boundary
condition at the pinned center cannot be satisfied, while the
uniform ferromagnetic state is still stable.

Our magnetization problem now corresponds to a particle
that at time zero is at the origin, x̃(t = 0) = 0, and that
approaches unity, x̃(t → ∞) = 1. Since energy is conserved,
this particle might have the following history: the motion of
the particle starts at t = −∞ at x̃ = 1 with an infinitesimal
negative initial velocity. Then the particle moves to the left
and at some time t0 reaches the turning point x̃0 defined by
P (x̃0) = 0 where it switches the direction of the motion; see the
lower part of the Fig. 2. Note that only for vs < vc

s the turning
point is at negative x̃ values, x̃0 < 0, so that the particle crosses
x̃ = 0 (Mx = 0) twice. The origin of time t = 0 (x = 0) then
is defined as a time when the fictitious particle crosses x̃ = 0
(Mx = 0) for the second time; see lower graph of Fig. 2.

Such a solution is, of course, symmetric with respect to the
time t0 where the particle reverses its direction:

t0 = − γ J

Ms

√
2

∫ 0

x̃0

dx̃√−P (x̃)
. (18)

For a current close to jc the turning point is small, x̃0 � 0,
so that we can approximate the potential around x̃ = 0 as
P (x̃) ≈ vc

s (vs − vc
s ) − (vc

s )2x̃ from which we can determine
x̃0 = (vs − vc

s )/vc
s . For vs � vc

s we thus obtain

t0 = − γ J

Ms

√
2

∫ 0

(vs−vc
s )/vc

s

dx√
vc

s

(
vc

s − vs

) + (
vc

s

)2
x

= −γ J
√

2

Msvc
s

√
vc

s − vs

vc
s

.

B. Interpretation as a part of a domain wall

Let us now translate the problem of the particle in a potential
well back to our magnetic model; i.e., time translates back into
the spatial coordinate of the magnetic wire, and the position
x̃ of the particle corresponds to the magnetic component
Mx along the uniaxial anisotropy direction. Extending the
problem of the particle to negative times corresponds to

fictitiously extending the semi-infinite wire also to negative
spatial coordinates. The plot of position of the particle versus
time, shown in Fig. 2, which is symmetric with respect to the
maximum defined by the turning time t0 and coordinate x̃0

then corresponds to a plot of magnetic component Mx versus
spatial coordinate of the wire. In other words, it shows the
profile of the x component of the magnetization along the
fictitiously extended wire, displaying a DW centered around
the coordinate x0 < 0 in the unphysical region with

x0 = −γ J
√

2

Msvc
s

√
vc

s − vs

vc
s

= −γ Je
√

2

PμBjc

√
jc − j

jc

. (19)

We can also estimate the current-dependent width j of the
fictitious DW by −2

j ≈ ∂2
xMx(x = 0). Using Eq. (15) we

obtain

j ≈ γ J

Ms

[
v2

s +
(
vc

s

)2

2
�′(1)

]−1/2

. (20)

Furthermore, the fictitious DW is not planar. It is twisted
around the axis defined by the uniaxial anisotropy. The
characteristic, current-strength-dependent pitch is

�j
≈ [∂xMy(x = 0)]−1 = γ J

Msvs

. (21)

Using this length scale we can rewrite Eq. (19) as

x0 = −
√

2 �jc

√
vc

s − vs

vc
s

, (22)

which shows that the characteristic twisting length scale sets
the length scale for process of DW production.

Increasing the current towards the critical value moves the
fictitious center of the DW towards the pinned end of the wire at
x = 0. This provides an intuitive picture as to why for currents
above the critical current the DW will “twist off” and move
along the wire. But before we discuss the dynamic solution we
first address the ferromagnetic instability of the system and
check that this occurs for even larger currents than jc.

C. The ferromagnetic instability

The analysis of the potential close to 1, where we obtained
the condition v2

s /2 + (vc
s )2�′(1) < 0, yields that above a cer-

tain effective critical spin velocity, i.e., above a critical current
jc∗, even the ferromagnetic solution becomes unstable. To be
precise, the boundary condition at infinity, Mx(x → ∞) = 1,
originating in the uniaxial anisotropy, can only be satisfied
up to the current jc∗ = jc

√−2�′(1) or vc∗
s = vc

s

√−2�′(1),
respectively. For the standard form of the uniaxial anisotropy,
�(Mx) = 1 − M2

x , this means that the current above which
the ferromagnetic solution is unstable is twice as large as
the critical current above which domain walls are created,
jc∗ = 2jc. Note that this stability condition also implies a
condition on the form of the uniaxial anisotropy, as only for
−2�′(1) > 1 it is jc∗ > jc and domain walls are created before
the ferromagnetic solution breaks down. For the idea of how
the ferromagnetic instability is reached it is instructive to look
again at the equation of the DW width; cf. Eq. (20). With our
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definition of jc∗ or vc∗
s , respectively, we can write

j ≈ γ J

Ms

[
v2

s − (
vc∗

s

)2]−1/2
, (23)

so the width of the DW diverges at the current j = jc∗.

IV. DYNAMICS OF DW CREATION

In this part we consider the magnetization dynamics for
currents (just) above jc, where a static solution no longer exists,
see, e.g., Eq. (19), and therefore we must look for a time-
dependent solution. As the current increases towards jc the
virtual DW approaches the start of the magnetic wire from the
left; thus the major effect for currents just above jc will be a
moving DW, so a time-dependent coordinate of the center of
the DW. Therefore, we look for the solution of the form

M(x,t) = M0
(
x − x0(t); vsx0(t)

) + s, (24)

where M0(x − x0; vsx0
) is the static solution with effective

spin velocity vsx0
that solves Eq. (19) for a given fictitious DW

center x0, and the vector field s is a small perturbation, |s| � 1.
As M(−x0(t); vsx0

) = ẑ and M(x − x0(t); vsx0
) → x̂ for large

x, the vector field s has to vanish at the start and end of the
semi-infinite wire, s(x = 0,t) = 0 and s(x → ∞,t) → 0.

To test our ansatz of Eq. (24) let us plug it in into the
simplified LLG equation, Eq. (3). For this we need to calculate
first the time derivative of Eq. (24):

∂t M = −ẋ0∂x M0 + ∂ M0

∂vsx0

∂vsx0

∂x0
ẋ0 + ∂s

∂t
. (25)

For currents just above the critical current, the second term on
the right-hand side is small compared to the other ones, as x0

is small and this term is higher order in x0, because
∂vsx0
∂x0

∼ x0.
Now plugging Eq. (24) into Eq. (3) and linearizing Eq. (3) in
the vector field s we obtain an inhomogeneous linear equation
that needs to be solved for the vector field s(x) satisfying the
above boundary equations:

−∂s
∂t

+ s × δF

δM0
+ M0 × δ2F

δM2
0

s − vs

∂s
∂x

= (
vs − vsx0

− ẋ0
)
∂x M0. (26)

The trivial solution of the above equation, s ≡ 0, that is in
agreement with the vector field s vanishing at the start and end
of the wire, exists if the applied current obeys the following
equation:

ẋ0 = vs − vsx0
= vs − vc

s + M2
s

(
vc

s

)3

2γ 2J 2
x2

0 , (27)

where we obtained vsx0
via Eq. (19). Thus

t =
∫

dx0

[
vs − vc

s + M2
s

(
vc

s

)3

2γ 2J 2
x2

0

]−1

. (28)

The main contribution to the integral comes from x2
0 ∼

2γ 2J 2(vs − vc
s )/[M2

s (vc
s )3] → 0, and outside of this region the

integral converges very quickly. So in finding the period T it
is justified to extend the integration to infinity, even though the
initial equation is correct only for small x0—the error will be
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FIG. 3. Numeric results based on MicroMagnum [18] for the
square of the frequency of texture formation as a function of current
for different α. For these simulations we used [16] λbulk = 104 J/m3,
Jbulk = 1.6×106 J/m, and we have fixed the magnetization at the start
of the wire by a local magnetic field. For these values, numerically we
obtain for the critical current density j num

c /σ ≈ −3.78×1012 A/m2

which agrees within four percent with the analytical result of
jc ≈ −3.92×1012 A/m2. The small discrepancy is probably due to
the method of how we fixed the spin in the numerics. Inset: Slope of
the main figure vs damping constant α. At α = 0 we can compare
to the analytical result of −2.5×105 A/(s m2) and see that we get the
right order.

exponentially small as (vs − vc
s ) → 0. Finally, we obtain our

central analytical result for j > jc:

T =
∫ ∞

−∞
dx0

[
vs − vc

s + M2
s

(
vc

s

)3

2γ 2J 2
x2

0

]−1

=
√

2πγJ

Ms

(
vc

s

)2

√
vc

s

vs − vc
s

=
√

2πe2JMsγ

j 2
c P 2μ2

B

√
jc

j − jc

. (29)

In particular it shows that for currents just above the critical
current jc new DWs are injected from the pinned start of the
wire periodically with a frequency f = T −1 ∼ √

j − jc.
We confirm our analytical result also within simulations; see

Fig. 3, where f 2 as a function of the applied current density j

is plotted. Note that the obtained value for the critical current
in the numerics is independent of the damping parameter
α, and is of the right value j num

c /σ ≈ −3.78×1012 A/m2

compared to analytics jc ≈ −3.92×1012 A/m2. However the
slope does depend on α, as one expects that larger damping
slows down the dynamics and less DWs will be produced.
The DW production dynamics is difficult to simulate at small
values of α as it takes a very long time for the system to
reach a steady state at currents close to jc. From our numerical
data we can infer that the slope value for α = 0 is of the
order of −2.2×105 A/(s m2) which is in the right order of the
analytical value of −2.5×105 A/(s m2).
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V. DISCUSSION

The essential parts of the analytic calculations where shown
in the specific geometry, as shown in Fig. 1. However, all of our
results are independent of the specific underlying model and
the peculiar directions. The only requirements are exchange
interactions and uniaxial anisotropy along a different direction
than the pinned magnetization at the one end of the wire. In
particular we would like to stress that the direction of the
uniaxial anisotropy does not matter. A uniaxial anisotropy in a
direction perpendicular to the wire would also lead to periodic
domain wall formations with the same underlying mechanisms
as long as the pinned magnetization in the wire is at a finite
angle to the uniaxial anisotropy direction. Furthermore, it is
of course not essential that the wire is semi-infinite (it just
needs to be “long enough”); neither is it essential that the
magnetization is fixed at the pinned end of the wire. The same
results are valid for a process of a current-driven DW crossing
a very strong pinning center in a nanowire. The pinning center
pins a DW to itself, but another DW will cross it if the current
is above the critical current jc.

In our simulations we have used the exchange parameter of
Permalloy Jbulk = 1.6×106 J/m and λbulk = 104 J/m3, which
is reasonable for a magnetic nanowire; see Fig. 3. With these
parameters we obtained about 4×108 A/cm2 for the critical
current density.

To reduce the problems with Ohmic heating in experiments
one might consider applying current pulses. In order to inject
a single DW the current must be nonzero only for the time
given by the period T . The total amount of the Ohmic heat per
created DW is about j 2T ∼ j 2/

√
(j/jc)2 − 1. So the amount

of heat produced per DW is minimal at j = √
2 jc (which is

still smaller than jc∗ for the standard anisotropy term). The
total amount of heat produced in the process is ∼2j 2

c .
Our work here has an important perspective from dynamic

system theory. The vast majority of self-oscillations (limit
cycles) induced by spin transfer in magnetic systems cor-
respond to a dynamic loss of stability, i.e., generically to
a pair of conjugated eigenfrequencies crossing the real axis
from positive to negative damping, resulting in an Andronov-
Hopf bifurcation. This is not the case here. As a matter of
fact, Andronov-Hopf bifurcations always manifest themselves
with a vanishing oscillation amplitude and a finite period
at the bifurcation point, i.e., at the critical current value.
Here, in strong contrast, we derive analytically and observe
numerically a finite, in fact saturated, amplitude of oscillation
and a diverging period at the critical current value. These

unique characteristics are strong indications of a saddle-node
homoclinic bifurcation, consistent with the established static
loss of stability, and put the considered system in a class of
itself as far as spin-transfer-induced oscillations are concerned.

VI. CONCLUSION

To conclude, we have considered a ferromagnetic nanowire
with a strong pinning center. We have shown numerically and
analytically that as one increases the current the magnetic
texture at the pinning center stretches and twists until above
a certain critical current a domain wall “twists off” from the
impurity and travels along the nanowire (Fig. 1). For currents
above the critical current this process happens periodically.

The period at which this happens is given by a universal
exponent, T ∼ (j − jc)−1/2. We emphasize that this process
is very general, and is independent of microscopic details.
It occurs already in very simple systems exhibiting only
exchange and uniaxial anisotropy interactions.

A key message from our result is that the process of domain
wall injection by currents requires neither any “twisting” terms
in the model, such as DMI, or dipole-dipole interactions, nor
an assisting magnetic field. We expect that the DMI will not
change the results considerably, but will lower the critical
current. The effects of the dipole-dipole interaction are harder
to estimate, as in particular their exact form will depend on the
realization of the geometry.

In our simulations we have used the exchange parameter of
Permalloy and therefore we predict that current-induced peri-
odic DW production will be observable in simple Permalloy
nanowires and nanowires of similar materials as well.
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