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ARTICLE INFO ABSTRACT
ATIiC’F history: Background: Histological assessment of colorectal cancer (CRC) tissue is a crucial and demanding task for
Received 30 October 2022 pathologists. Unfortunately, manual annotation by trained specialists is a burdensome operation, which
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suffers from problems like intra- and inter-pathologist variability. Computational models are revolution-
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izing the Digital Pathology field, offering reliable and fast approaches for challenges like tissue segmen-
tation and classification. With this respect, an important obstacle to overcome consists in stain color

Keywords: variations among different laboratories, which can decrease the performance of classifiers. In this work,
Colorect‘al cancer we investigated the role of Unpaired Image-to-Image Translation (UI2IT) models for stain color normal-
Generative adversarial network ization in CRC histology and compared to classical normalization techniques for Hematoxylin-Eosin (H&E)

Stain color normalization

images.
Computer-aided diagnosis g

Methods: Five Deep Learning normalization models based on Generative Adversarial Networks (GANSs)
belonging to the UI2IT paradigm have been thoroughly compared to realize a robust stain color normal-
ization pipeline. To avoid the need for training a style transfer GAN between each pair of data domains,
in this paper we introduce the concept of training by exploiting a meta-domain, which contains data
coming from a wide variety of laboratories. The proposed framework enables a huge saving in terms of
training time, by allowing to train a single image normalization model for a target laboratory. To prove
the applicability of the proposed workflow in the clinical practice, we conceived a novel perceptive qual-
ity measure, which we defined as Pathologist Perceptive Quality (PPQ). The second stage involved the
classification of tissue types in CRC histology, where deep features extracted from Convolutional Neural
Networks have been exploited to realize a Computer-Aided Diagnosis system based on a Support Vector
Machine (SVM). To prove the reliability of the system on new data, an external validation set composed
of N = 15,857 tiles has been collected at IRCCS Istituto Tumori “Giovanni Paolo II”.

Results: The exploitation of a meta-domain consented to train normalization models that allowed achiev-
ing better classification results than normalization models explicitly trained on the source domain. PPQ
metric has been found correlated to quality of distributions (Fréchet Inception Distance — FID) and to
similarity of the transformed image to the original one (Learned Perceptual Image Patch Similarity —
LPIPS), thus showing that GAN quality measures introduced in natural image processing tasks can be
linked to pathologist evaluation of H&E images. Furthermore, FID has been found correlated to accuracies
of the downstream classifiers. The SVM trained on DenseNet201 features allowed to obtain the highest
classification results in all configurations. The normalization method based on the fast variant of CUT
(Contrastive Unpaired Translation), FastCUT, trained with the meta-domain paradigm, allowed to achieve
the best classification result for the downstream task and, correspondingly, showed the highest FID on
the classification dataset.
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Conclusions: Stain color normalization is a difficult but fundamental problem in the histopathological
setting. Several measures should be considered for properly assessing normalization methods, so that
they can be introduced in the clinical practice. UI2IT frameworks offer a powerful and effective way to
perform the normalization process, providing realistic images with proper colorization, unlike traditional
normalization methods that introduce color artifacts. By adopting the proposed meta-domain framework,
the training time can be reduced, and the accuracy of downstream classifiers can be increased.

© 2023 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Colorectal cancer (CRC) is the second cause of death for can-
cer with mortality reaching almost 35% [1]. In the last few years,
new targeted therapies have been developed gaining significant
improvement in clinical outcomes for several malignancies [62].
To date, a shift from tumor cells to the tumor microenvironment
(e.g., for immunotherapic treatments) highlighted the importance
to know cell-cell interaction in the context of tissue morphology.
As an example, there is a growing interest in the knowledge of the
spatial location of transcriptomic data. Thus, the segmentation of
tissue types is required to better perform spatial analyses, e.g., for
the selection of relevant regions of interest. Moreover, it is well-
known that stroma-rich CRC has a poor prognosis [2], and a tissue
segmentation pipeline could be helpful in prognosis prediction.

Image processing and Deep Learning (DL) techniques can be ex-
ploited for the automatic analysis of histological images, e.g., tissue
type classification. The traditional workflow for realizing an image
classifier is composed of several stages, i.e., preprocessing, feature
extraction, dimensionality reduction, and classification, that can be
obtained with models like Support Vector Machines (SVMs), Deci-
sion Trees (DTs), and Artificial Neural Networks (ANNs). DL-based
workflows, instead, can enable end-to-end training of the mod-
els, easing complex steps, such as handcrafted feature extraction,
and leading to performance improvement. These techniques can be
exploited for developing Computer-Aided Diagnosis (CAD) systems
which can enhance pathologists’ workflows, reducing issues con-
cerning intra- and inter-pathologist variability [3].

Nevertheless, a fundamental problem regarding the histopatho-
logical classification of images arises from the differences in colors
between tissue samples from different institutions. Indeed, a com-
plex protocol composed of several steps, namely: (i) collection and
fixation, (ii) dehydration and clearing, (iii) paraffin embedding, (iv)
microtomy, (v) staining, (vi) mounting, and (vii) digitalization, is
required for Digital Pathology workflows [3]. Artifacts and differ-
ences among laboratories can be introduced at any of these stages
[4].

Stain color normalization is therefore a pivotal pre-processing
step for successfully deploying Deep Learning CAD frameworks in
Digital Pathology setups [5,6]. Currently, the taxonomy of stain
color normalization methods comprises: (a) global color normal-
ization; (b) color normalization after stain separation; (c) color
transfer with deep neural networks [4]. The first two approaches
involve traditional image processing techniques, whereas the third
harnesses the power of DL. Indeed, in recent years, the possibil-
ities offered by Generative Adversarial Networks (GANs) [40], to
effectively implement color transfer between histopathological im-
ages, are improving the performances of classification systems that
can rely upon higher quality normalized images [7]. Other authors
considered the problem of stain color normalization in nuclei seg-
mentation pipelines [8], or for normalization of tissue of breast and
prostate cancers [9,10], but most of these works limit their analysis
to Conditional Generative Adversarial Networks (cGAN) [11], Cycle-
GAN [12] and its variants, such as Residual Cycle-GAN [13].

The Image-to-Image Translation paradigm [11] can be thought
as a general framework to tackle a variety of image analysis prob-
lems, such as segmentation, color normalization, reconstruction
of original images from labels, and conversion from one source
modality to another, among the others. This approach consists
in training a conditional GAN [42] for translating images from a
source domain to a target domain; however, such architectures
need a dataset with paired images for setup and training. On the
other hand, CycleGAN [12] and several subsequent works [43-
49] focused on the idea to realize the image domain translation
having only the domain as the label. This setting does not require
paired data and has led to the concept of Unpaired Image-to-Image
Translation (UI2IT). Such paradigm allows to construct datasets for
normalization in a manner that is affordable for Digital Pathology
laboratories, as paired image data is normally not available, espe-
cially when data come from two distinct institutions.

In this work, we aimed to realize a reliable pipeline for stain
color normalization and tissue classification in H&E samples of
patients with CRC. For the stain color normalization stage, five
GANs [12,43,48,49] based on the UI2IT framework have been thor-
oughly compared. Furthermore, four traditional image processing
normalization techniques [14-17] have been considered as base-
lines. In order to assess the feasibility of the proposed normaliza-
tion methodology, an evaluation of the generated tiles has been
realized by an expert pathologist, introducing a metric that we de-
fined as Pathologist Perceptive Quality (PPQ). Afterwards, to real-
ize the tissue classifier, three CNNs have been considered as fea-
ture extractor from tile normalized with the previously mentioned
techniques. An SVM has been trained on top of deep features, in
order to assess the classification accuracy of the developed CAD
system.

Contrarily to what is usually done in stain color transfer, where
a generative model is trained between each pair of domains, a
meta-domain — The Cancer Genome Atlas (TCGA) — composed of
the union of data coming from several laboratories, has been con-
sidered in place of the source domain in the training phase of the
stain color normalization module. With the only need to eventually
perform a double normalization at inference time, on both source
and target classification domains, the proposed methodology has
the advantage of avoiding the expensive process of training multi-
ple GANs. The proposed meta-domain methodology has been com-
pared to the standard approach for GAN-based stain color transfer,
i.e., learning the stain transfer mapping directly from the source
domain to the target domain.

Summarizing, in this work, we added the following innovative
contributions: (i) an extensive comparison of normalization tech-
niques in order to assess the most reliable ones for validating tis-
sue classifiers on data coming from different laboratories; (ii) an
investigation of features extracted from deep CNN architectures for
CRC tissue classification; (iii) an evaluation method for assessing
the quality of generated tiles from expert pathologists, resulting
in the conceptualization of a novel perceptive metric, PPQ; (iv) a
setup for UI2IT stain color normalization which does not require
the need for training style transfer GANs between every pair of
data domains, via the exploitation of a meta-domain; (v) a collec-
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tion of a validation cohort of samples enrolled at the IRCCS Isti-
tuto Tumori Bari “Giovanni Paolo II”, resulting in a publicly avail-
able dataset of 10 WSIs and N = 15,857 annotated tiles [19].

The remainder of the paper is structured as follows.
Section 2 details related works in both colorectal cancer tis-
sue classification and stain color normalization, encompassing
techniques which are traditionally adopted for H&E images and
those belonging to the UI2IT framework. Section 3 presents mate-
rials and methods adopted for this research. Firstly, the employed
and collected datasets are described. The experimental UI2IT
setting, which features a meta-domain source dataset, is intro-
duced. Evaluation metrics for assessing the quality of generated
normalized images are described, with specific considerations for
histopathological scenarios. Section 4 presents the experimental
results, both for the quality of normalized images and for the
classification task. Results are then discussed in Section 5, where
also limitations and directions for future works are presented.
Finally, conclusions are portrayed in Section 6.

2. Related works
2.1. Colorectal cancer tissue classification

The issue of classifying epithelium and stroma from digitized
tumor tissue microarrays (TMAs) has been considered by Linder
et al. in 2012 [20]. In the feature extraction phase, the authors
took advantage of LBP (Local Binary Patterns) and LBP/C, where C
is a contrast measure. Other features considered were Gabor fil-
tered images and Haralick texture features [21,22]. Employing an
SVM classifier, the authors stated that the LBP/C-based is the best
one, with an AUC (Area Under the Curve) ROC (Receiver Operating
Characteristic) of 0.995.

Kather et al. considered a multi-class tissue classification in the
domain of colorectal cancer histopathology [23]. During the fea-
ture extraction stage, they considered several categories of fea-
tures, after having transformed the original color images into gray-
scale ones: histogram features, of both lower-order and higher-
order; LBP; Gabor filters; gray-level co-occurrence matrix (GLCM);
perception-like features. For the classification step, the authors in-
vestigated four classifiers: decision trees, linear SVM, radial-basis
function SVM, and 1-nearest neighbor. The same feature set can
obtain higher results by exploiting red channel versions of images
instead of gray-scale ones [24], even though this observation holds
mainly for unnormalized images. Kather et al. also exploited the
capabilities of CNNs for the sake of classifying CRC Hematoxylin-
Eosin (H&E) histopathology images of TCGA composed of 862
whole slide images (WSIs) [25].

Even though Ciompi et al. [6] claimed the importance of stain
color normalization for CRC tissue classification, posing the focus
on classical techniques [15,16,18], from the works analyzed in this
section, it emerges that no systematic investigation of recent meth-
ods based on UI2IT has been carried out in this context.

Indeed, most of these studies are tailored to discover the most
efficient features or classification architecture for the task in hand,
without a proper consideration of the pre-processing steps such as
stain color normalization.

2.2. H&E normalization

Histopathology involves a manual staining procedure for
preparing tissues prior to microscopic imaging for diagnosis. This is
a non-standardized procedure which may cause considerable vari-
ability in the color characteristics of tissue samples from different
laboratories; this can occur due to inconsistent tissue staining, dif-
ferent color responses to distinct scanners, or differences in raw
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materials and stain manufacturing techniques. Stain color varia-
tion degrades the performance of CAD systems. In the presence of
severe color variation in histopathological images, stain color nor-
malization, which is achieved by removing the stains for visual en-
hancement, is a common practice.

Among the most popular image processing methods, it is worth
mentioning the works of Reinhard et al. [14], Macenko et al. [15],
Khan et al. [16], and Vahadane et al. [17]. These works are usu-
ally considered as reference methods when authors propose novel
methods for stain color normalization [7,11,27,31,32]. Nevertheless,
important limitations of these methods include the fact that they
require H&E staining, the need of exploiting a template patch for
fitting the stain distributions [13], and the introduction of color
artifacts. On the other hand, the proposed stain normalization
methodology, based on UI2IT, can be applied to every type of stain-
ing, and are not restricted to H&E images only.

For more details about normalization techniques and pre-
processing procedures, the interested reader is referred to dedi-
cated surveys [4,33] or to the original papers mentioned before.

2.3. Stain color normalization for colon histological tissue

Several DL-based methods have been proposed to tackle the
stain color normalization problem for histopathological tissues in-
cluding the colon [8,13,26-28].

Bentaieb et al. proposed a stain transfer-based approach for
stain color normalization [26]. The authors designed a discrimi-
native image analysis network that has the capability to relocate
stains between different datasets. Their architecture is composed
of a generative network devoted to learning both dataset-specific
staining properties and image-specific color transformation, and a
task-specific network which is exploited for the downstream task
(as segmentation or classification). Their model can be trained
end-to-end by exploiting a multi-objective loss. The authors’ con-
clusion states that their model is capable of improving the results,
both for what concerns the quality of normalized images, and the
accuracy of the networks for the downstream tasks, over various
baselines.

Pontalba et al. evaluated the impact of several existing method-
ologies for stain color normalization in a setup for nuclei seg-
mentation [8]. The considered normalization techniques comprise
histogram specification, color transfer, stain specific color transfer,
spectral matching, and CycleGAN. The authors also considered sev-
eral measures for assessing the quality of normalized images, be-
sides evaluating the results of the downstream segmentation task.
To enhance the CycleGAN capabilities, de Bel et al. proposed an
improvement over the base model, with the embodiment of resid-
ual learning, devising an architecture that they defined as Resid-
ual CycleGAN [13]. The authors compare the performance of their
stain normalization approach, also with respect to data augmenta-
tion, to prove the robustness of the downstream segmentation net-
works. The considered downstream applications include segmenta-
tion from colon and kidney tissue samples.

Shen et al. noted that the transformation induced by GANs can
cause information loss, or suffer from problems such as mode col-
lapse, damaging results for the subsequent diagnostic task [27].
To solve this problem, they devised a contrastive learning method
with a color-variation constraint, to retain the recognizable phe-
notypic features when using a GAN for stain color normaliza-
tion. Self-supervised learning allows to cluster discriminative tissue
patches among several types of tumors.

Kausar et al. introduced a deep model, which they defined as
Stain Acclimation Generative Adversarial Network (SA-GAN), which
has an architecture that comprises one generator and two discrim-
inators [28]. As usual, the purpose of the generator is to transform
images from the source domain to the target domain. The two dis-
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criminators, instead, have different roles: the first one enforces the
generated images to retain the color patterns of the target domain,
whereas the second one enforces the generated images to maintain
the structure contents of the source domain.

With respect to the work summarized for the stain color nor-
malization, we observe that: (i) other authors have not applied
these techniques for our application, that is multiclass CRC tis-
sue classification, as presented in Section 3; (ii) other authors did
not always found a suitable way to include pathologists evalua-
tions or to correlate them with existing metrics for assessing GAN-
generated image quality or accuracy of the downstream task; (iii)
other authors have not explored the whole UI2IT framework, but
rather focused on single models, especially those similar to Cycle-
GAN [8,13] or contrastive learning [27].

2.4. Unpaired image-to-image translation

Stain normalization of histopathological images performed with
GANs is gaining much attention recently [7], with a particular fo-
cus on CycleGAN [12] and its variants [13,34]. Nonetheless, many
other algorithms belonging to the UI2IT framework have not been
explored for the stain color transfer task.

In this subsection, we summarized and categorized relevant
works based on GANs for UI2IT, to explain the role of UI2IT in the
normalization scenario for histopathological images. In the follow-
ing, S and T denote the source and target domain, whereas s and ¢
are instances of the two domains.

The interested readers may find useful information also in sur-
veys concerning about adversarial-learning-based I2IT [35-37] or
GAN applications, techniques for training, and architectures [38-
41].

2.4.1. Cycle consistency-based

In UIRIT setups, cycle-consistency is the most widely adopted
method for imposing association [43]. This paradigm is grounded
on the concept of retrieving also the reverse mapping from the
target domain back to the source one. Furthermore, it enforces
a check that a sample input image can be reconstructed. Among
the most well-known architectures which fall into this category, it
is worth mentioning CycleGAN [12], DualGAN [44], and DiscoGAN
[45].

CycleGAN overcomes the limitations of the paired I2IT frame-
work by learning a mapping Gs: S — T in a way that Ggr(S) is
indistinguishable from T exploiting an adversarial loss. To avoid
the issues coming from the under-constrained mapping, at the
same time, an inverse mapping Grs: T — S is also learned. In this
way, the cycle consistency loss can enforce Gps (Gsr(S)) ~ S and
Gor (Grs (1) ~ T.

2.4.2. One-sided translation

Instead of enforcing cycle-consistency, it is possible to promote
relationships belonging in the input to be similarly reflected in the
output. For instance, patches which are perceptually similar inside
an input image should retain their proximity in the output. TraVeL-
GAN [46], DistanceGAN [47], and GcGAN [48] allow one-way trans-
lation, so avoiding the need for a cycle-consistency. The problem is
that they require relationships between full images, or with prede-
fined distance functions.

While the cycle consistency framework needs to train two gen-
erators simultaneously, Gsr and Grs, one-directed domain transla-
tion can be successfully achieved also by only preserving pairwise
images’ distances. An important limitation of both cycle consis-
tency and distance preservation, is that they do not properly con-
sider simple geometric transformations.

The idea of enforcing a geometry-consistency constraint in a
UI2IT GAN framework comes from the work of Fu et al. [48]. Ac-
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cording to the authors, considering a geometric transformation f{ -
), the images from the source domain should not be altered by the
corresponding generators Ggr and Gg/, where S" and T’ are the do-
mains obtained by applying f{ - ) to S and T, respectively.

From a mathematical perspective, considering a random sam-
ple s from original domain S, a proper geometric transformation
fl - ), and its inverse f~1( - ), the geometry consistency constraint
can be formulated as flGsr(s)) ~ Ggp(fs)) and f~1(Gyp(fls))) ~
Gsr(s). Since it is improbable that Gsr and Gy make errors in the
same region, the generator models act as co-regulators for each
other, thanks to the geometry consistency constraint, thus improv-
ing over mistakes in local zones of their relative translations.

It is worth noting that the one-sided translation is particularly
interesting for stain color normalization, since one usually wants
to translate tiles from the original domain to the target domain,
and therefore there is no need to exploit both generators.

2.4.3. Patchwise contrastive learning approaches

CUT and FastCUT [43] have been proposed to solve the limita-
tions encountered in relationship preservation-based architectures,
by replacing cycle-consistency with the possibility of learning a
cross-domain similarity function by maximizing mutual informa-
tion between corresponding patches from images belonging to the
source and target domains, without the need to depend on some
predefined distance.

The architecture proposed by Park et al. [43] enforces positive
(related) patches to map to nearby points in the learned feature
space, if compared to negative (unrelated) patches coming from
the dataset. This framework allows one-sided translation in UI2IT
setups, resulting in a greater quality and less training time com-
pared to cycle-consistency-like approaches.

Mathematically, we can define: the query v € RX, the positive
vt e RX and N negative samples v— € RN * K, In these definitions,
v, v, v7 are K-dimensional vectors, and v} is the i-th vector from
the matrix of negatives v—. The cross-entropy loss can then be cal-
culated, defining the probability of a positive example to be chosen
over negatives, as reported in Eq. (1).

exp (v- %)
exp(v- L) + YN, exp (u. ?)

T is a temperature defined as equal to 0.07 by the original authors.
The goal of the CUT framework is to relate source and target image
patches. In the considered context, the query concerns the target,
whereas the positive and negative samples concern corresponding
and noncorresponding source patches, respectively.

In order to enforce this relationship, the authors selected |
layers with whom they encoded the input images and passed
them to a two-layers MLP H;, creating a stack of features {z; }J =

(1)

I(v,v,v7) = —log

{Hj(G{;nC(s))}], where Gl,. is the output of the j-th layer. In
a similar way, they also encoded the output image in {2j}]=

{Hj(Gﬁnc(G(s)))}j. The objective is to match the corresponding
source-target patches for each layer and use the other ones from
the source image as the negatives.

Then, they defined, for layer j, the features of the positive patch
as z7eR% and the features of the negative patches as zJQ\q €

R@&DxCG where j e {1, 2, .., J} indexes the selected layer and
q €{1,2, .., Q} indexes the spatial location. The number of spatial
locations and the number of channels for layer j are referred to as
Q; and G, respectively.

The loss is calculated as reported in Eq. (2).

] 9

Lpatennce (G, H, S) = Ess Z Z [(2‘}, Z‘}, Z?\Q) 2)
j=1q=1
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The final objective function can be defined as portrayed in
Eq. (3):
Loan(G. D, S, T) + AsLpatcince (G, H. S) + ArLpaeennce (G H. T) - (3)

where Lpgnce(GH, T) is the identity loss that enforces the gener-
ator to avoid unnecessary changes. The configuration with Ag = 1
and Ay = 1 corresponds to CUT, whereas the configuration with
As = 10 and Ap = O is referred to as FastCUT.

AI-FFPE [49] is a modification of CUT that it adds some unique
characteristics, like the presence of a Spatial Attention Block (SAB)
in the architecture of the generator and a L; regularization factor
in the objective function, that is calculated as shown in Eq. (4):

Lean(G, D, S, T) + Areglreg(G,S) + AsLparennce (G, H, S)
+A1Lparcince (G, H. T) (4)

where Lieg(G,S) = |IS — G(S)I;.

The authors of AI-FFPE claim that in the frozen section to FFPE
(formalin-fixation and paraffin-embedding) translation task, their
model outperforms generic image-translation networks. Particu-
larly, they state that their modifications to the CUT architecture
contribute to the artifact-correcting performance of their model.

3. Materials and methods
3.1. Datasets

Two kinds of datasets have been collected for this research:
datasets for stain color normalization and for multi-class classifi-
cation. All datasets contain histopathological image tiles belonging
to WSIs of patients diagnosed with CRC.

For what concerns stain color normalization, the considered
datasets are: a dataset introduced by Kather et al. [29] (SD1) and a
local dataset collected at IRCCS Istituto Tumori “Giovanni Paolo II”
(SD2). The SD1 dataset is composed of image tiles coming from
604 CRC WSIs in the TCGA database, while the SD2 dataset is
composed of image tiles coming from 58 WSIs. All tiles have di-
mensions of 512 x 512 px at 0.5 pm/px. SD1 and SD2 have been
used to construct two tile-level datasets, each with a training set
of N = 100,000 tiles and a test set of N = 50,000 tiles.

With respect to the multi-class classification, the considered
datasets are: a dataset introduced by Kather et al. [25,30] (CDT)
and a local dataset collected at IRCCS Istituto Tumori “Giovanni
Paolo I1I” (CDV).

The CDT dataset [25,30] is composed of N = 100,000 image tiles
from H&E histological tissue of humans with CRC, subdivided into
nine tissue classes. The size of the images is 224 x 224 pixels,
which correspond to 112 x 112 pm?2.

The CDV dataset is composed of N = 15,857 tiles coming from
10 WSIs. The tiles have dimension 224 x 224 pixels which corre-
spond to 116 x 116 um?2. The dataset has been annotated by an
expert pathologist. We made our dataset publicly available [19],
to ease the development and comparison of computational tech-
niques for CRC histological image analysis.

Both the datasets have been classified into the following seven
classes, as done in our precedent work [24|: TUM - tumor ep-
ithelium; MUSC_STROMA - the union of SIMPLE_STROMA, encom-
passing smooth muscle, tumor stroma and extra-tumor stroma,
and COMPLEX_STROMA, consisting of stroma or smooth muscle
containing single tumor cells and/or few, non-aggregated immune
cells; LYM - lymphoid follicles and other immune-cell conglomer-
ates; DEBRIS_MUCUS - hemorrhage, mucus and necrosis; NORM -
normal mucosa; ADI - adipose tissue; BACK - background.

To accomplish this categorization for the CDT dataset, the DE-
BRIS_MUCUS class has been built by combining the DEB and MUC
classes; instead, the MUSC_STROMA class has been constructed by
fusing the MUS and STR classes. The CDT dataset obtained with
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this procedure is composed of N = 77,805 tiles, considering that
only half of the images of the merged classes have been retained,
for maintaining class balancing during training.

For both the locally collected datasets, namely, SD2 and the
CDV, the Institutional Ethics Committee of the IRCCS Istituto Tu-
mori “Giovanni Paolo II” approved the study (Prot. n. 780/CE).

Fig. 1 portrays frequency distribution and example tiles from
normalization and classification datasets. Instead, color artifacts
introduced by the classical normalization methods presented in
Section 2.2 are shown in Fig. 2.

3.2. Stain normalization with a meta-domain

In the standard pipelines developed for stain color normaliza-
tion exploiting UI2IT frameworks, two domains are usually consid-
ered: a source domain S and a target domain T. The objective is to
transform images of the source domain to the distribution of the
target domain. Therefore, a generator, to learn a map from S to T,
namely Ggr(S) ~ T, is the outcome of the training stage for stain
color transfer. The inverse mapping is referred to as Grs, and is re-
quired only for the cycle-consistency-based methods. On the other
hand, traditional normalization methods exploit a reference tile, R.

Instead, in the framework proposed for the CAD for CRC clas-
sification, we considered three domains: the meta-domain M, the
source domain S, and the target domain T.

In our application, M is a composition of multiple subdomains
S1,..., Sn, covering a wide variety of stain color conditions, so that
by learning Gyr(M) ~ T, we are capable to approximately map
Gur(S) ~ T. In the proposed configuration, the results can be fur-
ther improved from performing a double normalization, i.e., Gyr(S)
and Gyr(T). Indeed, we note that Gy7(S) is more similar to Gy(T)
than to T. This is in contrast to the usual way to perform stain
transfer with GANs, where the baseline UI2IT consists in compar-
ing distribution of images of Gs(S) with T.

When referring to our application, M is the domain of images
coming from the TCGA (meta-domain), S is the domain of images
coming from the training set for the classification (source domain),
and T is the domain of images coming from our local cohort (target
domain). The proposed framework may lead to improvements in
generalization with respect to performing the traditional Ggp(S).

3.3. Generated image tiles quality assessment

In this subsection, relevant metrics which can be used for as-
sessing the quality of generated images are presented, so that both
mathematical and perceptual evaluations can be done.

Quantitative evaluation of the quality of images generated by
GANs is not an easy task, but different approaches have been pro-
posed in literature. Common quality objective measures for image
similarity include Peak Signal to Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) [50]. As noted by Zhang et al. [51], these
metrics are shallow, simple functions, which cannot measure in a
proper way the human perception. They proposed to realize a per-
ceptual distance with deep features exploiting the VGG network, re-
sulting in a Learned Perceptual Image Patch Similarity (LPIPS) met-
ric. Unluckily, these measures can be exploited only if ground-truth
images are available [35], so they are excellent candidates to as-
sess results obtained with conditional GAN for paired I2IT tasks,
but are not directly applicable in UI2IT settings, at least to assess
adherence of the mapped image to the target domain. On the other
hand, these measures can be considered to evaluate the introduc-
tion of artifacts between original images and their translated ver-
sion.

Scores obtained exploiting Inception-v3 network pretrained on
ImageNet, such as Inception Score (IS) [52], and Fréchet Inception



N. Altini, TM. Marvulli, EA. Zito et al.

CDT

@ um O muscstrRoma @ v @ oesris-mucus @ norv @ ADI

Computer Methods and Programs in Biomedicine 234 (2023) 107511

CDV

MUSCSTR LYM

DEB-MUCUS  NORM

[ TUM

" AR——
SIS TR Z

{3
LW
o
et
0.8

7%

?“S_g,&;

o 38es 2wl L
o 28y

Fig. 1. Datasets exploited for the stain normalization and the downstream classification task. SD1 and SD2 are the datasets for stain normalization. CDT and CDV are the

datasets for the classification task.

Distance (FID) [53] were introduced to overcome this issue and al-
low an assessment of realness and heterogeneity of generated im-
ages, from the point of view of feature distribution.

To determine the FID, two multivariate Gaussians are fitted on
feature vectors obtained by embedding samples from the Inception
network. Then, the Fréchet Distance [54] or the Wasserstein-2 dis-
tance [55] is calculated among these two gaussian distributions, as
in Eq. (5):

1
FID(r. f) =1 wr — s 113 +Tr(2r + 35— 2(2r2f)2)

where pr, ju represent the mean of the real and fake generated
sample feature vectors, respectively, and X, ¥ represent the co-
variance matrix of the real and fake generated sample feature vec-
tors, respectively.

In the research community, there is not a wide agreement on
how to evaluate unpaired image-to-image translation frameworks
|56]. Therefore, the considered experimental design involves the
adoption of several metrics among the considered datasets.

To assess the reliability of the fake images generated via GANs,
a novel perceptive quality measure has been introduced, which
we have defined as PPQ. In detail, an image tile and the related
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Fig. 2. Example of artifacts introduced by classical stain color normalization meth-
ods. (Top Row) Samples belonging to the training set for classification (CDT). (Bot-
tom Row) Samples belonging to the test set for classification (CDV).

GAN-normalized versions of the same tile were shown to an ex-
pert pathologist, and for each normalization method the patholo-
gist had to decide a discrete score between 1 and 4, where 1 rep-
resents an excellent quality image and 4 a bad one. In our experi-
mental design, 200 image tiles were shown to the pathologist, for
both the SD1 and SD2 datasets.

3.4. Experimental design

Given their importance as a benchmark, we decided to include
the classical normalization methods [14-17] as baseline methods.

Among Cycle Consistency-based networks, due to its wide
adoption in the stain color normalization domain [8-10,31], only
CycleGAN has been included in the experiments. Amid the One-
sided Translation networks, GcGAN has been included in our ex-
periments, with the 90° clockwise rotation as geometric transfor-
mation, since it has been proven useful by the authors of the orig-
inal paper. Among Patchwise Contrastive Learning approaches, the
CUT, FastCUT and AI-FFPE models have been included in our analy-
sis. All GAN models have been trained from scratch with a learning
rate of 0.0002, for 5 epochs, with the Adam solver [57] and a batch
size of 1. Input images were of size 256 x 256. No other prepro-
cessing was applied to the images.

In order to perform a comprehensive comparison and analysis
of normalization methods and downstream classifiers, we designed
the experiments as explained in this section.

CDT and CDV refer to the training and test set for classifica-
tion, respectively. N(CDT) and N(CDV) refer to their normalized
version, that is Gyp(CDT) = CDTyr and Gyp(CDV) = CDVyr for
the GAN normalization with the meta-normalization paradigm,
Gs7(CDT) = CDTst and Ggp(CDV) = CDVgr for the standard GAN nor-
malization, and CDTgr and CDVgr for classical normalization, re-
spectively.

SD1 and SD2 refer to the stain normalization datasets.
N(SD1) and N(SD2) refer to their normalized version, that is
Gur(SD1) = SD1yr and Gyr(SD2) = SD2)r for the GAN normaliza-
tion, and SD1gr and SD2gr for the classical normalization, respec-
tively. Images from CDV and SD2 belong to the T domain, images
from SD1 belong to the M domain, and images from CDT belong to
the S domain.

For what concerns normalization procedure:

(1) A reference tile has been used for the traditional normalization
methods (Reinhard, Macenko, Khan, Vahadane). Both the CDT
and CDV datasets image tiles have been normalized when used
for classification. In order to assess normalized image distribu-
tions for these methods, FID has been calculated between:
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(a) SD]RT and SDZRT,
(b) CDTgr and CDVgy.

(2) In order to obtain a model capable of mapping CDT and CDV
image tiles to the same target domain, all the GANs have been
trained by exploiting SD1 and SD2. The following tests have
been made in order to evaluate if a double normalization (that
is, normalizing images by performing Gyr(S) and Gyr(T)) would
work better than a single normalization (i.e., normalizing im-
ages by performing Gyr(S) only, while keeping T images unal-
tered), in our setting. In detail, to assess the quality of the gen-
erated image distributions, FID has been calculated between:
(a) SD1yr and SD2,

(b) SD]MT and SDZMT,

(c) CDTyr and CDV,

(d) CDTMT and CDVMT.

(3) In order to understand the quality of the normalized images
with respect to the original ones, PSNR, SSIM, and LPIPS have
been determined between:

(a) SD1gr and SD1,
(b) SD2gr and SD2,
(C) SD]MT and SD1,
(d) SD2yr and SD2.

(4) In order to understand the quality of the GAN-generated im-
ages, from the pathologist perspective, PPQ has been calculated
considering:

(a) SD1yr and SD1,
(b) SD2yr and SD2.

(5) In order to understand how UI2IT models affect saturation of
images, SSIM between saturation channels (in HSV color space)
has been calculated between:

(a) SD1pyr and SD1,
(b) SD2yr and SD2.

For what concerns the downstream classification, three CNNs
have been exploited as feature extractor before training an SVM
classifier. In detail, the employed SVM was a multi-class classi-
fication error-correcting output code (ECOC) model with one-vs-
one coding design and Radial Basis Function (RBF) kernel. The
three CNNs considered are DenseNet201 [58], InceptionV3 [59],
and VGG16 [60]. The SVM model has been trained on features ex-
tracted from N(CDT) and validated on features belonging to N(CDV).

In particular, the following configurations have been compared
for the classification:

(1) SVM trained on CDT and validated on CDV, with no normaliza-
tion.

(2) SVM trained on CDTgr and validated on CDVgy, for the consid-
ered classical normalization techniques.

(3) SVM trained on CDTsy and validated on CDVsr, for the consid-
ered UI2IT GAN-based approaches, trained from source to target
domain (baseline UI2IT).

(4) SVM trained on CDTyr and validated on CDV)r, for the consid-
ered UI2IT GAN-based approaches, trained from meta-domain
to target domain (meta-domain UI2IT).

A detail of the experimental design is pictorially represented in
Fig. 3.

4. Experimental results

The results obtained from the experiments described in
Section 3.4 are presented in this section. In order to better char-
acterize the two components of the developed pipeline, three sub-
sections are delineated. The first one deals with the results of the
stain color normalization, whereas the second one presents the re-
sults of the multi-class classification. Lastly, the third section de-
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Fig. 3. Workflow employed for the study. (A) Training and use of the stain color normalization module. The GANs belonging to the UI2IT framework are trained by exploiting
a meta-domain M. Source and Target domains, S and T, refer to the training dataset and the external validation dataset for classification, respectively. Traditional color
normalization techniques exploit a reference tile R. (B) Assessment of the stain color normalization models. (C) Training and validation of the CRC tissue classifier. The
classifiers are trained on features separately extracted for every normalization technique.
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Fig. 5. Boxplots for SSIM between saturation channel of normalized images versus original one.

scribes the quantitative relationships between stain color normal-
ization metrics and classification performances.

4.1. Stain color normalization

A visual example of the different techniques based on UI2IT for
stain color normalization is portrayed in Fig. 4. It is possible to
notice different color patterns for the various methods. In partic-
ular, FastCUT tends to generate tiles which have a higher satura-
tion than the ones generated from other methods. This fact can
be seen from Figs. 5 and 6. Boxplots in Fig. 5 shows that, for the
SD1 dataset, N(SD1) images obtained with FastCUT are the ones
with saturation more similar to the original version. This is be-
cause FastCUT is the method which perform the lesser desatura-
tion. Instead, for the SD2 dataset, N(SD2) images obtained with
FastCUT are the ones with the greatest dissimilarity to the original
ones. This is because other methods do not saturate these images,
instead FastCUT increases the saturation of input images.

Image similarity measures, namely PSNR, SSIM, and LPIPS, have
been calculated between SD1 and N(SD1) and SD2 and N(SD2), in
order to assess presence of artifacts or image degradation when
performing stain color normalization. These quantitative results are
reported in Table 1 and Fig. 7. In the comparison between SD1 and

N(SD1), we can note that, among the classical normalization meth-
ods, Macenko displayed the highest PSNR and SSIM, being 22.75 +
5.17 and 0.95 + 0.05, respectively, and the lowest LPIPS, being of
0.06 + 0.05. For PSNR, the FastCUT method achieved better perfor-
mances, with a value of 27.61 + 1.41. For SSIM and LPIPS, the GAN-
based methods obtained lower results than Macenko’s method. In
the comparison between SD2 and N(SD2), we can observe that Cy-
cleGAN showed the best values for PSNR, SSIM, and LPIPS, being of
35.15 + 1.73, 0.98 + 0.01, and 0.05 + 0.01, respectively.

Dissimilarity between distributions of features extracted from
the images coming from the different domains are reported in
Table 2 and Fig. 8. In the comparison on the stain normalization
datasets, CycleGAN achieved the lowest FID, being 15.53, for the
single normalization set-up. GcGAN, instead, displayed the best FID
for the double normalization configuration, with a value of 15.65.
On the classification datasets, with the single normalization, Al-
FFPE obtained the best FID, being of 67.36. The results drastically
improve with a double normalization, in which FastCUT achieved
an FID of 49.60 on the classification datasets.

The PPQ metric has been used to assess the GAN-generated im-
age quality from a pathologist perspective. It has been checked be-
tween source image tiles and corresponding generated normalized
images, so that the pathologist can assess not only the reality of
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Fig. 6. Saturation differences between the considered UI2IT methods. (A) Tile from SD1 dataset. (B) Tile from SD2 dataset. (First Row) Original tile in the first column, then
different GAN-based normalization methods. (Second Row) Saturation channel of the images in the first row. (Third Row) Difference between saturation of normalized image

compared to the original one.

the generated image, but also its consistency with respect to the
original one and the lack of artifacts. Quantitative results are por-
trayed in Table 3 and Fig. 9. CycleGAN demonstrated the best PPQ
in the normalization of the SD1 and SD2 datasets, being the values
of 1.39 + 0.82 and 1.02 + 0.21, respectively.

4.2. Multi-class classification

The accuracy of the multi-class classification models has been
assessed both with internal cross-validation on the CDT dataset,
and with external validation on the locally collected CDV dataset.
These quantitative results are shown graphically in Fig. 10, and
numerically in Tables 4 and 5. Other classification metrics are
reported in Tables 6 and 7, for the traditional and UI2IT-based
normalization methods, respectively. The DenseNet201 model con-

10

sistently outperformed the other deep feature extractors in all
the scenarios, with the only exception of the FastCUT model
in the baseline UI2IT configuration. As shown in Table 4, amid
the traditional normalization methods, the Reinhard is the one
which allowed to obtain the highest validation accuracy. As re-
ported in Table 5, among the GAN-based normalization meth-
ods, trained with the exploitation of the meta-domain, FastCUT
achieved slightly better performances than the other methods.
FastCUT also presented better performance than the Reinhard
method. The lower results of FastCUT in the baseline configu-
ration may be due to the fact that it does not correctly learn
the saturation difference between the two domains, as reported
in Section 3.5. On the other hand, the introduction of the meta-
domain and the double normalization of the proposed approach
compensate with the changes in the saturation values. In the base-
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Mean and standard deviation of PSNR, SSIM, LPIPS for N(SD1) vs SD1 and N(SD2) vs SD2.

Normalization

Data

PSNR 1

SSIM 4

LPIPS VGG |

Reinhard
Macenko
Khan
Vahadane
CycleGAN
GcGAN
Al-

FFPE

FastCUT

cuTt

SD1
SD2
SD1
SD2
SD1
SD2
SD1
SD2

N(SD1) vs SD1
N(SD2)
N(SD1)
N(SD2)
N(SD1)
N(SD2)
N(SD1)
N(SD2)
N(SD1)
N(SD2)
N(SD1)
N(SD2)
N(SD1)
N(SD2)
N(SD1)
N(SD2)
N(SD1)
N(SD2)

vs SD2
vs SD1
vs SD2
vs SD1
vs SD2
vs SD1
vs SD2
vs SD1
vs SD2
vs SD1
vs SD2
vs SD1
vs SD2
vs SD1
vs SD2
vs SD1
vs SD2

SD2
SD1
SD2
SD1
SD2
SD1
SD2
SD1
SD2

19.8302 + 4.2694
14.6660 + 2.6482
22.7494 £ 5.1671
16.5445 + 3.3880
18.4453 + 2.8344
20.3537 + 1.0981
21.5565 + 4.4068
18.3096 + 2.4472
16.0873 + 3.1129
35.1468 + 1.7279
15.9142 + 4.7748
32.3358 + 1.9626
16.2018 + 3.5457
25.1388 + 1.4350
27.6084 + 1.4109
20.8744 + 1.1850
14.3408 + 3.2684
25.8854 + 1.9922

0.9462 + 0.0462
0.8992 + 0.0702
0.9542 + 0.0516
0.8491 + 0.1449
0.6564 + 0.1403
0.6019 + 0.1292
0.9397 + 0.0637
0.8875 + 0.0747
0.8449 + 0.0508
0.9801 + 0.0067
0.8730 + 0.0727
0.9783 + 0.0097
0.6255 + 0.0672
0.8019 + 0.0350
0.9083 + 0.0227
0.9130 + 0.0163
0.5837 + 0.0730
0.8157 + 0.0406

0.0911 + 0.0565
0.1333 £ 0.0400
0.0615 + 0.0474
0.1690 + 0.1936
0.3028 + 0.0761
0.3424 + 0.0542
0.0875 + 0.0575
0.1115 £ 0.0356
0.1767 £ 0.0270
0.0455 + 0.0127
0.1731 £ 0.0487
0.0577 £+ 0.0172
0.3137 £ 0.0335
0.2436 + 0.0350
0.1874 + 0.0336
0.1256 + 0.0286
0.3258 + 0.0366
0.2398 + 0.0277
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line setup, the GcGAN model showed the best performance, with

Table2 _ o results slightly higher than GcGAN trained with the meta-domain
FID comparison for the various normalization methods. configuration, but lower than FastCUT in the meta-domain setup.
Normalization Data FID | The quality of the features has been assessed by looking at em-
None SD1 vs SD2 359791 beddi.ng plots for the normalization methods. The embedding plot
CD1 vs CD2 73.8733 associated to the features extracted by DenseNet201, after FastCUT
Reinhard N(SD1) vs N(SD2) 26.6528 normalization, in the meta-domain configuration, can be seen from
N(CD1) vs N(CD2) 58.1405 Fig, 11.
Macenko N(SD1) vs N(SD2) 26.6980 ’
N(CD1) vs N(CD2) 53.7302 . . L .
Khan N(SD1) vs N(SD2) 22,9181 4.3. Relationships between normalization and classification
N(CD1) vs N(CD2) 441937
Vahadane N(SD1) vs N(SD2) 26.6518 Several interesting relationships have been observed by our
N(CD1) vs N(CD2) 56.6086 analysis. Indeed, as it can be observed from Fig. 12, there is a
CycleGAN N(SD1) vs SD2 15.5333 trend bet . f the classificati thods and |
N(SD1) vs N(SD2) 182566 trend between performance of the classification methods and qual-
N(CD1) vs CD2 68.6784 ity of the distribution of the generated images. This trend is visi-
N(CD1) vs N(CD2) 50.7333 ble for all the considered metrics, but it is statistically significant
GcGAN N(SD1) vs SD2 19.2417 only for Top3-Accuracy (VGG16 achieves r = 0.9446, p = 0.0155),
222311))‘\//55 1211(35202) ;g'g?‘]‘g mbDice (VGG16 achieves r = 0.9075, p = 0.0333), and mPrecision
N(CD1) vs N(CD2) 541416 (DepseNetZOl achieves r = 0.9950, p = 0.0004 and !nceptionVS
Al- N(SD1) vs SD2 37.8711 achieves r = 0.9495, p = 0.0135). FID has been normalized by tak-
FFPE N(SD1) vs N(SD2) 61.5486 ing its reciprocal, so to make it correspond to a measure in which
EEEBR vs ;‘(ng) gg'ggfg higher values correspond to better quality distributions.
\'S R
FastCUT N(SD1) vs SD2 51.5162 The PPQ has alsg been found correlated to FID arlld.to LPIES. as
N(SD1) vs N(SD2) 30.5891 can be seen from Fig. 13. These results are also statistically signif-
N(CD1) vs CD2 80.4216 icant (PPQ SD1 vs FID: r = 0.8968, p = 0.0392; PPQ SD2 vs LPIPS
N(CD1) vs N(CD2) 49.5950 SD2: r = 0.9775, p = 0.0040).
CUT N(SD1) vs SD2 29.9900
N(SD1) vs N(SD2) 71.4490 5. Di .
N(CD1) vs CD2 72,5915 - Discussion
N(CD1) vs N(CD2) 55.9412
In this study, we characterized several GAN-based UI2IT meth-
ods with the aim to perform stain color normalization for the clas-
sification of CRC histopathological tissue. Contrarily to what is usu-
Table 3 ally done for GAN-based normalization, that is, considering only
Mean and standard deviation of PPQ for N(SD1) vs SD1 and N(SD2) vs source and target domains, we added a meta-domain, which in our
SD2. o : . .
case consists in WSIs belonging to the TCGA. This meta-domain,
Normalization containing tissues from a wide variety of laboratories, can allow
Method Data PPQ J to learn a mapping to our target domain that is more general
CycleGAN N(SD1) vs SD1 1.3883 + 0.8165 than previous research works, thus avoiding the need to train a
NESDZ; vs SD2 1.0151 + 0.2127 normalization model for every pair of possible data domains for
GCcGAN N(SD1) vs SD1 1.9309 + 0.8531 . :
N(SD2) vs SD2 16080 + 05385 histopathological data.
AI-FFPE N(SD1) vs SD1 3.3564 + 0.8990 . L
N(SD2) vs SD2 3.9497 + 0.2410 5.1. Stain color normalization
FastCUT N(SD1) vs SD1 3.2021 + 0.6715
c Ng[’f; vs EDZ ;-852(1) + 8;*;95 To assess the distribution of the GAN-generated images, FID has
uT N(SD1) vs SD1 7340 + 0.8977 R . P
N(SD2) vs SD2 38141 < 05131 beep assesseFl in different conﬁgurat}ons. In the traditional UI2IT
setting, one is expected to translate images from source to target
domain. Then, the distribution of translated images is compared
Table 4
Accuracy on the CDT and CDV classification datasets using the classical normalization methods.
CDT DV
Normalization Architecture
Acc Top 1-Acc Top 2-Acc Top 3-Acc
None InceptionV3 0.9791 0.8025 0.9209 0.9608
DenseNet201 0.9805 0.8115 0.9253 0.9721
VGG16 0.9697 0.7168 0.8688 0.9376
Reinhard InceptionV3 0.9777 0.8063 0.9133 0.9586
DenseNet201 0.9888 0.8352 0.9261 0.9652
VGG16 0.9617 0.7737 0.8964 0.9473
Macenko InceptionV3 0.9813 0.7884 0.8978 0.9486
DenseNet201 0.9910 0.7924 0.8969 0.9557
VGG16 0.9653 0.7219 0.8701 0.9244
Khan InceptionV3 0.9637 0.7465 0.8871 0.9449
DenseNet201 0.9811 0.7757 0.9070 0.9560
VGG16 0.9435 0.6673 0.8319 0.9168
Vahadane InceptionV3 0.9762 0.8075 0.9179 0.9603
DenseNet201 0.9874 0.8240 0.9265 0.9646
VGG16 0.9548 0.7362 0.8787 0.9390
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Table 5

Computer Methods and Programs in Biomedicine 234 (2023) 107511

Accuracy on the CDT and CDV classification datasets using the UI2IT normalization methods. The methods are trained on both the map
between the meta-domain and the target dataset (Gy _, 1) and the source domain and the target dataset (Gs _, 7).

Gvo 1 Gsr
Model Architecture DT cov bt cov
Acc Top 1-Acc  Top 2-Acc  Top 3-Acc  Acc Top 1-Acc ~ Top 2-Acc  Top 3-Acc
CycleGAN InceptionV3 09749  0.8126 0.9256 0.9678 0.9767  0.8097 0.9244 0.9668
DenseNet201  0.9878  0.8375 0.9413 0.9793 0.9884  0.8213 0.9359 0.9780
VGG16 0.9636  0.7538 0.8923 0.9461 0.9656  0.7463 0.8786 0.9420
GcGAN InceptionV3 09720  0.7811 0.9161 0.9657 0.9725  0.8205 0.9333 0.9700
DenseNet201  0.9861  0.8266 0.9363 0.9747 0.9876  0.8370 0.9418 0.9769
VGG16 0.9623  0.7494 0.8841 0.9410 0.9605  0.7808 0.8972 0.9460
AI-FFPE InceptionV3 0.9638  0.7957 0.9062 0.9536 09662  0.7713 0.9147 0.9692
DenseNet201  0.9820  0.8090 0.9217 0.9693 0.9837  0.8053 0.9255 0.9794
VGG16 0.9481  0.7263 0.8662 0.9355 0.9522  0.7166 0.8477 0.9103
FastCUT InceptionV3 0.9757  0.8170 0.9305 0.9702 0.9774  0.7945 0.9247 0.9653
DenseNet201  0.9886  0.8420 0.9410 0.9774 0.9897 0.7218 0.8733 0.9516
VGG16 0.9646  0.7626 0.8956 0.9516 0.9689  0.5388 0.7097 0.8528
CuT InceptionV3 0.9649  0.7935 0.9127 0.9615 0.9645  0.7767 0.8992 0.9608
DenseNet201  0.9833  0.8134 0.9262 0.9728 0.9838  0.8075 0.9138 0.9735
VGG16 0.9471  0.7111 0.8517 0.9332 0.9524  0.7049 0.8443 09116

Table 6
Classification mean precision, recall, and dice (mPrecision, mRecall, and
mDice, respectively), using the traditional normalization methods.

CDV
Normalization Architecture — -
mPrecision ~ mRecall mDice
None InceptionV3 0.8361 0.7668 0.7835
DenseNet201  0.8479 0.7920 0.8039
VGG16 0.8007 0.6743 0.6967
Reinhard InceptionV3 0.8354 0.7780 0.7902
DenseNet201 0.8643 0.8038 0.8172
VGG16 0.8268 0.7278 0.7492
Macenko InceptionV3 0.8171 0.7594 0.7722
DenseNet201 0.8291 0.7740 0.7874
VGG16 0.8291 0.6778 0.7203
Khan InceptionV3 0.7893 0.7092 0.7263
DenseNet201 0.8249 0.7397 0.7623
VGG16 0.7289 0.6070 0.6218
Vahadane InceptionV3 0.8369 0.7801 0.7948
DenseNet201 0.8605 0.7955 0.8124
VGG16 0.8219 0.6890 0.7226

to the distribution of images that originally belong to the target
domain. In our setting, with the introduction of the meta-domain
corresponding to TCGA images, we can instead observe that distri-
bution of images that are normalized from both source and target

Table 7

classification domains are closer if compared to distributions ob-
tained by performing only the normalization of the classification
source domain.

Indeed, by performing a double normalization at inference
time (that is, performing both Gy (S) and Gyr(T), instead of only
Gur(S)), an improvement in the FID among the data distributions
of the classification dataset can be observed. Fig. 8 shows that FID
is consistently lower for all the considered GAN models when nor-
malization is performed to both CDT and CDV, and not only CDT.
This may look counterintuitive, since the learned mapping has al-
ready WSIs of the target domain coming from the same distribu-
tion as CDV. Instead, when considering the stain color normaliza-
tion datasets, we note that performing double normalization is not
always convenient. Indeed, SD1 and SD2 are the source and tar-
get domain, respectively, adopted for learning the GAN mapping.
In this case, CycleGAN, AI-FFPE, and CUT show worse FID results
when double normalization is applied instead of single normaliza-
tion.

In this study, we introduced PPQ, a perceptive quality met-
ric based on the assessment performed by the pathologist on the
GAN-generated image tiles. As can be seen from Fig. 9, CycleGAN
and GcGAN were the two best-performing methods according to
PPQ. This result is perfectly consistent with FID values observed

Classification mean precision, recall, and dice (mPrecision, mRecall, and mDice, respectively), UI2IT normalization methods. The
methods are trained on both the map between the meta-domain and the target dataset (Gy _. r) and the source domain and

the target dataset (Gs _, 1).

Gyt Gs.r
Normalization Architecture cov cov
mPrecision mRecall mDice mPrecision mRecall mDice
CycleGAN InceptionV3 0.8543 0.7754 0.7952 0.8112 0.7527 0.7714
DenseNet201 0.8761 0.8151 0.8349 0.8460 0.7896 0.8110
VGG16 0.8263 0.7153 0.7384 0.7552 0.6841 0.6908
GcGAN InceptionV3 0.8399 0.7439 0.7684 0.8679 0.7802 0.8041
DenseNet201 0.8645 0.8030 0.8229 0.8802 0.8104 0.8347
VGG16 0.8187 0.7130 0.7324 0.8168 0.7467 0.7627
AI-FFPE InceptionV3 0.8470 0.7542 0.7754 0.8112 0.7527 0.7714
DenseNet201 0.8664 0.7788 0.8003 0.8460 0.7896 0.8110
VGG16 0.8105 0.6927 0.7158 0.7552 0.6841 0.6908
FastCUT InceptionV3 0.8667 0.7784 0.8017 0.8570 0.7497 0.7747
DenseNet201 0.8800 0.8170 0.8372 0.7955 0.6999 0.7099
VGG16 0.8069 0.7315 0.7522 0.6868 0.5184 0.5047
CUuT InceptionV3 0.8397 0.7614 0.7823 0.8064 0.7516 0.7667
DenseNet201 0.8616 0.7858 0.8067 0.8361 0.7931 0.8097
VGG16 0.7829 0.6865 0.7085 0.7533 0.6712 0.6808
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Fig. 11. Embedding plot obtained applying t-SNE to features extracted from DenseNet201 on the CDV dataset, with the FastCUT normalization methodology.

on N(SD1) vs SD2 and N(SD1) vs N(SD2), and with LPIPS values
observed on SD1 vs N(SD1) and SD2 vs N(SD2). Therefore, this
study can confirm that CNN-features-based metrics to assess the
perceptive quality of generated images can be exploited also in
histopathological contexts. As can be seen from Fig. 13, FID and
PPQ, and LPIPS and PPQ, are also correlated when considering the
GAN-based normalization results.

The effectiveness of CycleGAN and GcGAN images is also ob-
served by the fact that they possess the highest values for PSNR
and SSIM for what concerns SD2 vs N(SD2), as observed in Fig. 7.
This means that those methods are the most suitable for perform-
ing transformation of the target domain images with Gy(T), which
is useful as previously mentioned (considering the increase in FID
for double normalization).

5.2. Multi-class classification

With respect to the multi-class classification task, the
DenseNet201 model consistently outperforms InceptionV3 and
VGG16, in all considered normalization paradigms, as portrayed
in Fig. 10. The only anomaly is for the FastCUT model in the
baseline UI2IT configuration, for which Inception V3 displays the
best performance. The normalization methodology which allows
to achieve the best performance on the locally collected exter-
nal validation set is FastCUT in the meta-domain configuration.
Though FastCUT does not achieve satisfactory results in reality of
generated image tiles, since it tends to over-saturate the input
images (quantitative assessment, see Fig. 5; visual examples, see
Fig. 6), when applied in double normalization configuration, it
can still offer a useful normalization for the classification task.
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This is a behavior which would not be possible in the baseline
configuration considered for stain color normalization with UI2IT,
in which normalization is accomplished only from source to target
domain. It is worth noting the comparison between FID of N(SD1)
vs SD2 with FID of N(SD1) vs N(SD2), and FID of N(CDT) vs CDV
with FID of N(CDT) vs N(CDV). Indeed, after double normalization
is performed, FastCUT achieves the best FID on the classification
datasets. This result means that perceptive quality of transformed
images is not necessarily correlated to better classification accu-
racies of downstream classifiers. Though, we consider perceptive
quality of generated images a useful asset for the introduction of
GAN-based normalization models in the clinical routine.

The quality of the features extracted by DenseNet201 after hav-
ing performed normalization with FastCUT, in the meta-domain
configuration, can be seen from Fig. 11. The different tissue classes
appear clearly clustered in the 2D embedding plot obtained with
t-SNE.

Classification results are correlated to the quality of image dis-
tributions, as can be seen from correlations between normalized
FID and classification performance reported in Fig. 12. This con-
firms that FID or similar quality metrics should be checked when
performing GAN-based normalization (i.e., conditional generation),
since they can already offer an important insight on how the mod-
els adopted for the downstream tasks will perform.

5.3. Limitations

Although the results of the proposed framework are promis-
ing, leading to better generalization capabilities and higher per-
formance, without the need to train a style transfer model be-
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Fig. 13. Correlation between FID and PPQ, and between LPIPS and PPQ.

tween each pair of laboratories, there are still points that can be
improved in future studies.

One limitation is that other downstream tasks can be consid-
ered to further show the validity of the proposed pipeline in other
contexts, such as nuclei segmentation [61]. Indeed, a more com-
prehensive analysis of downstream tasks would allow realizing a
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general stain transfer paradigm that can greatly aid quantitative
pipelines for Digital Pathology environments.

Another limitation is that the proposed metric for assessing re-
ality of generated images from a pathologist perspective, PPQ; has
been assessed by a single expert. In the future, a collaborative
quantitative measure, which comprehends the evaluation of more
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pathologists, can be introduced to provide a more objective quan-
tification of GAN-generated image tiles in Digital Pathology setups.

6. Conclusion

In this work, three CNN architectures and nine normaliza-
tion techniques have been considered for the sake of realizing a
pipeline which is robust to stain color variation in a CRC histolog-
ical classification setup.

CRC multi-class tissue classification is an important task in dig-
ital pathology. In particular, to date, the study of tumors is moving
toward the integration of genomic data, such as transcriptomics
and its spatial localization. In the present paper, we focused on
CRC, but the described approach could be considered as a proof
of concept for other malignancies. Indeed, the segmentation task
could be a preliminary step in digital pathology studies, for in-
stance, to study the relationship between the tumor, its microen-
vironment, and genomic features.

Since preparation of histological slides is a complex process,
composed of various stages, and differences can be introduced in
any of them, color normalization is a fundamental step to effec-
tively perform quantitative tasks.

Traditional normalization methods are easy-to-use, since they
only need a template tile, but generate images which are subject
to color artifact, making them unsuitable for subsequent patholo-
gists’ analyses. On the other side, the realm of GAN architectures
to achieve UI2IT can offer a powerful framework to carry out stain
color normalization, allowing to achieve impressive results both
from the quality and reality of generated tiles, and for the perfor-
mance of the models involved in the subsequent tasks.

Nonetheless, care has to be reserved for assessing GAN-
generated image tiles, and several quality measures should be in-
cluded to have a complete overview of which model may work
better for the task under consideration.

Observations of pathologists may help in assessing quality of
generated images. Indeed, we included them in our study with the
PPQ metric, which can be used to have a medical expert view that
can eventually confirm the quality of the distributions measured
with quantitative measures as FID.

The introduction of a meta-domain during the learning phase
of the stain transfer model, as proposed by this study, can help re-
duce the training time of normalization models for a specific labo-
ratory, and also provide better generalization capabilities of down-
stream classifiers trained after normalization.
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