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a b s t r a c t 

Background: Histological assessment of colorectal cancer (CRC) tissue is a crucial and demanding task for 

pathologists. Unfortunately, manual annotation by trained specialists is a burdensome operation, which 

suffers from problems like intra- and inter-pathologist variability. Computational models are revolution- 

izing the Digital Pathology field, offering reliable and fast approaches for challenges like tissue segmen- 

tation and classification. With this respect, an important obstacle to overcome consists in stain color 

variations among different laboratories, which can decrease the performance of classifiers. In this work, 

we investigated the role of Unpaired Image-to-Image Translation (UI2IT) models for stain color normal- 

ization in CRC histology and compared to classical normalization techniques for Hematoxylin-Eosin (H&E) 

images. 

Methods: Five Deep Learning normalization models based on Generative Adversarial Networks (GANs) 

belonging to the UI2IT paradigm have been thoroughly compared to realize a robust stain color normal- 

ization pipeline. To avoid the need for training a style transfer GAN between each pair of data domains, 

in this paper we introduce the concept of training by exploiting a meta-domain, which contains data 

coming from a wide variety of laboratories. The proposed framework enables a huge saving in terms of 

training time, by allowing to train a single image normalization model for a target laboratory. To prove 

the applicability of the proposed workflow in the clinical practice, we conceived a novel perceptive qual- 

ity measure, which we defined as Pathologist Perceptive Quality (PPQ). The second stage involved the 

classification of tissue types in CRC histology, where deep features extracted from Convolutional Neural 

Networks have been exploited to realize a Computer-Aided Diagnosis system based on a Support Vector 

Machine (SVM). To prove the reliability of the system on new data, an external validation set composed 

of N = 15,857 tiles has been collected at IRCCS Istituto Tumori “Giovanni Paolo II”. 

Results: The exploitation of a meta-domain consented to train normalization models that allowed achiev- 

ing better classification results than normalization models explicitly trained on the source domain. PPQ 

metric has been found correlated to quality of distributions (Fréchet Inception Distance — FID) and to 

similarity of the transformed image to the original one (Learned Perceptual Image Patch Similarity —

LPIPS), thus showing that GAN quality measures introduced in natural image processing tasks can be 

linked to pathologist evaluation of H&E images. Furthermore, FID has been found correlated to accuracies 

of the downstream classifiers. The SVM trained on DenseNet201 features allowed to obtain the highest 

classification results in all configurations. The normalization method based on the fast variant of CUT 

(Contrastive Unpaired Translation), FastCUT, trained with the meta-domain paradigm, allowed to achieve 

the best classification result for the downstream task and, correspondingly, showed the highest FID on 

the classification dataset. 
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. Introduction 

Colorectal cancer (CRC) is the second cause of death for can- 

er with mortality reaching almost 35% [1] . In the last few years, 

ew targeted therapies have been developed gaining significant 

mprovement in clinical outcomes for several malignancies [62] . 

o date, a shift from tumor cells to the tumor microenvironment 

e.g., for immunotherapic treatments) highlighted the importance 

o know cell-cell interaction in the context of tissue morphology. 

s an example, there is a growing interest in the knowledge of the 

patial location of transcriptomic data. Thus, the segmentation of 

issue types is required to better perform spatial analyses, e.g., for 

he selection of relevant regions of interest. Moreover, it is well- 

nown that stroma-rich CRC has a poor prognosis [2] , and a tissue 

egmentation pipeline could be helpful in prognosis prediction. 

Image processing and Deep Learning (DL) techniques can be ex- 

loited for the automatic analysis of histological images, e.g., tissue 

ype classification. The traditional workflow for realizing an image 

lassifier is composed of several stages, i.e., preprocessing, feature 

xtraction, dimensionality reduction, and classification, that can be 

btained with models like Support Vector Machines (SVMs), Deci- 

ion Trees (DTs), and Artificial Neural Networks (ANNs). DL-based 

orkflows, instead, can enable end-to-end training of the mod- 

ls, easing complex steps, such as handcrafted feature extraction, 

nd leading to performance improvement. These techniques can be 

xploited for developing Computer-Aided Diagnosis (CAD) systems 

hich can enhance pathologists’ workflows, reducing issues con- 

erning intra- and inter-pathologist variability [3] . 

Nevertheless, a fundamental problem regarding the histopatho- 

ogical classification of images arises from the differences in colors 

etween tissue samples from different institutions. Indeed, a com- 

lex protocol composed of several steps, namely: (i) collection and 

xation, (ii) dehydration and clearing, (iii) paraffin embedding, (iv) 

icrotomy, (v) staining, (vi) mounting, and (vii) digitalization, is 

equired for Digital Pathology workflows [3] . Artifacts and differ- 

nces among laboratories can be introduced at any of these stages 

4] . 

Stain color normalization is therefore a pivotal pre-processing 

tep for successfully deploying Deep Learning CAD frameworks in 

igital Pathology setups [ 5 , 6 ]. Currently, the taxonomy of stain 

olor normalization methods comprises: (a) global color normal- 

zation; (b) color normalization after stain separation; (c) color 

ransfer with deep neural networks [4] . The first two approaches 

nvolve traditional image processing techniques, whereas the third 

arnesses the power of DL. Indeed, in recent years, the possibil- 

ties offered by Generative Adversarial Networks (GANs) [40] , to 

ffectively implement color transfer between histopathological im- 

ges, are improving the performances of classification systems that 

an rely upon higher quality normalized images [7] . Other authors 

onsidered the problem of stain color normalization in nuclei seg- 

entation pipelines [8] , or for normalization of tissue of breast and 

rostate cancers [ 9 , 10 ], but most of these works limit their analysis

o Conditional Generative Adversarial Networks (cGAN) [11] , Cycle- 

AN [12] and its variants, such as Residual Cycle-GAN [13] . 
2 
lization is a difficult but fundamental problem in the histopathological

ld be considered for properly assessing normalization methods, so that

clinical practice. UI2IT frameworks offer a powerful and effective way to

ess, providing realistic images with proper colorization, unlike traditional

roduce color artifacts. By adopting the proposed meta-domain framework,

d, and the accuracy of downstream classifiers can be increased. 

© 2023 The Author(s). Published by Elsevier B.V. 

icle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

The Image-to-Image Translation paradigm [11] can be thought 

s a general framework to tackle a variety of image analysis prob- 

ems, such as segmentation, color normalization, reconstruction 

f original images from labels, and conversion from one source 

odality to another, among the others. This approach consists 

n training a conditional GAN [42] for translating images from a 

ource domain to a target domain; however, such architectures 

eed a dataset with paired images for setup and training. On the 

ther hand, CycleGAN [12] and several subsequent works [43–

9] focused on the idea to realize the image domain translation 

aving only the domain as the label. This setting does not require 

aired data and has led to the concept of Unpaired Image-to-Image 

ranslation (UI2IT). Such paradigm allows to construct datasets for 

ormalization in a manner that is affordable for Digital Pathology 

aboratories, as paired image data is normally not available, espe- 

ially when data come from two distinct institutions. 

In this work, we aimed to realize a reliable pipeline for stain 

olor normalization and tissue classification in H&E samples of 

atients with CRC. For the stain color normalization stage, five 

ANs [ 12 , 43 , 4 8 , 4 9 ] based on the UI2IT framework have been thor-

ughly compared. Furthermore, four traditional image processing 

ormalization techniques [14–17] have been considered as base- 

ines. In order to assess the feasibility of the proposed normaliza- 

ion methodology, an evaluation of the generated tiles has been 

ealized by an expert pathologist, introducing a metric that we de- 

ned as Pathologist Perceptive Quality (PPQ). Afterwards, to real- 

ze the tissue classifier, three CNNs have been considered as fea- 

ure extractor from tile normalized with the previously mentioned 

echniques. An SVM has been trained on top of deep features, in 

rder to assess the classification accuracy of the developed CAD 

ystem. 

Contrarily to what is usually done in stain color transfer, where 

 generative model is trained between each pair of domains, a 

eta-domain — The Cancer Genome Atlas (TCGA) — composed of 

he union of data coming from several laboratories, has been con- 

idered in place of the source domain in the training phase of the 

tain color normalization module. With the only need to eventually 

erform a double normalization at inference time, on both source 

nd target classification domains, the proposed methodology has 

he advantage of avoiding the expensive process of training multi- 

le GANs. The proposed meta-domain methodology has been com- 

ared to the standard approach for GAN-based stain color transfer, 

.e., learning the stain transfer mapping directly from the source 

omain to the target domain. 

Summarizing, in this work, we added the following innovative 

ontributions: (i) an extensive comparison of normalization tech- 

iques in order to assess the most reliable ones for validating tis- 

ue classifiers on data coming from different laboratories; (ii) an 

nvestigation of features extracted from deep CNN architectures for 

RC tissue classification; (iii) an evaluation method for assessing 

he quality of generated tiles from expert pathologists, resulting 

n the conceptualization of a novel perceptive metric, PPQ; (iv) a 

etup for UI2IT stain color normalization which does not require 

he need for training style transfer GANs between every pair of 

ata domains, via the exploitation of a meta-domain; (v) a collec- 

http://creativecommons.org/licenses/by/4.0/
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ion of a validation cohort of samples enrolled at the IRCCS Isti- 

uto Tumori Bari “Giovanni Paolo II”, resulting in a publicly avail- 

ble dataset of 10 WSIs and N = 15,857 annotated tiles [19] . 

The remainder of the paper is structured as follows. 

ection 2 details related works in both colorectal cancer tis- 

ue classification and stain color normalization, encompassing 

echniques which are traditionally adopted for H&E images and 

hose belonging to the UI2IT framework. Section 3 presents mate- 

ials and methods adopted for this research. Firstly, the employed 

nd collected datasets are described. The experimental UI2IT 

etting, which features a meta-domain source dataset, is intro- 

uced. Evaluation metrics for assessing the quality of generated 

ormalized images are described, with specific considerations for 

istopathological scenarios. Section 4 presents the experimental 

esults, both for the quality of normalized images and for the 

lassification task. Results are then discussed in Section 5 , where 

lso limitations and directions for future works are presented. 

inally, conclusions are portrayed in Section 6 . 

. Related works 

.1. Colorectal cancer tissue classification 

The issue of classifying epithelium and stroma from digitized 

umor tissue microarrays (TMAs) has been considered by Linder 

t al. in 2012 [20] . In the feature extraction phase, the authors 

ook advantage of LBP (Local Binary Patterns) and LBP/C, where C 

s a contrast measure. Other features considered were Gabor fil- 

ered images and Haralick texture features [ 21 , 22 ]. Employing an 

VM classifier, the authors stated that the LBP/C-based is the best 

ne, with an AUC (Area Under the Curve) ROC (Receiver Operating 

haracteristic) of 0.995. 

Kather et al. considered a multi-class tissue classification in the 

omain of colorectal cancer histopathology [23] . During the fea- 

ure extraction stage, they considered several categories of fea- 

ures, after having transformed the original color images into gray- 

cale ones: histogram features, of both lower-order and higher- 

rder; LBP; Gabor filters; gray-level co-occurrence matrix (GLCM); 

erception-like features. For the classification step, the authors in- 

estigated four classifiers: decision trees, linear SVM, radial-basis 

unction SVM, and 1-nearest neighbor. The same feature set can 

btain higher results by exploiting red channel versions of images 

nstead of gray-scale ones [24] , even though this observation holds 

ainly for unnormalized images. Kather et al. also exploited the 

apabilities of CNNs for the sake of classifying CRC Hematoxylin- 

osin (H&E) histopathology images of TCGA composed of 862 

hole slide images (WSIs) [25] . 

Even though Ciompi et al. [6] claimed the importance of stain 

olor normalization for CRC tissue classification, posing the focus 

n classical techniques [ 15 , 16 , 18 ], from the works analyzed in this

ection, it emerges that no systematic investigation of recent meth- 

ds based on UI2IT has been carried out in this context. 

Indeed, most of these studies are tailored to discover the most 

fficient features or classification architecture for the task in hand, 

ithout a proper consideration of the pre-processing steps such as 

tain color normalization. 

.2. H&E normalization 

Histopathology involves a manual staining procedure for 

reparing tissues prior to microscopic imaging for diagnosis. This is 

 non-standardized procedure which may cause considerable vari- 

bility in the color characteristics of tissue samples from different 

aboratories; this can occur due to inconsistent tissue staining, dif- 

erent color responses to distinct scanners, or differences in raw 
3

aterials and stain manufacturing techniques. Stain color varia- 

ion degrades the performance of CAD systems. In the presence of 

evere color variation in histopathological images, stain color nor- 

alization, which is achieved by removing the stains for visual en- 

ancement, is a common practice. 

Among the most popular image processing methods, it is worth 

entioning the works of Reinhard et al. [14] , Macenko et al. [15] ,

han et al. [16] , and Vahadane et al. [17] . These works are usu-

lly considered as reference methods when authors propose novel 

ethods for stain color normalization [ 7 , 11 , 27 , 31 , 32 ]. Nevertheless,

mportant limitations of these methods include the fact that they 

equire H&E staining, the need of exploiting a template patch for 

tting the stain distributions [13] , and the introduction of color 

rtifacts. On the other hand, the proposed stain normalization 

ethodology, based on UI2IT, can be applied to every type of stain- 

ng, and are not restricted to H&E images only. 

For more details about normalization techniques and pre- 

rocessing procedures, the interested reader is referred to dedi- 

ated surveys [ 4 , 33 ] or to the original papers mentioned before. 

.3. Stain color normalization for colon histological tissue 

Several DL-based methods have been proposed to tackle the 

tain color normalization problem for histopathological tissues in- 

luding the colon [ 8 , 13 , 26–28 ]. 

Bentaieb et al. proposed a stain transfer-based approach for 

tain color normalization [26] . The authors designed a discrimi- 

ative image analysis network that has the capability to relocate 

tains between different datasets. Their architecture is composed 

f a generative network devoted to learning both dataset-specific 

taining properties and image-specific color transformation, and a 

ask-specific network which is exploited for the downstream task 

as segmentation or classification). Their model can be trained 

nd-to-end by exploiting a multi-objective loss. The authors’ con- 

lusion states that their model is capable of improving the results, 

oth for what concerns the quality of normalized images, and the 

ccuracy of the networks for the downstream tasks, over various 

aselines. 

Pontalba et al. evaluated the impact of several existing method- 

logies for stain color normalization in a setup for nuclei seg- 

entation [8] . The considered normalization techniques comprise 

istogram specification, color transfer, stain specific color transfer, 

pectral matching, and CycleGAN. The authors also considered sev- 

ral measures for assessing the quality of normalized images, be- 

ides evaluating the results of the downstream segmentation task. 

o enhance the CycleGAN capabilities, de Bel et al. proposed an 

mprovement over the base model, with the embodiment of resid- 

al learning, devising an architecture that they defined as Resid- 

al CycleGAN [13] . The authors compare the performance of their 

tain normalization approach, also with respect to data augmenta- 

ion, to prove the robustness of the downstream segmentation net- 

orks. The considered downstream applications include segmenta- 

ion from colon and kidney tissue samples. 

Shen et al. noted that the transformation induced by GANs can 

ause information loss, or suffer from problems such as mode col- 

apse, damaging results for the subsequent diagnostic task [27] . 

o solve this problem, they devised a contrastive learning method 

ith a color-variation constraint, to retain the recognizable phe- 

otypic features when using a GAN for stain color normaliza- 

ion. Self-supervised learning allows to cluster discriminative tissue 

atches among several types of tumors. 

Kausar et al. introduced a deep model, which they defined as 

tain Acclimation Generative Adversarial Network (SA-GAN), which 

as an architecture that comprises one generator and two discrim- 

nators [28] . As usual, the purpose of the generator is to transform 

mages from the source domain to the target domain. The two dis- 
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riminators, instead, have different roles: the first one enforces the 

enerated images to retain the color patterns of the target domain, 

hereas the second one enforces the generated images to maintain 

he structure contents of the source domain. 

With respect to the work summarized for the stain color nor- 

alization, we observe that: (i) other authors have not applied 

hese techniques for our application, that is multiclass CRC tis- 

ue classification, as presented in Section 3 ; (ii) other authors did 

ot always found a suitable way to include pathologists evalua- 

ions or to correlate them with existing metrics for assessing GAN- 

enerated image quality or accuracy of the downstream task; (iii) 

ther authors have not explored the whole UI2IT framework, but 

ather focused on single models, especially those similar to Cycle- 

AN [ 8 , 13 ] or contrastive learning [27] . 

.4. Unpaired image-to-image translation 

Stain normalization of histopathological images performed with 

ANs is gaining much attention recently [7] , with a particular fo- 

us on CycleGAN [12] and its variants [ 13 , 34 ]. Nonetheless, many

ther algorithms belonging to the UI2IT framework have not been 

xplored for the stain color transfer task. 

In this subsection, we summarized and categorized relevant 

orks based on GANs for UI2IT, to explain the role of UI2IT in the 

ormalization scenario for histopathological images. In the follow- 

ng, S and T denote the source and target domain, whereas s and t 

re instances of the two domains. 

The interested readers may find useful information also in sur- 

eys concerning about adversarial-learning-based I2IT [35–37] or 

AN applications, techniques for training, and architectures [38–

1] . 

.4.1. Cycle consistency-based 

In UI2IT setups, cycle-consistency is the most widely adopted 

ethod for imposing association [43] . This paradigm is grounded 

n the concept of retrieving also the reverse mapping from the 

arget domain back to the source one. Furthermore, it enforces 

 check that a sample input image can be reconstructed. Among 

he most well-known architectures which fall into this category, it 

s worth mentioning CycleGAN [12] , DualGAN [44] , and DiscoGAN 

45] . 

CycleGAN overcomes the limitations of the paired I2IT frame- 

ork by learning a mapping G ST : S → T in a way that G ST ( S ) is

ndistinguishable from T exploiting an adversarial loss. To avoid 

he issues coming from the under-constrained mapping, at the 

ame time, an inverse mapping G TS : T → S is also learned. In this

ay, the cycle consistency loss can enforce G TS ( G ST ( S )) ≈ S and

 ST ( G TS ( T )) ≈ T . 

.4.2. One-sided translation 

Instead of enforcing cycle-consistency, it is possible to promote 

elationships belonging in the input to be similarly reflected in the 

utput. For instance, patches which are perceptually similar inside 

n input image should retain their proximity in the output. TraVeL- 

AN [46] , DistanceGAN [47] , and GcGAN [48] allow one-way trans- 

ation, so avoiding the need for a cycle-consistency. The problem is 

hat they require relationships between full images, or with prede- 

ned distance functions. 

While the cycle consistency framework needs to train two gen- 

rators simultaneously, G ST and G TS , one-directed domain transla- 

ion can be successfully achieved also by only preserving pairwise 

mages’ distances. An important limitation of both cycle consis- 

ency and distance preservation, is that they do not properly con- 

ider simple geometric transformations. 

The idea of enforcing a geometry-consistency constraint in a 

I2IT GAN framework comes from the work of Fu et al. [48] . Ac-
4 
ording to the authors, considering a geometric transformation f ( ·
, the images from the source domain should not be altered by the 

orresponding generators G ST and G S ′ T ′ , where S ′ and T ′ are the do- 

ains obtained by applying f ( · ) to S and T , respectively. 

From a mathematical perspective, considering a random sam- 

le s from original domain S , a proper geometric transformation 

 ( · ), and its inverse f −1 ( · ), the geometry consistency constraint 

an be formulated as f ( G ST ( s )) ≈ G S ′ T ′ ( f ( s )) and f −1 ( G S ′ T ′ ( f ( s ))) ≈
 ST ( s ). Since it is improbable that G ST and G S ′ T ′ make errors in the

ame region, the generator models act as co-regulators for each 

ther, thanks to the geometry consistency constraint, thus improv- 

ng over mistakes in local zones of their relative translations. 

It is worth noting that the one-sided translation is particularly 

nteresting for stain color normalization, since one usually wants 

o translate tiles from the original domain to the target domain, 

nd therefore there is no need to exploit both generators. 

.4.3. Patchwise contrastive learning approaches 

CUT and FastCUT [43] have been proposed to solve the limita- 

ions encountered in relationship preservation-based architectures, 

y replacing cycle-consistency with the possibility of learning a 

ross-domain similarity function by maximizing mutual informa- 

ion between corresponding patches from images belonging to the 

ource and target domains, without the need to depend on some 

redefined distance. 

The architecture proposed by Park et al. [43] enforces positive 

related) patches to map to nearby points in the learned feature 

pace, if compared to negative (unrelated) patches coming from 

he dataset. This framework allows one-sided translation in UI2IT 

etups, resulting in a greater quality and less training time com- 

ared to cycle-consistency-like approaches. 

Mathematically, we can define: the query v ∈ R 

K , the positive 

 

+ ∈ R 

K , and N negative samples v − ∈ R 

N × K . In these definitions, 

 , v + , v −
i 

are K -dimensional vectors, and v −
i 

is the i -th vector from

he matrix of negatives v −. The cross-entropy loss can then be cal- 

ulated, defining the probability of a positive example to be chosen 

ver negatives, as reported in Eq. (1) . 

 

(
v , v + , v −

)
= −log 

⎡ 

⎣ 

exp 
(
v · v + 

τ

)
exp 

(
v · v + 

τ

)
+ 

∑ N 
i =1 exp 

(
v · v −

i 

τ

)
⎤ 

⎦ (1) 

is a temperature defined as equal to 0.07 by the original authors. 

he goal of the CUT framework is to relate source and target image 

atches. In the considered context, the query concerns the target, 

hereas the positive and negative samples concern corresponding 

nd noncorresponding source patches, respectively. 

In order to enforce this relationship, the authors selected J 

ayers with whom they encoded the input images and passed 

hem to a two-layers MLP H j , creating a stack of features { z j } J = 

 H j ( G 

j 
enc ( s ) ) } J , where G 

j 
enc is the output of the j -th layer. In 

 similar way, they also encoded the output image in { ̂ z j } J = 

 H j ( G 

j 
enc ( G ( s ) ) ) } 

J 
. The objective is to match the corresponding 

ource-target patches for each layer and use the other ones from 

he source image as the negatives. 

Then, they defined, for layer j , the features of the positive patch 

s z 
q 
j 
∈ R 

C j and the features of the negative patches as z 
Q\ q 
j 

∈ 

 

(Q j −1) ×C j , where j ∈ {1, 2, ..., J } indexes the selected layer and

 ∈ {1, 2, ..., Q j } indexes the spatial location. The number of spatial

ocations and the number of channels for layer j are referred to as 

 j and C j , respectively. 

The loss is calculated as reported in Eq. (2) . 

 PatchNCE ( G, H, S ) = E s ∼S 

[ 

J ∑ 

j=1 

Q j ∑ 

q =1 

l 

(
ˆ z q 

j 
, z q 

j 
, z 

Q\ q 
j 

)] 

(2) 
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The final objective function can be defined as portrayed in 

q. (3) : 

 GAN ( G, D, S, T ) + λS L Patc hNCE ( G, H, S ) + λT L Patc hNCE ( G, H, T ) (3) 

here L PatchNCE ( G,H, T ) is the identity loss that enforces the gener-

tor to avoid unnecessary changes. The configuration with λS = 1 

nd λT = 1 corresponds to CUT, whereas the configuration with 

S = 10 and λT = 0 is referred to as FastCUT. 

AI-FFPE [49] is a modification of CUT that it adds some unique 

haracteristics, like the presence of a Spatial Attention Block (SAB) 

n the architecture of the generator and a L 1 regularization factor 

n the objective function, that is calculated as shown in Eq. (4) : 

 GAN ( G, D, S, T ) + λreg L reg ( G, S ) + λS L Patc hNCE ( G, H, S ) 

+ λT L Patc hNCE ( G, H, T ) (4) 

here L reg ( G,S ) = || S − G ( S )|| 1 . 

The authors of AI-FFPE claim that in the frozen section to FFPE 

formalin-fixation and paraffin-embedding) translation task, their 

odel outperforms generic image-translation networks. Particu- 

arly, they state that their modifications to the CUT architecture 

ontribute to the artifact-correcting performance of their model. 

. Materials and methods 

.1. Datasets 

Two kinds of datasets have been collected for this research: 

atasets for stain color normalization and for multi-class classifi- 

ation. All datasets contain histopathological image tiles belonging 

o WSIs of patients diagnosed with CRC. 

For what concerns stain color normalization, the considered 

atasets are: a dataset introduced by Kather et al. [29] (SD1) and a 

ocal dataset collected at IRCCS Istituto Tumori “Giovanni Paolo II”

SD2). The SD1 dataset is composed of image tiles coming from 

04 CRC WSIs in the TCGA database, while the SD2 dataset is 

omposed of image tiles coming from 58 WSIs. All tiles have di- 

ensions of 512 × 512 px at 0.5 μm/px. SD1 and SD2 have been 

sed to construct two tile-level datasets, each with a training set 

f N = 10 0,0 0 0 tiles and a test set of N = 50,0 0 0 tiles. 

With respect to the multi-class classification, the considered 

atasets are: a dataset introduced by Kather et al. [ 25 , 30 ] (CDT)

nd a local dataset collected at IRCCS Istituto Tumori “Giovanni 

aolo II” (CDV). 

The CDT dataset [ 25 , 30 ] is composed of N = 10 0,0 0 0 image tiles

rom H&E histological tissue of humans with CRC, subdivided into 

ine tissue classes. The size of the images is 224 × 224 pixels, 

hich correspond to 112 × 112 μm 

2 . 

The CDV dataset is composed of N = 15,857 tiles coming from 

0 WSIs. The tiles have dimension 224 × 224 pixels which corre- 

pond to 116 × 116 μm 

2 . The dataset has been annotated by an 

xpert pathologist. We made our dataset publicly available [19] , 

o ease the development and comparison of computational tech- 

iques for CRC histological image analysis. 

Both the datasets have been classified into the following seven 

lasses, as done in our precedent work [24] : TUM – tumor ep- 

thelium; MUSC_STROMA – the union of SIMPLE_STROMA, encom- 

assing smooth muscle, tumor stroma and extra-tumor stroma, 

nd COMPLEX_STROMA, consisting of stroma or smooth muscle 

ontaining single tumor cells and/or few, non-aggregated immune 

ells; LYM – lymphoid follicles and other immune-cell conglomer- 

tes; DEBRIS_MUCUS – hemorrhage, mucus and necrosis; NORM –

ormal mucosa; ADI – adipose tissue; BACK – background. 

To accomplish this categorization for the CDT dataset, the DE- 

RIS_MUCUS class has been built by combining the DEB and MUC 

lasses; instead, the MUSC_STROMA class has been constructed by 

using the MUS and STR classes. The CDT dataset obtained with 
5 
his procedure is composed of N = 77,805 tiles, considering that 

nly half of the images of the merged classes have been retained, 

or maintaining class balancing during training. 

For both the locally collected datasets, namely, SD 2 and the 

DV , the Institutional Ethics Committee of the IRCCS Istituto Tu- 

ori “Giovanni Paolo II” approved the study (Prot. n. 780/CE). 

Fig. 1 portrays frequency distribution and example tiles from 

ormalization and classification datasets. Instead, color artifacts 

ntroduced by the classical normalization methods presented in 

ection 2.2 are shown in Fig. 2 . 

.2. Stain normalization with a meta-domain 

In the standard pipelines developed for stain color normaliza- 

ion exploiting UI2IT frameworks, two domains are usually consid- 

red: a source domain S and a target domain T . The objective is to

ransform images of the source domain to the distribution of the 

arget domain. Therefore, a generator, to learn a map from S to T , 

amely G ST ( S ) ≈ T , is the outcome of the training stage for stain

olor transfer. The inverse mapping is referred to as G TS , and is re-

uired only for the cycle-consistency-based methods. On the other 

and, traditional normalization methods exploit a reference tile, R . 

Instead, in the framework proposed for the CAD for CRC clas- 

ification, we considered three domains: the meta-domain M , the 

ource domain S , and the target domain T . 

In our application, M is a composition of multiple subdomains 

 1 ,…, S n , covering a wide variety of stain color conditions, so that 

y learning G MT ( M ) ≈ T , we are capable to approximately map

 MT ( S ) ≈ T . In the proposed configuration, the results can be fur-

her improved from performing a double normalization, i.e., G MT ( S ) 

nd G MT ( T ). Indeed, we note that G MT ( S ) is more similar to G MT ( T )

han to T . This is in contrast to the usual way to perform stain

ransfer with GANs, where the baseline UI2IT consists in compar- 

ng distribution of images of G ST ( S ) with T . 

When referring to our application, M is the domain of images 

oming from the TCGA (meta-domain), S is the domain of images 

oming from the training set for the classification (source domain), 

nd T is the domain of images coming from our local cohort (target 

omain). The proposed framework may lead to improvements in 

eneralization with respect to performing the traditional G ST ( S ). 

.3. Generated image tiles quality assessment 

In this subsection, relevant metrics which can be used for as- 

essing the quality of generated images are presented, so that both 

athematical and perceptual evaluations can be done. 

Quantitative evaluation of the quality of images generated by 

ANs is not an easy task, but different approaches have been pro- 

osed in literature. Common quality objective measures for image 

imilarity include Peak Signal to Noise Ratio (PSNR) and Structural 

imilarity Index (SSIM) [50] . As noted by Zhang et al. [51] , these

etrics are shallow, simple functions, which cannot measure in a 

roper way the human perception. They proposed to realize a per- 

eptual distance with deep features exploiting the VGG network, re- 

ulting in a Learned Perceptual Image Patch Similarity (LPIPS) met- 

ic. Unluckily, these measures can be exploited only if ground-truth 

mages are available [35] , so they are excellent candidates to as- 

ess results obtained with conditional GAN for paired I2IT tasks, 

ut are not directly applicable in UI2IT settings, at least to assess 

dherence of the mapped image to the target domain. On the other 

and, these measures can be considered to evaluate the introduc- 

ion of artifacts between original images and their translated ver- 

ion. 

Scores obtained exploiting Inception-v3 network pretrained on 

mageNet, such as Inception Score (IS) [52] , and Fréchet Inception 
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Fig. 1. Datasets exploited for the stain normalization and the downstream classification task. SD1 and SD2 are the datasets for stain normalization. CDT and CDV are the 

datasets for the classification task. 

D

l

a

f

n

t

i

F

w

s

v

t

h

[

a

a

w

istance (FID) [53] were introduced to overcome this issue and al- 

ow an assessment of realness and heterogeneity of generated im- 

ges, from the point of view of feature distribution. 

To determine the FID, two multivariate Gaussians are fitted on 

eature vectors obtained by embedding samples from the Inception 

etwork. Then, the Fréchet Distance [54] or the Wasserstein-2 dis- 

ance [55] is calculated among these two gaussian distributions, as 

n Eq. (5) : 

 ID ( r, f ) = ‖ μr − μ f ‖ 

2 
2 + T r 

(
�r + � f − 2 

(
�r � f 

) 1 
2 

)
(5) 
6 
here μr , μf represent the mean of the real and fake generated 

ample feature vectors, respectively, and �r , �f represent the co- 

ariance matrix of the real and fake generated sample feature vec- 

ors, respectively. 

In the research community, there is not a wide agreement on 

ow to evaluate unpaired image-to-image translation frameworks 

56] . Therefore, the considered experimental design involves the 

doption of several metrics among the considered datasets. 

To assess the reliability of the fake images generated via GANs, 

 novel perceptive quality measure has been introduced, which 

e have defined as PPQ. In detail, an image tile and the related 
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Fig. 2. Example of artifacts introduced by classical stain color normalization meth- 

ods. (Top Row) Samples belonging to the training set for classification (CDT). (Bot- 

tom Row) Samples belonging to the test set for classification (CDV). 
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AN-normalized versions of the same tile were shown to an ex- 

ert pathologist, and for each normalization method the patholo- 

ist had to decide a discrete score between 1 and 4, where 1 rep-

esents an excellent quality image and 4 a bad one. In our experi- 

ental design, 200 image tiles were shown to the pathologist, for 

oth the SD1 and SD2 datasets. 

.4. Experimental design 

Given their importance as a benchmark, we decided to include 

he classical normalization methods [14–17] as baseline methods. 

Among Cycle Consistency-based networks, due to its wide 

doption in the stain color normalization domain [ 8–10 , 31 ], only 

ycleGAN has been included in the experiments. Amid the One- 

ided Translation networks, GcGAN has been included in our ex- 

eriments, with the 90 ° clockwise rotation as geometric transfor- 

ation, since it has been proven useful by the authors of the orig- 

nal paper. Among Patchwise Contrastive Learning approaches, the 

UT, FastCUT and AI-FFPE models have been included in our analy- 

is. All GAN models have been trained from scratch with a learning 

ate of 0.0 0 02, for 5 epochs, with the Adam solver [57] and a batch

ize of 1. Input images were of size 256 × 256. No other prepro- 

essing was applied to the images. 

In order to perform a comprehensive comparison and analysis 

f normalization methods and downstream classifiers, we designed 

he experiments as explained in this section. 

CDT and CDV refer to the training and test set for classifica- 

ion, respectively. N ( CDT ) and N ( CDV ) refer to their normalized

ersion, that is G MT ( CDT ) = CDT MT and G MT ( CDV ) = CDV MT for

he GAN normalization with the meta-normalization paradigm, 

 ST ( CDT ) = CDT ST and G ST ( CDV ) = CDV ST for the standard GAN nor-

alization, and CDT RT and CDV RT for classical normalization, re- 

pectively. 

SD 1 and SD 2 refer to the stain normalization datasets. 

 ( SD 1) and N ( SD 2) refer to their normalized version, that is

 MT ( SD 1) = SD 1 MT and G MT ( SD 2) = SD2 MT for the GAN normaliza-

ion, and SD 1 RT and SD 2 RT for the classical normalization, respec- 

ively. Images from CDV and SD 2 belong to the T domain, images 

rom SD 1 belong to the M domain, and images from CDT belong to 

he S domain. 

For what concerns normalization procedure: 

1) A reference tile has been used for the traditional normalization 

methods (Reinhard, Macenko, Khan, Vahadane). Both the CDT 

and CDV datasets image tiles have been normalized when used 

for classification. In order to assess normalized image distribu- 

tions for these methods, FID has been calculated between: 
7 
(a) SD 1 RT and SD 2 RT , 

(b) CDT RT and CDV RT . 

2) In order to obtain a model capable of mapping CDT and CDV 

image tiles to the same target domain, all the GANs have been 

trained by exploiting SD 1 and SD 2. The following tests have 

been made in order to evaluate if a double normalization (that 

is, normalizing images by performing G MT ( S ) and G MT ( T )) would

work better than a single normalization (i.e., normalizing im- 

ages by performing G MT ( S ) only, while keeping T images unal- 

tered), in our setting. In detail, to assess the quality of the gen- 

erated image distributions, FID has been calculated between: 

(a) SD 1 MT and SD 2, 

(b) SD 1 MT and SD 2 MT , 

(c) CDT MT and CDV , 

(d) CDT MT and CDV MT . 

3) In order to understand the quality of the normalized images 

with respect to the original ones, PSNR, SSIM, and LPIPS have 

been determined between: 

(a) SD 1 RT and SD 1, 

(b) SD 2 RT and SD 2, 

(c) SD 1 MT and SD 1, 

(d) SD 2 MT and SD 2. 

4) In order to understand the quality of the GAN-generated im- 

ages, from the pathologist perspective, PPQ has been calculated 

considering: 

(a) SD 1 MT and SD 1, 

(b) SD 2 MT and SD 2. 

5) In order to understand how UI2IT models affect saturation of 

images, SSIM between saturation channels (in HSV color space) 

has been calculated between: 

(a) SD 1 MT and SD 1, 

(b) SD 2 MT and SD 2. 

For what concerns the downstream classification, three CNNs 

ave been exploited as feature extractor before training an SVM 

lassifier. In detail, the employed SVM was a multi-class classi- 

cation error-correcting output code (ECOC) model with one-vs- 

ne coding design and Radial Basis Function (RBF) kernel. The 

hree CNNs considered are DenseNet201 [58] , InceptionV3 [59] , 

nd VGG16 [60] . The SVM model has been trained on features ex- 

racted from N ( CDT ) and validated on features belonging to N ( CDV ).

In particular, the following configurations have been compared 

or the classification: 

1) SVM trained on CDT and validated on CDV , with no normaliza- 

tion. 

2) SVM trained on CDT RT and validated on CDV RT , for the consid- 

ered classical normalization techniques. 

3) SVM trained on CDT ST and validated on CDV ST , for the consid- 

ered UI2IT GAN-based approaches, trained from source to target 

domain (baseline UI2IT). 

4) SVM trained on CDT MT and validated on CDV MT , for the consid- 

ered UI2IT GAN-based approaches, trained from meta-domain 

to target domain (meta-domain UI2IT). 

A detail of the experimental design is pictorially represented in 

ig. 3 . 

. Experimental results 

The results obtained from the experiments described in 

ection 3.4 are presented in this section. In order to better char- 

cterize the two components of the developed pipeline, three sub- 

ections are delineated. The first one deals with the results of the 

tain color normalization, whereas the second one presents the re- 

ults of the multi-class classification. Lastly, the third section de- 
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Fig. 3. Workflow employed for the study. (A) Training and use of the stain color normalization module. The GANs belonging to the UI2IT framework are trained by exploiting 

a meta-domain M . Source and Target domains, S and T , refer to the training dataset and the external validation dataset for classification, respectively. Traditional color 

normalization techniques exploit a reference tile R . (B) Assessment of the stain color normalization models. (C) Training and validation of the CRC tissue classifier. The 

classifiers are trained on features separately extracted for every normalization technique. 

8 



N. Altini, T.M. Marvulli, F.A. Zito et al. Computer Methods and Programs in Biomedicine 234 (2023) 107511 

Fig. 4. Normalization examples with the various UI2IT GANs considered. 

Fig. 5. Boxplots for SSIM between saturation channel of normalized images versus original one. 
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cribes the quantitative relationships between stain color normal- 

zation metrics and classification performances. 

.1. Stain color normalization 

A visual example of the different techniques based on UI2IT for 

tain color normalization is portrayed in Fig. 4 . It is possible to 

otice different color patterns for the various methods. In partic- 

lar, FastCUT tends to generate tiles which have a higher satura- 

ion than the ones generated from other methods. This fact can 

e seen from Figs. 5 and 6 . Boxplots in Fig. 5 shows that, for the

D 1 dataset, N ( SD 1) images obtained with FastCUT are the ones 

ith saturation more similar to the original version. This is be- 

ause FastCUT is the method which perform the lesser desatura- 

ion. Instead, for the SD 2 dataset, N ( SD 2) images obtained with

astCUT are the ones with the greatest dissimilarity to the original 

nes. This is because other methods do not saturate these images, 

nstead FastCUT increases the saturation of input images. 

Image similarity measures, namely PSNR, SSIM, and LPIPS, have 

een calculated between SD 1 and N ( SD 1) and SD 2 and N ( SD 2), in

rder to assess presence of artifacts or image degradation when 

erforming stain color normalization. These quantitative results are 

eported in Table 1 and Fig. 7 . In the comparison between SD 1 and
9 
 ( SD 1), we can note that, among the classical normalization meth- 

ds, Macenko displayed the highest PSNR and SSIM, being 22.75 ±
.17 and 0.95 ± 0.05, respectively, and the lowest LPIPS, being of 

.06 ± 0.05. For PSNR, the FastCUT method achieved better perfor- 

ances, with a value of 27.61 ± 1.41. For SSIM and LPIPS, the GAN- 

ased methods obtained lower results than Macenko’s method. In 

he comparison between SD 2 and N ( SD 2), we can observe that Cy-

leGAN showed the best values for PSNR, SSIM, and LPIPS, being of 

5.15 ± 1.73, 0.98 ± 0.01, and 0.05 ± 0.01, respectively. 

Dissimilarity between distributions of features extracted from 

he images coming from the different domains are reported in 

able 2 and Fig. 8 . In the comparison on the stain normalization 

atasets, CycleGAN achieved the lowest FID, being 15.53, for the 

ingle normalization set-up. GcGAN, instead, displayed the best FID 

or the double normalization configuration, with a value of 15.65. 

n the classification datasets, with the single normalization, AI- 

FPE obtained the best FID, being of 67.36. The results drastically 

mprove with a double normalization, in which FastCUT achieved 

n FID of 49.60 on the classification datasets. 

The PPQ metric has been used to assess the GAN-generated im- 

ge quality from a pathologist perspective. It has been checked be- 

ween source image tiles and corresponding generated normalized 

mages, so that the pathologist can assess not only the reality of 
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Fig. 6. Saturation differences between the considered UI2IT methods. (A) Tile from SD1 dataset. (B) Tile from SD2 dataset. (First Row) Original tile in the first column, then 

different GAN-based normalization methods. (Second Row) Saturation channel of the images in the first row. (Third Row) Difference between saturation of normalized image 

compared to the original one. 
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he generated image, but also its consistency with respect to the 

riginal one and the lack of artifacts. Quantitative results are por- 

rayed in Table 3 and Fig. 9 . CycleGAN demonstrated the best PPQ 

n the normalization of the SD1 and SD2 datasets, being the values 

f 1.39 ± 0.82 and 1.02 ± 0.21, respectively. 

.2. Multi-class classification 

The accuracy of the multi-class classification models has been 

ssessed both with internal cross-validation on the CDT dataset, 

nd with external validation on the locally collected CDV dataset. 

hese quantitative results are shown graphically in Fig. 10 , and 

umerically in Tables 4 and 5 . Other classification metrics are 

eported in Tables 6 and 7 , for the traditional and UI2IT-based 

ormalization methods, respectively. The DenseNet201 model con- 
10 
istently outperformed the other deep feature extractors in all 

he scenarios, with the only exception of the FastCUT model 

n the baseline UI2IT configuration. As shown in Table 4 , amid 

he traditional normalization methods, the Reinhard is the one 

hich allowed to obtain the highest validation accuracy. As re- 

orted in Table 5 , among the GAN-based normalization meth- 

ds, trained with the exploitation of the meta-domain, FastCUT 

chieved slightly better performances than the other methods. 

astCUT also presented better performance than the Reinhard 

ethod. The lower results of FastCUT in the baseline configu- 

ation may be due to the fact that it does not correctly learn 

he saturation difference between the two domains, as reported 

n Section 3.5 . On the other hand, the introduction of the meta- 

omain and the double normalization of the proposed approach 

ompensate with the changes in the saturation values. In the base- 
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Fig. 7. Bar plots with error bars of PSNR, SSIM, LPIPS for N(SD1) vs SD1 and N(SD2) vs SD2. 

Fig. 8. Bar plots with error bars of FID for N(SD1) vs SD2, N(SD1) vs N(SD2), N(CDT) vs CDV, and N(CDT) vs N(CDV). 

11 
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Table 1 

Mean and standard deviation of PSNR, SSIM, LPIPS for N(SD1) vs SD1 and N(SD2) vs SD2. 

Normalization Data PSNR ↑ SSIM ↑ LPIPS VGG ↓ 
Reinhard N(SD1) vs SD1 19.8302 ± 4.2694 0.9462 ± 0.0462 0.0911 ± 0.0565 

N(SD2) vs SD2 14.6660 ± 2.6482 0.8992 ± 0.0702 0.1333 ± 0.0400 

Macenko N(SD1) vs SD1 22.7494 ± 5.1671 0.9542 ± 0.0516 0.0615 ± 0.0474 

N(SD2) vs SD2 16.5445 ± 3.3880 0.8491 ± 0.1449 0.1690 ± 0.1936 

Khan N(SD1) vs SD1 18.4453 ± 2.8344 0.6564 ± 0.1403 0.3028 ± 0.0761 

N(SD2) vs SD2 20.3537 ± 1.0981 0.6019 ± 0.1292 0.3424 ± 0.0542 

Vahadane N(SD1) vs SD1 21.5565 ± 4.4068 0.9397 ± 0.0637 0.0875 ± 0.0575 

N(SD2) vs SD2 18.3096 ± 2.4472 0.8875 ± 0.0747 0.1115 ± 0.0356 

CycleGAN N(SD1) vs SD1 16.0873 ± 3.1129 0.8449 ± 0.0508 0.1767 ± 0.0270 

N(SD2) vs SD2 35.1468 ± 1.7279 0.9801 ± 0.0067 0.0455 ± 0.0127 

GcGAN N(SD1) vs SD1 15.9142 ± 4.7748 0.8730 ± 0.0727 0.1731 ± 0.0487 

N(SD2) vs SD2 32.3358 ± 1.9626 0.9783 ± 0.0097 0.0577 ± 0.0172 

AI- 

FFPE 

N(SD1) vs SD1 16.2018 ± 3.5457 0.6255 ± 0.0672 0.3137 ± 0.0335 

N(SD2) vs SD2 25.1388 ± 1.4350 0.8019 ± 0.0350 0.2436 ± 0.0350 

FastCUT N(SD1) vs SD1 27.6084 ± 1.4109 0.9083 ± 0.0227 0.1874 ± 0.0336 

N(SD2) vs SD2 20.8744 ± 1.1850 0.9130 ± 0.0163 0.1256 ± 0.0286 

CUT N(SD1) vs SD1 14.3408 ± 3.2684 0.5837 ± 0.0730 0.3258 ± 0.0366 

N(SD2) vs SD2 25.8854 ± 1.9922 0.8157 ± 0.0406 0.2398 ± 0.0277 

Fig. 9. Line Plots of PPQ for SD1 vs N(SD1) and SD2 vs N(SD2). 

Fig. 10. Accuracy for the various normalization methods on the CDT (first row) and CDV (second row) datasets. First column: image processing normalization. Second 

column: UI2IT (baseline) normalization. Third column: UI2IT (meta-domain) normalization. 
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Table 2 

FID comparison for the various normalization methods. 

Normalization Data FID ↓ 
None SD1 vs SD2 35.9791 

CD1 vs CD2 73.8733 

Reinhard N(SD1) vs N(SD2) 26.6528 

N(CD1) vs N(CD2) 58.1405 

Macenko N(SD1) vs N(SD2) 26.6980 

N(CD1) vs N(CD2) 53.7302 

Khan N(SD1) vs N(SD2) 22.9181 

N(CD1) vs N(CD2) 44.1937 

Vahadane N(SD1) vs N(SD2) 26.6518 

N(CD1) vs N(CD2) 56.6086 

CycleGAN N(SD1) vs SD2 15.5333 

N(SD1) vs N(SD2) 18.2566 

N(CD1) vs CD2 68.6784 

N(CD1) vs N(CD2) 50.7333 

GcGAN N(SD1) vs SD2 19.2417 

N(SD1) vs N(SD2) 15.6546 

N(CD1) vs CD2 67.8117 

N(CD1) vs N(CD2) 54.1416 

AI- 

FFPE 

N(SD1) vs SD2 37.8711 

N(SD1) vs N(SD2) 61.5486 

N(CD1) vs CD2 67.3626 

N(CD1) vs N(CD2) 53.6819 

FastCUT N(SD1) vs SD2 51.5162 

N(SD1) vs N(SD2) 30.5891 

N(CD1) vs CD2 80.4216 

N(CD1) vs N(CD2) 49.5950 

CUT N(SD1) vs SD2 29.9900 

N(SD1) vs N(SD2) 71.4490 

N(CD1) vs CD2 72.5915 

N(CD1) vs N(CD2) 55.9412 

Table 3 

Mean and standard deviation of PPQ for N(SD1) vs SD1 and N(SD2) vs 

SD2. 

Normalization 

Method Data PPQ ↓ 
CycleGAN N(SD1) vs SD1 1.3883 ± 0.8165 

N(SD2) vs SD2 1.0151 ± 0.2127 

GcGAN N(SD1) vs SD1 1.9309 ± 0.8531 

N(SD2) vs SD2 1.6080 ± 0.5385 

AI-FFPE N(SD1) vs SD1 3.3564 ± 0.8990 

N(SD2) vs SD2 3.9497 ± 0.2410 

FastCUT N(SD1) vs SD1 3.2021 ± 0.6715 

N(SD2) vs SD2 2.8241 ± 0.4195 

CUT N(SD1) vs SD1 2.7340 ± 0.8977 

N(SD2) vs SD2 3.8141 ± 0.5131 
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Table 4 

Accuracy on the CDT and CDV classification datasets using th

Normalization Architecture 

CDT 

Acc 

None InceptionV3 0.9791 

DenseNet201 0.9805 

VGG16 0.9697 

Reinhard InceptionV3 0.9777 

DenseNet201 0.9888 

VGG16 0.9617 

Macenko InceptionV3 0.9813 

DenseNet201 0.9910 

VGG16 0.9653 

Khan InceptionV3 0.9637 

DenseNet201 0.9811 

VGG16 0.9435 

Vahadane InceptionV3 0.9762 

DenseNet201 0.9874 

VGG16 0.9548 

13
ine setup, the GcGAN model showed the best performance, with 

esults slightly higher than GcGAN trained with the meta-domain 

onfiguration, but lower than FastCUT in the meta-domain setup. 

The quality of the features has been assessed by looking at em- 

edding plots for the normalization methods. The embedding plot 

ssociated to the features extracted by DenseNet201, after FastCUT 

ormalization, in the meta-domain configuration, can be seen from 

ig. 11 . 

.3. Relationships between normalization and classification 

Several interesting relationships have been observed by our 

nalysis. Indeed, as it can be observed from Fig. 12 , there is a

rend between performance of the classification methods and qual- 

ty of the distribution of the generated images. This trend is visi- 

le for all the considered metrics, but it is statistically significant 

nly for Top3-Accuracy (VGG16 achieves r = 0.9446, p = 0.0155), 

Dice (VGG16 achieves r = 0.9075, p = 0.0333), and mPrecision 

DenseNet201 achieves r = 0.9950, p = 0.0 0 04 and InceptionV3 

chieves r = 0.9495, p = 0.0135). FID has been normalized by tak- 

ng its reciprocal, so to make it correspond to a measure in which 

igher values correspond to better quality distributions. 

The PPQ has also been found correlated to FID and to LPIPS, as 

an be seen from Fig. 13 . These results are also statistically signif- 

cant (PPQ SD1 vs FID: r = 0.8968, p = 0.0392; PPQ SD2 vs LPIPS

D2: r = 0.9775, p = 0.0040). 

. Discussion 

In this study, we characterized several GAN-based UI2IT meth- 

ds with the aim to perform stain color normalization for the clas- 

ification of CRC histopathological tissue. Contrarily to what is usu- 

lly done for GAN-based normalization, that is, considering only 

ource and target domains, we added a meta-domain, which in our 

ase consists in WSIs belonging to the TCGA. This meta-domain, 

ontaining tissues from a wide variety of laboratories, can allow 

o learn a mapping to our target domain that is more general 

han previous research works, thus avoiding the need to train a 

ormalization model for every pair of possible data domains for 

istopathological data. 

.1. Stain color normalization 

To assess the distribution of the GAN-generated images, FID has 

een assessed in different configurations. In the traditional UI2IT 

etting, one is expected to translate images from source to target 

omain. Then, the distribution of translated images is compared 
e classical normalization methods. 

CDV 

Top 1-Acc Top 2-Acc Top 3-Acc 

0.8025 0.9209 0.9608 

0.8115 0.9253 0.9721 

0.7168 0.8688 0.9376 

0.8063 0.9133 0.9586 

0.8352 0.9261 0.9652 

0.7737 0.8964 0.9473 

0.7884 0.8978 0.9486 

0.7924 0.8969 0.9557 

0.7219 0.8701 0.9244 

0.7465 0.8871 0.9449 

0.7757 0.9070 0.9560 

0.6673 0.8319 0.9168 

0.8075 0.9179 0.9603 

0.8240 0.9265 0.9646 

0.7362 0.8787 0.9390 
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Table 5 

Accuracy on the CDT and CDV classification datasets using the UI2IT normalization methods. The methods are trained on both the map 

between the meta-domain and the target dataset ( G M → T ) and the source domain and the target dataset ( G S → T ). 

Model Architecture 

G M → T G S → T 

CDT CDV CDT CDV 

Acc Top 1-Acc Top 2-Acc Top 3-Acc Acc Top 1-Acc Top 2-Acc Top 3-Acc 

CycleGAN InceptionV3 0.9749 0.8126 0.9256 0.9678 0.9767 0.8097 0.9244 0.9668 

DenseNet201 0.9878 0.8375 0.9413 0.9793 0.9884 0.8213 0.9359 0.9780 

VGG16 0.9636 0.7538 0.8923 0.9461 0.9656 0.7463 0.8786 0.9420 

GcGAN InceptionV3 0.9720 0.7811 0.9161 0.9657 0.9725 0.8205 0.9333 0.9700 

DenseNet201 0.9861 0.8266 0.9363 0.9747 0.9876 0.8370 0.9418 0.9769 

VGG16 0.9623 0.7494 0.8841 0.9410 0.9605 0.7808 0.8972 0.9460 

AI-FFPE InceptionV3 0.9638 0.7957 0.9062 0.9536 0.9662 0.7713 0.9147 0.9692 

DenseNet201 0.9820 0.8090 0.9217 0.9693 0.9837 0.8053 0.9255 0.9794 

VGG16 0.9481 0.7263 0.8662 0.9355 0.9522 0.7166 0.8477 0.9103 

FastCUT InceptionV3 0.9757 0.8170 0.9305 0.9702 0.9774 0.7945 0.9247 0.9653 

DenseNet201 0.9886 0.8420 0.9410 0.9774 0.9897 0.7218 0.8733 0.9516 

VGG16 0.9646 0.7626 0.8956 0.9516 0.9689 0.5388 0.7097 0.8528 

CUT InceptionV3 0.9649 0.7935 0.9127 0.9615 0.9645 0.7767 0.8992 0.9608 

DenseNet201 0.9833 0.8134 0.9262 0.9728 0.9838 0.8075 0.9138 0.9735 

VGG16 0.9471 0.7111 0.8517 0.9332 0.9524 0.7049 0.8443 0.9116 

Table 6 

Classification mean precision, recall, and dice (mPrecision, mRecall, and 

mDice, respectively), using the traditional normalization methods. 

Normalization Architecture 

CDV 

mPrecision mRecall mDice 

None InceptionV3 0.8361 0.7668 0.7835 

DenseNet201 0.8479 0.7920 0.8039 

VGG16 0.8007 0.6743 0.6967 

Reinhard InceptionV3 0.8354 0.7780 0.7902 

DenseNet201 0.8643 0.8038 0.8172 

VGG16 0.8268 0.7278 0.7492 

Macenko InceptionV3 0.8171 0.7594 0.7722 

DenseNet201 0.8291 0.7740 0.7874 

VGG16 0.8291 0.6778 0.7203 

Khan InceptionV3 0.7893 0.7092 0.7263 

DenseNet201 0.8249 0.7397 0.7623 

VGG16 0.7289 0.6070 0.6218 

Vahadane InceptionV3 0.8369 0.7801 0.7948 

DenseNet201 0.8605 0.7955 0.8124 

VGG16 0.8219 0.6890 0.7226 
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o the distribution of images that originally belong to the target 

omain. In our setting, with the introduction of the meta-domain 

orresponding to TCGA images, we can instead observe that distri- 

ution of images that are normalized from both source and target 
Table 7 

Classification mean precision, recall, and dice (mPrecision, mRecall,

methods are trained on both the map between the meta-domain 

the target dataset ( G S → T ). 

Normalization Architecture 

G M → T 

CDV 

mPrecision mRecall 

CycleGAN InceptionV3 0.8543 0.7754 

DenseNet201 0.8761 0.8151 

VGG16 0.8263 0.7153 

GcGAN InceptionV3 0.8399 0.7439 

DenseNet201 0.8645 0.8030 

VGG16 0.8187 0.7130 

AI-FFPE InceptionV3 0.8470 0.7542 

DenseNet201 0.8664 0.7788 

VGG16 0.8105 0.6927 

FastCUT InceptionV3 0.8667 0.7784 

DenseNet201 0.8800 0.8170 

VGG16 0.8069 0.7315 

CUT InceptionV3 0.8397 0.7614 

DenseNet201 0.8616 0.7858 

VGG16 0.7829 0.6865 

14 
lassification domains are closer if compared to distributions ob- 

ained by performing only the normalization of the classification 

ource domain. 

Indeed, by performing a double normalization at inference 

ime (that is, performing both G MT ( S ) and G MT ( T ), instead of only

 MT ( S )), an improvement in the FID among the data distributions 

f the classification dataset can be observed. Fig. 8 shows that FID 

s consistently lower for all the considered GAN models when nor- 

alization is performed to both CDT and CDV, and not only CDT. 

his may look counterintuitive, since the learned mapping has al- 

eady WSIs of the target domain coming from the same distribu- 

ion as CDV. Instead, when considering the stain color normaliza- 

ion datasets, we note that performing double normalization is not 

lways convenient. Indeed, SD1 and SD2 are the source and tar- 

et domain, respectively, adopted for learning the GAN mapping. 

n this case, CycleGAN, AI-FFPE, and CUT show worse FID results 

hen double normalization is applied instead of single normaliza- 

ion. 

In this study, we introduced PPQ, a perceptive quality met- 

ic based on the assessment performed by the pathologist on the 

AN-generated image tiles. As can be seen from Fig. 9 , CycleGAN 

nd GcGAN were the two best-performing methods according to 

PQ. This result is perfectly consistent with FID values observed 
 and mDice, respectively), UI2IT normalization methods. The 

and the target dataset ( G M → T ) and the source domain and 

G S → T 

CDV 

mDice mPrecision mRecall mDice 

0.7952 0.8112 0.7527 0.7714 

0.8349 0.8460 0.7896 0.8110 

0.7384 0.7552 0.6841 0.6908 

0.7684 0.8679 0.7802 0.8041 

0.8229 0.8802 0.8104 0.8347 

0.7324 0.8168 0.7467 0.7627 

0.7754 0.8112 0.7527 0.7714 

0.8003 0.8460 0.7896 0.8110 

0.7158 0.7552 0.6841 0.6908 

0.8017 0.8570 0.7497 0.7747 

0.8372 0.7955 0.6999 0.7099 

0.7522 0.6868 0.5184 0.5047 

0.7823 0.8064 0.7516 0.7667 

0.8067 0.8361 0.7931 0.8097 

0.7085 0.7533 0.6712 0.6808 
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Fig. 11. Embedding plot obtained applying t-SNE to features extracted from DenseNet201 on the CDV dataset, with the FastCUT normalization methodology. 
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n N ( SD 1) vs SD 2 and N ( SD 1) vs N ( SD 2), and with LPIPS values

bserved on SD 1 vs N ( SD 1) and SD 2 vs N ( SD 2). Therefore, this

tudy can confirm that CNN-features-based metrics to assess the 

erceptive quality of generated images can be exploited also in 

istopathological contexts. As can be seen from Fig. 13 , FID and 

PQ, and LPIPS and PPQ, are also correlated when considering the 

AN-based normalization results. 

The effectiveness of CycleGAN and GcGAN images is also ob- 

erved by the fact that they possess the highest values for PSNR 

nd SSIM for what concerns SD 2 vs N ( SD 2), as observed in Fig. 7 .

his means that those methods are the most suitable for perform- 

ng transformation of the target domain images with G MT ( T ), which 

s useful as previously mentioned (considering the increase in FID 

or double normalization). 

.2. Multi-class classification 

With respect to the multi-class classification task, the 

enseNet201 model consistently outperforms InceptionV3 and 

GG16, in all considered normalization paradigms, as portrayed 

n Fig. 10 . The only anomaly is for the FastCUT model in the 

aseline UI2IT configuration, for which Inception V3 displays the 

est performance. The normalization methodology which allows 

o achieve the best performance on the locally collected exter- 

al validation set is FastCUT in the meta-domain configuration. 

hough FastCUT does not achieve satisfactory results in reality of 

enerated image tiles, since it tends to over-saturate the input 

mages (quantitative assessment, see Fig. 5 ; visual examples, see 

ig. 6 ), when applied in double normalization configuration, it 

an still offer a useful normalization for the classification task. 
15 
his is a behavior which would not be possible in the baseline 

onfiguration considered for stain color normalization with UI2IT, 

n which normalization is accomplished only from source to target 

omain. It is worth noting the comparison between FID of N ( SD 1) 

s SD 2 with FID of N ( SD 1) vs N ( SD 2), and FID of N ( CDT ) vs CDV

ith FID of N ( CDT ) vs N ( CDV ). Indeed, after double normalization

s performed, FastCUT achieves the best FID on the classification 

atasets. This result means that perceptive quality of transformed 

mages is not necessarily correlated to better classification accu- 

acies of downstream classifiers. Though, we consider perceptive 

uality of generated images a useful asset for the introduction of 

AN-based normalization models in the clinical routine. 

The quality of the features extracted by DenseNet201 after hav- 

ng performed normalization with FastCUT, in the meta-domain 

onfiguration, can be seen from Fig. 11 . The different tissue classes 

ppear clearly clustered in the 2D embedding plot obtained with 

-SNE. 

Classification results are correlated to the quality of image dis- 

ributions, as can be seen from correlations between normalized 

ID and classification performance reported in Fig. 12 . This con- 

rms that FID or similar quality metrics should be checked when 

erforming GAN-based normalization (i.e., conditional generation), 

ince they can already offer an important insight on how the mod- 

ls adopted for the downstream tasks will perform. 

.3. Limitations 

Although the results of the proposed framework are promis- 

ng, leading to better generalization capabilities and higher per- 

ormance, without the need to train a style transfer model be- 
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Fig. 12. Correlations between classification metrics and FID. 

Fig. 13. Correlation between FID and PPQ, and between LPIPS and PPQ. 
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ween each pair of laboratories, there are still points that can be 

mproved in future studies. 

One limitation is that other downstream tasks can be consid- 

red to further show the validity of the proposed pipeline in other 

ontexts, such as nuclei segmentation [61] . Indeed, a more com- 

rehensive analysis of downstream tasks would allow realizing a 
16
eneral stain transfer paradigm that can greatly aid quantitative 

ipelines for Digital Pathology environments. 

Another limitation is that the proposed metric for assessing re- 

lity of generated images from a pathologist perspective, PPQ; has 

een assessed by a single expert. In the future, a collaborative 

uantitative measure, which comprehends the evaluation of more 
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athologists, can be introduced to provide a more objective quan- 

ification of GAN-generated image tiles in Digital Pathology setups. 

. Conclusion 

In this work, three CNN architectures and nine normaliza- 

ion techniques have been considered for the sake of realizing a 

ipeline which is robust to stain color variation in a CRC histolog- 

cal classification setup. 

CRC multi-class tissue classification is an important task in dig- 

tal pathology. In particular, to date, the study of tumors is moving 

oward the integration of genomic data, such as transcriptomics 

nd its spatial localization. In the present paper, we focused on 

RC, but the described approach could be considered as a proof 

f concept for other malignancies. Indeed, the segmentation task 

ould be a preliminary step in digital pathology studies, for in- 

tance, to study the relationship between the tumor, its microen- 

ironment, and genomic features. 

Since preparation of histological slides is a complex process, 

omposed of various stages, and differences can be introduced in 

ny of them, color normalization is a fundamental step to effec- 

ively perform quantitative tasks. 

Traditional normalization methods are easy-to-use, since they 

nly need a template tile, but generate images which are subject 

o color artifact, making them unsuitable for subsequent patholo- 

ists’ analyses. On the other side, the realm of GAN architectures 

o achieve UI2IT can offer a powerful framework to carry out stain 

olor normalization, allowing to achieve impressive results both 

rom the quality and reality of generated tiles, and for the perfor- 

ance of the models involved in the subsequent tasks. 

Nonetheless, care has to be reserved for assessing GAN- 

enerated image tiles, and several quality measures should be in- 

luded to have a complete overview of which model may work 

etter for the task under consideration. 

Observations of pathologists may help in assessing quality of 

enerated images. Indeed, we included them in our study with the 

PQ metric, which can be used to have a medical expert view that 

an eventually confirm the quality of the distributions measured 

ith quantitative measures as FID. 

The introduction of a meta-domain during the learning phase 

f the stain transfer model, as proposed by this study, can help re- 

uce the training time of normalization models for a specific labo- 

atory, and also provide better generalization capabilities of down- 

tream classifiers trained after normalization. 

uthor contributions 

NA, TMM, SDS drafted the paper; NA, VB conceived the exper- 

ments; TMM, MC, NA, BP performed the experiments; FAZ pro- 

ided the internal datasets; ST, AA, AB, VB, BP, MC revised the 

anuscript; SDS, VB supervised the project; EM annotated the tiles 

nd provided the PPQ scores; FAZ, EM revised generated images. 

unding 

This research has been funded by the projects: 

- “D3 4 Health – Digital Driven Diagnostics, prognostics 

nd therapeutics for sustainable Health care”, project code: 

NC0 0 0 0 0 01, Concession Decree No. 931 of 6 June 2022

dopted by the Italian Ministry of University and Research, CUP: 

53C220 06170 0 01, funded under the National Plan for National 

ecovery and Resilience Plan (NRRP) Complementary Investments 

Law Decree May 6, 2021, n. 59, converted and modified as to 

aw n. 101/2021 Research initiatives for technologies and innova- 

ive trajectories in the health and care sectors – Italian Ministry of 
17 
niversity and Research funded by the European Union – NextGen- 

rationEU; 

- “Tecnopolo per la Medicina di Precisione”, CUP: 

84I180 0 0540 0 02; 

- Italian Ministry of Health “Ricerca Corrente 2022”. 

thical statement 

The Institutional Ethics Committee of the IRCCS Istituto Tumori 

Giovanni Paolo II” approved the study (Prot n. 780/CE). 

The authors affiliated to the IRCCS Istituto Tumori “Giovanni 

aolo II”, Bari, are responsible for the views expressed in this arti- 

le, which do not necessarily represent the Institute. 

eclaration of Competing Interest 

The authors declare that they have no competing interests. 

eferences 

[1] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020, CA Cancer, J. Clin. 70 

(1) (2020) 7–30, doi: 10.3322/caac.21590 . 
[2] J. Gao, Z. Shen, Z. Deng, L. Mei, Impact of tumor–stroma ratio on the progno-

sis of colorectal cancer: a systematic review, Front. Oncol. 11 (2021) 738080, 
doi: 10.3389/fonc.2021.73808011 . 

[3] T.A .A . Tosta, P.R. de Faria, L.A. Neves, M.Z. do Nascimento, Computational nor- 
malization of H&E-stained histological images: progress, challenges and future 

potential, Artif. Intell. Med. 95 (2019) 118–132 . 
[4] M. Salvi, U.R. Acharya, F. Molinari, K.M. Meiburger, The impact of pre-and 

post-image processing techniques on deep learning frameworks: a comprehen- 

sive review for digital pathology image analysis, Comput. Biol. Med. 128 (2021) 
104129 . 

[5] C.M. Chen, Y.S. Huang, P.W. Fang, C.W. Liang, R.F. Chang, A computer-aided 
diagnosis system for differentiation and delineation of malignant regions on 

whole-slide prostate histopathology image using spatial statistics and multidi- 
mensional densenet, Med. Phys. 47 (3) (2020) 1021–1033 . 

[6] F. Ciompi, O. Geessink, B.E. Bejnordi, G.S. De Souza, A. Baidoshvili, G. Lit- 

jens, J Van Der Laak, The importance of stain normalization in colorectal tis- 
sue classification with convolutional networks, in: Proceedings of the 2017 

IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 2017, 
pp. 160–163. IEEE . 

[7] F.G. Zanjani, S. Zinger, B.E. Bejnordi, J.A. van der Laak, P.H. de With, Stain 
normalization of histopathology images using generative adversarial networks, 

in: Proceedings of the 2018 IEEE 15th International symposium on biomedical 

imaging (ISBI 2018), 2018, pp. 573–577. IEEE . 
[8] J.T. Pontalba, T. Gwynne-Timothy, E. David, K. Jakate, D. Androutsos, 

A. Khademi, Assessing the impact of color normalization in convolutional neu- 
ral network-based nuclei segmentation frameworks, Front. Bioeng. Biotechnol. 

7 (2019) 300 . 
[9] M. Runz, D. Rusche, S. Schmidt, M.R. Weihrauch, J. Hesser, C.A. Weis, Normal- 

ization of HE-stained histological images using cycle consistent generative ad- 

versarial networks, Diagn. Pathol. 16 (1) (2021) 1–10 . 
[10] Z. Swiderska-Chadaj, T. de Bel, L. Blanchet, A. Baidoshvili, D. Vossen, J. van der 

Laak, G. Litjens, Impact of rescanning and normalization on convolutional neu- 
ral network performance in multi-center, whole-slide classification of prostate 

cancer, Sci. Rep. 10 (1) (2020) 1–14 . 
[11] H. Cho, S. Lim, G. Choi, H. Min, Neural stain-style transfer learning using GAN

for histopathological images, arXiv preprint 11 (2017) . 

[12] J.Y. Zhu, T. Park, P. Isola, A .A . Efros, Unpaired image-to-image translation using 
cycle-consistent adversarial networks, in: Proceedings of the IEEE international 

conference on computer vision, 2017, pp. 2223–2232 . 
[13] T. de Bel, J.M. Bokhorst, J. van der Laak, G. Litjens, Residual cyclegan for robust

domain transformation of histopathological tissue slides, Med. Image Anal. 70 
(2021) 102004 . 

[14] E. Reinhard, M. Adhikhmin, B. Gooch, P. Shirley, Color transfer between images, 

IEEE Comput. Graph. Appl. 21 (5) (2001) 34–41 . 
[15] M. Macenko, M. Niethammer, J.S. Marron, D. Borland, J.T. Woosley, X. Guan, 

N.E. Thomas, A method for normalizing histology slides for quantitative anal- 
ysis, in: Proceedings of the 2009 IEEE international symposium on biomedical 

imaging: from nano to macro, 2009, pp. 1107–1110. IEEE . 
[16] A.M. Khan, N. Rajpoot, D. Treanor, D. Magee, A nonlinear mapping approach to 

stain normalization in digital histopathology images using image-specific color 
deconvolution, IEEE Trans. Biomed. Eng. 61 (6) (2014) 1729–1738 . 

[17] A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, N. Navab, 

Structure-preserving color normalization and sparse stain separation for his- 
tological images, IEEE Trans. Med. Imaging 35 (8) (2016) 1962–1971 . 

[18] B.E. Bejnordi, G. Litjens, N. Timofeeva, I. Otte-Höller, A. Homeyer, N. Karssemei- 
jer, J.A Van Der Laak, Stain specific standardization of whole-slide histopatho- 

logical images, IEEE Trans. Med. Imaging 35 (2) (2015) 404–415 . 

https://doi.org/10.3322/caac.21590
https://doi.org/10.3389/fonc.2021.73808011
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0003
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0004
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0005
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0006
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0007
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0008
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0009
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0010
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0011
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0012
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0013
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0014
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0015
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0016
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0017
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0018


N. Altini, T.M. Marvulli, F.A. Zito et al. Computer Methods and Programs in Biomedicine 234 (2023) 107511 

[  

[

[

[

[

[

[

[  

[

[

[  

[

[

[

[

[

[

[

[

 

[

[

[

[  

[

[

[

[

 

[

[

[

[

[

[

[

[

[

[

[

[19] Nicola Altini, Tommaso Maria Marvulli, Francesco Alfredo Zito, Mariapia Ca- 
puto, Stefania Tommasi, Amalia Azzariti, Antonio Brunetti, Berardino Prencipe, 

Eliseo Mattioli, Simona De Summa, Vitoantonio Bevilacqua, Colorectal cancer 
histology image tiles for tissue multi-class classification [data set], Zenodo 

(2022), doi: 10.5281/zenodo.7109754 . 
20] N. Linder, J. Konsti, R. Turkki, E. Rahtu, M. Lundin, S. Nordling, J. Lundin, Iden-

tification of tumor epithelium and stroma in tissue microarrays using texture 
analysis, Diagn Pathol 7 (1) (2012) 1–11 . 

[21] R.M. Haralick, K. Shanmugam, I.H. Dinstein, Textural features for image classi- 

fication, IEEE Trans. Syst. Man Cybern. (6) (1973) 610–621 . 
22] V. Bevilacqua, N. Pietroleonardo, V. Triggiani, A. Brunetti, A.M. Di Palma, 

M. Rossini, L. Gesualdo, An innovative neural network framework to classify 
blood vessels and tubules based on Haralick features evaluated in histological 

images of kidney biopsy, Neurocomputing 228 (2017) 143–153 . 
23] J.N. Kather, C.A. Weis, F. Bianconi, S.M. Melchers, L.R. Schad, T. Gaiser, F.G. Zöll- 

ner, Multi-class texture analysis in colorectal cancer histology, Sci. Rep. 6 (1) 

(2016) 1–11 . 
24] N. Altini, T.M. Marvulli, M. Caputo, E. Mattioli, B. Prencipe, G.D. Cascarano, 

F.A. Zito, Multi-class tissue classification in colorectal cancer with handcrafted 
and deep features, in: Proceedings of the International Conference on Intelli- 

gent Computing, 2021, pp. 512–525. Springer, Cham . 
25] J.N. Kather, J. Krisam, P. Charoentong, T. Luedde, E. Herpel, C.A. Weis, N. Ha- 

lama, Predicting survival from colorectal cancer histology slides using deep 

learning: a retrospective multicenter study, PLoS Med. 16 (1) (2019) e1002730 . 
26] A. BenTaieb, G. Hamarneh, Adversarial stain transfer for histopathology image 

analysis, IEEE Trans. Med. Imaging 37 (3) (2017) 792–802 . 
27] J. Ke, Y. Shen, X. Liang, D. Shen, Contrastive learning based stain normalization 

across multiple tumor in histopathology, in: Proceedings of the International 
Conference on Medical Image Computing and Computer-Assisted Intervention, 

2021, pp. 571–580. Springer, Cham . 

28] T. Kausar, A. Kausar, M.A. Ashraf, M.F. Siddique, M. Wang, M. Sajid, I. Riaz,
SA-GAN: stain acclimation generative adversarial network for histopathology 

image analysis, Appl. Sci. 12 (1) (2021) 288 . 
29] Jakob Nikolas Kather, Image tiles of TCGA-CRC-DX histological whole slide 

images, non-normalized, tumor only (v0.1) [data set], Zenodo (2020), doi: 10. 
5281/zenodo.3784345 . 

30] Jakob Nikolas Kather, Niels Halama, Alexander Marx, 10 0,0 0 0 histological im- 

ages of human colorectal cancer and healthy tissue (v0.1) [Data set], Zenodo 
(2018), doi: 10.5281/zenodo.1214456 . 

[31] M.T. Shaban, C. Baur, N. Navab, S. Albarqouni, Staingan: stain style transfer for 
digital histological images, in: Proceedings of the 2019 IEEE 16th international 

symposium on biomedical imaging (Isbi 2019), IEEE, 2019, pp. 953–956 . 
32] D. Bug, S. Schneider, A. Grote, E. Oswald, F. Feuerhake, J. Schüler, D. Merhof, in:

Context-based Normalization of Histological Stains Using Deep Convolutional 

features. In Deep Learning in Medical Image Analysis and Multimodal Learning 
For Clinical Decision Support, Springer, Cham, 2017, pp. 135–142 . 

33] M. Salvi, F. Molinari, U.R. Acharya, L. Molinaro, K.M. Meiburger, Impact of stain 
normalization and patch selection on the performance of convolutional neu- 

ral networks in histological breast and prostate cancer classification, Comput. 
Methods Programs Biomed. Update 1 (2021) 10 0 0 04 . 

34] V. Sandfort, K. Yan, P.J. Pickhardt, R.M. Summers, Data augmentation using gen- 
erative adversarial networks (CycleGAN) to improve generalizability in CT seg- 

mentation tasks, Sci. Rep. 9 (1) (2019) 1–9 . 

35] Y. Chen, Y. Zhao, W. Jia, L. Cao, X. Liu, Adversarial-learning-based image-to-im- 
age transformation: a survey, Neurocomputing 411 (2020) 46 8–4 86 . 

36] A. Alotaibi, Deep generative adversarial networks for image-to-image transla- 
tion: a review, Symmetry 12 (10) (2020) 1705 . 

37] Y. Pang, J. Lin, T. Qin, Z. Chen, Image-to-image translation: methods and appli- 
cations, IEEE Trans. Multimed. (2021) . 

38] X. Yi, E. Walia, P. Babyn, Generative adversarial network in medical imaging: a 

review, Med. Image Anal. 58 (2019) 101552 . 
39] H. Huang, P.S. Yu, C. Wang, An introduction to image synthesis with generative 

adversarial nets, arXiv preprint 39 (2018) . 
40] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 

Y. Bengio, Generative adversarial networks, Commun. ACM 63 (11) (2020) 
139–144 . 
18 
[41] K. Kurach, M. Lu ̌ci ́c, X. Zhai, M. Michalski, S. Gelly, A large-scale study on regu-
larization and normalization in GANs, in: Proceedings of the International Con- 

ference on Machine Learning, 2019, pp. 3581–3590. PMLR . 
42] P. Isola, J.Y. Zhu, T. Zhou, A .A . Efros, Image-to-image translation with condi- 

tional adversarial networks, in: Proceedings of the IEEE Conference on Com- 
puter Vision and Pattern Recognition, 2017, pp. 1125–1134 . 

43] T. Park, A .A . Efros, R. Zhang, J.Y. Zhu, Contrastive learning for unpaired image–
to-image translation, in: Proceedings of the European Conference on Computer 

Vision, 2020, pp. 319–345. Springer, Cham . 

44] Z. Yi, H. Zhang, P. Tan, M. Gong, Dualgan: unsupervised dual learning for im- 
age-to-image translation, in: Proceedings of the IEEE International Conference 

on Computer Vision, 2017, pp. 2849–2857 . 
45] T. Kim, M. Cha, H. Kim, J.K. Lee, J. Kim, Learning to discover cross-domain rela-

tions with generative adversarial networks, in: Proceedings of the International 
Conference on Machine Learning, 2017, pp. 1857–1865. PMLR . 

46] M. Amodio, S. Krishnaswamy, Travelgan: image-to-image translation by trans- 

formation vector learning, in: Proceedings of the IEEE/CVF Conference on Com- 
puter Vision and Pattern Recognition, 2019, pp. 8983–8992 . 

[47] S. Benaim, L. Wolf, One-sided unsupervised domain mapping, Adv. Neural Inf. 
Process. Syst. 30 (2017) . 

48] H. Fu, M. Gong, C. Wang, K. Batmanghelich, K. Zhang, D. Tao, Geometry-consis- 
tent generative adversarial networks for one-sided unsupervised domain map- 

ping, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat- 

tern Recognition, 2019, pp. 2427–2436 . 
49] K.B. Ozyoruk, S. Can, B. Darbaz, et al., A deep-learning model for trans- 

forming the style of tissue images from cryosectioned to formalin-fixed 
and paraffin-embedded, Nat. Biomed. Eng. 6 (2022) 1407–1419, doi: 10.1038/ 

s41551- 022- 00952- 9 . 
50] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: 

from error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) 

(20 04) 60 0–612 . 
[51] R. Zhang, P. Isola, A .A . Efros, E. Shechtman, O. Wang, The unreasonable effec-

tiveness of deep features as a perceptual metric, in: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595 . 

52] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, Im- 
proved techniques for training gans, Adv. Neural Inf. Process. Syst. 29 (2016) . 

53] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, Gans trained 

by a two time-scale update rule converge to a local nash equilibrium, Adv. 
Neural Inf. Process. Syst. 30 (2017) . 

54] D.C. Dowson, B. Landau, The Fréchet distance between multivariate normal dis- 
tributions, J. Multivar. Anal. 12 (3) (1982) 450–455 . 

55] L.N. Wasserstein, Markov processes on countable product space describing 
large systems of automata, Probl. Pered. Inform. 5 (1969) 64–73 . 

56] C.X. Ren, A. Ziemann, J. Theiler, A.M. Durieux, Deep snow: synthesizing remote 

sensing imagery with generative adversarial nets, in: Proceedings of the IAl- 
gorithms, Technologies, and Applications for Multispectral and Hyperspectral 

Imagery XXVI, 11392, SPIE, 2020, pp. 196–205 . 
57] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization (2014) arXiv 

preprint. doi: 10.48550/arXiv.1412.6980 . 
58] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected con- 

volutional networks, in: Proceedings of the IEEE Conference on Computer Vi- 
sion and Pattern Recognition, 2017, pp. 4700–4708 . 

59] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception 

architecture for computer vision, in: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2016, pp. 2818–2826 . 

60] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale 
image recognition (2014) arXiv preprint. doi: 10.48550/arXiv.1409.1556 . 

61] N. Altini, A. Brunetti, E. Puro, M.G. Taccogna, C. Saponaro, F.A. Zito, V. Bevilac- 
qua, NDG-CAM: nuclei detection in histopathology images with semantic seg- 

mentation networks and grad-CAM, Bioengineering 9 (9) (2022) 475 . 

62] V.K. Morris, E.B. Kennedy, N.N. Baxter, A.B. Benson 3rd, A. Cercek, M. Cho, 
K.K. Ciombor, C. Cremolini, A. Davis, D.A. Deming, M.G. Fakih, S. Gholami, 

T.S. Hong, I. Jaiyesimi, K. Klute, C. Lieu, H. Sanoff, J.H. Strickler, S. White, 
J.A. Willis, C. Eng, Treatment of metastatic colorectal cancer: ASCO guideline, J. 

Clin. Oncol. 41 (3) (2023) 678–700 Jan 20Epub 2022 Oct 17. PMID: 36252154, 
doi: 10.1200/JCO.22.01690 . 

https://doi.org/10.5281/zenodo.7109754
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0020
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0021
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0022
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0023
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0024
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0025
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0026
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0027
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0028
https://doi.org/10.5281/zenodo.3784345
https://doi.org/10.5281/zenodo.1214456
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0031
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0032
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0033
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0034
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0035
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0036
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0037
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0038
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0039
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0040
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0041
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0042
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0043
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0044
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0045
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0046
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0047
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0048
https://doi.org/10.1038/s41551-022-00952-9
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0050
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0051
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0052
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0053
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0054
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0055
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0056
http://arxiv.org/abs/10.48550/arXiv.1412.6980
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0058
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0059
http://arxiv.org/abs/10.48550/arXiv.1409.1556
http://refhub.elsevier.com/S0169-2607(23)00176-1/sbref0061
https://doi.org/10.1200/JCO.22.01690

	The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification
	1 Introduction
	2 Related works
	2.1 Colorectal cancer tissue classification
	2.2 H&E normalization
	2.3 Stain color normalization for colon histological tissue
	2.4 Unpaired image-to-image translation
	2.4.1 Cycle consistency-based
	2.4.2 One-sided translation
	2.4.3 Patchwise contrastive learning approaches


	3 Materials and methods
	3.1 Datasets
	3.2 Stain normalization with a meta-domain
	3.3 Generated image tiles quality assessment
	3.4 Experimental design

	4 Experimental results
	4.1 Stain color normalization
	4.2 Multi-class classification
	4.3 Relationships between normalization and classification

	5 Discussion
	5.1 Stain color normalization
	5.2 Multi-class classification
	5.3 Limitations

	6 Conclusion
	Author contributions
	Funding
	Ethical statement
	Declaration of Competing Interest
	References


