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Abstract   A very recently developed metaheuristic method called Jaya algorithm (JA) is 

implemented in this study for sizing and layout optimization of truss structures. The main 

feature of JA is that it does not require setting algorithm-specific parameters. The algorithm 

has a very simple formulation where the basic idea is to approach the best solution and escape 

from the worst solution. The original JA formulation is modified in this research in order to 

improve convergence speed and reduce the number of structural analyses required in the 

optimization process. The suitability of JA for truss optimization is investigated by solving six 

classical weight minimization problems of truss structures including sizing, layout and large-

scale optimization problems with up to 204 design variables. Discrete sizing/layout variables 

and simplified topology optimization also are considered. The test problems solved in this 

study are very common benchmarks in structural optimization and practically describe all 

scenarios that may be faced by designers. The results demonstrate that JA can obtain better 

designs than those of the other state-of-the-art metaheuristic and gradient-based optimization 

methods in terms of optimized weight, standard deviation and number of structural analyses.  
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1. Introduction 

Metaheuristic algorithms try to achieve a dynamic balance between exploration of search space 

(i.e. “diversification” phase) and exploitation of accumulated search experience (i.e.  

“intensification” phase). This balance allows to quickly identify regions of design space 

containing high quality solutions as well as to bypass regions that either were already explored 

or are far from global optimum [1-3]. 

Metaheuristic optimization methods such as, for example, genetic algorithms (GA) [4,5], 

simulated annealing (SA) [6,7], evolution strategies (ES) [8,9], ant colony optimization (ACO) 

[10,11], particle swarm optimization (PSO) [12,13], harmony search optimization (HS) [14,15], 

artificial bee colony algorithm (ABC) [16], big bang-big crunch optimization (BB-BC) [17], 

charged system search (CSS) [18], firefly algorithm (FFA) [2], teaching-learning-based 

optimization (TLBO) [19], flower pollination algorithm (FPA) [20], swallow swarm 

optimization algorithm (SSO) [21] and water evaporation optimization (WEO) [22],  have been 

successfully used in every field of science and engineering. 

Truss structures are very often selected as benchmark design problems to test the 

efficiency of metaheuristic algorithms. Just to cite a few examples from the extensive 

optimization literature, GA using different search operators and re-analysis strategies [23-30], 

differential evolution with various search schemes [31-35], SA based on single or multi-level 

search [36-39], particle swarm optimization with different modelling of social/individual 

behavior, combination of global/local best and center of mass particles [40-44], harmony search 

optimization with different search and parameter adaptation strategies [45-49], big bang big 

crunch optimization with different definition of trial designs and infrequent explosions [48, 50-

52], teaching-learning based optimization [53-56], artificial bee colony algorithm with adaptive 

penalty approach [57], firefly algorithm [58,59], cultural algorithm [60], flower pollination 

algorithm [61], water evaporation algorithm [62], hybrid methods combining two or more 
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metaheuristic algorithms, as well as metaheuristic algorithms and gradient-based optimization 

[63-66]. Further information can be found in classical textbooks [2], review papers [67,68] and 

studies comparing the relative efficiency of several metaheuristic algorithms in static and 

dynamic truss optimization problems [69,70]. 

The continuously increasing computational power has favored the blooming of new 

metaheuristic algorithms that are often claimed by authors to be very competitive with the most 

popular state-of-the-art optimizers. However, finding the global optimum at a reasonably low 

computational cost for all problems with a limited sensitivity to the selection (i.e. size and 

composition) of initial population and the setting/adaptation of internal parameters that drive the 

search process remains an unresolved issue in metaheuristic optimization.  

An interesting metaheuristic algorithm that has a very simple formulation and does not 

require internal parameters is the JAYA algorithm (JA) developed by Rao in 2016 [71]. The JA 

algorithm was successfully tested on several benchmark functions. Rao and Waghmare [72] 

later utilized the JA for solving constrained mechanical design problems such as robot gripper, 

multiple disc clutch brake, hydrostatic thrust bearing and rolling element bearing. The 

efficiency of the JA with respect to other metaheuristic algorithms was demonstrated also for 

these test problems. The JA was used also for sizing optimization of a micro-channel heat sink 

[73] by taking thermal resistance and pumping power as objective functions and micro-channel 

width, depth and fin width as design variables. Once again JA resulted very competitive or even 

better than those obtained for TLBO and multi-objective evolutionary algorithms. 

The main objective of this study is to evaluate the suitability of the JA algorithm for 

weight minimization of truss structures. This test suite is selected because of the tremendously 

large amount of data available in literature, which allows comprehensive and detailed 

comparisons to be carried out. Sizing optimization problems of trusses with 200, 942 and 1938 

elements, and combined sizing-layout optimization problems of trusses with 25, 45 and 47 
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elements are solved for that purpose. Sizing optimization problems include up to 204 design 

variables while combined sizing-layout optimization problems include up to 81 design 

variables. Discrete sizing/layout variables and simplified topology optimization also are 

considered. The original JA formulation is modified in order to improve convergence speed 

thus reducing the number of structural analyses required in the optimization. 

The results obtained by the JA are compared with those of other state-of-the-art 

metaheuristic optimization methods including variants of genetic algorithms, differential 

evolution, simulated annealing, particle swarm, harmony search, big bang big crunch, artificial 

bee colony, teaching-learning based optimization, cultural algorithm, firefly algorithm, flower 

pollination algorithm, water evaporation optimization, hybrid particle and swallow swarm 

optimization, hybrid particle swarm, ant colony and harmony search optimization. Comparisons 

with gradient-based optimizers also are presented in the article. The performance of JA is 

evaluated in terms of minimum weight, standard deviation on optimized weight and number of 

structural analyses required in the optimization process. In all test problems, JA is compared 

with the best solutions available in metaheuristic optimization literature as well as with 

commercial software. A statistical analysis of the best, average and worst optimized weights 

and corresponding standard deviations obtained over independent optimization runs is 

performed. Results prove that the proposed algorithm is very competitive with the other 

metaheuristic methods and its convergence speed is similar to gradient-based optimizers. 

The paper is structured as follows. The formulation of the design optimization problem 

for truss structures is recalled in Section 2. The JAYA algorithm is described in Section 3 along 

with its implementation for truss structure problems. Section 4 describes the test problems and 

discusses optimization results. Section 5 summarizes the main findings of this study. Sensitivity 

of JA convergence behavior to population size is analyzed in detail in the Appendix. 
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2. Optimization of truss structures 

The objective of truss optimization is to minimize the weight of the structure under design 

constraints such as element stresses and nodal displacements. The sizing optimization 

problem of a truss structure can be stated as: 
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where the A vector contains the sizing variables (i.e. cross-sectional areas of bars), W(A) is 

the weight of the truss structure. γi  and Li , respectively, are the material density and the 

length of  member i. Ai  is the cross-sectional area of member i with the corresponding 

lower/upper bounds Amin and Amax. Each truss design must satisfy design constraints on 

member stresses σi for each element i and displacements δj for each node j. c
i  and t

i are the 

allowable compression and tension stresses for member i. min and max are the allowable 

displacements for node j. nm is the number of members in the truss structure, nn is the 

number of nodes, ng is the number of member groups (i.e. number of design variables).  

For optimization problems including also layout variables, the cost function can be 

rewritten as: 

 

Minimize    W(A,X) 



nm

2
2i1i

2
2i1i

2
2i1ii

1i

)()y()( zzyxxA                      (2) 

 



6 
 

where xi1,2, yi1,2, zi1,2 are the coordinates of the nodes limiting the ith element of the structure. 

The optimization problem hence includes ndv design variables where ndv is the sum of the ng 

element cross-sectional areas included as sizing variables and nlay nodal coordinates included 

as layout variables. In topology optimization, elements can be removed from the structure if 

their cross-sectional areas become very small (for example, 107 in2). 

Stress and displacement constraints to be satisfied are handled by using a penalty 

function. The penalized objective function Fp is obtained as the product between the truss 

weight W(A,X) and the penalty function ψp as follows: 

 

p),(  XAWFp                        
           (3)

 
 

The penalty function is defined as: 
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The penalty function exponent ε is set equal to 2 in this study. This setting is very 

common in literature and corresponds to assuming a quadratic variation of penalty terms 

throughout the optimization process. However, variations can be sharper in the case of non-

smooth problems that include different search spaces (i.e. layout and sizing variables) or 

hundreds of design variables. For this reason, for the combined sizing-layout optimization 

problems and largest sizing optimization problem solved in this study, the penalty function 

exponent ε was supposed to increase with the number of iterations as iter=o(1+it/itmax) where 

the initial value o is chosen between 1.001 and 10000, it denotes the current iteration and 

itmax is the limit number of optimization iterations specified by the user. This was done in 

purpose to amplify the effect of penalty as the search process approaches constraint domain 

boundaries. Remarkably, JA convergence behavior was found to be insensitive to such a 

refinement.  

 

3. The JAYA algorithm  

The JAYA algorithm (JA) is a new metaheuristic optimization method proposed in 2016 by 

Rao [71]. The word “Jaya” means “victory” in Sanskrit. This population based algorithm is 

based on the concept that the search process should always move toward the best design and 

avoid the worst design. The search engine continuously tries to get closer to success (i.e. to 

reach the best design) trying at the same time to avoid failure (i.e. by moving away from the 

worst design) [73]. A definite strength point of JA with respect to other metaheuristic 

optimization algorithms is that JA does not include any algorithm-specific parameters. In fact, 

JA only requires two standard control parameters such as population size (i.e. number of truss 

designs in the population) and maximum number of iterations. 

In the optimization process, ndv is the number of design variables (i.e. number of 

member groups ng in sizing optimization problems; summation of number of member groups 
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and number of layout variables in sizing-layout optimization problems) and np is the 

population size (i.e. number of truss designs). The design corresponding to the lowest 

penalized objective function ( best
pF )

 
is stored as the best design while the design corresponding 

to the highest penalized objective function ( worst
pF ) is the worst design stored in the 

population.  

Let Xk,l,it denote the value of the k-th design variable (cross-sectional areas A and nodal 

coordinates X) for the l-th design of the population at the beginning of the it-th iteration. The 

JA algorithm perturbs this design variable using the following equation: 

 

   it,l,kit,worst,kit,k,2it,l,kit,best,kit,k,1it,l,k
new

it,l,k XXrXXrXX 
                    

(8)
 

 

where new
it,l,kX

 
is the new value assigned to the design variable it,l,kX , itkr ,,1

 
and itkr ,,2

 
are two 

randomly generated real numbers in the [0,1] range for the k-th design variable in the it-th 

iteration. it,best,kX  is the value of the k-th design variable for the best design of the population 

at the it-th iteration while it,worst,kX  is the value of the k-th design variable for the worst design 

stored in the population. The term  it,l,kit,best,kit,k,1 XXr   indicates the tendency of the 

solution to move closer to the best solution. The term  it,l,kit,worst,kit,k,2 XXr   indicates the 

tendency of the solution to avoid the worst solution [71].  

After all design variables are updated with Eq. (8), the penalized objective function 

( new
pF ) is calculated for the new design. If the new

pF  value is better than the previous 

penalized objective function value ( pre
pF ) stored in the population (i.e. new

pF < pre
pF ), the new 

design replaces the previous one. Otherwise, the previous design remains unchanged. An 

iteration is completed when the same process is repeated for all designs stored in the 

population. It is worth pointing out that the random numbers r1 and r2 ensure good exploration 
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of the search space and the absolute value of the candidate solution (|Xk,l,it|) considered in Eq. 

(8) further enhances the exploration ability of the algorithm [72].  

It should be noted that the total computational cost of JA optimization is np×itmax 

structural analyses if the search process lasts itmax iterations. For example, performing 1000 

iterations over a population of 100 individuals would entail 100,000 structural analyses, 

which may become unaffordable for a large-scale truss sizing problem such as, for example, 

the weight minimization of the spatial 1938-bar tower solved in this study. In order to 

overcome this limitation, penalized objectives should effectively be compared only if new 

trial designs defined with Eq. (8) are very likely to improve the designs currently stored in the 

population (see variant introduced in Section 3.1). Another issue to be considered is whether 

the best and worst designs should remain unchanged throughout the current iteration or be 

dynamically updated in the iteration itself each time a new trial design replaces some design 

in the population. Since preliminary numerical trials confirmed that selecting the most 

effective updating sequence of best/worst designs may not be an easy task, the classical JA 

strategy (i.e. best and worst designs remain the same for the whole current iteration) was 

adopted in this study. 

 

3.1. Implementation of the JA algorithm for truss optimization 

In this study, the JA algorithm was applied to design optimization of truss structures. The 

implementation steps are now summarized.  

1. An initial population including np truss designs is randomly generated. The optimization 

problem includes ng sizing variables or ndv design variables. Each design variable included 

in a truss design is generated between its lower ( k
minX ) and upper ( k

maxX ) bounds using the 

following equation: 
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where rand(0,1) is a random number uniformly generated in the [0,1] interval. The 

generated values o
l,kX  are stored as Xk,l,1 to perform the first iteration of the JA algorithm. 

The maximum number of iterations itmax and the penalty function exponent are defined by 

the user. 

2. The penalized objective function values (Fp) are calculated for all truss designs with Eqs. 

(1) through (7). best
pF

 
and

 
worst
pF , respectively, are the best (i.e. the minimum) and the worst 

(i.e. maximum) penalized objective functions for the designs stored in the population. 

3. Each design included in the population is updated with Eq. (8) and the corresponding 

penalized objective function value ( new
pF ) is calculated.  

4. If the new design Xnew is better than previous design Xpre stored in the population (i.e. 

new
pF < pre

pF ), it replaces the previous one. Otherwise, the previous design remains 

unchanged. The same process is repeated for all truss designs stored in the population and, 

hence, an iteration would be completed by performing np structural analyses. In order to 

speed up this step, a novel strategy was introduced in this study. The cost function Wnew 

only is preliminary evaluated for the new design. Structural analysis and hence penalty 

evaluation are then performed only if Wnew<Wpre, that is if the new design can potentially 

improve the previous one. The case Wnew>Wpre entails a new constraint evaluation only if 

the previous design Xpre is infeasible. As is clear, if the previous design is feasible and the 

new design already yields a larger structural weight regardless of adding penalty terms, it 

does not make much sense to perturb the design along a non-descent direction.    

5. The design corresponding to the lowest value of the penalized objective function is stored 

as the current best record. 

6. If it < itmax, set it=it+1 and repeat steps 2 through 5. Otherwise go to step 7. 
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7. The optimization process is terminated when the maximum number of iterations itmax is 

completed. The feasible design corresponding to the lowest cost function value stored in 

the population is taken as optimum design. The maximum number of iterations is the most 

commonly utilized stopping criterion in metaheuristic optimization. However, some 

algorithms (see, for example, Ref. [32]) finish the search process also if the absolute value 

of deviation of the objective function of the best individual and the whole population is 

smaller than a limit specified by the user. In order to check this issue we analyzed 

convergence curves recorded for JA in each test problem. The optimization runs carried 

out in this study indicate that JA converges asymptotically to the optimum design and the 

standard deviation of design vectors (determined as the maximum standard deviation of 

each optimization variable assigned to candidate designs) rapidly drops below 1010 as JA 

performs only 30-50 additional structural analyses after having reached its best solution. 

Remarkably, the same behavior occurs regardless of problem size and type of design 

variables (i.e. sizing/layout). In view of this, JA actually behaves as if it included two 

stopping criteria: the maximum number of iterations and the convergence of populations to 

the optimum design. 

The flow chart of the JA algorithm is shown in Fig. 1. 

Multi-stage optimizations can be performed if the truss design problem includes discrete 

variables. A simplified method for solving mixed continuous-discrete or fully discrete weight 

minimization problems of truss structures was adopted in this study. This approach was not 

specifically designed for JA but it can be applied to any metaheuristic algorithm (see, for 

example, Section 4.7). 
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Fig. 1. Flowchart of the JA search process for weight minimization of truss structures. The 
variant introduced for large-scale and sizing-layout problem is indicated in bold.  
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4. Test problems, optimization results and discussion 

Six trusses previously optimized with various metaheuristic methods were considered in this 

study in order to demonstrate the efficiency of the JA algorithm in sizing-layout optimization 

of truss structures. The design examples regarded the sizing optimization of a planar 200-bar 

truss, a spatial 942-bar tower and a spatial 1938-bar tower; these test cases included up to 204 

design variables. Combined sizing-layout optimization was performed for a spatial 25-bar 

transmission tower, a planar 45-bar truss and a planar 47-bar power line; these test cases 

included up to 81 design variables. Discrete sizing optimization and simplified topology 

optimization also were carried out. All test problems solved in this study are very common 

benchmark examples in structural optimization literature, often selected by researchers in the 

last thirty years to evaluate the performance of new metaheuristic algorithms. 

The best population size np for each test problem was determined via sensitivity 

analysis. The results presented in the Appendix indicate that the best value is np=20 for sizing 

problems while it changes between 30 and 1000 for the sizing-layout problems. Remarkably, 

the standard deviation of optimized weight never exceeds 0.062% of the corresponding 

average weight. Furthermore, the standard deviation of the number of structural analyses is 

always smaller than the 12.1% of the corresponding average number of analyses. Hence, JA 

performance is practically insensitive to population size. 

JA was compared with its standard formulation where constraints are evaluated for all 

trial designs and other state-of-the-art metaheuristic optimization methods like hybrid big 

bang big crunch optimization with (HBBBC-LS) or without line search (BBBC), hybrid 

harmony search with line search (HHS-LS), artificial bee colony algorithm with adaptive 

penalty approach (ABC-AP), self-adaptive harmony search (SAHS), teaching-learning based 

optimization (TLBO), multi-stage particle swarm optimization (MSPSO), cultural algorithm 

(CA), firefly algorithm (FFA), flower pollination algorithm (FPA), water evaporation 
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algorithm (WEA), multi-level and multi-point simulated annealing (CMLPSA), cuckoo 

search (CS), adaptive evolution strategies (ESs), genetic algorithms (GAs), improved 

constrained differential evolution (ICDE), hybrid particle swarm and swallow optimization 

algorithm (HPSSO), hybrid particle swarm ant colony and harmony search optimizer 

(HPSACO) etc. The above mentioned algorithms were selected according to two criteria: (i) 

they achieved the best structural weight or required the smallest number of structural analyses 

indicated in the literature; (ii) they were the most robust optimizers in terms of smallest 

standard deviation on optimized weight for the test problem at hand. JA was also compared 

with commercial optimization software in order to gather further information on its 

convergence behavior and to compare the convergence speed of JA with gradient-based 

optimizers that should inherently be faster than metaheuristic algorithms. 

The JA was executed twenty times for each design example starting from twenty 

randomly generated initial populations of fixed size. Whenever possible, optimization runs 

were started from the same initial populations used for the referenced algorithms compared 

with JA. When the composition of the initial population was not given in literature, the same 

population size, lower and upper bounds of design variables used in the referenced studies 

were at least used also in this study in order to perform the most reliable comparison as 

feasible. Numerical trials with fifty and one-hundred independent optimization runs also were 

performed for some test problems to cover all cases reported in the literature. Remarkably, the 

best weight, average optimized weight and standard deviation on optimized weight were less 

than 0.001% different from the corresponding values obtained for twenty runs. 

The best design obtained over the twenty runs and the corresponding number of 

structural analyses required in the optimization process are reported in tables. Average 

optimized weight, worst optimized weight and standard deviation on optimized weight 

recorded in the independent optimization runs also are reported. These quantities are the most 
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commonly adopted parameters in metaheuristic optimization of structures to evaluate the 

performance of a new algorithm and compare relative merits of metaheuristic search engines.  

The JA algorithm was coded in the MATLAB environment and executed on a standard 

PC equipped with a single 2.2 GHz Intel® Pentium i7-4702MQ CPU. The large-scale 1938-

bar problem and the mixed sizing-layout/topology optimization problems were also solved 

coding the JA-based optimization algorithm in the Fortran 90 programming language. This 

was done in order to analyze the effect of programming language and software environment. 

Remarkably, no difference was found between the optimization results obtained for the two 

implementation  modalities. A standard linear elastic finite element solver was implemented 

by the authors to perform the structural analyses entailed by the optimization process. 

 
 

4.1. Sizing optimization of a planar 200-bar truss structure 

The planar 200-bar truss schematized in Fig. 2 is a well known average-scale sizing 

optimization problem. The Young’s modulus and mass density are 30 Msi and 0.283 lb/in3, 

respectively. The allowable stress in tension/compression is 10000 psi and no displacement 

constraint is considered. Minimum cross-sectional area of elements is taken as 0.1 in2. The 

elements of the structure are divided in 29 groups as illustrated in Fig. 2. The structure must 

be designed against three independent loading conditions: 

(i) 1.0 kip acting in the positive x-direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71;  

(ii) 10.0 kips acting in the negative y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 

17, 18, 19, 20, 22, 24, 26, 28, 29 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 

50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71, 72, 73, 74 and 75;  

(iii) loading conditions (i) and (ii) acting together. 
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Fig. 2. Schematic of the planar 200-bar truss and element grouping used in optimization. 
 

 

Table 1 presents the optimization results for JA, CMLPSA [37], ABC-AP [57], SAHS 

[47], TLBO [53], HPSSO [65], FPA [61] and WEO [62]. It appears that JA obtained the best 

design overall with a structural weight of 25463.53 lb. This design fully satisfies stress 

constraints. It should be noted that the best two weights quoted in literature for this problem are 

25156.5 lb, achieved by the HPSACO algorithm [63], and 25193.2 lb, achieved by the ray 

optimization algorithm [74]. However, those designs violate stress constraints, respectively, by 

9.97% and 12.7% and hence were not included in the results table. The third best weight quoted 

in metaheuristic optimization literature is 25445.63 lb, achieved by CMLPSA algorithm, which 

Element grouping 
 
(1) 1,2,3,4 
(2) 5,8,11,14,17 
(3) 19,20,21,22,23,24 
(4) 18,25,56,63,94,101,132,139,170,177 
(5) 26,29,32,35,38 
(6) 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37 
(7) 39,40,41,42 
(8) 43,46,49,52,55 
(9) 57,58,59,60,61,62 
(10) 64,67,70,73,76 
(11) 44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75 
(12) 77,78,79,80 
(13) 81,84,87,90,93 
(14) 95,96,97,98,99,100 
(15) 102,105,108,111,114 
(16) 82,83,85,86,88,89,91,92,103,104,106,107,109, 
       110,112,113 
(17) 115,116,117,118 
(18) 119,122,125,128,131 
(19) 133,134,135,136,137,138 
(20) 140,143,146,149,152 
(21) 120,121,123,124,126,127,129,130,141,142,144, 
       145, 147,148,150,151 
(22) 153,154,155,156 
(23) 157,160,163,166,169 
(24) 171,172,173174,175,176 
(25) 178,181,184,187,190 
(26) 158,159,161,162,164,165,167,168,179,180,182, 
       183, 185,186,188,189 
(27) 191,192,193,194 
(28) 195,197,198,200 
(29) 196,199 
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slightly violates constraints. As the scaled weight of CMLPSA to recover the 0.071% stress 

constraint violation of its optimized design is 25463.7 lb, the JA algorithm implemented in this 

study designed a slightly lighter structure than that of CMLPSA.  

JA found the optimum design after 31580 structural analyses while TLBO, HPSSO and 

WEO, respectively, required 28059, 14406 and 19410 analyses. However, JA was faster than 

these algorithms because it obtained feasible intermediate designs that are better than the 

optima of TLBO, HPSSO and WEO after only 24510, 8856 and 9432 structural analyses, 

respectively. Furthermore, JA employed 23663 structural analyses to generate a feasible 

intermediate design lighter than the 25491.9 lb optimum weight of SAHS: this computational 

cost is comparable with the 19670 structural analyses required by SAHS. Last, comparison 

between JA and CMPLSA is not indicative because, unlike the other metaheuristic optimizers 

of Table 1, the referenced algorithm utilized gradient information that are explicitly available in 

sizing optimization of truss structures. 

Statistical performance of optimizers and constraint margins evaluated at optimum 

designs are analyzed in Table 2. The JA is very robust because its standard deviation is 

24.122 lb, only 0.095% of the average optimized weight; overall, JA ranked 1st, slightly better 

than TLBO. The optimized weights obtained in the FPA independent runs also are less 

dispersed than those of JA but the corresponding designs violate stress constraints. Standard 

deviations of SAHS, WEO and WEO are between 5.9 and 99.6 times as large as JA’s 

standard deviation. 

 
 

Table 1. Comparison of optimized designs for the 200-bar truss problem 
 
Design  
variables    
Ai (in

2) 

CMLPSA 
[37] 

ABC-AP 
[57] 

SAHS 
[47] 

TLBO 
[53] 

HPSSO 
[65] 

FPA 
[61] 

WEO 
[62] 

JA 
This study 

1 0.1468 0.1039 0.154 0.146 0.1213 0.1425 0.1144 0.147258 

2 0.9400 0.9463 0.941 0.941 0.9426 0.9637 0.9443 0.940434 

3 0.1000 0.1037 0.100 0.100 0.1220 0.1005 0.1310 0.100109 
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The new perturbation strategy introduced in the JA formulation where constraints are 

evaluated only if trial solutions can effectively improve the current best record (see 

description of Step 4, Section 3.1) allowed to (i) design a lighter structure than standard JA 

(25463.53 vs. 25476.48 lb); (ii) reduce the computational cost of the optimization process 

(31580 vs. 49155 structural analyses); (iii) reduce standard deviation on optimized cost (24.12 

vs. 62.59 lb). The original search strategy of JA is inherently efficient because it updates 

population trying to escape from the worst design and to reach the best design: in fact, the 

25476.48 lb weight found by standard JA would rank 2nd overall amongst optimum designs of 

4 0.1000 0.1126 0.100 0.101 0.1000 0.1000 0.1016 0.100098 

5 1.9400 1.9520 1.942 1.941 2.0143 1.9514 2.0353 1.941704 

6 0.2962 0.293 0.301 0.296 0.2800 0.2957 0.3126 0.296783 

7 0.1000 0.1064 0.100 0.100 0.1589 0.1156 0.1679 0.100096 

8 3.1042 3.1249 3.108 3.121 3.0666 3.1133 3.1541 3.106749 

9 0.1000 0.1077 0.100 0.100 0.1002 0.1006 0.1003 0.100095 

10 4.1042 4.1286 4.106 4.173 4.0418 4.1100 4.1005 4.108109 

11 0.4034 0.4250 0.409 0.401 0.4142 0.4165 0.4350 0.403975 

12 0.1912 0.1046 0.191 0.181 0.4852 0.1843 0.1148 0.193079 

13 5.4284 5.4803 5.428 5.423 5.4196 5.4567 5.3823 5.434236 

14 0.1000 0.1060 0.100 0.100 0.1000 0.1000 0.1607 0.100095 

15 6.4284 6.4853 6.427 6.422 6.3749 6.4559 6.4152 6.434203 

16 0.5734 0.5600 0.581 0.571 0.6813 0.5800 0.5629 0.575306 

17 0.1327 0.1825 0.151 0.156 0.1576 0.1547 0.4010 0.135485 

18 7.9717 8.0445 7.973 7.958 8.1447 8.0132 7.9735 7.980200 

19 0.1000 0.1026 0.100 0.100 0.1000 0.1000 0.1092 0.100157 

20 8.9717 9.0334 8.974 8.958 9.0920 9.0135 9.0155 8.980345 

21 0.7049 0.7844 0.719 0.720 0.7462 0.7391 0.8628 0.709002 

22 0.4196 0.7506 0.422 0.478 0.2114 0.7870 0.2220 0.437247 

23 10.8636 11.3057 10.892 10.897 10.9587 11.1795 11.0254 10.89123 

24 0.1000 0.2208 0.100 0.100 0.1000 0.1462 0.1397 0.100150 

25 11.8606 12.2730 11.887 11.897 11.9832 12.1799 12.0340 11.89141 

26 1.0339 1.4055 1.040 1.080 0.9241 1.3424 1.0043 1.049144 

27 6.6818 5.1600 6.646 6.462 6.7676 5.4844 6.5762 6.610648 

28 10.8113 9.9930 10.804 10.799 10.9639 10.1372 10.7265 10.77913 

29 13.8404 14.70144 13.870 13.922 13.8186 14.5262 13.9666 13.87830 

Weight (lb) 25445.63 25533.79 25491.9 25488.15 25698.85 25521.81 25674.83 25463.53 

NSA 
 

9650 1,450,000 19670 28059 14406 10685 19410 31580 
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Table 1, right after improved JA. The new JA formulation developed in this study further 

exploits this concept by giving priority to candidate designs that belong to descent directions. 

The optimized designs found by the new and the standard JAs were very similar. However, 

the new JA required 36% less structural analyses and was 2.6 times more robust. Rejecting 

designs that certainly cannot improve current best record allows to detect the most sensitive 

design variables and always directs search process towards the best regions of design space 

that are very likely to host the global optimum or nearly global optimum solutions. 

 
 
Table 2. Comparison of statistical performance and constraint violation for the 200-bar truss 
problem. 
 

Method Best weight  
(lb) 

Average weight 
(lb) 

Worst weight 
(lb) 

SD  
(lb) 

CVP  
(%) 

CMLPSA [37] 25445.63 25446.03 N/A N/A 0.071 

ABC-AP [57] 25533.79 N/A N/A N/A 13.136 

SAHS [47] 25491.90 25610.20 25799.30 141.85 None 

TLBO [53] 25488.15 25533.14 25563.05 27.44 None 

HPSSO [65] 25698.85 28386.72 N/A 2403 None 

FPA [61] 25521.81 25543.51 N/A 18.13 0.169 

WEO [62] 25674.83 26613.45 N/A 702.80 None 

JA 25463.53 25477.47 25505.32 24.12 None 

 
 

 

Fig. 3 compares the optimization histories for the best runs of JA, SAHS, TLBO and 

HPSSO. It appears that JA converges to a nearly optimum design after about 14000 structural 

analyses and is faster than HPSSO and standard JA. Although SAHS and TLBO initially have 

better convergence performance, JA practically found the same intermediate designs as SAHS 

and TLBO after 15000 structural analyses.  
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Fig. 3. Comparison of convergence curves for the 200-bar truss problem  
 

 

4.2. Sizing optimization of a spatial 942-bar tower 

The second design example regards a moderately large-scale structure, the spatial 942-bar 

tower shown in Fig. 4. The structure is symmetrical about x and y-axes. Elements are divided 

in 59 groups as indicated in the figure: hence, this test problem includes 59 sizing variables. 

The Young’s modulus and mass density are 10 Msi and 0.1 lb/in3, respectively. The stress 

limit for all members (the same in tension and compression) is 25000 psi. The displacements 

of the four top nodes of the tower in the x, y and z directions must be less than ±15.0 in.  

Cross-sectional areas of elements can vary between 0.1 and 200 in2.  
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Fig. 4. Schematic of the spatial 942-bar tower. 
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The structure is subject to a single loading condition comprised of: (i) vertical forces 

(acting in the negative z-direction) of -3.0, -6.0 and -9.0 kips applied to each node of the first, 

second and third sections, respectively; (ii) lateral loads (in the y-direction) of 1.0 kips applied 

to all nodes of the tower; (iii) lateral loads (in the x-direction) of 1.5 and 1.0 kips applied to 

each node of the left and right sides of the tower, respectively. 

Table 3 compares JA results with other metaheuristic algorithms such as GA [23], SA 

[36], adaptive evolution strategies [75], genetic-Nelder Mead simplex algorithm (GNMS) 

[27], CS [76] and FFA [59]. This problem has been solved also with common gradient-based 

optimizers like the Modified Feasible Directions (MFD) and Sequential Linear Programming 

(SLP) methods implemented in the DOT commercial optimization software [79], and the 

Sequential Quadratic Programming (SQP) routines implemented in MATLAB [80] and DOT, 

which were alternatively used in order to maximize convergence speed. Gradient-based 

optimizations were started from the center of mass of the initial population with np=20. 

Information on statistical performance and constraint margins evaluated for the optimized 

designs are given in Table 4; CVP was not evaluated for GA and FFA in this table because 

optimized cross-sectional areas are not reported in literature.  

 

Table 3. Comparison of optimized designs for the 942-bar tower problem 

 
Design  
variables    
Ai (in

2) 

GAs 
[23] 

SA 
[36] 

Adaptive ES 
[75] 

GNMS 
[27] 

CS 
[76] 

FFA 
[59] 

JA 
This study 

Combined 
MFD/SLP 
     DOT 

SQP 
MATLAB 

& DOT 

1 N/A 1 1.02 2.7859 1.00 N/A 1.045258    1.012517        1.005961     
2 N/A 1 1.037 1.3572 1.00 N/A 1.001630    1.044112        1.011151     
3 N/A 3 2.943 5.0362 3.01 N/A 3.549999    3.285674        3.144839     
4 N/A 1 1.92 2.2398 1.75 N/A 1.924590    2.423108        2.055534     
5 N/A 1 1.025 1.2226 1.00 N/A 1.000032    1.012567        1.048088     
6 N/A 17 14.961 14.9575 14.27 N/A 15.337079    14.966031        15.048024     
7 N/A 3 3.074 2.9568 2.93 N/A 3.108905    3.289329        3.267696     
8 N/A 7 6.78 10.9038 1.00 N/A 6.589077    6.898785        6.564182     
9 N/A 20 18.58 14.4177 1.00 N/A 16.569661    17.443834        17.415316     
10 N/A 1 2.415 3.7090 9.38 N/A 2.553777    2.783840        3.147816     
11 N/A 8 6.584 5.7076 4.43 N/A 6.433946    6.092343        5.894435     
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12 N/A 7 6.291 4.9264 4.54 N/A 5.812166    5.695037        6.207190     
13 N/A 19 15.383 14.1751 16.41 N/A 15.836882    15.519281        15.498274     
14 N/A 2 2.1 1.9043 2.33 N/A 2.196943    2.476988        2.427582     
15 N/A 5 6.021 2.8101 7.51 N/A 4.324553    4.362300        4.490801     
16 N/A 1 1.022 1.0000 1.00 N/A 1.000047    1.012662        1.046294     
17 N/A 22 23.099 18.8070 22.47 N/A 21.973772    21.990211        21.864031    
18 N/A 3 2.889 2.6151 2.70 N/A 2.674909    2.955333        2.812818     
19 N/A 9 7.96 12.5328 13.58 N/A 8.722646    8.347566        8.449910     
20 N/A 1 1.008 1.1314 1.00 N/A 1.000032    1.017148        1.103600     
21 N/A 34 28.548 30.5122 28.93 N/A 29.898613    29.342457        29.206649     
22 N/A 3 3.349 3.3460 3.23 N/A 3.249223    3.185978        3.231316     
23 N/A 19 16.144 17.0450 23.87 N/A 16.995624    16.513879        16.527474     
24 N/A 27 24.822 18.0785 41.67 N/A 25.510407    25.126515        24.813267     
25 N/A 42 38.401 39.2717 36.02 N/A 37.634066    37.293439        37.050391     
26 N/A 1 3.787 2.6062 6.41 N/A 1.220731    1.838838        2.464041     
27 N/A 12 12.32 9.8303 23.79 N/A 11.944077    11.691936        11.585271     
28 N/A 16 17.036 13.1126 28.39 N/A 16.515003    16.222513        15.959013     
29 N/A 19 14.733 13.6897 19.38 N/A 14.822892    14.560158        15.062536     
30 N/A 14 15.031 16.9776 20.31 N/A 15.983565    15.683370        15.698085     
31 N/A 42 38.597 37.6006 31.41 N/A 38.514252    38.408381        38.127149     
32 N/A 4 3.511 3.0602 2.57 N/A 3.323571    3.520728        3.398082     
33 N/A 4 2.997 5.5106 4.18 N/A 3.189674    3.041205        2.841155     
34 N/A 4 3.06 1.8014 3.33 N/A 2.822370    2.923357        2.595424     
35 N/A 1 1.086 1.1568 1.00 N/A 1.001323    1.012537        1.021325     
36 N/A 1 1.462 1.2423 1.00 N/A 1.002606    1.012270        1.005619     
37 N/A 62 59.433 62.7741 47.11 N/A 59.530117    59.613928        59.305347     
38 N/A 3 3.632 3.3276 2.35 N/A 3.250054    3.199754        3.124903     
39 N/A 2 1.887 4.2369 3.79 N/A 2.068093    2.121198        2.086926     
40 N/A 4 4.072 1.7202 3.30 N/A 3.084539    2.898158        3.462332     
41 N/A 1 1.595 1.0148 1.00 N/A 1.000717    1.012534        1.032538     
42 N/A 2 3.671 5.4628 1.00 N/A 1.239938    1.217425        1.159607     
43 N/A  77 79.511 78.0094 63.33 N/A  79.891179    80.445578        80.570210     
44 N/A 3 3.394 3.2206 3.21 N/A 3.299488    3.193447        3.202028     
45 N/A 2 1.581 3.5934 4.86 N/A 1.964128    2.011383        2.012404 
46 N/A 3 4.204 4.7668 2.22 N/A 3.489718    3.617426        3.201326     
47 N/A 2 1.329 1.1531 1.00 N/A 1.000032    1.015906        1.082554     
48 N/A 3 2.242 2.1698 1.00 N/A 1.000032    1.012501        1.021839     
49 N/A 100 96.886 99.6406 76.93 N/A 97.181471    97.093608        97.741588     
50 N/A 4 3.71 4.1469 3.54 N/A 3.322281    3.2531009        3.391068     
51 N/A 1 1.055 2.1600 3.91 N/A 1.002997    1.012584        1.007845     
52 N/A 4 4.566 4.1499 2.25 N/A 3.651629    3.925643        3.732862     
53 N/A 6 9.606 11.2070 11.44 N/A 7.226228    6.877054        6.941966     
54 N/A 3 2.984 11.0904 11.64 N/A 4.544599     3.820237        3.906502     
55 N/A 49 45.917 35.9499 36.94 N/A 41.411074    40.688316        40.215821     
56 N/A 1 1 2.1937 1.00 N/A 1.002207    1.012269        1.011849     
57 N/A 62 62.426 66.1705 48.10 N/A 64.803517    65.051505        64.863553     
58 N/A 1 2.977 3.3402 5.88 N/A 2.525618    2.418212        2.492097     
59 N/A  3 1 4.0525 1.00 N/A  1.000054    1.012579        1.038877 
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It appears from Table 3 that JA was the best optimizer also for this test problem. The 

optimum designs of GA, FFA and JA could not be compared as the referenced solutions are 

not reported in literature. JA, SA and gradient-based methods converged to feasible optimum 

designs which are critical with respect to nodal displacements and compressive stresses. The 

optimum designs of adaptive ES, GNMS and CS instead violate constraints. JA is more robust 

than CS and FFA: the standard deviation on JA’s optimized weights was up to 39 times 

smaller than for those algorithms (see Table 4). Statistical information were not available for 

GA, SA, adaptive ES and GNMS. 

The new search strategy implemented in JA yield a 0.254% reduction in structural 

weight with respect to standard JA: from 137694.400 to 137344.356 lb. Similar to the other 

sizing problems, convergence speed was enhanced using the present JA formulation which 

required only 58274 structural analyses to complete the optimization process vs. the 72728 

analyses of standard JA (i.e. about 20% reduction). The present algorithm was more robust 

than standard JA: in fact, standard deviation on optimized weight dropped from 320.7 to only 

38.346 lb. As mentioned above, selecting candidate designs that lie on descent directions 

makes it easier for the novel JA algorithm to approach the best regions of design space 

regardless of the random sequence used for perturbing optimization variables. 

JA required less structural analyses than CS and adaptive ES. Furthermore, it found a 

feasible intermediate design better than the optimized design of SA (i.e. 142893.6 vs. 143436 

lb) after only 10421 structural analyses while SA required 39834 analyses to complete the 

optimization process; a feasible intermediate design weighing only 138491.7 lb (i.e. lighter 

than the 138878 lb FFA optimum weight) was found after only 21773 structural analyses vs. 

50000 analyses required by FFA.  

Weight (lb) 170000 143436 141241 142295.75 134120 138878 137344.356 137582.698 137549.457 

NSA N/A 39834 150000 N/A 75000 50000 58274 66482 26730 
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Gradient-based methods obtained slightly heavier (at most 0.174% weight penalty) 

designs than JA. However, when MFD, SLP and SQP were run as standalone optimizers, 

optimized weight ranged between 137824 and 138449.1 lb: hence, the corresponding designs 

were up to 0.804% heavier than the JA’s optimum weight. That made it necessary to alternate 

gradient-based methods by considering the current trend of convergence history. However, 

this complicated the optimization process with respect to JA runs. It can be seen from Table 3 

that combined MFD/SLP was about 14% slower than JA. SQP found the optimum design 

within only 26730 structural analyses but JA generated a lighter intermediate design than the 

SQP’s optimum design (i.e. 137549.1 vs. 137549.457 lb) after only 40279 analyses. 

 

Table 4. Comparison of statistical performance and constraint violation values for the 942-bar 
tower problem. 
 

Method Best weight  
(lb) 

Average weight 
(lb) 

Worst weight 
(lb) 

SD  
(lb) 

CVP  
(%) 

GA [23] 170000 N/A N/A N/A N/A 

SA [36] 143436 N/A N/A N/A None 

Adaptive ES [75] 141241 N/A N/A N/A 3.05 

GNMS [27] 142296 N/A N/A N/A 4.35 

CS [76] 134120 135244.7 138057.3 1497.06 17.8 

FA [59] 138878 139682 142265 1098 N/A 

JA 137344.356 137379.616 137420.440 38.346 None 

 
 

 

Fig. 5 compares the convergence curves of JA, FFA, CS and gradient-based methods. 

The new JA algorithm was definitely faster than the other metaheuristic algorithms (including 

also standard JA) in finding a nearly optimum solution. The optimization histories of the 

novel and standard JA became very close after about 25000 structural analyses. SQP soon 

generated infeasible intermediate designs while JA always searched in feasible regions of 

design space. Combined MFD/SLP initially had the same convergence rate as JA but, since 

MFD could not reduce structural weight below 200000 lb, it was necessary to switch the 
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search engine to the SLP method, which exhibited the same oscillatory behavior of SQP. 

Overall, for this test problem, JA has a more regular convergence behavior than gradient-

based optimization methods. 

 

 
 

Fig. 5. Comparison of convergence curves for the 942-bar tower problem 
 

 

4.3. Sizing optimization of a spatial 1938-bar tower 

The last sizing optimization problem considered in this study regards the spatial 1938-bar 

truss tower with 481 nodes shown in Fig. 6. Material properties are the same as for the 942-

bar tower. The tower is 285 m tall and is comprised of four modules and two junction 

modules. From the top to the bottom of the tower there are: (a) a square-based pyramid 

segment of height 60 m; (b) a square-based prismatic segment of height 40 m and side length 

5 m; (c) an octagon-based prismatic segment of height 75 m and radius 5 m; (d) a dodecagon-
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based prismatic segment of height 100 m and radius 8 m. The two intermediate modules serve 

to join the adjacent modules that have different profiles. Hence, the layout section of the 

tower is a regular dodecagon at the ground level and becomes a square at the top segment. 

Further details of the truss model are given in Fig. S1 of supplementary material. 

 (a)                  (b)                (c) 
  
 
Fig. 6. Schematic of the spatial 1938-bar truss tower: (a) Assembly view of the tower and (b) 
color representation of the four modules forming the structure and their connecting elements; 
(c) Layout view of the tower with indication of key-nodes. 

 
 

Because of the symmetry of the structure, variable linking can be adopted by grouping 

cross-sectional areas of bars into 204 groups (see Table S1 of supplementary material); nodes, 
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elements and element groups numbering increases from the top to the bottom of the tower. 

The cross-sectional area of the bars of each group is taken as an optimization variable. 

Therefore, this large-scale optimization problem includes 204 sizing variables.  

The tower must carry three independent loading conditions: 

(i) Concentrated forces of 13.5 kN acting downward on nodes 1 through 61; concentrated 

forces of 27 kN acting downward on nodes 62 through 101; concentrated forces of 40.5 kN 

acting downward on nodes 102 through 229; concentrated forces of 54 kN acting 

downward on nodes 230 through 469. 

(ii) Concentrated forces of 6.75 kN acting in the positive X-direction on nodes 2, 5, 6, 9,  

10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33, 34, 37, 38, 41, 42, 45, 46, 49, 50, 53, 54, 57, 

58, 61, 62, 65, 66, 69 ,70, 81, 82, 85, 86, 89, 90, 93, 94, 97, 98, 101, 108, 116, 124, 132, 

140, 148, 156, 164, 172, 180, 188, 196, 204, 220, 228, 239, 251, 263, 275, 287, 299, 311, 

323, 335, 347, 359, 371, 383, 395, 407, 419, 431, 443, 455, 467; concentrated forces of 

4.448 kN acting in the negative X-direction on nodes 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 

24, 27, 28, 31, 32, 35, 36, 39, 40, 43, 44, 47, 48, 51, 52, 55, 56, 59,60, 63, 64, 67, 68, 71, 

72, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95, 96, 99, 100, 104, 112, 120, 128, 136, 144, 

152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 233, 245, 257, 269, 281, 293, 305, 317, 

329, 341, 353, 365, 377, 389, 401, 413, 425, 437, 449, 461. 

(iii) Concentrated forces of 4.45 kN acting in the negative Y-direction on nodes 2, 3, 6, 7, 

10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 39, 42, 43, 46, 47, 50, 51, 54, 55, 

58, 59, 62, 63, 66, 67, 70, 71, 74, 75, 78, 79, 82, 83, 86, 87, 90, 91, 94, 95, 98, 99, 102, 

110, 118, 126, 134, 142, 150, 158, 166, 174, 182, 190, 198, 206, 214, 222, 230, 242, 266, 

278, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422, 434, 446, 458; 

concentrated forces of 4.48 kN acting in the positive Y-direction on nodes 4, 5, 8, 9, 12, 

13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 
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61, 64, 65, 68, 69, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 106, 114, 

122, 130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 226, 236, 248, 260, 272, 

284, 296, 308, 320, 332, 344, 356, 368, 380, 392, 404, 416, 428, 440, 452, 464. 

The optimization problem includes 20070 non-linear constraints on nodal 

displacements, member stresses and critical buckling loads. Displacements of all free nodes in 

all coordinate directions X, Y and Z must be less than ±40.64 cm (i.e. ±16 in), that is 1/700 of 

the height of the tower. The allowable tensile stress is 275.9 MPa (i.e. 40000 psi). Structural 

members are assumed to be tubular and the critical buckling load of the j-th member is 

100.01EAj /8lj
2. Cross-sectional areas can vary between 0.1 and 200 in2. 

The weight of the tower was minimized with JA, multilevel/multipoint SA [37], hybrid 

HS and BBBC with line search (HHS-LS and HBBBC-LS) derived from [48,77], firefly 

algorithm including line search derived from [78] (FFA-LS), the SLP routine of DOT [79], 

and the SQP routines of MATLAB [80] and DOT which were alternatively used in order to 

maximize convergence speed. HHS-LS and HBBBC-LS and FFA-LS were run with np=20 

since also these algorithms found their best designs for the same population size as JA. 

Twenty independent runs were carried out for each optimizer in order to statistically compare 

search engines. Simulated annealing (this metaheuristic algorithm does not use a population 

in the strict sense) and gradient-based optimizations were started from the center of mass of 

the initial population that led to the best design. This strategy allowed us to model the average 

behavior of the population that finally resulted in the best design. 

The optimization results found by the different algorithms are compared in Table 5 

while convergence curves are shown in Fig. 7. It can be seen that JA found the best design 

corresponding to a structural weight of 99.255 ton. This design satisfies optimization 

constraints. The second best feasible design was found by SLP-DOT and weighted 102.789 

ton. Because of the computational complexity of this test problem, all other optimizers 
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converged to almost feasible designs that violate constraints between 0.270 and 0.453%: 

hence, the corresponding scaled weight to recover constraint violation ranges between 

101.173 and 102.982 ton. 

 

Table 5. Comparison of the optimization results for the 1938-bar tower problem. 
 

 

Method 
 Best weight  

(ton) 
Average weight 

(ton) 
Worst weight  

(ton) 
SD 

(ton)            NSA 
 

CVP 
(%) 

JA   99.255 99.257 99.259 0.00175 20051 None 

HHS-LS  
Derived from [48,77] 

101.247 101.334 101.495   0.140 11399 0.300 

HBBBC-LS  
Derived from [48,77] 

100.901 101.083 101.256   0.178 18340 0.270 

CMLPSA  
Derived from [37] 

102.518 N/A N/A N/A 14057 0.453 

FFA-LS  
Derived from [78] 

100.502 100.778 100.959   0.243 15250 0.200 

SLP-DOT [79] 102.789 N/A N/A N/A 12310 None 

SQP [79,80] 
MATLAB/DOT 

101.495 N/A N/A N/A 24042 0.258 

 
 

Table 5 shows also that JA is much more robust than the other population-based 

metaheuristic algorithms also in this large-scale problem. In particular, the standard deviation 

on optimized weight determined for JA is about two orders of magnitude smaller than for the 

other metaheuristic optimizers. The superiority of the present algorithm is demonstrated by 

the fact that the worst weight obtained by JA in the twenty independent optimization runs (i.e. 

99.259 ton) is lower than the corresponding best weights of HHS-LS, HBBBC-LS and FFA-

LS (ranging between 100.502 and 101.247 ton).  

Since the 1938-bar truss problem included 204 design variables, the different statistical 

dispersions of optimized weight observed over the independent optimization runs for each 

algorithm may be due to design space complexity rather than to the search criterion 

implemented by the algorithm formulation. For this reason, the optimized weights obtained by 
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JA, HHS-LS, HBBBC-LS and FFA-LS in the twenty independent runs were also analyzed by 

performing a Wilcoxon test with a level of significance of 0.05. This test gives p-value stating 

whether a statistical difference is significant or not: the smaller the p-value is, the greater the 

difference between the considered algorithms will be. Interestingly, p-values determined for 

each pair of solutions (i.e. JA vs. HHS-LS, JA vs. HBBBC-LS and JA vs. FFA-LS, 

respectively) always were smaller than 0.05, thus confirming the superiority of JA over the 

other algorithms. However, performing correlation tests was not strictly necessary because JA 

proved to be the only metaheuristic algorithm always able to find feasible designs and the 

worst JA’s design was better than the best designs of the other algorithms. 

Distribution of optimized cross-sectional areas is practically the same for all algorithms 

(see Fig. S2 of supplementary material): areas of bars increase from the top to the bottom of 

each segment and drop down at the transition between adjacent segments (i.e. assembly of top 

segments 1 & 2, central segment 3, bottom segment 4 in Fig. 6). JA and the gradient-based 

optimizers size almost the same set of design variables to their lower bound of 0.1 in2 while 

the other metaheuristic optimizers tend to increase cross-sectional areas of thinnest elements 

and reduce cross-sectional areas of largest elements. However, the large number of design 

variables finally allowed to obtain very similar structural weights. 

JA required 20051 structural analyses to complete the optimization process, which is 

between 1.33 and 2 times as large as the number of analyses required by CMLPSA, FFA-LS, 

HHS-LS and HBBBC-LS. However, the number of structural analyses for which the present 

algorithm found some feasible intermediate design lighter than the unfeasible optimized 

designs found by CMLPSA, FFA-LS, HHS-LS and HBBBC-LS ranges between 15098 and 

15222. JA was slower than SLP-DOT but found a 3.44% lighter design than the commercial 

optimizer. The number of structural analyses for which JA found the same optimum weight of 

SLP-DOT is 15075, close enough to the 12310 analyses required by DOT. 
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More information on the relative merits of different algorithms can be gathered from the 

convergence curves plotted in Fig. 7. JA reduced very quickly the structural weight and found 

the lightest intermediate designs (which were always feasible) amongst all optimizers in the 

first 10000 analyses. The moving-toward-best/escaping-from-worst search strategy of JA 

appears to be more efficient than the line search strategies implemented in HHS-LS, HBBBC-

LS, CMLPSA and FFA-LS. Basically, JA tries to perturb each element of the population 

while the other algorithms are more “global” as they combine simultaneously all optimization 

variables to form a set of descent directions. Since such a set must not be too large in order to 

save computation time, HHS-LS, HBBBC-LS, CMLPSA and FFA-LS may miss promising 

designs. Furthermore, the other metaheuristic optimizers reduce variable step sizes by the 

ratio between cost function sensitivities and cost function gradient module: this may further 

slow down the search of very efficient trial designs. 

 

 
 

Fig. 7. Convergence curves for the 1938-bar tower problem. 
 

 

(a) 
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As far as it concerns gradient-based optimizers, Fig. 7 shows that SLP-DOT initially 

reduced cross-sectional areas of all elements and explored for a while the infeasible space: its 

convergence curve crossed that of JA after about 7500 structural analyses but SLP-DOT 

could find feasible designs only after 9000 analyses, that is after about 75% of its 

optimization history. After 10250 analyses, the commercial optimizer obtained a weight of 

110.825 ton vs. only 106.005 ton obtained by JA; the present algorithm obtained a feasible 

design weighing 110.451 ton after only 8085 analyses. SLP-DOT later converged to a local 

minimum while JA found the global minimum. SQP got trapped near a local minimum 

weighing about 220 ton for 2800 analyses (about 14 SQP iterations), then reduced the weight 

between 6000 and 9000 analyses but generated infeasible designs and could re-enter in the 

feasible design space only after 22000 structural analyses (hence, similar to SLP-DOT, after 

about 90% of the optimization history) were completed. The above presented data lead to 

conclude that JA exhibited a more regular convergence behavior than SLP and SQP. This is 

due to the fact that sometimes the gradient-based optimizers could not efficiently solve the 

approximate sub-problems formed in each iteration because of the large number of 

optimization variables. 

 

4.4. Combined sizing-layout optimization of a spatial 25-bar transmission tower 

The first sizing-layout optimization problem solved in this study regards the spatial 25-bar 

transmission tower schematized in Fig. 8. The Young’s modulus and mass density are 10 Msi 

and 0.1 lb/in3, respectively. The structure is optimized with 8 sizing variables (the cross-

sectional areas of the element groups listed in Fig. 8) and 5 layout variables, the coordinates 

X4, Y4, Z4, X8 and Y8 of nodes 4 and 8. Hence, this test problem includes 13 optimization 

variables. Cross-sectional areas must be greater than 0.1 in2. Side constraints for geometry 



34 
 

variables are set as follows: 20≤X4 =X5=X3=X6 ≤60 in, 40≤Y3=Y4=Y5=Y6 ≤80 in, 

90≤Z3=Z4=Z5=Z6 ≤130 in, 40≤X8 =X9 =X7 =X10 ≤80 in, 100≤Y7 =Y8 =Y9 =Y10 ≤140 in. 

 
 
Fig. 8. Schematic of the spatial 25-bar tower and element grouping used for sizing variables 

 

 

The tower is loaded by concentrated forces comprised in a single loading condition:  1 

kip in the positive x-direction, 10 kips in the negative y and z-directions applied to node 1; 10 

kips in the negative y and z-directions applied to node 2; 0.5 kip in the positive x-direction 

applied to node 3; 0.6 kip in the positive x-direction applied to node 6. The stress limit in 

tension/compression is 40000 psi for all members while the displacement of nodes of the 

structure in all coordinate directions must be less than 0.35 in. 

This test problem was solved in literature using many metaheuristic algorithms such as, 

for example, HS variants [81-83], PSO variants also hybridized with cellular automata 

[43,44,84,85], ES variants [86,87], FFA [59,83], TLBO [88], GA [25] etc. Those solutions 

Element grouping 
 
(1)  1 
(2)  2,3,4,5 
(3)  6,7,8,9 
(4) 10,11 
(5) 12,13 
(6) 14,15,16,17 
(7) 18,19,20,21 
(8) 22,23,24,25 
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include discrete sizing variables and continuous layout variables. However, the former 

variables took very few values even if large sets of available cross-sections were used.  

JA was compared with multilevel and multipoint SA derived from [37], HHS-LS and 

HBBBC-LS derived from [48,77], firefly algorithm including line search derived from [78], 

as well as with the best discrete optimized solutions mentioned above. Optimization results 

are presented in Table 6. It should be noted that some other discrete solutions available in 

literature corresponded to even lighter designs than those reported in the table but were 

penalized as soon as they violated constraints (for example, up to 0.18% on stresses and 

0.62% on displacements for PSO). Table 6 proves that JA definitely obtained the best design 

with continuous variables: in fact, multilevel and multipoint SA, HS and FFA with line search 

converged to heavier designs (between 2.37% and 3.39%) than JA; BBBC with line search 

was the least efficient optimizer and violated displacement constraints by 0.2%.  

The statistical analysis carried out for this test problem revealed that JA always found in 

the twenty independent runs carried out for each population size feasible designs weighing 

between 53.049 and 53.051 kg. Remarkably, the worst design found by JA was lighter than 

all best designs found by the other metaheuristic algorithms that even converged to infeasible 

solutions. This confirms with no shadow of doubt the superiority of JA. 

The optimized cross-sectional areas of JA are very close to the best discrete solutions 

available in literature. These designs weigh between 53.186 (best design reported in the table) 

and 53.9 kg [59], hence at most 1.6% heavier than the optimized weight of 53.049 kg found 

by JA for the continuous design. It should be noted that the lightest design reported in 

literature (53.173 kg [85]) violates displacement constraints by 0.62% and hence was not 

considered for the comparison based on Table 6. However, this design is very similar to those 

of Table 6 thus confirming that sizing process depends on very few cross-sectional areas.  
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Table 6. Comparison of the optimized designs for the layout optimization of 25-bar tower  
 

*Cross-sectional areas of bars treated as discrete variables; **Two-stage optimization with discrete bar areas.  
 

The continuous optimum design of JA was re-optimized only with respect to layout 

variables: sizing variables were hence set equal to the optimum discrete values. After this 

two-stage optimization process, JA converged to a feasible design weighing 53.219 kg, 

practically the same as the best weight of 53.186 kg found by iPSO [43,44]. However, JA 

required only 3795 structural analyses vs. 4870 analyses required by iPSO.  

Since JA’s discrete solution was obtained by progressively rounding continuous 

solution and JA always converged to the same continuous optimum, the present algorithm 

always found the discrete optimum design quoted in Table 6 regardless of population size and 

number of independent runs. This is a significant improvement with respect to the modified 

harmony search algorithm of Ref. [82], the firefly optimization algorithms of Refs. [58,83], 

the particle swarm optimization hybridized with cellular automata of Ref. [85], and the 

Design  
Variables 

    SA 
   [37] 

HHS-LS 
[48,77] 

HBBBC-LS 
[48,77] 

FFA-LS 
   [78] 

     JA 
This study 

Modified HS* 
      [82] 

  FFA* 
  [83] 

iPSO* 
[43,44] 

ICDE* 
[31] 

TLBO* 
   [88] 

     JA** 
This study 

A1 (in
2)   0.1246   0.1041   0.1049   0.1223    0.1000 0.1    0.1     0.1      0.1      0.1       0.1 

A2   0.1251   0.1189   0.1274   0.1197    0.1000 0.1    0.1     0.1      0.1      0.1       0.1 

A3   0.9462   0.9156   0.9090   0.8684    0.9374 1.0    1.0     1.0      0.9      1.0       1.0 

A4   0.1001   0.1028   0.1038   0.1007    0.1000 0.1    0.1     0.1      0.1      0.1       0.1 

A5   0.1093   0.1424   0.1006   0.1009    0.1000 0.1    0.1     0.1      0.1      0.1       0.1 

A6   0.1137   0.1192   0.1128   0.1160    0.1000 0.1    0.1     0.1      0.1      0.1       0.1 

A7   0.1407   0.1405   0.1484   0.2392    0.1057 0.1    0.1     0.1      0.1      0.1       0.1 

A8   0.9094   0.9254   0.9392   0.8280    0.9219 0.9    0.9     0.9      1.0      0.9       0.9 

X4 (in)   33.245   34.161   33.556   31.565    37.801     37.820   37.401   37.60    36.83    37.657    37.107 

Y4   57.016   62.049   61.749   56.007    55.063     55.485   55.379   54.46    58.53    54.496    54.255 

Z4 125.645 119.690 119.176 129.824  129.998   128.730 129.290 130.00  122.67  130.000  129.998 

X8   44.745   44.006   42.825   41.620    51.023     52.068   51.807   51.89    49.21    51.887    52.008 

Y8 136.458 136.921 136.160 139.939  140.000   139.590 139.560 139.55  136.74  139.521  140.000 

Weight (kg)  54.535  54.847  54.820  54.305   53.049   53.243 53.229 53.186 
 

  53.869 
 

  53.187   53.219 

CVP (%)   None   None      0.2   None    None   0.0826 0.0417 None    0.266    0.114    None 

NSA   3981  3338   3734   4076    3097     5000 10000  4870    6000   50007    3795 



37 
 

teaching-learning based optimization algorithm of Ref. [88], which obtained standard 

deviations on optimized weight of 6.970, 3.301, 1.175, 0.656 and 0.587 kg, respectively. 

 

 
 
 

Fig. 9. Convergence curves for the sizing-layout optimization of the 25-bar tower. 
 

 

Fig. 9 compares the convergence curves of JA with other continuous solutions 

(multilevel/multipoint SA, HS, BBBC and FFA with line search) and discrete FFA [58], 

which required over 6000 structural analyses starting from a population whose best design is 

close to that included in the JA initial population. JA was by a very large extent the fastest 

optimizer overall. It required about 700 structural analyses to find feasible intermediate 

designs lighter than the optimized designs of discrete HS, PSO, FFA and TLBO between 

4870 and 50007 analyses. The convergence curve for the last part of the JA two-stage 

optimization process including rounded sizing variables always remains very close to the 

continuous optimum design. Since JA proved itself to be very robust also in terms of required 
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structural analyses (NSA=3332204, see Table A3 of appendix), it can be concluded that the 

present algorithm outperformed the other state-of-the-art optimizers in this test problem. 

 
 
4.5. Combined sizing-layout optimization of a planar 45-bar truss 

The second sizing-layout optimization problem solved in this study regards the planar 45-bar 

truss schematized in Fig. 10. The Young’s modulus and mass density are 10 Msi and 0.1 

lb/in3, respectively. Cross sectional areas of all elements are included as sizing variables. In 

addition, there are 36 layout variables: the nodal coordinates of all free nodes. Therefore, this 

test case includes 81 design variables. The structure is loaded by vertical forces: respectively, 

150 kips (i.e. 667.461 kN) at nodes 9 and 10 acting downward, and 50 kips (i.e. 222.487 kN) 

at nodes 11 and 12 acting upward. There are 162 non-linear optimization constraints on nodal 

displacements, member stresses and critical buckling loads. The displacements of all free 

nodes in both coordinate directions X and Y must be less than ±2 in (i.e. ±5.08 cm). The 

allowable tensile stress is 25000 psi. Buckling constraints are the same as for the 1938-bar 

tower. The lower bound of cross-sectional areas is 0.64516 cm2 (i.e. 0.1 in2) while the upper 

bound is 1290.32 cm2 (i.e. 200 in2). More details on this test case can be found in [37]. 

 
 

 

       
 

Fig. 10. Schematic of the planar 45-bar truss structure optimized in this study 
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JA was compared with multilevel and multipoint SA derived from [37], HHS-LS and 

HBBBC-LS derived from [48,77], FFA-LS derived from [78], and the SQP optimization 

routine implemented in MATLAB. The optimization runs of HHS-LS and HBBBC-LS were 

carried out for the population size range (i.e. np=10 to 1000) considered in the sensitivity 

analysis of JA in order to make a detailed statistical comparison not limited to best designs. 

The FFA-LS algorithm implemented an adaptive population strategy where population size 

(always ranging between 10 and 1000) is updated during the optimization process based on 

the trend of convergence speed: if the design does not improve after 100 consecutive 

structural analyses, the current population size npcurrent is expanded by a factor  equal to 

Max1+ ;(1000npcurrent) where  is a random number in the interval (0,1). The new 

population size npnew is set as the nearest integer to the product (npcurrent). The population 

size is reset as npcurrent=Nearest integer(npnew+npcurrent)/2 as soon as some trial design has 

improved the current best record. This approach allowed to maximize performance of FFA-

LS for this specific test problem. The initial design selected for SA and MATLAB was the 

center of mass of the population leading to the best weight of 3193.568 kg found in the JA 

sensitivity analysis (i.e. np=500, see Table A3). 

Optimization results are presented in Table 7 which contains the following information: 

(i) results of best and worst runs of JA, HS and BBBC with line search; (ii) data relative to 

optimization runs completed within the largest or smallest number of structural analyses; (iii) 

CVP (%) for relevant optimization runs and, eventually, the scaled weight obtained by 

relaxing cross-sectional areas by the amount of constraint violation. The values of standard 

deviation listed in the table are those obtained by varying population size from 10 to 1000. 

Dispersions of optimized weight and number of structural analyses were on average one order 

of magnitude larger than those observed for the independent optimization runs carried out at 
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fixed population sizes. This proves once again the robustness of JA, which is marginally 

sensitive to the sequence of random numbers utilized to create/update population. 

 

Table 7. Statistical optimization results obtained for the 45-bar truss problem. 

 
Method 

WeightStd 
Best/Worst/ 

Fastest/Slowest  
(kg) 

  

NSAStd  
Best/Worst/ 
Fastest/Slowest 

 

CVP  (%) 
Scaled weight 
(kg)  

JA - Present 

3193.7760.169 
Best: 3193.568 
Worst: 3194.080 
Fastest: 3193.677 
Slowest: 3193.577 
 

5265633 
Best: 5717 
Worst: 4768 
Fastest: 4323 
Slowest: 6061 

None 

HHS-LS  
Derived from [48,77] 

3194.9022.740 
Best: 3191.283 
Worst: 3199.321 
Fastest: 3196.255 
Slowest Worst  

4933351 
Best: 5130 
Worst: 5344 
Fastest: 4252 
Slowest 


0.130% on the 
best design 
Scaled weight: 
3195.432 kg 

HBBBC-LS  
Derived from [48,77] 

3196.1762.826 
Best: 3190.699  
Worst: 3198.855 
Fastest: 3194.365 
SlowestBest 

4077602 
Best: 5196 
Worst: 3829 
Fastest: 3383 
SlowestBest 

0.120% on the 
best design 
Scaled weight: 
3194.497 kg 

CMLPSA  
Derived from [37] 

3193.839 4535 

0.0820% on 
the best design 
Scaled weight:  
3196.458 kg 

FFA-LS  
Derived from [78] 

3193.398 5753 

0.259% on the 
best design 
Scaled weight:  
3201.669 kg 

SQP-MATLAB  3245.480 11911 None 

 
 

 

It can be seen from the table that JA was overall the most efficient optimizer: it 

converged to the lightest feasible design corresponding to a structural weight of 3193.568 kg. 

HHS-LS, HBBBC-LS and FFA-LS found optimized designs weighing between 3190.699 and 

3193.398 kg. These designs are lighter than the optimized weight of JA, but slightly violate 
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constraints (between 0.12 and 0.259%) and must hence be scaled to become feasible. 

CMLPSA also converged to an almost feasible design yet 0.271 kg heavier than JA. The 

scaled optimized weight for HS, BBBC, SA and FFA ranges between 3194.497 and 3201.669 

kg, heavier than the worst weight of 3194.080 kg found by JA for the different population 

sizes or independent optimization runs (for details, see Table 7 of main body and Table A3 of 

the appendix). MATLAB converged to a feasible design, 1.6% heavier than that found by JA. 

These results confirm that the convergence behavior of JA does not depend on the sequence 

of random numbers generated in the search process to form new trial designs. 

The complete optimum designs for each optimization algorithm will not be listed in the 

article in order to save space. Optimized profiles are similar to those shown in Fig. S4-a of 

supplementary material. Values of cross-sectional areas followed the classical distribution of 

a tapered beam where lighter members are located near the loaded tip of the structure.  

The statistical data of Table 7 indicate that JA was more robust than HHS-LS and 

HBBBC-LS but required on average more structural analyses than the other metaheuristic 

algorithms. However, JA found feasible intermediate designs weighing: (i) 3201.42 kg (better 

than 3201.7 kg, the scaled weight of FFA-LS) after only 4522 structural analyses (vs. 5753 

analyses required by FFA-LS to complete the optimization process); (ii) 3196.28 kg (better 

than 3196.46 kg, the scaled weight of CMLPSA) after 4636 structural analyses (very close to 

4535 analyses required by CMLPSA); (iii) 3194.63 kg (better than 3195.43 kg, the scaled 

weight of HHS-LS) after 4751 structural analyses (vs. 5130 analyses required by HHS-LS); 

(iv) 3194.19 kg (better than 3194.5 kg, the scaled weight of HBBBC-LS) after 4901 structural 

analyses (vs. 5196 analyses required by HBBBC-LS). SQP-MATLAB required more than 

two times the structural analyses of JA.  

Another interesting comparison regards the fastest optimization run (see Table 7). JA 

found better designs than HHS-LS and HBBBC-LS with structural weight 3193.677 kg vs. 
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3196.255 and 3194.365 kg, respectively. However, the HBBBC-LS optimum design violated 

stress constraints by 0.065% and was hence scaled to 3196.44 kg. JA obtained a feasible 

intermediate design weighing 3196.04 kg after 3743 structural analyses, about 20% less than 

HHS-LS and only 11% more than HBBBC-HS. All of these data prove the very good 

behavior in terms of converge speed exhibited by JA. 

 

 
 

Fig. 11. Comparison of convergence curves for the 45-bar truss problem 
 

 

The convergence curves for the best optimization runs are compared in Fig. 11, which 

includes the first 6500 structural analyses for clarity of representation. JA quickly approached 

the optimum design: in particular, after only 2500 structural analyses, JA had already 

generated an intermediate feasible solution which is only 6.1% heavier than the final 

optimum. MATLAB started to generate infeasible designs after 2100 structural analyses and 

re-entered in the feasible search space only near the end of the optimization process. 
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The best optimization runs of HHS-LS and HBBBC-LS practically showed the same 

convergence behavior over the whole optimization process. FFA-LS was the second fastest 

optimizer in the first half of the optimization history but finally required more structural 

analyses than the other metaheuristic optimizers. Convergence curves of JA and CMLPSA 

became very close after about 3000 structural analyses but while the present optimizer always 

remained in the feasible search space the optimizer derived from [37] had to slightly relax 

stress and displacement constraints to create efficient trial designs. 

 
 
4.6. Combined sizing-layout optimization of a 47-bar power line structure 

The power line shown in Fig. 12 was schematized as a planar truss comprised of 47 elements 

and 22 nodes. The Young’s modulus and mass density are 30 Msi and 0.3 lb/in3, respectively. 

The structure is symmetric about the Y-axis. The bars are grouped into 27 groups (see Fig. 

12) thus defining 27 sizing variables. In addition, there are 17 configuration variables: the 

nodal co-ordinates (X2, X4, Y4, X6, Y6, X8, Y8, X10, Y10, X12, Y12, X14, Y14, X20, Y20, X21 and Y21) to be 

optimized must preserve symmetry about the Y-axis in each design cycle. Therefore, a total of 

44 optimization variables were defined for this combined sizing-layout problem.  

The structure must support three independent loading conditions: (i) concentrated forces 

of 6 kips at nodes 17 and 22 acting in the positive X-direction, and 14 kips at nodes 17 and 22 

acting in the negative Y-direction; (ii) concentrated forces of 6 kips at node 17 acting in the 

positive X-direction, and 14 kips at node 17 acting in the negative Y-direction; (iii) 

concentrated forces of 6 kips at node 22 acting in the positive X-direction, and 14 kips at node 

22 acting in the negative Y-direction. 

The optimization problem included 282 constraints: the allowable tensile stress is 20000 

psi; the allowable compressive stress is 15000 psi; the Euler buckling compressive stress 

limit of the j-th member is EAj / lj
2. More details on this problem are given in [89-92]. 
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Fig. 12. Schematic of the 47-bar power line and linking of cross-sectional areas used in the 
optimization process. 
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This problem was solved in literature considering either continuous [89-92] or discrete 

sizing variables [28,81,84-87,93]. Table 8 compares the continuous optimization results 

obtained by JA, multi-level and multi-point SA (derived from [37]), HS, BBBC, FFA with 

line-search (derived from [48,77,78]) and SQP-MATLAB. Optimization runs of SA and 

MATLAB were started from the center of mass of the population (np=1000) adopted by JA in 

its best optimization run. Since the optimum design found by MATLAB is between 4 and 6 

kg lighter than the optimized weights quoted in [89-92], SQP was selected as the best 

gradient-based optimizer for this problem. The table also compares the best discrete solutions 

available in literature  fully stressed design based on evolution strategy (FSD-ES) [87], PSO 

hybridized with cellular automata (SCPSO) [85] and efficient simulated annealing [36]   

with the corresponding solution found by JA using the two-stage optimization strategy where 

sizing variables optimized in the continuous optimization are rounded up and layout variables 

are further optimized. The structural weight for the discrete solution quoted in [84] is smaller 

than the weights reported [28,85,87] (i.e. 816.605 kg vs. 837.567 to 848.988 kg) but this 

design violates optimization constraints and hence will not be considered here. 

It can be seen from Table 8 that JA outperformed the other metaheuristic algorithms in 

the continuous optimization problem. In fact, the present algorithm designed the lightest 

structure (833.006 kg) and required the smallest number of structural analyses (4680). All 

metaheuristic optimizers converged to very similar solutions: structural weight changed by 

less than 0.1%, sizing variables by less 11.5% (except A8 and A13 for SA, and A27 for FFA-LS) 

and layout variables by less than 12.2% (except X20) with respect to the best design of JA. 

Each metaheuristic algorithm was run twenty times for the corresponding population 

size leading to the best design quoted in the table. JA always converged to feasible designs 

weighing between 833.006 and 833.101 kg, with a standard deviation on optimized weight of 

0.0443 kg. JA’s worst weight was again lower than the best weights obtained by the other 
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algorithms. MATLAB optimizations were also started from 110 designs originally included in 

the initial population (np=1000) that led to the best JA’s design: these initial designs were 

randomly selected. The commercial optimizer converged to structural weights between 

834.201 and 834.531 kg, hence greater than the heaviest weight found by JA. 

 

Table 8. Comparison of the optimized designs for the 47-bar power line 
 

Design  
variables 

    SA 
   [37] 

HHS-LS 
[48,77] 

HBBBC-LS 
[48,77] 

FFA-LS 
   [78] 

  SQP 
Matlab 

     JA 
This study 

FSD-ES*  
[87] 

  SCPSO* 
     [85] 

SA* 
[36] 

     JA** 
This study 

A1 (in
2)   2.6624   2.6174   2.6245   2.6575   2.6140   2.6642 2.7 2.5 2.5 2.7 

A2   2.5776   2.4457   2.4471   2.4832   2.4459   2.4680 2.5 2.5 2.8 2.5 
A5   0.6841   0.7370   0.7408   0.7267   0.7468   0.7330 0.7 0.8 0.8 0.7 
A7   0.1001   0.1003   0.1003   0.1003   0.1000   0.1005 0.1 0.1 0.1 0.1 
A8   0.7677   0.8957   0.8974   0.8928   0.8976   0.9350 0.9 0.7 0.7 0.9 
A10   1.1619   1.0624   1.0712   1.0545   1.0686   1.0947 1.1 1.4 1.3 1.1 
A11   1.7421   1.7204   1.7267   1.7805   1.7268   1.7679 1.8 1.7 1.8 1.8 
A13   0.7666   0.7089   0.7069   0.6599   0.7107   0.6698 0.7 0.8 0.7 0.7 
A15   0.9338   0.8499   0.8627   0.8625   0.8556   0.8405 0.9 0.9 0.9 0.9 
A17   1.3060   1.2381   1.2372   1.2462   1.2367   1.3391 1.3 1.3 1.2 1.3 
A19   0.3120   0.2991   0.2988   0.3217   0.3016   0.3143 0.3 0.3 0.4 0.3 
A21   1.0750   1.0904   1.0911   1.1758   1.0936   1.0905 1.1 0.9 1.3 1.1 
A23   0.9781   0.9309   0.9300   0.9363   0.9296   1.0020 1.0 1.0 0.9 1.0 
A25   0.9024   0.8978   0.9017   0.8821   0.8988   0.8982 0.9 1.1 0.9 0.9 
A27   0.7585   0.7727   0.7713   0.7190   0.7719   0.8548 0.8 5.0 0.7 0.8 
A28   0.1197   0.1003   0.1000   0.1003   0.1000   0.1129 0.1 0.1 0.1 0.1 
A29   2.6175   2.5962   2.6018   2.6499   2.5924   2.6879 2.7 2.5 2.5 2.7 
A31   0.9059   0.8634   0.8651   0.8481   0.8706   0.8195 0.8 1.0 1.0 0.8 
A33   0.1003   0.1004   0.1001   0.1003   0.1000   0.1077 0.1 0.1 0.1 0.1 
A34   2.9422   2.9195   2.9193   2.9590   2.9158   2.9578 3.0 2.8 2.9 3.0 
A36   0.8553   0.8778   0.8787   0.8771   0.8858   0.8587 0.9 0.9 0.8 0.9 
A38   0.1000   0.1004   0.1002   0.1003   0.1000   0.1012 0.1 0.1 0.1 0.1 
A39   3.1043   3.1138   3.1070   3.1341   3.1108   3.0970 3.2 3.0 3.0 3.2 
A41   1.0538   1.0657   1.0702   1.0584   1.0735   1.0742 1.0 1.0 1.2 1.0 
A43   0.1004   0.1003   0.1003   0.1003   0.1000   0.1000 0.1 0.1 0.1 0.1 
A44   3.2412   3.2473   3.2221   3.2553   3.2428   3.2108 3.3 3.2 3.2 3.3 
A46   1.0764   1.0758   1.0808   1.0486   1.0487   1.0344 1.1 1.2 1.1 1.1 
X2 (in) 103.435 103.617 105.000 103.055 103.376 104.136 100.9724 101.3393 104.0 100.249 
X4   85.269   84.776   84.770   85.458   84.455   88.322   80.4772   85.9111   87.0   81.118 
Y4 128.654 129.483 129.888 124.711 129.402 121.752 136.8699 135.9645 128.0 138.063 
X6   67.897   67.460   67.186   67.200   67.274   67.803   64.3908   74.7969   70.0   63.520 
Y6 243.645 246.116 245.967 241.701 245.693 242.468 247.0491 237.7447 259.0 249.861 
X8   58.529   58.705   58.456   57.733   58.576   58.009   55.2589   64.3115   62.0   54.417 
Y8 325.032 331.517 331.031 327.019 331.307 322.627 338.4534 321.3416 326.0 338.356 
X10   49.747   50.643   50.444   49.982   50.540   50.701   48.7333   53.3345   53.0   49.238 
Y10 409.643 410.728 410.140 404.820 410.504 395.426 409.7380 414.3025 412.0 404.395 
X12   44.388   44.785   44.585   44.464   44.630   44.977   43.4742   46.0277   47.0   44.082 
Y12 469.679 477.267 476.908 470.819 477.502 463.933 472.1479 489.9216 486.0 467.812 
X14   41.850   45.617   45.398   45.363   45.409   45.385   44.8349   41.8353   45.0   44.534 
Y14 508.000 514.621 514.481 507.943 514.215 510.969 512.1901 522.4161 504.0 511.407 
X20     2.000     0.185     1.002     2.251     0.100     0.666     3.8414     1.0005     2.0     3.851 
Y20 589.782 591.490 591.285 586.223 590.732 587.372 591.1449 598.3905 584.0 590.619 
X21   84.000   89.838   89.993   85.355   89.717   80.202   84.5040   97.8696    89.0   84.215 
Y21 630.009 632.623 632.272 634.216 632.465 629.338 630.3472 624.0552 637.0 630.355 

Weight (kg)  833.816  833.236 833.414 833.410 834.201 833.006  837.567  845.540 848.988 836.975 

CVP (%)   None   None  None   None   None    None    None   None None    None 
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*Cross-sectional areas of bars treated as discrete variables; **Two-stage optimization with discrete bar areas. 
Estimated as the product between number of optimization cycles and number of optimized variables. 

 

 

The number of structural analyses for the different metaheuristic algorithms also 

changed at most by 12.7%. However, JA found the following intermediate designs (all 

feasible) weighing: (i) 833.72 kg (better than 833.816 kg, the optimum weight of CMLPSA) 

after only 3334 structural analyses (vs. 4819 analyses required by CMLPSA to complete the 

optimization process); (ii) 833.39 kg (better than 833.414 kg, the optimum weight of 

HBBBC-LS, and 833.410 kg, the optimum weight of FFA-LS) after only 3389 structural 

analyses (vs. 5112 and 4946 analyses, respectively, required by HBBBC-LS and FFA-LS to 

complete the optimization process); (iii) 833.18 kg (better than 833.236 kg, the optimum 

weight of HHS-LS) after only 3732 structural analyses (vs. 5274 analyses required by HHS-

LS). This confirms the superiority of JA over multi-level and multipoint SA, advanced HS, 

BBBC and FFA including line search strategies. 

SQP-MATLAB was faster than JA (2854 vs. 4680 structural analyses) but converged to 

a 0.143% heavier design than the present algorithm. However, JA actually required only 3326 

structural analyses to find a feasible intermediate design weighing 834.16 kg, which is lighter 

than the optimized weight of MATLAB. Remarkably, in the 110 optimizations runs started 

from randomly selected initial designs, MATLAB could complete the optimization process in 

less than 3326 analyses (i.e. the corresponding computational cost of JA to find some feasible 

intermediate design lighter than the optimum design found by MATLAB) only in the 30% of 

runs. Therefore, convergence speeds of JA and MATLAB may be judged comparable. 

The convergence curves recorded for the best optimization run of each metaheuristic 

algorithm are compared in Fig. 13. JA and SQP-MATLAB rapidly reduced the weight of the 

NSA   4819    5274  5112   4946   2854    4680    55802   25000 13000    5545 
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power line but while JA’s intermediate designs remained feasible the gradient-based 

optimizer generated infeasible designs and had to increase weight to re-enter in the feasible 

design space at about 2/3 of the optimization process. Remarkably, JA was the only 

metaheuristic algorithm comparable with SQP in terms of convergence speed. The other 

metaheuristic algorithms could never find better intermediate designs than JA. CMLPSA, 

HBBBC-LS, FFA-LS behaved in a very similar fashion over the first 1500 structural 

analyses. However, while HBBBC-LS became the closest algorithm to JA in terms of 

convergence rate, the other algorithms required about 4200 analyses to approach the 

intermediate designs of JA.  

 

 
 

Fig. 13. Convergence curves for the 47-bar power line problem 
 

 

The optimization results relative to the discrete optimization indicate that JA is again 

very competitive with state-of-the-art metaheuristic algorithms. Since the continuous solution 
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found by JA was very close to the best discrete solution reported in the literature [87], it was 

possible to successfully run the two-stage optimization and reduce optimum weight by about 

0.6 kg with respect to [87]. This process required only 865 additional structural analyses with 

respect to the continuous optimization. As shown in Table 8, JA found an optimum design 

weighing only 836.975 kg which is also considerably lighter than the discrete designs 

obtained by hybrid PSO with cellular automata [85] and discrete SA [28]. JA was 

considerably faster than FSD-ES, SCPSO and discrete SA that required at least 13000 

analyses to find the discrete solution. 

As far as it concerns the robustness of the JA’s two-stage discrete optimization process, 

since the JA’s continuous solutions obtained in the twenty independent runs for np=1000 vary 

by less than 0.1 kg in terms of structural weight (i.e. from 833.006 to 833.101 kg), the 

rounding process always results in the same discrete design quoted in Table 8. The discrete 

optimization was also conducted starting from the worst continuous solution obtained for 

np=10. Since the twenty independent runs performed for the continuous case with np=10 

resulted in very similar structural weights (i.e. between 834.446 and 834.467 kg), the cross-

sectional areas were always rounded to the same values. At the end of the discrete 

optimization, JA found a feasible design weighing 837.381 kg, yet lighter than the optimized 

weights listed in Table 8. The designs obtained for np=1000 (Table 8) and np=10 are very 

similar: in fact, the largest difference between corresponding cross-sectional areas is 0.2 in2 

and the average difference between areas is near to zero. The robustness of JA in such a 

complicated problem represents a significant improvement with respect to the discrete 

optimization algorithms of Ref. [85] for which it is reported a standard deviation on optimized 

weight ranging between 13.3 and 15.8 kg (for different computational grid sizes), and Ref. 

[87] where optimized weight is reported to vary between 837.6 and 852.7 kg.  
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The above mentioned two-stage optimization process was carried out also for the 

continuous optimum designs of CMLPSA, HHS-LS, HBBBC-LS and FFA-LS quoted in 

Table 8. The SA re-optimized weight (i.e. 840.224 kg) is very close to JA and FSD-ES [87] 

weights (less than 0.39% difference), and 1.03% kg lighter than the best discrete SA design 

quoted in the literature [36]. The re-optimized weight for HHS-LS is 838.684 kg, much better 

than the 916.610 kg weight obtained by the discrete HS algorithm developed in [81], and very 

competitive with the discrete sizing designs quoted in Table 8. The re-optimized weight for 

HBBC-LS is 837.470 kg, very close to the JA and FSD-ES [87] discrete designs listed in 

Table 8. Finally, the re-optimized weight for FFA-LS is 839.028 kg, again very competitive 

with the discrete designs listed in Table 8. These results confirm the efficiency of the two-

stage optimization strategy used in this study which works well regardless of the 

metaheuristic optimization algorithm utilized. 

Table 8 shows that optimized cross-sectional areas are very similar while nodal 

coordinates change more significantly in order to optimally distribute stiffness. Figure 14 

compares the layout optimized by JA (i.e. continuous solution and discrete solution found 

with the two-stage optimization process) with the two best designs quoted in the literature for 

discrete optimization [85,87]. The overall optimized shape of the structure obviously 

remained the same but the heights of the segments forming the body of the tower changed by 

some extent. Interestingly, the profile of the body of the tower designed by SCPSO encloses a 

larger area than the corresponding profiles optimized by JA and FDS-ES (see Fig. 14). While 

this profile included the thickest elements, JA could optimally resize the length of heavier 

elements passing from continuous to discrete solution. 
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Fig. 14. Comparison of optimized layouts for the 47-bar power line structure 

 

4.7. Simplified topology optimization with discrete sizing variables 

Sections 4.4 and 4.6 presented some results for the 25-bar and 47-bar truss problems solved 

with discrete sizing variables. However, the most difficult scenario is the simultaneous 

optimization of truss size, layout and topology. For this reason, the 25-bar problem and the 

47-bar problem were solved including also topology variables and discrete sizing variables. A 
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simplified topology optimization approach was utilized for that purpose. The optimization 

process entails the following steps:  

(i) Set lower bound of sizing variables as 107 in2;  

(ii) Perform continuous optimization including all design variables;  

(iii) Round sizing variables as they get very close to the available discrete cross-sections;  

(iv) Remove sizing variables that get very close to the 107 in2 lower bound; 

(v)   Perform continuous optimization with layout variables and the remaining sizing variables;  

(vi) Repeat steps (iii) through (v) until no sizing variables remain to be optimized.  

The case of discrete layout variables also was covered by the simplified topology 

optimization approach. Once step (vi) is completed, layout variables are perturbed to their 

nearest discrete values and the best design is set the new optimal solution. This solution is 

then perturbed with respect to sizing variables in order to further improve design. The process 

ends when no improvement is found passing from one type of variables to another. 

The stiffness matrix of the truss structure is not reformulated when the cross-sectional 

area of some element approaches 107 in2. The “weak” elements which are assigned the cross-

sectional area of 107 in2 practically behave as if they were killed and hence do not contribute 

by any extent to the global stiffness of the structure. The 107 in2 limit was selected as it is 

106 times the lower bound of 0.1 in2 set for sizing variables. Basically, the stiffness terms (in 

the case of a truss structure, these terms are proportional to element cross-sectional areas) 

must be multiplied by a factor 106 in order to become inactive similarly to what occurs in 

commercial finite element programs when the “kill element” option is selected.  

The continuous optimal solution found by JA for the 25-bar truss structure corresponds 

to a structural weight of 49.898 kg. Cross-sectional areas of groups 1, 4 and 5 reached the 

value of 107 in2 after 3011 structural analyses. This result was consistent with the optimized 

topologies reported in [25,58,87,94] and summarized in Table 9. At the end of continuous 
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optimization, cross-sectional areas of element groups 2 and 3 reached the values of 0.1026 

and 0.9991 in2 and were hence rounded to 0.1 and 1 in2, respectively. The second stage of the 

optimization process included only cross-sectional area of element group 8 as continuous 

sizing variable and the five layout variables X4, Y4, Z4, X8 and Y8. After 3776 structural 

analyses, JA reached the weight of 51.348 kg setting the cross-sectional area of element group 

8 equal to 0.9034 in2. This area was rounded to 0.9 in2 and the optimization process thus 

included only layout variables. The final weight of 51.388 kg was obtained by JA after 4877 

structural analyses.  

 
 
Table 9. Comparison of the optimized designs for the 25-bar tower topology optimization 
with discrete sizing variables.  
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

The JA’s optimum design is listed in Table 9 which compares the performance of the 

present algorithm with GA variants [25,94], firefly algorithm [58] and FSD-ES (fully stressed 

Design  
Variables 

   GA 
   [25] 

   GA 
   [94] 

  FFA 
  [58] 

FSD-ES 
   [87] 

     JA 
This study 

A1 (in
2) Removed Removed Removed Removed  Removed 

A2    0.1    0.1    0.1    0.1       0.1 

A3    0.9    0.9    1.1    0.9       1.0 

A4 Removed Removed Removed Removed  Removed 

A5 Removed Removed Removed Removed  Removed 

A6    0.1    0.1    0.1    0.1       0.1 

A7    0.1    0.1    0.1    0.1       0.1 

A8    1.0    1.0    0.9    1.0       0.9 

X4 (in)   39.91   38.7913   38.50   38.8713    38.909 

Y4   61.99   66.1110   64.35   61.5207    59.087 

Z4 118.23 112.9787 112.87 119.1785  123.247 

X8   53.13   48.7924   49.13   49.4146    51.227 

Y8 138.49 138.8910 134.94 137.9423  140.104 

Weight (kg) 52.045   51.877 52.880   51.899   51.388 

CVP (%)  None    None  None    None    None 

NSA  6000   10000  6000    8660    4877 
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design based on evolution strategy) [87]. It can be seen that all optimized designs are very 

close to JA’s solution and satisfy stress and displacement constraints. However, JA designed 

the lightest structure and required less structural analyses than the other algorithms. 

Interestingly, JA used a simplified approach to topology optimization with discrete sizing 

variables while the other formulations were specifically designed for such kind of problems. 

The effect of initial population was evaluated by running twenty independent runs for 

each population size ranging from 10 to 1000. Since all continuous optimizations reduced 

cross-sectional areas of groups 1, 4 and 5 to 107 in2 and converged practically to the same 

optimum weight of 49.898 kg with only 0.001 kg deviation (this is consistent with the 0.1 in2 

minimum gage case: optimized designs practically coincided and structural weight ranged 

between 53.049 and 53.051 kg), these members always were removed from the structure to 

carry out the successive discrete optimization. Furthermore, cross-sectional areas always were 

rounded to the same values giving the same intermediate designs and finally the optimum 

design quoted in Table 9. This is a noticeable improvement with respect to the 5.05 kg 

standard deviation on optimized weight reported for the firefly algorithm of Ref. [58], and the 

51.899 to 61.265 kg weight range reported for the FSD-ES algorithm of Ref. [87].  

The continuous optimum design found by JA for the 47-bar truss problem weighs 

823.805 kg and was obtained after 3520 structural analyses. The cross-sectional areas of 

element groups 4, 16, 19, 22 and 25 were reduced to the lower bound of 107 in2 and the 

corresponding sizing variables were removed from the optimization process. This was in 

agreement with the best discrete solutions available in literature (see, for example, [36,93]). 

SQP-MATLAB converged to a structural weight of 822.403 kg after 2503 analyses but could 

not reduce below 105 in2 the five sizing variables that JA instead reduced to 107 in2. 

Sizing variables were progressively rounded by JA: (i) cross-sectional areas of element 

groups 12,13,17,21 immediately after removing element groups 4,16,19,22,25; (ii) groups 
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5,7,15,26 after 3967 analyses; (iii) groups 10,14,24 after 4370 analyses; (iv) groups 2,9,11,27 

after 4751 analyses; (v) groups 6,18,20 after 5289 analyses; (vi) groups 1,3,7,23 after 5842 

analyses. From that point, JA optimized only layout variables finding an optimum weight of 

829.677 kg after 6855 structural analyses. 

Similar to the 25-bar problem, twenty independent optimization runs were carried out 

for each population size from 10 to 1000. In the continuous optimization process, JA always 

designed cross-sectional areas of element groups 4, 16, 19, 22 and 25 at their lower bound of 

107 in2. Hence, these elements were removed from the structure to perform the subsequent 

discrete optimization. Optimized designs obtained in the continuous optimizations were very 

close, regardless of population size and independent optimization runs: structural weight 

ranged from 823.805 to 823.980 kg. The weight dispersion was even smaller than the about 

1.45 kg variation observed for the 0.1 in2 minimum gage. Interestingly, having removed five 

groups of elements drove the optimizer to distribute cross-sectional areas always in the same 

way over the remaining bars. Consequently, the rounding process always interested the same 

cross-sectional areas and JA always converged to the same design quoted in Table 15. 

Table 10 compares JA with advanced SA [36] and GA [93]. JA and GA removed the 

horizontal bars 7, 28, 33, 38 and 43 while SA removed also element 10. However, JA and GA 

converged to feasible designs while SA violated stress constraints by 6%. JA designed the 

lightest structure (i.e. 829.677 kg) and required much less structural analyses than literature 

(i.e. only 6855 analyses for JA vs. 13000 and 100000 analyses estimated for SA and GA, 

respectively). While these results confirm the efficiency of JA, it should be noted that the 

referenced GA and SA solutions took also integer nodal coordinates with a resolution of 1 in 

between available discrete values; discrete values of cross-sectional areas could vary by 0.1 

in2. For this reason, the optimum design of JA was further elaborated by rounding also the 

layout variables listed in the fourth column of Table 10 (denoted as “JA Discrete sizing 
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variables”) to their two lower or upper nearest integer values. Since there are 17 layout 

variables, this process entailed 68 (i.e. 17x4) new structural analyses: hence, the total number 

of analyses required by JA raised to 6923. However, this fully discrete design violated 

buckling constraints by 1.84%. In order to reduce this violation, sizing variables were 

increased by 0.1 in2 one at a time. This process led to raise cross-sectional areas of element 

groups 5 and 17 to 1 in2 and 2.6 in2, respectively. The violation on buckling constraints 

dropped to 1.28% while stress margins remained practically the same. The final structural 

weight is 834.118 kg. The computational cost of the second rounding turn of JA was 22 new 

analyses, that is the number of sizing variables not removed from the optimization process. In 

summary, JA required 6945 analyses, still much less than SA and GA. 

 
 

Table 10. Comparison of optimized designs for the discrete 47-bar truss topology problem. 
 

Design  
variables 

     GA 
     [93] 

SA 
[36] 

        JA 
Discrete sizing 
variables 

           JA 
Discrete sizing and 

layout variables 

A1 (in
2) 2.6 2.9 2.6 2.6 

A2 2.4 2.4 2.5 2.5 
A5 0.8 0.5 0.8 0.8 
A7 Removed Removed Removed Removed 
A8 1.1 1.7 0.9 1.0 
A10 1.3 Removed 1.0 1.0 
A11 1.7 1.6 1.7 1.7 
A13 0.6 0.5 0.8 0.8 
A15 1.0 0.9 0.9 0.9 
A17 1.4 1.3 1.2 1.2 
A19 0.5 0.8 0.3 0.3 
A21 1.1 1.1 1.1 1.1 
A23 1.0 1.0 0.9 0.9 
A25 1.0 0.8 0.9 0.9 
A27 0.8 0.5 0.8 0.8 
A28 Removed Removed Removed Removed 
A29 2.7 2.6 2.5 2.6 
A31 1.0 1.1 0.8 0.8 
A33 Removed Removed Removed Removed 
A34 2.9 3.1 2.8 2.8 
A36 0.9 0.5 0.9 0.9 
A38 Removed Removed Removed Removed 
A39 3.1 2.9 3.0 3.0 
A41 1.1 1.4 1.1 1.1 
A43 Removed Removed Removed Removed 
A44 3.2 3.3 3.3 3.3 
A46 1.0 0.3 1.1 1.1 
X2 (in)    104.0 112.0 100.048 100.0 
X4      93.0   88.0   87.011   87.0 
Y4    116.0 140.0 133.947 134.0 
X6      74.0   68.0   70.112   70.0 
Y6    223.0 241.0 260.313 261.0 
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* Estimated as the product between number of optimization cycles and population size 
+ Estimated as the product between number of optimization cycles and number of optimized variables 

 
 

 

The JA solution is much less infeasible than the optimum design of SA. The presence of 

buckling constraints makes the design process more sensitive to layout variables in spite of 

the fact that the optimization problem included 27 sizing variables vs. only 17 layout 

variables. This effect is amplified by topology optimization with discrete variables that further 

reduces the amount of design freedom. Figure 15 compares the optimized topologies for JA, 

GA and SA. The most significant differences occur in the upper part of the tower. 

X8      64.0   61.0   60.675   61.0  
Y8    302.0 326.0 341.972 342.0 
X10      54.0   47.0   53.804   54.0 
Y10    391.0 410.0 411.339 411.0 
X12      46.0   44.0   43.579   43.0 
Y12    458.0 450.0 477.764 476.0 
X14      51.0   65.0   44.497   44.0 
Y14    507.0 502.0 514.208 514.0 
X20      19.0     1.0     2.218     2.0 
Y20    595.0 598.0 594.041 594.0 
X21      90.0    58.0   94.264   94.0 
Y21    626.0 635.0 633.594 634.0 

Weight (kg)  855.053        811.603     829.677            834.118 

CVP (%)   None 
3.2 (Tens. stress) 
6  (Compr. stress)      None 

0.89 (Compr. stress) 
1.28  (Buckling) 

NSA  100000*       13000+       6855              6945 
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Fig. 15. Comparison of optimized topologies and layouts for the discrete 47-bar problem. 

 

5. Conclusions 

A very recently developed metaheuristic optimization method called Jaya algorithm was 

applied in this study to sizing, layout and topology design of truss structures for the first time 

ever. Jaya is a non-parametric algorithm that attempts to approach the best design included in 

the population and simultaneously escape from the worst design. Here, the original 
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formulation of JA was modified in order to improve the convergence speed of the 

optimization process by reducing the number of required structural analyses.  

Truss design problems are the most common benchmark examples used in the structural 

optimization literature for evaluating performance of new optimization algorithms. JA was 

tested on three sizing problems including an average-scale structure (with 200 elements and 

29 design variables), a fairly large-scale structure (i.e. a 942-bar tower optimized with 59 

design variables) and a large-scale structure (i.e a 1938-bar tower optimized with 204 design 

variables), as well as on three sizing-layout problems (with up to 81 design variables). The 

case of topology optimization with discrete sizing/layout variables also was developed. For 

that purpose, a simple multi-stage continuous-discrete process was used. The test problem 

suite considered here covered all cases that may be encountered by designers. 

JA obtained the best design in almost all design examples or was one of the best 

algorithms paying a very small weight penalty (or even improving) with respect to the global 

optimum indicated in literature. Statistical performance indicators usually adopted in 

structural optimization literature such as best, average and worst optimized weights as well as 

standard deviation on optimized weight obtained over independent optimization runs with 

different population size and composition proved with no shadow of doubt the efficiency, 

robustness and reliability of the JA. For all design examples, standard deviation values of the 

JA are very small, always less than 0.245% of the corresponding average weights. The worst 

optimized weight of JA is very often lighter than the best weights obtained by the other state-

of-the-art metaheuristic algorithms taken for comparison. Remarkably, this always occurred 

for the very large sizing optimization problem and for the combined sizing-layout-topology 

optimization problems, thus indicating that JA’s superiority becomes more evident as the 

design space includes a larger number of possible combinations that may lead to the global 
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optimum. This happens when there are hundreds of design variables (i.e. large scale) or 

optimization variables belong to disjoint spaces (i.e. sizing vs. layout/topology).  

JA required less structural analyses than most of the metaheuristic optimization methods 

compared in this study. The same behavior was observed for large-scale problems as well as 

for topology optimization with discrete sizing and layout variables. Interestingly, JA’s 

convergence speed was similar to state-of-the-art gradient based optimizers which usually are 

one order of magnitude faster than metaheuristic algorithms. Sensitivity analysis 

demonstrated that JA’s performance is insensitive to population size, composition of initial 

population and sequence of random numbers used in the search process. 

The huge amount of data presented in this article proved that JA is a very powerful 

algorithm for many truss design problems. Furthermore, JA is a parameter free algorithm that 

can be easily implemented on computers. A robust JA formulation for discrete sizing 

optimization which avoids the first stage of continuous optimization is currently under 

development: preliminary results confirm that JA is very competitive with other state-of-the-

art metaheuristic algorithms. Further studies should investigate the suitability of JA for other 

types of skeletal structures such as 3D frames. The topology optimization approach should be 

enhanced also considering continuum structures with multi-material designs (see, for 

example, Ref. [95]) and constraints on natural frequencies (see, for example, Ref. [96]). 

Comparisons with topology optimization commercial software (e.g. OptiStruct) will have to 

be carried out as well. 
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Appendix 

Sensitivity of JA convergence behavior to population size 

 

As mentioned in Section 3, population size (np) is the only internal parameter that must be 

given in input to JA. Sensitivity analysis aimed at finding the most suitable value of np was 

performed for all test problems. The corresponding results are shown in Tables A1 through 

A3; NSA is the number of structural analyses for which JA finds the optimum weight.  

In sizing optimization (Tables A1 and A2), the best performance of JA is achieved for 

np=20. Since the ratio of standard deviation to average optimized weight never exceeded 

0.0186%, JA was judged insensitive to population size and all sizing optimization problems 

were solved with np=20. Convergence curves practically coincide after about one half of 

optimization history (see, for example, Fig. S3-a of supplementary material). Furthermore, 

optimized designs are very close and stiffness is distributed across the structure always in the 

same way regardless of initial design/population (e.g. Fig. S3-b of supplementary material).  

 
Table A1. Results of sensitivity analysis on JA convergence behavior with respect to 
population size for average scale 200-bar and fairly large-scale 942-bar truss sizing problems. 
 

 
Population size 

200-bar truss 942-bar truss 

Weight 
(lb) 

NSA Weight  
(lb) 

NSA 

10 25463.55 32774 137345.134 59983 

20 25463.53 31580 137344.356 58274 

30 25475.78 35820 137349.171 59147 

40 25467.73 34703 137347.246 60130 

50 25465.97 32085 137345.028 59527 

60 25463.85 34284 137350.130 61044 
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Table A2. Results of sensitivity analysis on JA convergence behavior with respect to 
population size for the large-scale 1938-bar tower sizing optimization problem. 
 

Population  
size 

  Weight           NSA  
   (ton*)  

10    99.265 21980 

20    99.255 20051 

50    99.264 20929 

100    99.260 21584 
 

* 1 ton=2204.6244 lb 

 
 

In sizing-layout optimization (Table A3), JA reached its best performance for np=30 in 

the 25-bar tower problem, np=500 in the 45-bar truss problem and np=1000 in the 47-bar 

power line problem. JA was very robust also in these problems: in fact, the ratio between 

weight standard deviation and average weight is, respectively, 0.00123%, 0.0532%, 

0.00528% and 0.0612% for the 25-bar, 45-bar and 47-bar truss problems. 

 

Table A3. Results of sensitivity analysis on JA convergence behavior with respect to 
population size for sizing-layout optimization problems. 
 

 
Population size 

25-bar tower  45-bar truss 47-bar power line 

Weight 
(kg) 

NSA Weight 
(kg) 

NSA Weight 
(kg) 

NSA 

10 53.050   3043 3193.768   5072 834.446   3798 

20 53.051   3122 3193.677   4323 834.014   3565 

30 53.049   3097 3194.080   4768 834.325   3438 

40 53.050   3257 3193.998   4475 834.092   4099 

50 53.050   3388 3193.708   5663 833.246   4212 

60 53.049   3181 3193.664   4505 834.015   3466 

70 53.049   3580 3193.981   5497 834.339   4229 

80 53.049   3528 3193.587   4748 833.542   3999 

90 53.049   3488 3193.874   5920 834.205   4349 

100 53.049   3244 3193.810   5783 834.086   3992  
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250 53.049   3223 3193.577   6061 833.306   3697 

500 53.049   3484 3193.568   5717 833.107   4548 

1000 53.049   3677 3193.802   5907 833.006   4680 

 
 

The overall profile optimized by JA is insensitive to population size although some 

local variations of coordinates in the longest dimension of the truss can be observed especially 

for the power line (see Fig. S4 of supplementary material). Convergence curves coincide or 

become very similar between 1/2 and 2/3 of the optimization history. The fastest optimization 

run always produced better intermediate designs than the slowest run (see Fig. S5 of 

supplementary material). Using very small or very large populations may slow down the 

search process. However, the very efficient search strategy of JA and the large amount of 

design freedom finally allows to find marginally different optimized designs. 

The number of structural analyses tends to increase for the very small or the very large 

populations. However, the ratio of standard deviation to average number of structural analyses 

never exceeded 12.1%. The corresponding values are: 335411652 (200-bar truss sizing 

problem), 59684942 (942-bar tower sizing problem), 21136843 (1938-bar tower sizing 

problem), 3332204 (25-bar truss sizing-layout problems), 5265633 (45-bar truss sizing-

layout problem) and 4006399 (47-bar power line sizing-layout problem). This is a further 

proof of the robustness of the JA algorithm implemented in this study. 


