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a b s t r a c t

This paper proposes a centralized control methodology for optimizing nodal voltages of distribution
networks by acting on the reactive power produced by PV-inverters. Control actions are centrally
evaluated in real-time by solving a constrained dynamic optimization problem aimed at minimizing the
voltage deviation from a reference value. The solution of this problem is obtained by adopting an al-
gorithm operating in the continuous time domain based on a fast artificial dynamic system involving the
sensitivity theory. By this approach the controller is able to promptly respond to any change in the
system operating point, allowing its adoption in the continuous time domain. However, it must be
considered that the injection of the reactive power provided by PV-inverters entails greater conduction
and switching losses, causing a reduction in the active power output, thus implying less incomings. As a
consequence, these additional operating costs have been analyzed and evaluated in order to establish an
economic compensation mechanism able to guarantee fair reimbursement to PV generators engaged in
this regulation service. Computer simulations performed on an MV distribution system, demonstrate the
effectiveness of the proposed control scheme under different operating conditions, confirming its ability
to control the network in real-time.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The intensive economic support programs adopted by the Ital-
ian Government [1] in recent years have resulted in a proliferation
of Distributed Generators (DGs) and, more specifically, of Photo-
voltaic (PV) plants. The high degree of penetration of such sources
requires a complete revision of existing practices of distribution
systems operation. In fact, these generators, depending on their
specific characteristics and location, significantly affect the voltage
profile, network losses and fault levels [2e6]. All these factors can
limit the full exploitation of such resources if adequate control
actions and ancillary service providers are not available in the grid.
Among possible providers, PV plants seem to be particularly
attractive because of their power electronic converters even if, until
now, this possibility has not been fully exploited due to the lack of
adequate control methodologies. For this reason, some intercon-
nection standards [7,8] imposing a unitary power factor at
connection points have excluded these plants from the regulation
x: þ39 080 5963410.
ano).
service. More recently, thanks to scientific and technology im-
provements, this opportunity seems to be practicable. Therefore,
new grid codes developed in many countries [9e17] require that
new PV inverters must incorporate any reactive control signals
coming from the network operator. However, the issue on how to
control such devices in real time is still pending even if a lot of
research is being carried out on this topic and, particularly, on the
voltage regulation problem aimed at satisfying the standard EN
50160 [18]. Technical literature extensively reports methods based
on Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
Evolutionary PSO (EPSO), Discrete PSO (DPSO) and sensitivity the-
ory [19e30]. In these works, control actions are centrally evaluated
by solving a constrained optimization problem to minimize system
losses. Control variables are the reactive powers supplied by PV-
inverters, transformer taps and all other voltage control devices.
Nodal voltages constitute the set of inequality constraints, thus
disregarding the optimum condition on voltage levels. With these
methodologies, the optimum condition is usually achieved by
increasing the voltage profile, and then reducing current flows,
until voltages at some nodes reach their limits. In this case,
unpredicted events (sudden overloads, excursion of solar radiations
or wind gusts), may bring voltages over the specified limits
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Fig. 1. Loading capability chart of the i-th photovoltaic generator.
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resulting in the nuisance of voltage relays tripping and cascade
events. For this reason, it is advisable to directly focus on the
optimization of the voltage profile, as we propose in this paper. In
doing this, voltage deviations from a reference value are minimized
by managing the reactive power provided by PV inverters by
solving a constrained dynamic optimization problem. The meth-
odology involves a fictitious dynamic system based on the Lyapu-
nov function that guarantees the existence of a solution.

Additionally, it must be considered that the supplementary in-
jection of reactive power increases inverter losses, thus minimizing
PV incomes. In order to stimulate the provision of this important
ancillary service, this loss of profits should require an economic
compensation mechanism able to guarantee a fair reimbursement
to PV generators engaged in this regulation service. With this aim a
section of this paper is devoted to analyzing this economic impact.

Several computer simulations have been performed on a typical
MV distribution network in order to test performance of the
controller developed. The results obtained demonstrate that the
controller is able to promptly respond to any change in the system
operating point, confirming its ability to control the voltage profile
in real-time. Moreover, as an additional output, the algorithm al-
lows the a-posteriori costs corresponding to each control action to
be evaluated on the basis of the feed in tariff plus the market
clearing price for the energy not supplied due to additional inverter
losses.

2. Reactive power control method

From a mathematical point of view, the voltage control problem
can be stated as an optimization problem aimed at minimizing the
voltage deviation from a reference value.

The basic elements of the optimization procedure are defined as
follows.

2.1. The objective function

Denoting the vector of nodal voltage magnitude measurements
with VðQ PV Þ and the vector of nodal reference voltage magnitudes
at all buses with V ref , the vector of the control error can be defined
as follows:

eV ¼ VðQ PV Þ � V ref (1)

where Q PV represents the vector of control variables, i.e. reactive
powers injected by photovoltaic plants. The aim is to regulate Q PV
until eV is either zero or minimal. For this purpose, the following
performance index, V , is assumed:

VðeV Þ ¼
1
2
eTVWeV (2)

whereW is a symmetric positive definite matrix whose coefficients
weight individual components of the performance index. Note that
we have defined this function according to the methodology
developed in Ref. [29] to be a Lyapunov function that guarantees
the existence of a mathematical solution.

The optimization of the performance index (2) requires the
following equality and inequality constraints to be satisfied.

2.2. Equality constraints

f ðx;u;Q PV Þ ¼ 0 (3)
Fig. 2. Basic scheme of the proposed methodology.
Eqn. (3) represents the power flow equations, where the state
vector x is the nodal voltage vector expressed in terms of
magnitude and phase x ¼ ½V w �T , and u ¼ ½PPV PL Q L �T is a
vector whose elements are the active powers injected by all PV
generators and active and reactive powers measured at all load
buses.
2.3. Inequality constraints

To avoid impacting economic benefits deriving from the active
power production of photovoltaic plants, the reactive power output
must be controlled within the photovoltaic generator's capabilities.

There are mainly two factors influencing the capability of the
generic i-th PV generator. The first one is the minimum ðPmin

PV ;i Þ and
maximum ðPmax

PV ;i Þ injectable active power. Pmin
PV ;i represents the

minimum value of production below which the inverter shuts
down. Pmax

PV ;i is the nominal power of the DC generator corrected by
the efficiency of the overall Balance Of System (BOS), typically equal
to 75%.
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The second factor limits the maximum current, Imax
i , of the i-th

PV inverter for a constant voltage at the AC side of the inverter. The
maximum apparent power capability is described in the PeQ plane
by a circle centered in the origin having the following radius:

Smax
i

�
Vac;i

� ¼ Vac;i$I
max
i (4)

In Fig. 1 the derived capability curve of the i-th photovoltaic
plant is shown.

From a mathematical point of view, the capability curves of all
PV generators can be expressed as follows:8>>><
>>>:

Pmin
PV � PPV � Pmax

PV

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2max � P2

PV

q
� Q PV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2max � P2

PV

q (5)

During the optimization process, nodal voltages can experience
reach unacceptable levels thus we consider another inequality
constraint in order to explicitly force voltage magnitudes to be in
the following range:

Vmin � V � Vmax (6)
Fig. 3. Flow-chart of the
2.4. The static voltage optimization problem

Under the previously illustrated assumptions, the overall opti-
mization problem can be stated as follows:

min
Q PV

VðeV ðQ PV ÞÞ ¼ min
Q PV

1
2
½eV ðQ PV Þ�TWeV ðQ PV Þ (7)

subject to

f ðx;u;Q PV Þ ¼ 0 (8)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2max � P2

PV

q
� Q PV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2max � P2

PV

q

Vmin � V � Vmax

(9)

2.5. The dynamic voltage optimization problem

The problem stated in (7) is specified for any fixed operating
point. It can be solved by adopting classical solution methods that
must be initialized every time an event occurs in the system (event-
based trigger mechanism) or at fixed time intervals (time-based
proposed algorithm.
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Fig. 4. Basic scheme of the proposed anti-wind-up compensator.

Fig. 5. Single-line diagram of the test system.
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trigger mechanism). If an event-based trigger is adopted, the con-
trol schemewould require an event identification system. If a time-
based trigger is considered, the time interval must be carefully
chosen. If it is too long, some events cannot be captured and pro-
cessed by the controller, whereas, if it is too short the computa-
tional burden could be excessive. In order to overcome these
problems, we propose an optimization algorithm operating in the
continuous time domain adopting the methodology developed in
Ref. [29]. The developed code, fed by data coming into the control
center, runs continuously without requiring to be restarted. As a
result output signals are changed according to the latest updated
information.

The developed methodology is based on the sensitivity theory
involving the Lyapunov function and consists of setting up a ficti-
tious dynamic system, whose state variables are represented by
control variables Q PV . With this assumption, the solution of the
optimization problem can be obtained by finding the equilibrium
point (if any) of such a dynamic system. The adoption of the Lya-
punov method ensures that an equilibrium point will be reached
and this will constitute the minimum of the objective function (7).
In this sense the voltage error approaches the origin (or the mini-
mum) asymptotically. When the dynamic system lies at its equi-
librium point, if the operating condition changes a different value of
V is produced, thus driving the methodology to produce a new set
of control variables where V is again at a minimum.

The basic idea of the proposed methodology is shown in Fig. 2.
Note that the controller, fed by voltage measurements on the

network, firstly evaluates the voltage control error in the current
state of the system. Subsequently, the artificial dynamic system
_Q PV ðtÞ is derived and then integrated in the time domain in order to
obtain control laws as follows:

Q PV ðtÞ ¼ �k
Z �

veV
vQ PV

�T

WTeV dt (10)

In particular, this model contains sensitivities of the voltage
error with regard to the control action, veV=vQ PV . The evaluation of
such sensitivities can be obtained as follows:

�
veV
vQ PV

�
¼

�
veV
vx

��
vx

vQ PV

�
(11)

where ðvx=vQ PV Þ can be expressed as follows:

�
vx

vQ PV

�
¼ JðxÞ�1

�
vS

vQ PV

�
(12)

Note that, the dependence of control laws on sensitivities es-
tablishes a different participation factor for each PV generator. For
this reason, some generators could be forced to provide more or
less reactive power and some of them could even reach their upper
or lower limits. Note that if inequality constraints are not violated,
the steady-state value of the control error will be zero, otherwise it
will be minimal.

3. Cost analysis of the PV reactive power support

The new Italian grid codes [11] and [17], oblige investors to
adopt power converters able to manage the reactive power ac-
cording to network exigencies. The provision of the reactive power
by PVs entails greater conduction and switching losses on their
inverters, causing a reduction of the active power available at
generator terminals, thus reducing incomes for PV owners. As a
consequence, such lost profits must be adequately compensated to
guarantee an adequate reactive generation capacity. In fact, the
provision of the reactive power could follow one of two ways: a
forced commission or voluntary participation in a reactive power
market. In the first case, the knowledge of the reactive power
production costs can be usefully adopted as the starting point for a
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Fig. 6. Computational Performances for different values of the gain factor.

Table 1
Dynamic Load Flow Report in the non-optimized condition.

Bus
[#]

Voltage Generation Load eiV
[kV]

Magnitude
[kV]

Angle
[deg]

Active
power
[MW]

Reactive
power
[MVAr]

Active
power
[MW]

Reactive
power
[MVAr]

1 20.00 0.000 9.524 4.364 0.00 0.00 0.00
2 19.89 �0.178 0 0 1.01 0.29 �0.11
3 19.81 �0.296 0 0 0.80 0.23 �0.19
4 19.72 �0.407 0 0 1.01 0.29 �0.28
5 19.61 �0.523 0 0 0.80 0.23 �0.39
6 19.53 �0.604 0 0 0.30 0.09 �0.47
7 19.45 �0.681 0 0 0.00 0.00 �0.55
8 19.38 �0.748 0 0 1.01 0.29 �0.62
9 19.32 �0.801 0 0 0.00 0.00 �0.68
10 19.26 �0.807 0 0 1.01 0.29 �0.74
11 19.22 �0.804 2 � 0.5 0 1.01 0.29 �0.78
12 19.18 �0.812 0 0 1.01 0.29 �0.82
13 19.15 �0.813 0 0 1.01 0.29 �0.85
14 19.14 �0.807 0 0 1.01 0.29 �0.86
15 19.15 �0.788 2 � 0.5 0 0.50 0.15 �0.85
16 19.31 �0.794 2 � 0.5 0 1.01 0.29 �0.69
17 19.30 �0.792 0 0 0.00 0.00 �0.70
18 19.29 �0.789 0 0 1.01 0.29 �0.71
19 19.28 �0.769 2 � 0.5 0 1.01 0.29 �0.72
20 19.30 �0.776 0 0 0.00 0.00 �0.70
21 19.30 �0.757 0 0 0.50 0.15 �0.70
22 19.31 �0.735 2 � 0.5 0 0.30 0.09 �0.69
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fair negotiation between the Regulatory Commission and PV
owners. In the second case, PV owners will be able to take advan-
tage of this analysis which will give them the possibility to
participate in the market with a better knowledge of their costs. In
this sense, they could offer this ancillary service with an offer price
at least equal to their reactive power production costs. Our analysis,
as also suggested in Refs. [31e34], considers that modern con-
verters do not incur additional investment costs for this additional
service. For this reason, only operating costs will be examined in
this Section.

For a given i-th PV inverter the greater conduction and switch-
ing losses caused by the provision of the reactive power can be
evaluated through the following second order polynomial
approximation [32]:

Ploss;iðSiðtÞÞ ¼ ai þ biSiðtÞ þ giS
2
i ðtÞ

¼ ai þ bi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2PV ;iðtÞ þ Q2

PV ;iðtÞ
q �

þ

þ gi

�
P2PV ;iðtÞ þ Q2

PV ;iðtÞ
� (13)

where Si represents the apparent power of the generic i-th inverter
and ai, bi, and gi are loss coefficients denoting, respectively, standby
losses, voltage dependent losses and current dependent losses. The
additional energy losses over time due to the reactive power con-
trol, EQPV

loss;i, can be evaluated as the difference between the daily
energy lost with and without the reactive power control:

EQPV

loss;i

�
PPV ;iðtÞ;QPV ;iðtÞ

� ¼
Zt

t0

Ploss;i
�
PPV ;iðtÞ;QPV ;iðtÞ

�
dt

�
Zt

t0

Ploss;i
�
PPV ;iðtÞ;0

�
dt (14)

It is assumed that the provision of reactive power is justified if
the owners of PV generators get incentives almost equal to those
corresponding to the energy not supplied due the increased losses
for the reactive power control. We assume that additional energy
losses evaluated by means of (14), will be paid at the same price
that is paid for the active energy injected into the grid. In this sense,
the i-th owner of the PV generator must be paid for the reactive
power service as follows:

CQ
PV ;i ¼ ðFITi þ CENSðtÞÞ EQPV

loss;i

�
PPV ;iðtÞ;QPV ;iðtÞ

�
(15)

where FITi is the feed-in-tariff rate assigned to the i-th generator,
depending on the type and size of the specific PV plant, and CENS is
the market clearing price for the energy not supplied.

4. The implementation of the proposed controller

The overall optimization problem can be implemented on the
basis of the flow chart shown in Fig. 3.

Measurements on the distribution network are sent to the
control center by the classic available telemetry system operating
with sampled data. Since our methodology operates in the
continuous time domain, we process available data with a first
order sample-and-hold block. If one sample is delayed or even
missed, the output of this block goes on in feeding the algorithm in
the continuous time domain. The derived function is then passed to
the Dynamic Load Flow block [35]. This block also incorporates a
switching mechanism, from PQ to PV bus types, in order to fix the
voltage magnitude at bus experiencing values exceeding the ad-
missible range. The output of the previous block is used to evaluate
the Performance Index of the system in its current state bymeans of
Eqn. (2). Subsequently, the artificial dynamic system is derived and
then integrated in the time domain in order to obtain the desired
control laws to be processed by local controllers of PV inverters.

Inequality constraints deriving from capability curves of
photovoltaic plants are also included in the control loop by
adopting thresholds on the integral function. In doing this, in order
to avoid saturations giving adverse effects on control performances
[36], we suggest using the anti-wind-up compensator shown in
Fig. 4.

The gain factor k appearing in the artificial dynamic model
_Q PV ðtÞ significantly influences the overall computational perfor-
mance. If it is set too large, the procedure rapidly reaches the so-
lution, otherwise the process takes too much time. The suitable
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choice of this factor cannot be made regardless of the dynamic
performance of the grid and this is discussed in the following
Section.

5. Test results

Wetested theproposedmethodologyon thedistributionnetwork
shown in Fig. 5 and the data are reported in Appendix A. It consists of
a typical MV (20 kV) distribution system with a single transformer
substation 150/20 kV located at bus 1, feeding five PV plants, each of
them composed by two inverters having the same characteristics. In
particular, we assumed the adoption of commercially available
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Fig. 7. Reactive power control laws of each
Conergy CSI 1000 inverters [37] giving rise to a maximum allowable
apparent power for each PV plant equal to 2 MVA.

All computer simulations were carried out using the software
package Matlab/Simulink [38].

In order to demonstrate the effectiveness of the proposed
methodology, the three following cases, corresponding to different
operating conditions, were investigated:

- Test 1 e Fixed loads. This test was performed in order to check
the controller's ability to correctly move the system to an
optimal point, just providing a ‘snapshot’ operating condition of
the grid.
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of the two inverters of all PV plants.
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Fig. 8. Polar diagram of the nodal voltages with (solid line) and without (dotted line) the reactive power control.
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Fig. 10. eReactive power control laws at the PV-inverters.
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- Test 2 e Sequential events e underload, overload and gener-
ator trip. The aim of this test was to analyze dynamic perfor-
mances of the controller, following sudden burdensome
events.

- Test 3 e Real-time operation. This test was conducted to eval-
uate the controller's aptitude to operate in real time, simulating
daily fluctuations of the total load and the total PV generation.

For all tests, we assumed the nominal voltage to be the reference
value ðVref ¼ 20 kVÞ.

5.1. Test 1 e fixed loads

We assumed a snapshot of the system having a pre-defined total
load and generation. In particular, we forced each PV plant to inject
an active power equal to 2 � 0.5 MW. This system condition was
assumed to be the base case. In this case the maximum allowable
reactive power that one PV inverter can provide ranges in the in-
terval [-0.866, 0.866]. Starting from this operating point, the dy-
namic load flow gave rise to the system state reported in Table 1.

For this non optimized condition, in the last column we report
the voltage error evaluated for each i-th bus (eiV ¼ Vi � Vref ).

To start up the algorithm, an adequate value of the gain factor k
has to be chosen. For this reason a preliminary test was performed
to investigate the influence of the gain factor k on the transient
response of the dynamic system, _Q PV . We performed four optimi-
zations, adopting four different values of k in the range [10�1, 106].
In Fig. 6 we only report the time domain behavior of the reactive
power injected by the two PV-inverters connected at bus #11. As
can be noted, with higher values of the gain factor k, the dynamic
system rapidly reaches its steady-state equilibrium point. We
suggest adopting the highest value we used, k ¼ 106, giving rise to
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settling times less than 10�5. This settling time is fully compatible
with usual sampling times of real scada systems.

Choosing the suggested value of k, the reactive power control
laws, Q PV , were generated as shown in Fig. 7. Note that, reactive
power curves refer to the power that must be provided by each of
the two inverters of all plants.

As can be seen, the controller rapidly forces each inverter to
inject its maximum allowable reactive power, equal to 0.866 MVAr.
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Fig. 12. Daily load profile of the system under investigation.
Depending on individual contributions to the objective function,
each generator reaches its saturation limit at different times.

As shown in Fig. 8, with these control actions the nodal system
voltages were forced to be very close to the assumed reference
value.

Fig. 9 shows the time domain behavior of the performance index
V . As can be noted, it monotonically decreases from the value
4.57 kV2 to its minimum value, equal to 0.05 kV2, with an
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Fig. 13. Daily generation profile of the two inverters of each PV plant.
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Fig. 14. Daily behavior of the reactive power provided by the PV plant at bus # 11.
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improvement equal to 98.9%. V could not reach the zero (corre-
sponding to an improvement equal to 100%) because the control
action is constrained by the generator capability curves.

5.2. Test 2 e sequential events e underload, overload and generator
trip

The controller's ability to be auto-adaptive was investigated by
simulating the following sequential scenarios starting from the
previous optimized condition:

� a sudden underload evenly distributed equal to �40% of the
base load at t ¼ 50 s;
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Fig. 15. Daily behavior of the reactive powe
� a sudden overload evenly distributed equal to þ10% of the
previous load condition at t ¼ 200 s;

� a generator trip (at bus #11) occurring at t ¼ 350 s.

Fig. 10 shows the time domain behaviors of the obtained control
laws.

For clarity purposes, in Fig. 11 we report only the time domain
behaviors of the nodal voltages at buses 12 and 19 experiencing the
largest voltage deviations. In the time interval [50 s, 200s[, the
given underload implies a rapid rise in the nodal voltages, partic-
ularly on bus 19. In response to this, the algorithm modulates all
reactive injections, trying to optimize the voltage deviations from
the reference value. At the post disturbance equilibrium point, PV
:00 18:00 24:00
hours]

r provided by the PV plant at bus # 22.
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Fig. 16. Daily profile of the objective function: with (dotted line) and without (solid line) the control action.

Table 2
Performance Index for different values of time delays.a

Delay time 0 s
(Continuous
time behavior)

10 s 1 min 5 min 15 min

Performance
index V [kV2h]

69.40 69.42 69.48 69.52 70.00

a The performance indexes have been evaluated considering the regulation acting
during the daytime over a time window of 24 h.
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plants connected at buses 11, 15 and 16 reach their upper limits,
whereas the generator at bus 19 reduces its injection to the value of
0.94 MVAr, and the reactive power at bus 22 completely reverses
from the value of 1.732 MVAr to the value of �0.51 MVAr (Fig. 10).
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Fig. 17. Available loss data and the fitting power loss
The intervention of the limits at buses 11, 15 and 16 precludes the
exact achievement of the target 20 kV.

Following the overload occurrence at time t ¼ 200 s, the pro-
posed algorithm produced the new optimal condition, only moving
the reactive power generated at bus 19.

As a consequence of the generator tripping at time t ¼ 350 s, the
algorithm reacted by sharing the control burden previously
assigned to the tripped generator among the remaining PV plants.
In particular, the exigency of reactive power was satisfied only by
the generators that had not yet reached their maximum values, i.e.
plants 19 and 22.

The given scenarios were characterized by the following steady-
state values of the performance index V:

� underload of �40%: V ¼ 1.9$10�3 kV2;
0 600 700 800 900 1000

ower [kW]

curve of the PV inverter Conergy CSI 1000 [37].
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Table 3
Additional energy losses and costs for the reactive power service.

PCC
[#]

Daily energy loss
without the
reactive service
[kWh/day]

Daily energy
loss with the
reactive service
[kWh/day]

Daily additional energy
losses due to the reactive
power provision EQPV

loss
[kWh/day]

Daily
additional
costs
[V/day]

11 201.34 685.78 484.42 85.74
15 217.92 686.60 468.70 82.94
16 219.54 686.74 447.54 79.22
19 215.16 686.42 471.28 83.42
22 203.92 643.98 440.06 77.88
Total costs 409.2

Table A1
eLoad data.

Bus
[#]

Active power
[MW]

Reactive power
[MVAr]

Bus
[#]

Active power
[MW]

Reactive power
[MVAr]

1 Slack bus Slack bus 12 1.01 0.29
2 1.01 0.29 13 1.01 0.29
3 0.80 0.23 14 1.01 0.29
4 1.01 0.29 15 0.50 0.15
5 0.80 0.23 16 1.01 0.29
6 0.30 0.09 17 0.00 0.00
7 0.00 0.00 18 1.01 0.29
8 1.01 0.29 19 1.01 0.29
9 0.00 0.00 20 0.00 0.00
10 1.01 0.29 21 0.50 0.15
11 1.01 0.29 22 0.30 0.09
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� overload of þ10%: V ¼ 3.4$10�3 kV2;
� generator trip: V ¼ 27.1$10�3 kV2.

5.3. Test 3 e real-time operation

The ability of the proposed controller to operate in real-time
was tested by considering daily fluctuations for the load as well
as for the generation. We used recorded data for the daily load
profile of an existing MV feeder (Fig. 12) and for the active power
produced by an existing PV plant (Fig. 13).

We replicated the given generation profile for all generators
engaged in our network. Moreover, we differentiated these power
outputs by adding a white noise having variance equal to 0.1. In this
way, slight differences in solar radiation or environmental factors
(ambient and cells operating temperatures, humidity etc.) specif-
ically affecting each PV plant are taken into account, giving rise to a
more realistic simulation.

In order to avoid greater costs for the reactive compensation
occurring if inverters do not produce active power, we assumed
that the controller only acts when the inverter is turned on, i.e. it is
activated in the day-time (05:25 am ÷ 08:00 pm).

In Figs. 14 and 15 we report only the obtained control laws for
the PV plants “called” to provide the greatest (bus #11) and the
least (bus #22) amount of the daily reactive energy. From a com-
parison with Fig. 13, it can be observed that when the active power
reaches it maximum value (at about 01:00 pm), the reactive power
vanishes guaranteeing incomes deriving from selling the active
energy.

In Fig. 16 we show the comparison of the daily behavior of the
performance index with and without the control action.

In order to give a measure of the effectiveness of the proposed
methodology, we adopted the following integral index:

Vdaily ¼
Zt¼24:00

t¼00:00

VðtÞdt

In this case, the controller was able to reduce the performance
index from a value of Vnon�opt

daily ¼ 154:33 kV2h in the non-optimized
condition to a value of Vopt

daily ¼ 69:4 kV2h, giving rise to an
improvement equal to 55.0%.

Time delays due to congestion or failures of the communication
system could negatively impact the performance of any control
system. In order to understand how the developed controller is
capable of treating data affected by significant time delays, we
supposed that measurements and signals coming from/to the field
were delayed by 10 s, 1 min, 5 min and 15 mins. The main results of
this analysis are reported in Table 2.

We also analyzed costs due to the reactive support in the
considered day. As discussed in Section 3, additional energy losses
can be evaluated by means of Eqn. (15) as the difference between
the daily energy lost with and without the reactive power control.

The loss curve of the chosen inverter (Fig. 17) was fitted by a
second order polynomial curve whose coefficients were
a ¼ 1:7413 kW; b ¼ 0:0112 kW=kVA; g ¼ 0:00001 kW=kVA2.

In Table 3 we report the daily energy lost with and without the
reactive power control, as well as the related additional losses for
the considered day.

The daily additional operational costs are reported in the last
column. These costs were evaluated by adopting the current Italian
feed-in-tariff for PV plants equal to FIT ¼ 0.099 V/kWh [39] and the
compensation for the energy not supplied equal to CENS¼ 0.0644V/
kWh [40].

As can be noted, the provision of reactive power implied an
additional cost of about 410 V/day, corresponding to about 82 V/
day for each plant.
6. Conclusions

In this paper, a centralized voltage control scheme has been
developed by adopting grid-connected photovoltaic plants as
reactive power providers. The proposed controller is based on a
self-adaptive optimization procedure which involves a fictitious
dynamic system producing control laws to be sent to local con-
trollers of PV-inverters. The proposed controller has been tested on
a typical MV distribution network under different operating con-
ditions. The results obtained demonstrate that the suggested con-
trol system promptly reacts to suddenly burdensome events such
as underload, overload and generators tripping. With this charac-
teristic, the automatic controller can be fruitfully implemented in
real-time, as confirmed by simulations performed on a typical day.
The controller also complies with the unavailability of one or more
PV generators to supply the required amount of reactive power. In
fact, in this case, the control burden is automatically shared among
the remaining PV plants, giving rise to a suboptimal condition. The
algorithm can also provide the evaluation of additional costs
incurred for the provision of this ancillary service as additional
information for the grid operator as well as the PV owners. This
element can be fruitfully adopted in order to build a fair compen-
sation mechanism, thus stimulating the provision of this important
ancillary service.
Appendix A. Data for the test system
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Table A2
eLine data.

Line
[#]

From
[#]

To
[#]

R
[U]

X
[U]

1 1 2 0.144 0.196
2 2 3 0.108 0.147
3 3 4 0.163 0.179
4 4 5 0.205 0.225
5 5 6 0.172 0.188
6 6 7 0.174 0.191
7 7 8 0.149 0.164
8 8 9 0.165 0.181
9 9 10 0.249 0.122
10 10 11 0.283 0.139
11 11 12 0.249 0.122
12 12 13 0.277 0.136
13 13 14 0.218 0.107
14 14 15 0.302 0.148
15 9 16 0.115 0.096
16 16 17 0.109 0.092
17 17 18 0.202 0.099
18 18 19 0.474 0.232
19 17 20 0.297 0.146
20 20 21 0.381 0.187
21 21 22 0.318 0.156
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