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(p, q)−quasilinear elliptic problems
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Abstract We investigate the existence of solutions of the (p,q)−quasilinear elliptic
problem {

−∆pu − ∆qu = g(x,u) + ε h(x,u) in Ω,
u = 0 on ∂Ω,

where Ω is an open bounded domain in RN , 1 < p < q < +∞, the nonlinearity
g(x,u) behaves at infinity as |u|q−1, ε ∈ R and h ∈ C(Ω × R,R). In spite of the
possible lack of a variational structure of this problem, appropriate procedures and
estimates allow us to prove the existence of at least one nontrivial solution for small
perturbations.
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1 Introduction

Classical semilinear and quasilinear equations can be perturbed just by adding con-
tinuous functions, with no assumption on their growth or their symmetry, so that
their structure may lose its variational nature. More precisely, here we consider the
following class of quasilinear elliptic problems:

(Pα,ε)
{
−α∆pu − ∆qu = g(x,u) + ε h(x,u) in Ω,
u = 0 on ∂Ω,

with α ∈ {0,1}, 1 < p < q < +∞, ∆ru = div(|∇u|r−2∇u) if r ∈ {p,q}, ε ∈ R, where
Ω is an open bounded domain in RN with Lipschitz boundary ∂Ω, N ≥ 2, while
g(x,u) and h(x,u) are given functions on Ω × R.

If α = 0 and q = 2, results on multiple solutions of (P0,ε) are stated in [23] for
g(x, ·) odd, superlinear at infinity, but subcritical (see also [18] for related results).
On the other hand, if g(x, ·) is asymptotically linear at infinity and both g(x, ·) and
h(x, ·) are odd, a multiplicity theorem is proved in [24, Theorem 1.6] while, by means
of the pseudo–index theory stated in [8], in [6, Theorems 1.1, 1.2] existence results
are obtained even in presence of resonance as the number of distinct critical values
of J is stable under small odd perturbations. Moreover, again in [6], more restrictive
multiplicity results are obtained for non–odd functions h(x, ·) (see [6, Theorems 1.3,
1.4]).

To our knowledge, for q , 2 problem (P0,ε) has been studied only in [24, Theorem
1.8], assuming both g(x, ·) and h(x, ·) odd but g(x, ·) “superlinear”.

When the variational structure on W1,q
0 (Ω) of the equation in (P0,ε) fails, we

use the notion of essential value for perturbations of non–smooth functionals as
introduced in [16, 17]; indeed, such values are preserved for small perturbations of
a continuous functional. We note that essential values of functionals satisfying the
Palais–Smale condition (or its variants) are also critical ones, while the reverse impli-
cation does not hold; furthermore, critical values arising from mini–max procedures
are essential ones (we refer to Subsection 2.3 for more details).

On the other hand, for q > p = 2 problem (P1,0) has been studied in [11, 20, 30];
while if g(x, ·) is asymptotically “(q − 1)−linear” at infinity, i.e., there exists

lim
|t |→+∞

g(x, t)
|t |q−2t

= λ∞ ∈ R uniformly in Ω,
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and the problem is not resonant, i.e., λ∞ < σ(−∆q), we refer to [12] for the existence
of a nontrivial solution via Morse theory and to [4] for a multiplicity result. A further
multiplicity result for (P1,0) is contained in the recent paper [14].

At last, we recall that the asymptotically (q − 1)−linear problem (P0,0) has been
widely investigated both for q = 2 (cf. [1, 3, 6] and references therein) and for q , 2
(for some existence results see [5, 15, 18, 23, 25, 28] while for some multiplicity
ones see [5, 26, 28]). Moreover, for more recent related results we refer to [13].

In this paper, we want to investigate the existence of solutions for problem (P1,ε)
when g(x, ·) is asymptotically (q − 1)−linear at infinity and a perturbation term
is allowed. More precisely, we consider α = 1 and that there exist λ∞ ∈ R and
f : Ω × R→ R such that

g(x, t) = λ∞ |t |q−2t + f (x, t) for all (x, t) ∈ Ω × R; (1)

hence, problem (P1,ε) reduces to

(P∞ε )
{
−∆pu − ∆qu = λ∞ |u|q−2u + f (x,u) + ε h(x,u) in Ω,
u = 0 on ∂Ω.

On function f : Ω × R→ R we assume the following conditions:

( f1) f ∈ C(Ω × R,R);
( f2) there exists

lim
|t |→+∞

f (x, t)
|t |q−1 = 0 uniformly in Ω;

( f3) there exists

lim
t→0

f (x, t)
|t |q−2t

= λ0 ∈ R \ {0} uniformly in Ω.

We note that, if assumption ( f1) is satisfied, thenwe can define theC1 real function

F(x, t) =
∫ t

0
f (x, s) ds for all (x, t) ∈ Ω × R (2)

which is so that F(x,0) = 0 for all x ∈ Ω.
The behaviour of the nonlinearity as in (1) calls for a control of the interaction

of g(x, t) with the spectrum of σ(−∆q) which is mostly unknown for q , 2. Such
a problem was overcome in [5] for (P0,0) by taking into account two sequences of
quasi–eigenvalues for −∆q in W1,q

0 (Ω) defined as in [10, 26], namely (η0
m)m and

(ν0
m)m (see Subsection 2.1 for their definitions), while here we prefer to use two

sequences of quasi–eigenvalues for the (p,q)−Laplacian operator, denoted by (ηm)m
and (νm)m, which are introduced in [14] along the lines of [10, 26] (see Subsection
2.1 for more details).

Firstly, we state an existence result which deals with the unperturbed case (P∞0 ).

Theorem 1 Assume that ( f1) − ( f3) hold and λ∞ < σ(−∆q). Let k ∈ N be such that
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(Λ1)an integer k̄ ≥ k exists such that one of following assumptions holds:

(i) we have that
λ0 + λ∞ < ηk,

q
p
νk < λ∞ (3)

and
νk−1 < νk = νk+1 = . . . = νk̄ < ηk̄+1; (4)

(ii)we have that
λ∞ < η0

k,
q
p
νk < λ0 + λ∞ (5)

and
νk−1 < νk = νk+1 = . . . = νk̄ < η0

k̄+1; (6)

(Λ2)a constant η > 0 exists such that[
1
p
(νk−1 + η) −

λ∞
q

]
|t |q ≤ F(x, t) for all (x, t) ∈ Ω × R.

Then, problem (P∞0 ) has at least a nontrivial solution

Then, we are able to state the following result concerning the perturbed case.

Theorem 2 Let ( f1) − ( f3) hold and assume that λ∞ < σ(−∆q) and k ∈ N exists
such that (Λ1) − (Λ2) are satisfied. If h ∈ C(Ω×R,R) then ε̄ > 0 exists such that for
all |ε | ≤ ε̄ problem (P∞ε ) has at least one nontrivial solution.

Remark 1 Theorem 1 holds even if we replace assumption ( f1) with the weaker
hypothesis

( f1)′ f is a Carathéodory function (i.e., f (·, t) is measurable in Ω for all t ∈ R and
f (x, ·) is continuous in R for a.e. x ∈ Ω) and

sup
|t | ≤a

| f (·, t)| ∈ L∞(Ω) for all a > 0;

but such a replacement does not work in Theorem 2 if a perturbation term is involved.

It is worth to point out that q > p is not an assumption; indeed, the roles of p
and q are interchangeable. Moreover, it is understood that by a solution we mean
a weak solution, i.e., a function u ∈ W1,q

0 (Ω) solving the problems in the sense
of distributions. We notice also that, under our assumptions, such weak solutions
belong to C1,β(Ω) for some β ∈]0,1] (e.g., see [22, Remark 1.3]).

At last, we point out that the arguments we use for the proof of Theorem 2 still
apply to the single q–Laplacian perturbed problem (P0,ε); hence, being η0

m ≤ ν
0
m for

all m ∈ N (see [5, Proposition 2.9]), we obtain the following new existence result.

Corollary 1 Assume that ( f1) − ( f3) hold, λ∞ < σ(−∆q) and h ∈ C(Ω × R,R).
Moreover, let k ∈ N be such that
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(Λ1)
′an integer k̄ ≥ k exists such that

min{λ0 + λ∞, λ∞} < η0
k ≤ ν0

k < max{λ0 + λ∞, λ∞}

and
ν0
k−1 < ν0

k = ν
0
k+1 = . . . = ν

0
k̄
< η0

k̄+1;

(Λ2)
′a constant η > 0 exists such that

(ν0
k−1 + η − λ∞)

|t |q

q
≤ F(x, t) for all (x, t) ∈ Ω × R.

Then, ε̄ > 0 exists such that for all |ε | ≤ ε̄ problem (P0,ε) has at least one nontrivial
solution.

Remark 2 (a) We note that, being p < q, in (3), respectively (5), it has to be
ηk <

q
p νk , respectively η

0
k
<

q
p νk (see Proposition 1). Therefore, the two conditions

in (3) can be written as the chain of inequalities:

λ0 + λ∞ < ηk <
q
p
νk < λ∞

so that it has to be λ0 < 0. Similarly, (5) becomes

λ∞ < η0
k <

q
p
νk < λ0 + λ∞,

and, then, it has to be λ0 > 0. According to [1], we do not know whether an existence
result holds for λ0 = 0 or not.
(b) Instead of (3) and (5), we could state both Theorems 1 and 2 by requiring

min{λ0 + λ∞, λ∞} < η0
k <

q
p
νk < max{λ0 + λ∞, λ∞}

but assuming
η0
k ≤ ηk if λ0 < 0. (7)

Anyway, even if there are not significant changes in the proof, the assumption (7)
may be more restrictive since such inequality holds for k = 1, but we do not know if
it is true also for other k ≥ 2.
(c) All the existence results in Theorems 1, 2 and Corollary 1 hold also when the
limit in ( f3) is infinite (see Propositions 3 and 4).

This paper is organized as follows: in Section 2 we present the tools we are going
to use while in Sections 3 and 4 we prove Theorems 1 and 2, respectively.

Our strategy is the following: inspired by [23] (see also [6]) we prove the existence
of at least one nontrivial solution of (P∞0 ) by using standard critical point theorems.
Then, by means of cut–functions, we introduce perturbations of the functional asso-
ciated to problem (P∞0 ) which have essential values near to the critical level of the
solution for ε small enough. Such essential values turn out to be critical ones and
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suitable procedures - deeply different from those in [6], where the decomposition of
W1,2

0 (Ω) by means of eigenvalues is exploited - allow us to prove that the L∞–norm
of the family of critical points of the cut–perturbed functionals is bounded. Hence,
finally, solutions of (P∞ε ) can be found.

2 Preliminary material

Throughout this paper, we will use the following notations:

• R̄ = R ∪ {±∞};
• (X, ‖ · ‖X ) Banach space with (X ′, ‖ · ‖X′) its dual;
• I : X → R C1–functional;
• Ib = {u ∈ X : I(u) ≤ b} sublevel of I corresponding to b ∈ R;
• Ib = {u ∈ X : I(u) ≥ b} superlevel of I corresponding to b ∈ R;
• | · |s standard norm on the Lebesgue space Ls(Ω), 1 ≤ s ≤ +∞;
• ‖ · ‖q standard norm on W1,q

0 (Ω), i.e., ‖u‖q = |∇u|q for all u ∈ W1,q
0 (Ω);

• (W−1,q′(Ω), ‖ · ‖W−1,q′ ) dual space of W1,q
0 (Ω);

• q∗ = qN
N−q if q < N , q∗ = +∞ otherwise;

• BR = {u ∈ W1,q
0 (Ω) : ‖u‖q < R} for any R > 0;

• BR = {u ∈ W1,q
0 (Ω) : ‖u‖q ≤ R} for any R > 0;

• SR = {u ∈ W1,q
0 (Ω) : ‖u‖q = R} for any R > 0.

Moreover, by Kj , j ∈ N, we denote any positive constant which appears in the proofs
and, for simplicity, we denote by (βm)m any infinitesimal sequence which depends
only on a given sequence of functions and by (βm(ϕ))m any infinitesimal sequence
which depends also on a fixed function ϕ.

2.1 Quasi–eigenvalues for the operator −∆p − ∆q

It is well known that, if q = 2, the spectrum σ(−∆2) of −∆2 in W1,2
0 (Ω) consists of

a diverging sequence (λm)m of eigenvalues, repeated according to their multiplicity,
so that

0 < λ1 < λ2 ≤ . . . ≤ λm ≤ . . . ,

which furnishes a decomposition of the Hilbert space W1,2
0 (Ω). Then, denoting

by (ϕm)m the sequence of the corresponding eigenfunctions, for each m ∈ N the
following inequalities hold:

λm |u|22 ≥ |∇u|22 for all u ∈ Vm

and
λm |u|22 ≤ |∇u|22 for all u ∈ Wm−1
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with
Vm = span{ϕ1, . . . , ϕm}, Wm = V⊥m .

Instead, in the quasilinear case q , 2, the spectral properties of the q–Laplacian
−∆q in the Sobolev space W1,q

0 (Ω) are still mostly unknown; indeed, when N ≥ 2
it is not known whether the unbounded and increasing sequences of eigenvalues
in [2, 21, 27, 28] cover the whole spectrum σ(−∆q) of −∆q in W1,q

0 (Ω) or not.
Furthermore, unlike the case q = 2, the eigenvalues do not furnish a decomposition
of the Banach space W1,q

0 (Ω). For these reasons in the (q − 1)–asymptotically linear
case we are studying, it is useful to consider two sequences of quasi–eigenvalues (cf.
[5, Section 2]).

The first eigenvalue of −∆q , denoted by λ(q)1 , is characterized by

λ
(q)
1 = inf

u∈W
1,q
0 (Ω)\{0}

|∇u|qq
|u|qq

and is positive, simple, isolated with a unique positive eigenfunction ϕ(q)1 having
unitary Lq–norm (cf., e.g., [27]).

In [10, Section 5], starting from η0
1 = λ

(q)
1 and ψ0

1 ≡ ϕ
(q)
1 , it is shown the

existence of an increasing diverging sequence (η0
m)m of positive real numbers and a

corresponding sequence of functions (ψ0
m)m, with ψ0

m , ψ
0
n if m , n, such that

|ψ0
m |q = 1 and η0

m = |∇ψ
0
m |

q
q for all m ∈ N. (8)

Moreover, such a sequence generates the whole space W1,q
0 (Ω) and is such that

W1,q
0 (Ω) = Y0

m ⊕ Z0
m for all m ∈ N,

where Y0
m = span{ψ0

1, . . . ,ψ
0
m} and its complement Z0

m can be explicitely described.
We recall that if Y ⊆ X is a closed subspace of a Banach space X , a subspace

Z ⊆ X is a topological complement of Y , briefly X = Y ⊕ Z , if Z is closed and every
x ∈ X can be uniquely written as y + z, with y ∈ Y and z ∈ Z; furthermore, the
projection operators onto Y and Z are (linear and) continuous and L = L(Y, Z) > 0
exists such that

‖y‖ + ‖z‖ ≤ L‖y + z‖ for all y ∈ Y , z ∈ Z (9)

(see, e.g., [9, p. 38]).
Remarkably, for all m ∈ N on the infinite dimensional subspace Zm−1 the follow-

ing inequality holds:

η0
m |u|

q
q ≤ |∇u|qq for all u ∈ Z0

m−1 (10)

(cf. [10, Lemma 5.4]).
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Unluckily, it is not known whether, by making use of this sequence of quasi–
eigenvalues, a reversed inequality holds on finite dimensional subspaces. Then, as in
[26], we define another sequence of quasi–eigenvalues. More precisely, for all m ∈ N
we consider the set of subspaces

W0
m = {Y ⊂ W1,q

0 (Ω) : Y is a subspace of W1,q
0 (Ω), ϕ

(q)
1 ∈ Y and dimY ≥ m}

and define

ν0
m = inf

Y ∈W0
m

sup
u∈Y\{0}

|∇u|qq
|u|qq

.

The main properties of such a sequence are the following: ν0
1 = λ

(q)
1 , (ν0

m)m is
an increasing diverging sequence and, if q = 2, it agrees with (λm)m (cf. [26]).
Furthermore, as already pointed out in Section 1,

η0
m ≤ ν

0
m for all m ∈ N

(see [5, Proposition 2.9])
Moreover, since here we deal with (p,q)–Laplacian problems, it is convenient

to use also two sequences of quasi–eigenvalues for the operator −∆p − ∆q with
zero Dirichlet boundary conditions as introduced in [14, Subsection 2.3] where,
overcoming the lack of homogeneity, the previous costructions are extended to the
(p,q)–Laplacian operator. More precisely, starting from

η1 := inf
u∈W

1,q
0 (Ω)

|u |q=1

(
|∇u|pp + |∇u|qq

)
≥ λ

(q)
1 ,

attained by a function ψ1 ∈ W1,q
0 (Ω) with |ψ1 |q = 1, it is defined an increasing,

diverging sequence (ηm)m of positive real numbers and a corresponding sequence
of functions (ψm)m ⊂ W1,q

0 (Ω) such that ψm , ψn if m , n and

|ψm |q = 1 and ηm = |∇ψm |
p
p + |∇ψm |

q
q for all m ∈ N. (11)

As shown in [14, Lemma 2.6], these functions generate the whole space W1,q
0 (Ω)

and for all m ∈ N it results

W1,q
0 (Ω) = Ym ⊕ Zm, (12)

with Ym = span{ψ1, . . . ,ψm} and Zm its topological complement, and the following
inequalities hold:

ηm |u|
q
q ≤ |∇u|pp + |∇u|qq for all u ∈ Zm−1 ∩ {u ∈ W1,q

0 (Ω) : |u|q ≤ 1} (13)

and

ηm |u|
p
q ≤ |∇u|pp + |∇u|qq for all u ∈ Zm−1 \ {u ∈ W1,q

0 (Ω) : |u|q ≤ 1}.
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On the other hand, in order to deal with finite dimensional spaces, for all m ∈ N
we set

Wm = {Y ⊂ W1,q
0 (Ω) : Y subspace of W1,q

0 (Ω), ψ1 ∈ Y and dimY ≥ m} (14)

and

νm = inf
Y ∈Wm

sup
u∈Y\{0}

|∇u|pp + |∇u|qq
|u|qq

. (15)

Again, (νm)m is increasing and a comparison between such a sequence and the
previous ones can be established.

Proposition 1 If (η0
m)m, (ηm)m and (νm)m are sequences of quasi–eigenvalues de-

fined as above, then it results

η0
m ≤ νm, ηm ≤ νm for all m ∈ N.

Proof Fixing m ∈ N, inequality (10) holds on Z0
m−1, with codim Z0

m−1 = m − 1,
while taking any σ > 0 from (15) a subspace Y ∈ Wm exists such that

sup
u∈Y\{0}

|∇u|pp + |∇u|qq
|u|qq

< νm + σ.

Therefore, since (14) implies dimY ≥ m, an element ū ∈
(
Y ∩ Z0

m−1

)
\ {0} exists

such that

η0
m ≤

|∇ū|qq
|ū|qq

<
|∇ū|pp + |∇ū|qq
|ū|qq

< νm + σ.

Hence, being σ arbitrary, it has to be η0
m ≤ νm.

On the other hand, fixing any σ > 0, reasoning as before but from (13)–(15), an
element v̄ ∈ (Y ∩ Zm−1) \ {0} exists, with |v̄ |q = 1, which gives ηm < νm + σ so
that, again for the arbitrariness of σ, it follows ηm ≤ νm. �

2.2 Variational tools

In what follows we recall widely known definitions and results which apply to (P∞0 )
under our assumptions.

Firstly, we recall that a functional I satisfies the Palais–Smale condition at level
c, c ∈ R, briefly (PS)c , if any sequence (um)m ⊆ X such that

lim
m→+∞

I(um) = c and lim
m→+∞

‖dI(um)‖X′ = 0

converges in X , up to subsequences.
If −∞ ≤ a < b ≤ +∞, we say that I satisfies (PS) in ]a, b[ if so is at each level

c ∈]a, b[.
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Then, in order to state a classical existence critical point theorem, we recall the
definition of sets which link as follows (e.g., see [31, Section II.8]).

Definition 1 Taking a subspace Y of X , let S ⊆ X be a closed subset of X and
consider Q ⊆ Y with boundary ∂Q with respect to Y . Then, S and ∂Q link if

• S ∩ ∂Q = ∅,
• φ(Q) ∩ S , ∅ for any φ ∈ C(X,X) such that φ

��
∂Q
= id.

For further use, we recall two examples of linking sets (cf. [31, Examples II.8.2
and II.8.3] and also [3, Propositions 2.1 and 2.2] in the case of an Hilbert space).

Example 1 Let V , W be two closed subspaces of X such that X = V ⊕ W and
dim V < +∞. Then, setting Q = BR ∩ V for R > 0 and S = W , we have that S and
∂Q link. �

Example 2 Let V , W be two closed subspaces of X such that X = V ⊕W , dim V <
+∞, and fix e ∈ W with ‖e‖X = 1. If R1, R2, ρ > 0 and

S = Sρ ∩W, Q = {te : t ∈ [0,R1]} ⊕
(
BR2 ∩ V

)
, Y = V ⊕ span{e},

then S and ∂Q link whenever R1 > ρ. �

The following linking theorem holds (cf., e.g., [3, Theorem 2.3] with the weaker
Cerami’s variant of Palais–Smale condition or [32, Theorem 2.12]).

Theorem 3 Consider a, b, α, β ∈ R̄ such that a < α < β < b. Assume that:

(i) the functional I satisfies (PS) in ]a, b[;
(ii) two subsets S and Q exist such that S is closed in X , Q ⊆ Y , with Y subspace of

X and ∂Q boundary of Q in Y , and the following assumptions are satisfied:

(a) I(u) ≤ α for all u ∈ ∂Q and I(u) ≥ β for all u ∈ S;
(b) S and ∂Q link;
(c) sup

u∈Q
I(u) < +∞.

Then, a critical level c of I exists and is given by

c = inf
φ∈Γ

sup
u∈Q

I(φ(u)), with β ≤ c ≤ sup
u∈Q

I(u),

where Γ =
{
φ ∈ C(X,X) : φ

��
∂Q
= id

}
.

2.3 Essential values

As already pointed out, we may deal with problems without a variational structure
on W1,q

0 (Ω). Hence, following [23], we use the auxiliary notion of essential value as
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introduced in [17] for the study of perturbations of nonsmooth functionals (see also
[16]). We note that: the notion of essential value is topological, an essential value is
candidate to be a critical level and is stable under small perturbations, critical levels
arising from standard mini–max procedures are essential ones.

Definition 2 Let I : X → R be continuous and a, b ∈ R̄, with a ≤ b. The pair
(Ib, Ia) is trivial if, for each neighbourhood [α′, α′′] of a and [β′, β′′] of b in R̄, a
continuous map ϕ : Iβ

′

× [0,1] → Iβ
′′ exists such that

(i) ϕ(x,0) = x for each x ∈ Iβ
′ ;

(ii) ϕ(Iβ
′

× {1}) ⊆ Iα
′′ ;

(iii) ϕ(Iα
′

× [0,1]) ⊆ Iα
′′

.

Since the lack of critical values for a smooth functional may give trivial pairs
(see the proof of [17, Theorem 3.1]), the following definition allows one to locate
possible critical levels.

Definition 3 Let I : X → R be a continuous function. A real number c is an essential
value of I if for each ε > 0 two values a, b ∈]c − ε, c + ε[, a < b, exist such that the
pair (Ib, Ia) is not trivial.

The following theorem states that small perturbations of a continuous functional
preserve the essential values (cf. [17, Theorem 3.1] or also [16, Theorem 2.6]).

Theorem 4 Let c ∈ R be an essential value of the continuous function I : X → R.
Then, for every η > 0 a constant δ > 0 exists such that every functional G ∈ C(X,R)
with

sup{|I(u) − G(u)| : u ∈ X} < δ

admits an essential value in ]c − η, c + η[.

Now, we focus on the setting of smooth functionals and recall some results which
link critical and essential values, stating in particular that the critical values arising
from mini–max procedures are essential, provided that all the involved deformations
are of the “same kind” (see [17, Theorems 3.7 and 3.9]).

Theorem 5 Let c ∈ R be an essential value of I ∈ C1(X,R). If (PS)c holds, then c
is a critical value of I.

Remark 3 In general, the reverse implication does not hold when the Palais–Smale
condition is satisfied since a critical value is not necessarily an essential one (see,
e.g., [17, Example 3.12]).

Theorem 6 Taking I ∈ C1(X,R), assume that Γ, non empty family of non empty
subsets of X , and d ∈ R ∪ {−∞} are such that

ϕ(C × {1}) ∈ Γ

for every C ∈ Γ and for every continuous deformation ϕ : X × [0,1] −→ X with
ϕ(u, t) = u on Id × [0,1]. Then, setting
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c = inf
C∈Γ

sup
u∈C

I(u),

if d < c < +∞ we have that c is an essential value of I.

3 The unperturbed case

As announced in Section 1, at first we deal with the unperturbed problem; it has a
variational structure and here we present the variational framework needed in order
to study it. Let us consider

(P∞0 )
{
−∆pu − ∆qu = λ∞ |u|q−2u + f (x,u) in Ω,
u = 0 on ∂Ω.

To this aim, we note that from ( f1) and ( f2) for all σ > 0 a constant Kσ > 0 exists
such that

| f (x, t)| ≤ σ |t |q−1 + Kσ for all (x, t) ∈ Ω × R. (16)

Hence, taking F(x, t) as in (2), classical variational theorems imply that the weak
solutions of problem (P∞0 ) are the critical points of the C1–functional

J(u) =
1
p

∫
Ω

|∇u|p dx +
1
q

∫
Ω

|∇u|q dx −
λ∞
q

∫
Ω

|u|q dx −
∫
Ω

F(x,u) dx (17)

on W1,q
0 (Ω), with

〈dJ(u), v〉 =
∫
Ω

|∇u|p−2∇u · ∇v dx +
∫
Ω

|∇u|q−2∇u · ∇v dx

− λ∞

∫
Ω

|u|q−2u v dx −
∫
Ω

f (x,u)v dx
(18)

for all u, v ∈ W1,q
0 (Ω) (see, e.g., [19, Theorem 9 and p. 355]).

Now, we prove that the functional J satisfies the Palais–Smale condition (cf. also
[4, Proposition 3.1]). We point out that here assumption ( f3), i.e. the behaviour of
f near 0, is not needed, while it will be crucial in order to obtain the geometric
assumptions required in the linking theorem (we refer to [14, Lemma 3.2] for the
proof in the resonant case under an additional assumption as in [26]).

Proposition 2 Assume that ( f1)–( f2) hold and λ∞ < σ(−∆q). Then, the functional J
in (17) satisfies (PS) in R.

Proof Taking c ∈ R, let (um)m be a sequence in W1,q
0 (Ω) such that

lim
m→+∞

J(um) = c and lim
m→+∞

‖dJ(um)‖W−1,q′ = 0. (19)

Firstly, we note that from (18) and (19) taking any ϕ ∈ W1,q
0 (Ω) it has to be
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Ω

|∇um |p−2∇um · ∇ϕ dx +
∫
Ω

|∇um |q−2∇um · ∇ϕ dx

− λ∞

∫
Ω

|um |q−2um ϕ dx −
∫
Ω

f (x,um)ϕ dx
���� ≤ βm‖ϕ‖q .

(20)

Then, since it is enough to show that (‖um‖q)m is bounded (cf., e.g., [19, Lemma
2]), arguing by contradiction we assume that, up to subsequences, it is

‖um‖q → +∞ as m→ +∞. (21)

Thus, without loss of generality, for all m ∈ N we can consider ‖um‖q > 0 and set

wm =
um
‖um‖q

with, clearly, ‖wm‖q = 1. (22)

So, being (wm)m bounded in W1,q
0 (Ω), an element w ∈ W1,q

0 (Ω) exists such that, up
to subsequences, we have

wm ⇀ w weakly in W1,q
0 (Ω), (23)

wm → w strongly in Lq(Ω). (24)

Now, replacing ϕ in (20) with ϕm = wm−w

‖um ‖
q−1
q

, as (21) and (22) imply ‖ϕm‖q → 0,
we get∫

Ω

|∇wm |
p−2

‖um‖
q−p
q

∇wm · ∇(wm − w) dx +
∫
Ω

|∇wm |
q−2∇wm · ∇(wm − w) dx

= λ∞

∫
Ω

|wm |
q−2wm (wm − w) dx +

∫
Ω

f (x,um)

‖um‖
q−1
q

(wm − w) dx + βm,

where from Hölder inequality and (24) it follows that����∫
Ω

|wm |
q−2wm(wm − w) dx

���� ≤ |wm |
q−1
q |wm − w |q = βm,

while (16), (21) and, again, (24) imply that�����∫Ω f (x,um)

‖um‖
q−1
q

(wm − w) dx

����� ≤ σ |wm |
q−1
q |wm − w |q +

Kσ
‖um‖

q−1
q

|wm − w |1 = βm,

and, since W1,q
0 (Ω) ⊂ W1,p

0 (Ω) being q > p > 1, from (21), (22) and direct
computations we have that
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p−2

‖um‖
q−p
q

∇wm · ∇(wm − w) dx

����� ≤ 1
‖um‖

q−p
q

|∇wm |
p−1
p |∇(wm − w)|p

≤
K1

‖um‖
q−p
q

‖wm‖
p−1
q ‖wm − w‖q ≤

K2

‖um‖
q−p
q

= βm.

Hence, from all the previous estimates we obtain∫
Ω

|∇wm |
q−2∇wm · (∇wm − ∇w) dx = βm,

which, together with (23), implies

wm → w strongly in W1,q
0 (Ω) (25)

(see [19, Theorem 10]) with w , 0 from definition (22).
Now, taking any ϕ ∈ W1,q

0 (Ω) and dividing (20) by ‖um‖q−1
q , we have that∫

Ω

|∇wm |
p−2

‖um‖
q−p
q

∇wm · ∇ϕ dx +
∫
Ω

|∇wm |
q−2∇wm · ∇ϕ dx

= λ∞

∫
Ω

|wm |
q−2wm ϕ dx +

∫
Ω

f (x,um)

‖um‖
q−1
q

ϕ dx + βm(ϕ),
(26)

where, by reasoning as before, (21) and (22) imply�����∫Ω |∇wm |
p−2

‖um‖
q−p
q

∇wm · ∇ϕ dx

����� ≤ K3

‖um‖
q−p
q

‖ϕ‖q = βm ‖ϕ‖q . (27)

We claim that
lim

m→+∞

∫
Ω

f (x,um)

‖um‖
q−1
q

ϕ dx = 0. (28)

In fact, taking any ε > 0, since from (24) we have |wm |
q−1
q ≤ K4 for all m ∈ N, for

the arbitrariness of the possible choice of σ > 0 in (16), we can fix σ = ε
2K4( ‖ϕ ‖q+1)

and, for the corresponding Kσ in (16), from (21) an integer m̄ ≥ 1 exists such that

Kσ |ϕ|1
‖um‖

q−1
q

<
ε

2
for all m ≥ m̄.

Thus, from (16), Hölder inequality, all the previous estimates and direct computations
it follows that�����∫Ω f (x,um)

‖um‖
q−1
q

ϕ dx

����� ≤ σ |wm |
q−1
q |ϕ|q +

Kσ |ϕ|1
‖um‖

q−1
q

< ε for all m ≥ m̄.
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Therefore, by means of (27) and (28), passing to the limit in (26), from (24) and (25)
it follows that ∫

Ω

|∇w |q−2∇w · ∇ϕ dx = λ∞

∫
Ω

|w |q−2wϕ dx.

For the arbitrariness of ϕ ∈ W1,q
0 (Ω) such an equality means that λ∞ ∈ σ(−∆q), in

contradiction with our nonresonant assumption. �

Now, in order to prove the existence result for the unperturbed problem (P∞0 ), we
need the following technical lemma.

Lemma 1 Assume that assumptions ( f1)–( f3) are satisfied and consider F(x, t) as in
(2). Then, for any σ > 0 and s > 0 a constant kσ0 > 0, kσ0 = kσ0 (s), exists such that

−kσ0 |t |
s+q +

λ0 − σ

q
|t |q ≤ F(x, t) ≤

λ0 + σ

q
|t |q + kσ0 |t |

s+q (29)

for all (x, t) ∈ Ω × R.

Proof From ( f3) it follows that

lim
t→0

F(x, t)
|t |q

=
λ0
q

uniformly in Ω.

Therefore, taking any σ > 0 a constant δσ > 0 exists such that����F(x, t) − λ0
q
|t |q

���� ≤ σ

q
|t |q for all x ∈ Ω if |t | < δσ . (30)

On the other hand, from ( f2) we have that

lim
|t |→+∞

F(x, t)
|t |q

= 0 uniformly in Ω,

so, taking any s > 0, it results

lim
|t |→+∞

���F(x, t) − λ0
q |t |

q
���

|t |q+s
= 0 uniformly in Ω.

From this last limit, ( f1) and direct computations a constant kσ0 > 0 exists such that���F(x, t) − λ0
q |t |

q
���

|t |s+q
≤ kσ0 for all x ∈ Ω if |t | ≥ δσ . (31)

Hence, from (30) and (31) it follows (29). �
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Proof (Proof of Theorem 1.) From Proposition 2 functional J in (17) satisfies (PS)
in R. Next, we distinguish the proof according to hypothesis (Λ1) if either case (i) or
case (ii) occurs.
Case (i) Taking η as in (Λ2), from (Λ1)(i) a constant σ ∈]0, η[ exists such that

λ0 + λ∞ + σ < ηk,
q
p
(νk + 2σ) < λ∞, νk̄ + σ < ηk̄+1. (32)

Let us recall that in this setting it has to be λ0 < 0 (see Remark 2(a)). Moreover,
from (14) and (15) with m = k − 1, a subspace Yσ

k−1 ∈ Wk−1 exists such that

sup
u∈Yσ

k−1\{0}

|∇u|pp + |∇u|qq
|u|qq

< νk−1 + σ. (33)

Without loss of generality, it can be chosen so that dim Yσ
k−1 = k − 1.

We claim that
J(u) ≤ 0 for all u ∈ Yσ

k−1. (34)

Indeed, from (33) and (Λ2) we get

J(u) ≤
1
p

(
|∇u|pp + |∇u|qq

)
−
λ∞
q
|u|qq −

∫
Ω

F(x,u) dx

≤

[
1
p
(νk−1 + σ) −

λ∞
q

]
|u|qq −

∫
Ω

F(x,u) dx

≤

[
1
p
(νk−1 + η) −

λ∞
q

]
|u|qq −

∫
Ω

F(x,u) dx ≤ 0 for all u ∈ Yσ
k−1.

On the other hand, from (12) with m = k − 1, we have that W1,q
0 (Ω) = Yk−1 ⊕ Zk−1,

where Yk−1 = span{ψ1, . . . ,ψk−1} and Zk−1 is its complement.
We prove that ρ > 0 and β > 0 exist such that

J(u) ≥ β for all u ∈ Zk−1 ∩ Sρ . (35)

Indeed, taking σ as above and fixing any s > 0 such that s + q < q∗, from (29) it
follows that∫

Ω

F(x,u) dx ≤
λ0 + σ

q
|u|qq + kσ0 |u|

s+q
s+q for all u ∈ W1,q

0 (Ω),

which, together with the Sobolev Embedding Theorem, implies the existence of a
suitable kσ1 > 0 such that

J(u) ≥
1
q

(
|∇u|pp + |∇u|qq

)
−
λ∞ + λ0 + σ

q
|u|qq − kσ1 |∇u|s+qq for all u ∈ W1,q

0 (Ω).

Now, from this last estimate and (13) with m = k we obtain that
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J(u) ≥
1
q

(
|∇u|pp + |∇u|qq

)
−

1
q
λ∞ + λ0 + σ

ηk

(
|∇u|pp + |∇u|qq

)
− kσ1 |∇u|s+qq

≥
1
q

(
1 −

λ∞ + λ0 + σ

ηk

)
|∇u|qq − kσ1 |∇u|s+qq

for all u ∈ Zk−1 ∩ {u ∈ W1,q
0 (Ω) : |u|q ≤ 1}. Then, this last inequality together with

(32), implies that

J(u) ≥ kσ2 ‖u‖
q
q − kσ1 ‖u‖

s+q
q for all u ∈ Zk−1 ∩ {u ∈ W1,q

0 (Ω) : |u|q ≤ 1}

for a suitable kσ2 > 0. Hence, since s > 0, taking ρ > 0 small enough such that
not only from the Sobolev Embedding Theorem u ∈ Sρ gives |u|q ≤ 1 but also
kσ2 ρ

q − kσ1 ρ
s+q > 0, a constant β > 0 exists such that (35) holds.

Now, we claim that
W1,q

0 (Ω) = Yσk−1 ⊕ Zk−1, (36)

that is, Yk−1 actually is Yσ
k−1. To this aim, firstly we prove that Yσ

k−1 ∩ Zk−1 = {0}.
Otherwise, ū ∈ Zk−1 ∩ Yσ

k−1 exists such that ū , 0 and, taking ρ as in (35), it has to
be

u = ρ
ū
‖ū‖q

∈ Yσk−1 ∩ (Zk−1 ∩ Sρ),

which yields a contradiction as the same u has to satisfy both (34) and (35). Then,
Yσ
k−1 ⊂ Yk−1 and, since the two subspaces have the same dimension, they coincide
and (36) follows.
Furthermore, again from (15) but with m = k̄, where k̄ is as in (4), a subspace
Yσ ∈ Wk̄ exists such that dimYσ = k̄ and

sup
u∈Yσ\{0}

|∇u|pp + |∇u|qq
|u|qq

< νk̄ + σ. (37)

Let us show that

Yσ = span{ψ1, . . . ,ψk̄} = Yσk−1 ⊕ span{ψk, . . . ,ψk̄}, (38)

with (ψm)m which generates the whole space W1,q
0 (Ω) and is so that (11) holds. As

a matter of fact, if some j ≥ k̄ + 1 exists so that ψj ∈ Yσ , from (11), (32), (37) and
the monotonicity of the sequence (ηm)m we get

ηj ≥ ηk̄+1 > νk̄ + σ > sup
u∈Yσ\{0}

|∇u|pp + |∇u|qq
|u|qq

≥ |∇ψj |
p
p + |∇ψj |

q
q = ηj,

which is a contradiction. Thus, (38) is proved.
At last, if we consider (16) with the constant σ as in (32), a suitable kσ3 > 0 exists
such that

J(u) ≤
1
p

(
|∇u|pp + |∇u|qq

)
−
λ∞
q
|u|qq +

σ

q
|u|qq + kσ3 |u|q for all u ∈ W1,q

0 (Ω).
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Hence, from (37) it follows that

J(u) ≤
[

1
p
(νk̄ + 2σ) −

λ∞
q

]
|u|qq + kσ3 |u|q for all u ∈ Yσ .

As νk = νk̄ , from (32) we have that

J(u) → −∞ as |u|q → +∞, u ∈ Yσ ,

then, since all the norms are equivalent on the finite dimensional spaceYσ , a constant
R2 > 0 exists, large enough, such that

J(u) ≤ 0 if u ∈ Yσ, ‖u‖q ≥ R2. (39)

Finally, setting V := Yσ
k−1, W := Zk−1, e := ψk

‖ψk ‖q
, Y := Yσ

k−1 ⊕ span{e} and

S = Zk−1 ∩ Sρ, Q = {te : t ∈ [0,R1]} ⊕ (BR2 ∩ Yσk−1), (40)

from Example 2, (36) and (38), it results that S and ∂Q, boundary of Q in Y , link
just taking R1 > ρ. Then, if we assume also R1 ≥ R2, from (34), (35) and (39) we
have that Theorem 3 applies and a critical level c exists, with

sup
u∈Q

J(u) ≥ c ≥ β > 0

corresponding to a nontrivial solution of (P∞0 ).
Case (ii) Taking η as in (Λ2), from (Λ1)(ii) a constant σ ∈]0, η[ exists such that

λ∞ + σ < η0
k,

q
p
(νk + 2σ) < λ0 + λ∞, νk̄ + σ < η0

k̄+1, (41)

where it has to be λ0 > 0 (see Remark 2(a)).
Now, from (16) with such a σ, and the Sobolev inequality, by using (10) with m = k,
a suitable kσ4 > 0 exists such that

J(u) ≥
1
q

(
1 −

λ∞ + σ

η0
k

)
|∇u|qq − kσ4 |∇u|q for all u ∈ Z0

k−1

and from (41) a constant β < 0 exists such that

J(u) ≥ β for all u ∈ Z0
k−1. (42)

On the other hand, by reasoning as in the previous case, a subspace Yσ
k−1 ∈ Wk−1

exists such that dim Yσ
k−1 = k − 1 and (33) holds. Then, since for any u ∈ W1,q

0 (Ω)
we can write

J(u) =
1
p

(
|∇u|pp + |∇u|qq

)
−

(
1
p
−

1
q

)
|∇u|qq −

λ∞
q
|u|qq −

∫
Ω

F(x,u) dx,
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from (33) (recall that σ < η) it follows that

J(u) ≤
∫
Ω

[(
1
p
(νk−1 + η) −

λ∞
q

)
|u|q − F(x,u)

]
dx −

(
1
p
−

1
q

)
|∇u|qq

for all u ∈ Yσ
k−1. Hence, setting δ1 =

1
p −

1
q > 0, from (Λ2) this last estimate implies

that
J(u) ≤ −δ1‖u‖

q
q for all u ∈ Yσ

k−1. (43)

Thus, it results not only that
sup

u∈Yσ
k−1

J(u) = 0, (44)

but also that a radius R > 0, large enough, and a constant α < β exist such that

J(u) ≤ α for all u ∈ Yσ
k−1 ∩ SR. (45)

At last, being α < β, by reasoning as for the proof of (36) but by means of (42) and
(45), we have that

W1,q
0 (Ω) = Yσk−1 ⊕ Z0

k−1. (46)

Hence, setting
S = Z0

k−1 and Q = Yσk−1 ∩ BR, (47)

from Example 1 and estimates (42), (44), (45), it follows that Theorem 3 applies and
J has a critical level c such that

β ≤ c = inf
φ∈Γ

sup
u∈Q

J(φ(u)) ≤ sup
u∈Q

J(u) = 0,

where Γ =
{
φ ∈ C(W1,q

0 (Ω),W
1,q
0 (Ω)) : φ

��
∂Q
= id

}
.

Next, we want to show that c < 0; so, (P∞0 ) admits a nontrivial solution.
To this aim, it is enough to prove that a function φ̄ ∈ C(W1,q

0 (Ω),W
1,q
0 (Ω)) exists,

with φ̄
��
∂Q
= id, such that

sup
u∈Q

J(φ̄(u)) < 0. (48)

At first, we observe that from (15) with m = k̄ with k̄ as in (6), a subspaceYσ ∈ Wk̄ ,
with dimYσ = k̄, exists such that (37) holds. Hence, we have that

sup
u∈Yσ\{0}

|∇u|qq
|u|qq

< νk̄ + σ. (49)

We claim that

Yσ = span{ψ0
1, . . . ,ψ

0
k̄
} = Yσk−1 ⊕ span{ψ0

k, . . . ,ψ
0
k̄
}, (50)
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where (ψ0
m)m generates the whole space W1,q

0 (Ω) and is such that (8) holds. Indeed,
if j ≥ k̄ +1 exists such that ψ0

j ∈ Yσ , then (8) and estimates (41), (49), together with
the monotonicity of the sequence (η0

m)m, imply that

η0
j ≥ η

0
k̄+1 > νk̄ + σ > |∇ψ0

j |
q
q = η

0
j ,

which gives a contradiction.
Now, taking L > 0 such that (9) is verified with respect to the decomposition (46),
without loss of generality we can suppose L > 1. Then, ρ ∈]0,R[ and δ2 > 0 exist
such that

J(u) ≤ −δ2 for all u ∈ Yσ with ρ
L ≤ ‖u‖q ≤ 2ρ. (51)

Indeed, fixing any s > 0 and taking u ∈ Yσ , from (29) and (37) it results that

J(u) ≤
1
p

(
|∇u|pp + |∇u|qq

)
−
λ∞
q
|u|qq −

λ0 − σ

q
|u|qq + kσ0 |u|

s+q
s+q

≤
1
q

[
q
p
(νk̄ + 2σ) − λ∞ − λ0

]
|u|qq + kσ0 |u|

s+q
s+q .

Hence, since all the norms are equivalent on the finite dimension subspaceYσ , from
this last estimates and (41) with νk = νk̄ , we have that two constants c1, c2 > 0 exist
such that

J(u) ≤ −c1‖u‖
q
q + c2‖u‖

s+q
q for all u ∈ Yσ .

Thus, s > 0 and direct computations allow us to prove that (51) holds if ρ > 0 is
small enough, in particular ρ < R.
At last, we can define φ̄ : W1,q

0 (Ω) → W1,q
0 (Ω) as the continuous extension to

W1,q
0 (Ω) of function φ̄ : Yσ

k−1 → R such that

φ̄(u) =


u if ‖u‖q > ρ√
ρ2 − ‖u‖2q

(η0
k
)

1
q

ψ0
k + u if ‖u‖q ≤ ρ

.

We notice that φ̄ satisfies the required assumptions. Indeed, by definition we have
that φ̄ ∈ C(W1,q

0 (Ω),W
1,q
0 (Ω)) and φ̄(u) = u for all u ∈ ∂Q = Yσ

k−1 ∩ SR as R > ρ.
Moreover, if u ∈ Yσ

k−1 ∩ B̄R two cases may occur: either ‖u‖q > ρ or ‖u‖q ≤ ρ. If
‖u‖q > ρ, from the definition of φ̄(u) and (43) we have that

J(φ̄(u)) = J(u) ≤ −δ1ρ
q < 0.

On the other hand, if ‖u‖q ≤ ρ, then (50) implies that φ̄(u) ∈ Yσ . Furthermore, (8),
(9) and direct computations imply that

1
L

(
‖u‖q +

√
ρ2 − ‖u‖2q

)
≤ ‖φ̄(u)‖q ≤ ‖u‖q +

√
ρ2 − ‖u‖2q
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with ρ ≤ ‖u‖q +
√
ρ2 − ‖u‖2q ≤ 2ρ; hence, from (51) it follows that J(φ̄(u)) ≤ −δ2.

Thus, summing up, (48) holds and the proof is complete. �

Finally, we note that an existence result still holds for the unperturbed problem
(P∞0 ) if λ0 as defined in hypothesis ( f3), is infinite. More precisely, the following
statements can be proved.

Proposition 3 Suppose that conditions ( f1) and ( f2) hold and λ∞ < σ(−∆q). If,
moreover, we have that

( f3)′lim
t→0

f (x, t)
|t |q−2t

= −∞ uniformly in Ω;

(Λ1)
′′ν1
p < λ∞

q ;

then (P∞0 ) has at least a nontrivial solution.

Proof Taking any λ > 0 and σ > 0 such that

λ > λ∞,
ν1 + 2σ

p
<

λ∞
q
, (52)

from ( f3)′ we have that δλ > 0 exists so that

F(x, t) < −
λ

q
|t |q for all x ∈ Ω if |t | ≤ δλ.

On the other hand, from ( f2) a radius Rσ ≥ max{1, δλ} exists such that

|F(x, t)| ≤ σ |t |q for all x ∈ Ω if |t | ≥ Rσ .

Then, fixing any s > 0 so that q + s < q∗, the continuity of F(x,t)
|t |q+s on the compact set

Ω × [δλ,Rσ] and direct computations allow us to find some constants kλ,i > 0 large
enough so that

F(x, t) ≤ kλ,1 |t |q+s ≤ −
λ

q
|t |q + kλ,2 |t |q+s for all x ∈ Ω if |t | ≥ δλ.

Hence, summing up it results

F(x, t) ≤ −
λ

q
|t |q + kλ,2 |t |q+s for all (x, t) ∈ Ω × R

which implies

J(u) ≥
1
q
|∇u|qq +

λ − λ∞
q
|u|qq − kλ,2 |u|

q+s
q+s for all u ∈ W1,q

0 (Ω),

thus, from (52) and the Sobolev Embedding Theorem we obtain that

J(u) ≥ β for all u ∈ Sρ,
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for suitable constants ρ > 0 and β > 0.
Now, from (15) with m = 1, a subspace Y ∈ W1 exists such that

sup
u∈Y\{0}

|∇u|pp + |∇u|qq
|u|qq

< ν1 + σ,

where, without loss of generality, we can take Y = span{ψ1}. Thus, from (16) and
direct computations it results

J(tψ1) ≤ tq
(
ν1 + 2σ

p
−
λ∞
q

)
+ tKσ

∫
Ω

|ψ1 |d x for all t > 0,

which implies J(tψ1) → −∞ if t → +∞ as (52) holds.
At last, from Proposition 2 and the previous geometrical estimates, the classical
Mountain Pass Theorem applies (cf. [29, Theorem 2.2]) and the existence of a
nontrivial solution corresponding to a critical level c ≥ β > 0 is proved. �

Proposition 4 Suppose that conditions ( f1) and ( f2) hold and λ∞ < σ(−∆q). More-
over, assume that

( f3)′′ lim
t→0

f (x, t)
|t |q−2t

= +∞ uniformly in Ω;

(Λ1)
′′′some integers 1 ≤ k ≤ k̄ exist such that

λ∞ < η0
k, νk̄ < η0

k̄+1.

If (Λ2) holds for the same k in (Λ1)
′′′, then (P∞0 ) has at least a nontrivial solution.

Proof From (Λ1)
′′′ a constant σ > 0 exists so that

σ < η, λ∞ + σ < η0
k, νk̄ + σ < η0

k̄+1. (53)

Firstly, reasoning as in the proof of (42), from (10), (16) and (53) a constant β < 0
exists such that J(u) ≥ β for all u ∈ Z0

k−1.
On the other hand, reasoning as in the proof of Case (ii) of Theorem 1, from (Λ2)
a subspace Yσ

k−1 ∈ Wk−1 exists such that (43) holds and for a large enough radius
R > 0 inequality (45) is satisfied with a suitable α < β.
Hence, (46) is verified and from Example 1, Proposition 2 and Theorem 3 applied
to S = Z0

k−1 and Q = Yσ
k−1 ∩ BR, we get the existence of a critical level c ≤ 0.

At last, by considering again φ̄ for a suitable ρ ∈]0,R[ as in the proof of Case (ii) of
Theorem 1, we get that (48) holds, thus c < 0 and the corresponding solution is non
trivial. Indeed, from (53) both (49) and (50) hold. Furthermore, from ( f3)′′, taking
any λ > νk̄+σ

p −
λ∞
q a constant δλ > 0 exists such that

F(x, t) ≥ λ |t |q for all x ∈ Ω if |t | ≤ δλ,

while from ( f2) and direct computations (as in the proof of Lemma 1) taking any
s > 0 a constant kλ > 0 exists such that
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|F(x, t) − λ |t |q |
|t |q+s

≤ kλ for all x ∈ Ω if |t | ≥ δλ.

Hence,
F(x, t) ≥ λ |t |q − kλ |t |q+s for all (x, t) ∈ Ω × R

which, together with (53), implies (51) which allows us to prove (48). �

4 The perturbed case

Now, we are able to deal with the perturbed problem (P∞ε ).

Proof (Proof of Theorem 2) Following [23], for any j ∈ Nwe consider a continuous
cut function γj : R→ R such that

γj(t) =
{

0 if |t | ≥ j + 1
1 if |t | ≤ j ,

and 0 < γj(t) < 1 if j < |t | < j + 1, and set

hj(x, t) = γj(t)h(x, t), Hj(x, t) =
∫ t

0
hj(x, s) ds.

Since for any j ∈ N there exists ε1( j) > 0 such that

ε1( j)|hj(x, t)| < 1, ε1( j)|Hj(x, t)| < 1 for all (x, t) ∈ Ω × R, (54)

for any ε, with |ε | ≤ ε1( j), we can consider the functionals

Jj ,ε(u) = J(u) − ε
∫
Ω

Hj(x,u) dx on W1,q
0 (Ω).

Now, taking Q as in the proof of Theorem 1 (namely, as in (40) in Case (i) or as in
(47) in Case (ii)), from Theorem 1 we have that c ∈ [β, supu∈Q J(u)] is a critical
level of J in W1,q

0 (Ω) with

c = inf
φ∈Γ

sup
u∈Q

J(φ(u)),

where Γ =
{
φ ∈ C(W1,q

0 (Ω),W
1,q
0 (Ω)) : φ

��
∂Q
= id

}
. Then, fromTheorem 6we have

that such a level c has to be essential for J; thus, Theorem 4 implies the existence of
a constant ε2( j) ∈]0, ε1( j)[ such that if |ε | ≤ ε2( j) then Jj ,ε has at least one essential
value d j ,ε with

β

2
< d j ,ε < sup

u∈Q
J(u) + 1.
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We note that, since for each ε, j the nonlinear term f (x, t) + εhj(x, t) satisfies
assumptions ( f1) and ( f2), then from the same arguments in Proposition 2 we have
that each Jj ,ε satisfies the (PS) condition in R. Hence, from Theorem 5 it follows
that if |ε | ≤ ε2( j) the level d j ,ε is also critical for Jj ,ε and u j ,ε ∈ W1,q

0 (Ω) exists
such that∫

Ω

|∇u j ,ε |p−2∇u j ,ε · ∇ϕ dx +
∫
Ω

|∇u j ,ε |q−2∇u j ,ε · ∇ϕ dx

= λ∞

∫
Ω

|u j ,ε |q−2u j ,ε ϕ dx +
∫
Ω

f (x,u j ,ε)ϕ dx + ε
∫
Ω

hj(x,u j ,ε)ϕ dx
(55)

for all ϕ ∈ W1,q
0 (Ω).

We claim that a constant K1 > 0 exists such that

‖u j ,ε ‖q ≤ K1 for all j ∈ N, |ε | ≤ ε2( j). (56)

Indeed, arguing by contradiction, let us assume that the set

A := {‖u j ,ε ‖q : j ∈ N, |ε | ≤ ε2( j)}

is unbounded. Then, a sequence (u jm ,εm )m ⊂ W1,q(Ω) exists, with |εm | ≤ ε2( jm),
such that

‖u jm ,εm ‖q → +∞ as m→ +∞. (57)

Setting wjm ,εm =
u jm ,εm

‖u jm ,εm ‖q
, we have that (wjm ,εm )m is a bounded sequence in

W1,q
0 (Ω), so w ∈ W1,q

0 (Ω) exists such that, up to subsequences, it results

wjm ,εm ⇀ w weakly in W1,q
0 (Ω), (58)

wjm ,εm → w strongly in Lq(Ω). (59)

Now, taking
ϕjm ,εm =

wjm ,εm − w

‖u jm ,εm ‖
q−1
q

in (55) with j = jm and ε = εm, we obtain that
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Ω

|∇wjm ,εm |
p−2

‖u jm ,εm ‖
q−p
q

∇wjm ,εm · ∇(wjm ,εm − w) dx

+

∫
Ω

|∇wjm ,εm |
q−2∇wjm ,εm · ∇(wjm ,εm − w) dx

= λ∞

∫
Ω

|wjm ,εm |
q−2wjm ,εm (wjm ,εm − w) dx

+

∫
Ω

f (x,u jm ,εm )

‖u jm ,ε ‖
q−1
q

(wjm ,εm − w) dx

+ εm

∫
Ω

hj(x,u jm ,εm )

‖u jm ,εm ‖
q−1
q

(wjm ,εm − w) dx.

Then, from (54), (57) and (59) we have that

εm

∫
Ω

hj(x,u jm ,εm )

‖u jm ,εm ‖
q−1
q

(wjm ,εm − w) dx = βm,

and also, by reasoning as in the proof of Proposition 2,∫
Ω

|∇wjm ,εm |
p−2

‖u jm ,εm ‖
q−p
q

∇wjm ,εm · ∇(wjm ,εm − w) dx = βm,∫
Ω

|wjm ,εm |
q−2wjm ,εm (wjm ,εm − w) dx = βm,∫

Ω

f (x,u jm ,εm )

‖u jm ,ε ‖
q−1
q

(wjm ,εm − w) dx = βm,

which imply that∫
Ω

|∇wjm ,εm |
q−2∇wjm ,εm · ∇(wjm ,εm − w) dx = βm.

Hence, from this last limit and (58) it follows that

wjm ,εm → w strongly in W1,q
0 (Ω), (60)

which gives also w , 0.
Finally, taking any ϕ ∈ W1,q

0 (Ω) and applying again (55) with j = jm and ε = εm on
ϕ

‖u jm ,εm ‖
q−1
q

, we obtain
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Ω

|∇wjm ,εm |
p−2

‖u jm ,εm ‖
q−p
q

∇wjm ,εm · ∇ϕ dx +
∫
Ω

|∇wjm ,εm |
q−2∇wjm ,εm · ∇ϕ dx

= λ∞

∫
Ω

|wjm ,εm |
q−2wjm ,εm ϕ dx +

∫
Ω

f (x,u jm ,εm )

‖u jm ,εm ‖
q−1
q

ϕ dx

+ εm

∫
Ω

hj(x,u jm ,εm )

‖u jm ,εm ‖
q−1
q

ϕ dx.

(61)

Thus, since from (54) and (57) we have that�����εm ∫
Ω

hj(x,u jm ,εm )

‖u jm ,εm ‖
q−1
q

ϕ dx

����� ≤ βm‖ϕ‖q,

by reasoning again as in the proof of Proposition 2 by means of (57) we are able to
prove that �����∫Ω |∇wjm ,εm |

p−2

‖u jm ,εm ‖
q−p
q

∇wjm ,εm · ∇ϕ dx

����� ≤ βm‖ϕ‖q,

lim
m→+∞

∫
Ω

f (x,u jm ,εm )

‖u jm ,εm ‖
q−1
q

ϕ dx = 0.

Hence, from (59), (60) and passing to the limit in (61), for the arbitrariness of ϕ we
get that λ∞ ∈ σ(−∆q), against our assumption. Thus, the claim (56) is proved.
Finally, from [24, Lemmas 4.5 and 4.6] (see [7] for more details) a constant K2 > 0
exists such that

|u j ,ε |∞ ≤ K2 for all j ∈ N, |ε | ≤ ε2( j);

thus, for j > K2 problem (P∞ε ) has at least a nontrivial solution. �
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