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Abstract

Recently, a simple and elegant ”dimple” model was introduced by McMeek-
ing et al. (Adv Eng Mat 12(5), 389-397, 2010) to show a mechanism for a
bistable adhesive system involving a surface with a shallow depression. The
system shows, at least for intermediate levels of stickiness, that external pres-
sure can switch the system into a ”strong adhesive” regime of full contact, or
into weak adhesion and complete pull-off, similarly to the contact of surfaces
with a single scale of periodical waviness. We add to this model the effect
of roughness, in the simple form of axisymmetric single scale of waviness,
permitting a very detailed study, and we show that this induces a resistance
to jumping into full contact on one hand (limiting the ”strong adhesion”
regime), and an enhancement of pull-off and of hysteresis starting from the
partial contact state on the other (enhancing the ”weak adhesion” regime).
We show the system depends only on two dimensionless parameters, depend-
ing on the ratio of work of adhesion to the energy to flatten the dimple or
waviness, respectively. The system becomes pressure-sensitive also in the
intermediate states, as it is observed in real adhesive rough systems. The
model obviously is specular to the Guduru model of rough spheres (Guduru,
JMPS, 55, 473–488, 2007), with which it shares the limitations of the analy-
sis assuming a connected contact (crack) area, and serves also the purpose of
showing the effect of a depression into an otherwise periodic rough contact,
towards the understanding of adhesion with multiple scales of roughness.
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1. Introduction

Adhesion in the presence of roughness is usually destroyed very easily,
as it was proved by Fuller and Tabor (1975), even in low modulus materials
like smooth rubber lenses against roughened surfaces. Therefore, it is still
surprising that some insects use adhesion for their locomotion, by using a
series of mechanisms, the study of which has generated a very important area
of research in the last decades. The mechanisms include splitting the contact
into many spots and optimizing the shape and size of each contact (Hui et
al. 2004, Kamperman et al., 2010, Gao & Yao 2004). However, even the
best of the mechanisms, is unlikely to work with all possible rough surfaces,
showing wavelengths and amplitude over different length scales (Huber et al.,
2007, Pugno & Lepore, 2008), showing a truly efficient system for multiscale
arbitrary roughness is extremely difficult to achieve. The understanding
about when adhesion can be very strong or very weak depending on features
of roughness, pre-load, and system architecture is so far very remote from
being complete.

At the opposite end of the classical finding of Fuller & Tabor (1975),
Johnson (1995) demonstrated a mechanism for which roughness in the form
of a sinusoidal wave, has a minimal effect after a sufficiently high pressure
has been applied, because the contact naturally jumps into a state of full
contact. Indeed, this can happen even spontaneously (at zero external load)
for sufficiently high work of adhesion. After this state has been reached,
virtually the theoretical strength of the material is found, and one has to
postulate either a tiny flaw at the interface, or air entrapment to escape this
limit which is far from common experience. Therefore, the role of roughness
can be pressure-sensitive.

Guduru (2007) found a mechanism of enhancement which has some con-
nection with Johnson’s model, in that he imagined a sphere with roughness
in the form of axisymmetric waviness, and solved the problem assuming that
roughness was effectively flattened during the deformation, so the contact was
a simply connected area. This results in very large oscillations in the normal
load as a function of indentation, which were also observed experimentally
in Guduru & Bull (2007), and gave rise to both large dissipation because of
multiple jumps from unstable to stable branches, and to an enhancement of
pull-off. Kesari & Lew (2010) further discussed how these unstable jumps
could in the limit of small wavelength roughness define a continuous curve
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removing the oscillations of the original solution: Ciavarella (2016a) further
remarked that the Kesari & Lew (2010) asymptotic expansion corresponds
to splitting the classical JKR theory solution for spheres given in (Johnson
et al., 1971) into two branches, loading and unloading ones, which corre-
spond to an decreased and increased values of work of adhesion, respectively,
uniquely dependent on the Johnson (1995) parameter for sinusoidal waviness
contact. Ciavarella (2016b) further used the Kesari & Lew (2010) asymp-
totic expansion for multiscale roughness in the form of a Weierstrass function,
showing that the enhancement could be extremely large in this case, although
the assumptions of the simply connected area solution become increasingly
stretched.

Recently, McMeeking et al. (2010) have proposed a very simple model
where two surfaces are gently brought into contact, one of which having a
single small depression. This is in a sense a simplification of the single scale
of waviness of Johnson’s (1995) model, with the additional significant ad-
vantage that in full 3D situations, sinusoidal roughness leads in intermediate
regimes to a very complex problem with non-circular contact areas, whereas
the dimple model preserves axisymmetry and permits a very simple solution,
particularly with the shape chosen by McMeeking et al. The model however
preserves all of the features of the periodic waviness problem, in that there
is a possibility of jump-into contact at some level of compression (or it can
be spontaneous for sufficient level of adhesion), and that there is an unstable
pull-off at some value of external tension. This pull-off is no longer occurring
on the crests, and therefore is not the known value for spheres given by JKR
theory (Johnson et al., 1971), but depends on the shape of the depression.

As Johnson (1995) remarked, the single scale waviness model shows an
extreme behaviour, which is likely to be affected by deviation due also to
the presence of finer-scale roughness. Guduru’s model already answers some
questions about the case of two scales of waviness, for contact near the crest,
but the spherical geometry doesn’t admit a ”full contact” limit, and therefore
it doesn’t address the problem towards this regime. Instead, the simple dim-
ple model of McMeeking et al. (2010) is ideal to a quantitative assessment of
the full problem, by adding axisymmetric roughness. In other words, despite
idealized, this geometry can be a model for two scales of roughness both in
what happens in a single scale of waviness when encountering a depression
in a surface, or specularly, for the depression itself having roughness. The
advantage of the model is that we can study it in great details, especially
in the asymptotic regime in which the wavelength of the roughness is much
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smaller than the non-contact area. We hope to elucidate qualitatively some
features of the general behaviour of adhesive surfaces.

2. Formulation

We consider as smooth geometry that of a surface with a shallow depres-
sion, in the form of a dimple of amplitude δ0 and radius b (McMeeking et al.
2010), defined as

δ =
2

π
δ0E

(r
b

)
,

r

b
≤ 1 (1)

δ =
2

π
δ0
r

b

[
E
(r
b

)
−

[
1−

(
b

r

)2
]
K(

b

r
)

]
,

r

b
> 1 (2)

where K,E are complete elliptic integrals of first and second kind. To the
smooth geometry, we add an axisymmetric sinusoidal roughness of amplitude
and wavelength g, λ.

The geometry is clarified in Fig.1.

1 2 3 4
r/b

-2

-1

0

1
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z/ 0

Body 1

Body 2

A

A

Fig.1 Geometry of the system. A flat surface having a shallow depression in
the form of a ”dimple” – against a surface with wavy roughness (roughness

could be added to either of the surfaces).
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The system will tend to adhere from the remote points towards the center,
and therefore, assuming the contact is continuous (which requires roughness
is not too large, see Discussion), the contact correspond to a classical penny-
shaped crack. Using superposition principles, we can solve for the penny-
shaped crack under internal tension, given by the state of stress induced
in the full adhered state. The latter is defined by the combination of 3
components:

• (i) the localized tensile stress T in r < b, i.e. inside the dimple

T =
E∗δ0

2b
, r < b (3)

• (ii) a remote tension σA in the entire plane, and

• (iii) a sinusoidal variation

σrough = p∗ cos
2πr

λ
(4)

where p∗ = πE∗g/λ. Notice this is a plane strain approximation, which
is proven to be extremely good for our scopes in Appendix.

Using the standard results for axisymmetric cracks (see eg. Maugis, 2000)
under internal pressure p (r), for a crack of radius c, we derive the stress
intensity factor as (Maugis, 2000, 3.117)

KI =
2√
πc

∫ c

0

sp (s) ds√
c2 − s2

(5)

The first two components (i-ii) give

KI = (σA + T )
2
√
c√
π

, for c < b (6)

=
2√
πc

[
σAc+ T

(
c−
√
c2 − b2

)]
, for c > b (7)

The third component (iii) gives

KI =
2p∗√
πc

∫ c

0

s cos 2πs
λ
ds

√
c2 − s2

= p∗
√
πcH−1

(
2πc

λ

)
(8)
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where H−1 is the Struve function of order -1.
Under the assumptions of Linear Elastic Fracture Mechanics (often in

adhesion, called ”JKR” regime, from Johnson et al., 1971), equilibrium is
obtained equating the total KI to the KIc toughness of the material pair, or
equivalently the energy release rate to the work of adhesion G = w where
2E∗w = K2

Ic. Hence we obtain from (6, 7, 8)

KIc = (σA + T )
2
√
c√
π

+ p∗
√
πcH−1

(
2πc

λ

)
, for c < b (9)

KIc =
2√
πc

[
σAc+ T

(
c−
√
c2 − b2

)]
+ p∗
√
πcH−1

(
2πc

λ

)
, for c > b (10)

i.e.

σA
T

= −1− π

2

p∗

T
H−1

(
2πc

λ

)
+
π

2

KIc

T
√
πc

, for c < b (11)

σA
T

= −

1−

√
1−

(
b

c

)2
− π

2

p∗

T
H−1

(
2πc

λ
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+
π

2

KIc

T
√
πc

, for c > b (12)

One natural dimensionless parameter is then

αd =
KIc

√
π

2T
√
b

=
πKIc

2T
√
πc

√
c√
b

(13)

which, by analogy with the sinusoidal case of Johnson (1995), we can define
the Johnson parameter for the smooth dimple, proportional to the ratio
between the work of adhesion, and the elastic energy to flatten the smooth
dimple. Hence, we can restate the LEFM curves normalizing the stresses by
T as σ̂A = σA

T
and p̂∗ = p∗

T
, and all length scales by b as ĉ = c/b and λ̂ = λ/b,

obtaining

σ̂A = −1− π

2
p̂∗H−1

(
2πĉ

λ̂

)
+
αd√
ĉ
, for ĉ < 1 (14)

σ̂A = −1 +

√
1− 1

ĉ2
− π

2
p̂∗H−1

(
2πĉ

λ̂

)
+
αd√
ĉ
, for ĉ > 1 (15)

Using the expansion of H−1

(
2πĉ

λ̂

)
for λ̂ → 0, similarly to what done by

Kesari & Lew (2011) for the problem of a rough sphere, we obtain the first
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term as1

H−1

(
2πĉ

λ̂

)
' 1

π

√
λ̂

ĉ
sin

(
π

4
+

2πĉ

λ̂

)
and therefore, this function will have minima (and maxima) which can be
joined, obtaining

σ̂±A = −1± p̂∗

2

√
λ̂

ĉ
+
αd√
ĉ
, for ĉ < 1 (16)

σ̂±A = −1 +

√
1− 1

ĉ2
± p̂∗

2

√
λ̂

ĉ
+
αd√
ĉ
, for ĉ > 1 (17)

Exactly as it happens for the rough sphere (see Ciavarella, 2016a, 2016b),
we can group the terms corresponding to the smooth profile and the rough-
ness induced first order increase, and accordingly define an increased/decreased
work of adhesion for unloading/loading respectively. For the rough sphere,
this results in JKR equations with different work of adhesion on loading and
unloading. Here, this results in

σ̂±A = −1 +
1√
ĉ

(
αd ±

p̂∗

2

√
λ̂

)
, for ĉ < 1 (18)

σ̂±A = −1 +

√
1− 1

ĉ2
+

1√
ĉ

(
αd ±

p̂∗

2

√
λ̂

)
, for ĉ > 1 (19)

Hence, effectively the curves are identical to those of the ”smooth” dimple,
where one substitutes αd with

αloadingd,rough =

(
αd −

p̂∗

2

√
λ̂

)
= αd

(
1− 1√

πα

)
(20)

αunloadingd,rough =

(
αd +

p̂∗

2

√
λ̂

)
= αd

(
1 +

1√
πα

)
(21)

where we have recognized α = 2αd

p̂∗
√
πλ̂

with α being exactly the parameter

1This was obtained with some simple manipulations of the Mathematica command
”Series”.
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introduced by Johnson (1995) for the roughness of a single sinusoid of wave-
length and amplitude λ, g, defined as

α2 =
2

π2

wλ

E∗g2
(22)

Notice that while αunloadingd,rough is always greater than the original αd, α
loading
d,rough

is always smaller, and indeed it can become negative (for α < 1/
√
π = 0.57).

This simply means that the curve for loading will not correspond to any
physical curve for a smooth dimple, and in fact it is due to the fact that the
pressure to reach full contact becomes even higher than that of the smooth
dimple without adhesion.

3. Results

To elucidate the results, let us start by showing the curves for the ”smooth”
dimple, in Fig.2. In particular, Fig.2a shows various values of dimple pa-
rameter αd , from zero (adhesionless contact), which requires a compression
σ̂A = −1 to obtain full contact, to values higher than 1, which show no equi-
librium points at zero external load – implying spontaneous jump into full
contact. More precisely, considering the case αd = 0.75 plotted in Fig.2b,
and starting from very large ĉ, equilibrium is achieved at point A. After that,
if we load in compression, we move towards negative σ̂A and jump into full
contact at point B, as the branch with negative slope is unstable. From this
full contact condition, only very high values of tension will detach the inter-
face, of the order of theoretical strength. If, instead, from point B we start
unloading, we enlarge the crack size until another instability is reached, that
of pull-off at point C.
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Αd=0,0.25,0.5,0.75,1,1.25
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(b)
Fig.2 Example results for the smooth dimple, (a) with αd = 0, 0.25, 0.5, 0.75.

and (b) for the case αd = 0.75 with various loading/unloading paths
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Fig.3 Example results for the rough dimple αd = 0.5, λ̂ = 0.1. (a) p̂∗ = 1.5,
(and hence α = 1.19, αloadingd,rough = 0.26, αunloadingd,rough = 0.737); (b) p̂∗ = 3, (and

hence α = 0.595, αloadingd,rough = 0.026, αunloadingd,rough = 0.97); (c) p̂∗ = 5, (and hence

α = 0.357, αloadingd,rough = −0.29, αunloadingd,rough = 1.29)

Looking at the rough system, we show some examples in Fig.3, where we
plot with solid blue line the smooth system, with dashed lines the ”envelope”
solutions (18, 19). Starting with Fig.3a, we have a system with αd = 0.5, p̂∗ =

1.5, λ̂ = 0.1 (and hence α = 1.19) where we have evidenced with arrows the
jumps of the system when it encounters an unstable branch of the solution.
Clearly, the equilibrium crack size at zero external load, point A, has now
moved to Arough which corresponds to a larger size. Also, the jump into
full contact Brough, occurs for a much higher compressive stress than in the
smooth case, and for a crack size slightly smaller. In unloading from point
Arough, it is clear that pull-off will occur quite soon in Crough, although for
a much larger tensile stress than in the smooth case. The behaviour of the
system is however generally well represented by the two envelope curves,
corresponding to αloadingd,rough, α

unloading
d,rough respectively for loading and unloading,

on which we will build some results in the next paragraph, except for the
details of what happens near zero crack size.

The cases in Fig.3b,c are for p̂∗ = 3, 5 and show an increasing effect of
roughness. We have that the equilibrium point A can correspond to crack
sizes larger than the point of maximum pull-off, so that the effective pull-off
is smaller than the highest point, although still larger than the smooth case.
We shall return on these important elements when we will compute the pull-
off value as a function of the system parameters (loading and geometrical
ones). Also, for the case (c) we have that the jump into full contact, due to
increased roughness, moves increasingly towards very small crack sizes, and
much higher values of compression, higher than in the smooth case. In this
case, also the envelope solution breaks down, since the crack size becomes
comparable to the wavelength of the sinusoidal roughness, and hence while
the envelope solution suggests full contact only at infinite compression and
zero crack, the actual system will show a true jump into contact depending
on the full solution.

Naturally, this behaviour also results in an increased hysteresis, since
when we follow some loading/unloading cycles (particularly from high pres-
sures even if not enough to jump into full contact), with all the unstable
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jumps which dissipate energy in the form of elastic waves emitted in the sur-
face, and this can result in an higher dissipation than in the smooth dimple
case. To compute this with precision, one should integrate load-displacement
curves.

3.1. Using envelope curves alone

If we make the approximation that the wavelength is very small with
respect to the dimple size, the envelope curves joining all maxima and minima
of the true solution are a good approximation, and permit a very simple
analysis of the behaviour: the effect of roughness corresponds to split the
loading and unloading curves into two curves for smooth dimples at different
αd. For example, Fig.4 shows the envelope loading and unloading curves for
a case with αd = 1 which, in the smooth case, is unstable whereas in the
rough case, for α = 0.5, 1 as in the figure, has an equilibrium point: this
corresponds to a crack size ĉ which becomes very large for low α, and at the
same time the unloading curve becomes very high (corresponding to a value
which would not be of interest for a smooth dimple, since it would be in
that case all unstable). In other words, the system shows that full contact
becomes remote, and viceversa, one has a very pressure-sensitive behaviour,
as the highest pull-off becomes achievable only for large enough preliminary
pre-load.

smooth
rough - unloading

rough, loading

Α

Α

0.5 1.0 1.5 2.0 2.5 3.0
c
`

-2

-1

1

2

3

Σ
`

A

Fig.4. Equilibrium curves for smooth dimple with αd = 1 (blue solid line),
together with envelope curves for rough dimple with α = 0.5, 1 on loading

and unloading.
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An aspect which is different from the Guduru-Kesari problem is that we
have shown how the effect of roughness tends to put some barrier to the jump
into full contact. We can assume that the condition of jump-into-full-contact
remains ĉ = 1: strictly this requires that α > 1√

π
= 0.56, but since after

that the system is not governed by the envelope solution, we shall make this
approximation and therefore estimate

σ̂FCA ' −1 + αloadingd,rough = −1 + αd

(
1− 1√

πα

)
(23)

This is shown in Fig.5, where it is clear that we need to push as hard as in the
adhesionless condition, if α = 0.56; on the other hand, that a partial contact
state is found for a much wider range of conditions than in the smooth case,
and namely for σ̂FCA < 0 which occurs for

αd <
1

1− 1√
πα

or α >
1√
π

= 0.56 (24)

instead of αd < 1 of the smooth case.

Α=0.25

Α=0.5

Α=0.75

Α=1Α=¥

0.5 1.0 1.5 2.0 2.5 3.0
Αd

-2.0

-1.5

-1.0

-0.5

0.5
Σ
`

A
FC

Fig.5. Tension to jump into full-contact σ̂FCA as a function of parameter
αd = 1 for various roughness parameter α = 0.25, 0.5, 0.75, 1,∞ . The case
α =∞ (blue solid line) corresponds to the smooth dimple, whereas for the
cases of small α < 0.57 we have taken an upper bound estimate considering

the value reached at ĉ = 1, as otherwise the actual minimum depends on
the details of the system, see also ”Discussion”.
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3.2. Upper bound to pull-off

Moving to some consideration of pull-off, for the unloading curve from a
partial contact condition, we know the size of the contact for pull-off from the
solution of the smooth geometry (McMeeking et al. 2010), which however
should now be computed for αunloadingd,rough . The full expression is

ĉmax = (m+ n)1/3 + (m− n)1/3 (25)

where m = 2

(αunloading
d,rough )

2 , and n =
√
m2 − 1

27
, but this result can be fitted very

well with

ĉmax ' 1.82/
(
αunloadingd,rough

)0.65
(26)

A good expression for σ̂POA,smooth then turns out to be (αd < 1 is the limit
to have a partial contact state in the smooth surface case)

σ̂POA,smooth ' 0.53α1.3
d < 0.53 (27)

Therefore, an upper bound to the pull-off for the rough case (where upper
bound means provided we have sufficient pre-load as to reach this stage) is

σ̂POmax
A,rough = 0.53

(
αunloadingd,rough

)1.3
= 0.53

(
αd

(
1 +

1√
πα

))1.3

(28)

and hence the enhancement is really defined by the ratio

σ̂POmax
A,rough

σ̂POA,smooth
=

(
1 +

1√
πα

)1.3

(29)

but this time the expression holds as long as we satisfy the condition for
partial contact (24). In Fig.6a, we plot for representative cases the value of
σ̂POmax
A,rough together with σ̂POA,smooth (which corresponds to α =∞ and is plotted

with blue solid line). As it is clear, already for α = 1 we have a signifi-
cant increase (about 77%), but this holds only until we have the possibility
of partial contact solution (this is indicated with arrows going upwards in-
dicating the regime of full contact and ”strong adhesion”). However, it is
with α < 0.57 that the increase becomes really substantial and in principle
without limit (see the Discussion paragraph). Supposing we can apply the
solution for α = 0.25, this corresponds to an enhancement of a factor 4.6.
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Α=0.25,0.5,0.75,1

Α=¥ (smooth dimple)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Αd
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2

3
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A
POmax

(a)
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Α
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`
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Fig.6. (a) Pull-off σ̂POmax
A for rough dimple as a function of αd for various

α = 0.75, 1,∞ (smooth dimple). (b) enhancement factor
σ̂POmax
A,rough

σ̂PO
A,smooth

as a

function of α

3.3. Pressure-sensitive pull-off

It is clear that, in the case of the smooth dimple, the equilibrium size of
the crack at zero load ĉeq is always smaller than the size at pull-off, ĉmax.
Unfortunately, the expression for ĉeq for the smooth dimple is a little lengthy

ĉeq =
1

12α2
d

[
α4
d +

α
8/3
d (24 + α4

d)

p
+ α

4/3
d p

]
(30)
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where p =
[
36α4

d + α8
d + 24

(
9 +
√

3
√

27 + α4
d

)]1/3
. It can be approximated

by ĉeq = 0.7/α0.65
d but only up to αd < 0.4.

Now, for small roughness, i.e. large α, the loading curve will be close to
the loading curve of the smooth case, and therefore the equilibrium crack size

ĉeq

(
αloadingd,rough

)
will be increased only marginally, while the unloading curve will

have moved the point of pull-off to smaller sizes ĉmax

(
αunloadingd,rough

)
. Using the

power law approximations for ĉeq and ĉmax, we obtain the coincidence and
pull-off is unique for

α > αuni ' 0.9 (31)

A more exact calculation shows that αuni varies by only few percent depend-
ing on αd. Therefore, there is an interesting range below αuni which show
pressure-sensitiveness. We shall now investigate a little more this range.

For the pressure-sensitive pull-off range, α < αuni, a simple but good
approximation (provided the wavelength of the roughness is short enough)
is that we load up to a certain σ̂A, and since we end up in the unloading
unstable branch, we will have immediately pull-off. Hence, loading up to

σ̂A,peak = −1 +

√
1− 1

ĉ2peak
+
αloadingd,rough√
ĉpeak

(32)

results in a pull off

σ̂POA = −1 +

√
1− 1

ĉ2peak
+
αunloadingd,rough√

ĉpeak
(33)

We need, in fact, to explore only the range

ĉmax

(
αunloadingd,rough

)
< ĉpeak < ĉeq

(
αloadingd,rough

)
(34)

as otherwise, the upper bound pull-off is obtained, which we have already
estimated.

A set of results is shown in Fig.7. It is shown that the pull-off pressure
grows at first linearly with preload, and then saturates to a value which we
have already estimated in (28) and Fig.6. If we continue the curves above
this value there would be a second transition towards full contact, which
however we did not include in the Figure, for simplicity. In Fig7a,b,c, the case
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of αd = 0.5, 1, 1.5 respectively are represented, and an horizontal gray line
indicates the pull-off value for the smooth dimple. This permits to estimate
the enhancement whose maximum value corresponds to the scale in Fig.6.
For larger values of α, the maximum enhancement is smaller, however the
sensitivity to the pre-load is higher, so it is possible to have higher pull-off,
for a given preload.
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Fig.7. Pressure-sensitive pull-off σ̂POA as a function of preload −σ̂A,peak for
three cases of αd = 0.5, 1, 1.5 (a,b,c, respectively)

4. Discussion

Regarding the validity of the solution, some of the conclusions reached
in Guduru (2007), but also Ciavarella (2016a, 2016b) translate into this
problem, and viceversa, the present solution clarifies some limitations of the
Guduru solution. In other words, we are assuming from the outset that a
continuous single connected (non-contact) area is obtained. When roughness
is very large, as is the case when α is low, we can imagine that this is not
the way the solution proceeds. Indeed, contact could be established only in
the crests and proceed from crest to crest, before a continuous contact is
possible. This explains why, counterintuitively, we have reached the conclu-
sion that unbounded enhancement occurs for conditions of large roughness
i.e. when Johnson parameter is very low. Guduru’s geometry (the sphere, in
fact approximated as a paraboloid) is such that one could postulate that any
enhancement should occur after sufficiently large pressure has been applied
— although this at one point would involve finite strains in the sphere. In
Guduru’s problem, α = 0.57 corresponds to an enhancement of the sphere
pull-off of a factor 4 — see Ciavarella (2016a), whereas in our dimple case,
from (28) we have a value which is slightly smaller, 21.3 = 2. 46 for α = 0.57.
However, Guduru & Bull (2007) have actually demonstrated values of en-
hancement higher than 15 in experiments and there is no reason not to ex-
pect similar order of magnitude also in our dimple case, justifying our figures
above which contain also the case α = 0.1. More precise estimates about this
limit are not obvious: as Guduru (2007) remarked the limit is not the mono-
tonicity of the profile. Another limit to the enhancement is that our analysis
is limited to the JKR regime of large soft materials with high adhesion.

We have not discussed in great details the detachment from full contact.
Johnson (1995) also does not discuss in detail for his sinusoidal waviness
case, referring to the fact that we need a tension of the order of theoretical
strength, and suggests air entrapment, contaminants, or indeed finer scale
roughness, may reduce this. In fact, even for a single scale of waviness, a
Maugis solution (Hui et al, 2001, Jin et al, 2016a, Jin et al, 2016b) shows that
detachment will start when the peak stress in the full contact state reaches
the theoretical strength, and in our case this means

σ̂A = σ̂0 − 1− p̂∗ (35)
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although the actual critical condition to open the contact will depend also
on the COD (Crack Opening Displacement) which has to reach the Maugis
range of attraction forces. However, this shows that when the sum of T + p∗

is comparable to the theoretical strength, we can start opening already at
values much smaller than theoretical strength. This limit is not so remote,
since it occurs when the height of the dimple compared to its width (and/or
the amplitude of waviness compared to the wavelength), become of the order
of 0.1. Indeed, as theoretical strength is of the order of σ0 ' 0.05E∗, even
for g/λ = 0.1 we have p∗ = 0.3E∗ = 6σ0.

In the presence of roughness and the shallow depression, the ”strong
adhesion” regime due to full contact disappears in realistic cases, and it will
depend also on some appropriate Tabor parameter. Also the enhancement
of the ”weak adhesion” regime will depend on appropriate Tabor parameter,
but a full solution to the problem requires a full numerical investigation,
outside the scopes of the present paper.

5. Conclusions

Originally, McMeeking et al. (2010) introduced the ”dimple” model as
a simple geometrical model to explain a bistable system realized with just
elastic materials and van der Waals adhesive forces, showing the possible
switch from ”strong adhesion” realized when pushing in full contact from
the stable intermediate equilibrium, to ”weak adhesion”, when this pressure
is not impressed, and one has the pull-off from the partial contact state. The
analysis we conducted shows that, with roughness, the dimple model shows
a much higher resistance to jump into full contact, and therefore the ”strong
adhesion” is obviously an ideal limit on two grounds: first, it may be difficult
to achieve due to geometrical imperfections, depressions, air entrapment,
contaminants, and roughness indeed; second, the separation from this state
may not be as difficult as expected, for the same very reasons. However, we
showed that, partially balancing this effect, we have an ”enhancement” of the
”weak-adhesion” regime, which may serve the purpose if one can calibrate the
geometry. We have shown a reduced parametric dependence of the system
in the asymptotic expansion for small wavelength roughness on only two
dimensionless parameters, one being the Johnson parameter for the sinusoid,
and the other the corresponding Johnson parameter for the dimple. We
obtained that when roughness is relatively large, a pressure-sensitive region
is expected, and in this region, the actual pull-off depends monotonically on
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the pre-load, and indeed in a significant regions of parameters, linearly on
pre-load. The model adds to our understanding of the effect of multiscale
roughness on adhesion, which remains a complex problem in the general case.
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8. Appendix. On the use of plane strain approximation.

In (4), we used a plane strain approximation, under the assumption that
except perhaps for the first 2-3 oscillations, the problem really is plane strain.
However, here is a numerical proof. Obviously we meant (4) for a sinusoidal
wave roughness of amplitude g and wavelength λ,

f (r) = g

(
1− cos

(
2πr

λ

))
(36)

If we take the standard cumulative superposition approach used by Guduru
(2007) and take the contact area c→∞, we get

h (c) = c

∫ c

0

f ′ (x) dx√
a2 − x2

= π2 g

λ
cH0

(
2πc

λ

)
' −π

√
c

λ
g sin

(
π

4
− 2πc

λ

)
(37)

which we have expanded for small λ. Taking only the leading term in the
derivative h′ (x) and using

p (r) =
E∗

π

∫ c

r

h′ (x) dx√
x2 − r2

(38)
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we find that
p (r)

p∗
= 2

√
c

λ

∫ c

r

cos
(
π
4
− 2πx

λ

)
dx

√
x2 − r2

(39)

When we take c = 50λ (Fig.A1a) we find that the error is negligible but
perhaps still visible on the first oscillations, but this reduces further with
c = 100λ (see Fig.A1b), and as we are considering here the full contact
pressure when c =∞, we do not need to worry about this approximation.
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Fig. A1 Function p(r)
p∗

numerically obtained (blue solid line) for c = 50λ,

against the plane strain solution cos (2πc/λ). (solid line). (b) but for
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c = 100λ.
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