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Abstract

We derive the Calderon—Zygmund property in generalized Morrey spaces for the strong solutions
to 2b-order linear parabolic systems with discontinuous principal coefficients.
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1. Introduction

The present note deals with local regularity in Morrey-type spaces of the strong solutions
to 2b-order non-divergence linear parabolic systems

Pu:= Du(z) — Y Au(z)Du(z) = f() (1.1)

|a|=2b

with discontinuous coefficients. Here z = (2/,t) € R™ x R is a generic point lying in
the cylinder @ = Q x (0,7T), Q is an n-dimensional domain with n > 2. Fixed two integers
b,m > 1, A,(z) is the m x m matrix {agk(x)};nkzl of the measurable coefficients a?*: Q — R
with o = (a4, ..., a,), Dy := 0/0t and D* = bfﬁ‘, = D¢l ... D¢ with D; := 0/0x;. Given a
vector field f: @ — R™, we will consider strong solutions of ([L.1)), that is, a vector-valued
function u: @ — R™ which belongs to a suitable parabolic Sobolev space and that satisfies

(1.1) almost everywhere in Q.

The operator ¢ will be supposed to be uniformly parabolic in the sense of Petrovskii that
means the p-roots of the m-degree polynomial det { p Id,, — Z\a|=2b A, (91;)(21/)0‘} satisfy, for
some § > 0 and all s =1,...,m, the inequality

Rep,(z,v) < —0|v|® for a.a. v € Q, Vv € R"™. (1.2)

Indeed, the roots p,(x,v) are the eigenvalues of the m x m matrix (—1)° > jal=2 Aalz) (V)
and (1.2)) ensures uniform ellipticity of the operator (—1) D laj=2p Aa(z) D guaranteeing
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this way the representation formula . It turns out that is not only sufficient but
also necessary (cf. [9, Sect. 5]) for the validity of the a priori estimate (2.2)) obtained.

In our previous paper [9] a Calderdn-Zygmund type theory has been developed for ([1.1])
in the framework of the classical parabolic Morrey spaces LP*, assuming the principal coef-
ficients of the operator P to be essentially bounded functions of vanishing mean oscillation
(VMO). On the other hand, in the recent years an exhaustive Calderén—Zygmund theory
has been elaborated both for elliptic and parabolic equations/systems in divergence form
with VMO-coefficients in the framework of the generalized Morrey spaces LP* (cf. [3, 4] and
the survey [2]). These last spaces allow finer control of the local oscillation properties of a
function near its singular points and that is why regularity results in LP* of solutions to
PDEs with discontinuous coefficients are of great importance in the applications to differ-
ential geometry, stochastic control, nonlinear optimization, adaptive discontinuous Galerkin
FEMs, etc.

In this note we obtain the Calderén—Zygmund property for the system ([1.1) in the
settings of the generalized Morrey spaces. Precisely, we prove that f € LP* implies that
the higher-order derivatives D;u and D?u of any strong solution belong to the same space
LP* once and A, € L>® N VMO hold true. The proof of the generalized Morrey
regularity relies on the Calderén-Zygmund method ([5]) of expressing the highest order
spatial derivatives of u in terms of singular integral operators and their commutators with
the multiplication by the VMO-coefficients. Employing results on boundedness of these
singular integrals in LP* leads to an a priori estimate of Caccioppoli whence the desired
regularity follows by interpolation.

2. Main result
For a given r > 0 consider the parabolic cylinders
Cr(x) = {y =@/, ) eR"™: |2 —y| <r, TE(t— r2b,t)}

defined with respect to the parabolic metric p(x) = p(2',t) := max{|2’|, [t|'/?*}, and note
that the Lebesgue measure |C,| of C, is comparable to r"+2°.

We allow the coefficients a’* of to be discontinuous functions, with discontinuity
measured in terms of VMO, in the sense of the following definition.

Definition 2.1. For a € L _(R"™) and any R > 0 set

loc

1 1
o(R) = sup / a(y) — ac|dy, ac, = — / ay) dy,
|CT| Cr |CT| Cr

Cr,r<R

where C, is any parabolic cylinder. We say that a € BMO if ||all. = supg-va(R) < 00,
while a function a is in VMO with VMO-modulus v, if a € BMO and limg_,07v,(R) = 0.

In what follows, we consider a measurable function w: R""! x R, — R, and assume
there exist positive constants 1, ko and k3 such that for any xy € R™™! the weight w satisfies

. oo W(SL’O,S) W(x()ar)
——L <Ky VO<r<s<2r /T T dsgfigm. (2.1)
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Definition 2.2. see [7, 8] A function f € LP(R"™) with 1 < p < oo belongs to the general-
ized Morrey space LP*(R™1) if the following norm is finite

1 1/p
1l = [ sup / FPdy)
g Cr(x) (AJ(I, T) Cr(z)

For any bounded cylinder Q C R™ we define the space LP*(Q) of functions f € LP(Q) for

which
1 1/p
1 llpes = sup / F)lPdy| < oo,
P cr(w)w(%?") Qr(2)

where the supremum s taken over all cylinders centered at any x € Q) and of radius r €

(0,diam Q] and Q,(x) := Q NCy(x).
The generalized Sobolev—Morrey space Wp%ﬁ;l(Q) consists of all functions u € LP(Q) with
generalized derivatives Dyu, DS u, | < 2b, belonging to LP“(Q)) and endowed with the norm

2b
”u”Wiﬁl(Q) = [ Dyl pusq + Z Z | Dl pwiq-

S:0 |a‘:s

Similarly, w = (u1,...,up,) € W2HQ) means u, € W2(Q) and the norm [[ERy

gwen by Y i, [kl 20,1 -

Q¥

Remark 2.3. It is clear that if w(z,r) = 7 with A € (0,n + 2b) then LP* gives rise to
the classical Morrey space LP, while L»! = L and W; Ii’l reduces to the classical parabolic
Sobolev space T/T/'p%’1 (cf. [9]) when w = 1. In what follows, we will use also a localized version

w2l (Q) of W2AH(Q), where local means local only in the spatial variable 2’ but global in

p,w,loc
time ¢, that is u € W22\ (Q) if u € W2 x (0,T)) for each Q' € Q.

It should be noted that the first part in (2.1 is a sort of “doubling condition” satisfied
by the weight w, while the second one generalizes the original reguirement on w due to Nakai
(cf. [8]) that ensures boundedness of the Hardy-Littlewood maximal operator. Thus
takes into account the specific homogeneity n + 2b of the kernels of the singular integrals

involved in (3.1) and guarantees their boundedness in LP* as shown in [10] [11].

The main result of the note is contained in the next theorem.

Theorem 2.4. Suppose (1.2), A, = {a/*} € VMO(Q) N L=(Q) and let u € W2 (Q) be

p,loc

a strong solution to (1.1) with p € (1,00) such that u(z,0) = 0. Let f € LP¥(Q) with w

satisfying (2.1)).
Then u € W2 (Q) and

p,w,loc

“uHWﬁi’,l(Q’) < C(“f”p,w;Q + ||u||p,w;Q”) (2.2)

for all Q@ = Q x (0,T), Q" = Q" x (0, T) with Q' € Q" € Q, and where the constant C
depends on n,p,m,b,d,w, ||[Ayllec;q, the VMO-moduli ya,, and on dist(€2', 0€2").
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The proof of Theorem relies on some real analysis results regarding boundedness of
Calderén—Zygmund type singular integral operators and their commutators.

Let K(z;&): R*™™ x(R"1\{0}) — R be a variable Calderén-Zygmund kernel of parabolic
type (see [0, Definition 3.1]). Given a function f € L'(R™"') define the singular integral
operator

&f(x) == PV. / K(x:z —y)f(y) dy

Rn+l

and its commutator with multiplication by a function a € L®(R"*1) as

Cla, fl(x) .= P.V. K(z;x —y)laly) — a(z)]f(y) dy = R(af)(x) — a(z)Rf(x).

Rn+1

The LP- and LP“-boundedness of the operators £ and € have been obtained in [6], [I] and
[T0, 111, respectively. For the sake of completeness, we summarize these results below.

Proposition 2.5. Let the weight w satisfy (2.1)).
Then there ezists a positive constant C' = C(p,w, K) such that

18 llpw < Cllfllpr — [1€]a, flllpe < Cllallll fllp.o
for any f € LP*(R™1) with p € (1,00).

3. Proof of Theorem [2.4]

Let v e W2 (R™"!) be compactly supported in 2’ and such that v(z’,0) = 0. Extending
v as zero for t < 0, [9, (3.9)] implies that for each multiindex « with |«| = 2b one has

D%v(x) = P.V. / DT (x; 2 — y)Bv(y) dy (3.1)

+ /n DBSI‘(ZL"; y)vs doyBv(z)

=: R (Pv) + Z ColAy, DYV] + F(z)Pv(z),

|a/|=2b

where I'(2/,¢;y/, 7) is the fundamental matrix of the operator Id,, Dy — 3~ ,_o, Aa(2’,t)D?,
and the derivatives DT are taken with respect to y’. Each entry of the m x m matrix
Dy (z;y), |a| = 2b, is a Calderén-Zygmund kernel in the sense of [J, Definition 3.1], while
the second integral in is its commutator with the multiplication by the coefficients
matrix A,. As for the last term, F € L as consequence of the boundedness properties
of the Gauss kernel. In particular, if v € W2 (C,(z¢)) with v(x,ty — r**) = 0, then (3.1]),
Proposition 2.5/ and A, € VMO(Q) imply that for each € > 0 there exists o = ro(e, 7, )
such that
||D2bV||p,w;Cr < C(“mVpr;Cr + 5||D2bv||p,w;cr>
4



whenever r < ry. Choosing ¢ small enough we obtain
HD%VHp,w;Cr < ClBvllpwe, - (3.2)

Remembering that u € lefolc(Q) with u(z,0) = 0, we extend u as 0 for ¢ < 0, and fix

an arbitrary point zo € suppu as a center of the parabolic cylinder C,(xg). Let r € (0,rg),
6 €(0,1),0 =6(3—0)/2> 0 and define the cut-off function

p(z) = pr(a)pa(t)  with  pi(2') € CF°(B(x7)), ¢2 € C%(R)

such that

N )1 '€ By (xp) 1 te(to— (0r)* 1)
i) = {0 v é By 0T {0 t<to— (6r)%.

Since ' — 0 = 0(1 — 0)/2, it is clear that
|D*p| < C(s)[0(1 —0)r] ™%, |Dip| <CIO(L—0)r]", Vs=1,2,...,2b.
Setting v = ou, (3.2) yields

HDQbqu,w;Cer < HD%VHP,W;CQIT < C||q3v||pw'6'9/

2b—1
HD% Squwc ’ [allpwc,,
<C (Hfllp,w;cef Z 01— 0)r - [0(1 — 9);‘]21’ ’

whence

2b—1

Oy < C (T%Hfﬂp,w;@ +> 0.+ @0> (3.3)
s=1

as consequence of §(1 — ) < 20'(1 — ¢') and the choice of ¢, and where O, stands for the

seminorm

sup [0(1 — 0)r]°|| D*ul|p.wic,. Vs € {0,...,2b}.

0<o<1

To get the claim, we need the following interpolation inequality.

Lemma 3.1. There is a constant C, independent of r, such that

C

()s SEE()Qb—F g;ﬁag:;;

O} for each € € (0,2). (3.4)
Proor. We have

O, < 2[00(1 — bo)r*|[ Dull; e,
for some 6y € (0,1) and therefore
2C"[0(1 — 0o)r]?

L ullce,

O, < 2[00(1 — 00)r]*6% || D**u|pcy,, +
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in view of the standard interpolation inequalities and suitable scaling arguments. The bound
(3-4) follows by taking § = [f(1 — 6p)r](£)"/@*=*) above. O
Turning back to (3.3) and choosing suitably € € (0,2), we invoke (3.4) in order to get

O < C(szHf”pM;CT + @0>-
Fixing 0 = 1/2 at the seminorm O, leads to the following Caccioppoli-type estimate
||D2bu||p,W;Cr/2 < C(Hpr,w;Q + CT_%”quw;Cr)' (3.5)

A similar bound holds also for D;u, exploiting the parabolic structure of the equation and
the boundedness of the coefficients

||Dtu||p,w;Cr/2 < ||A||00;Cr/2”Dzbquw;Cr/z + ||f||p,w;Cr/2 < C(anp,cu;Q + Cr_2b||u||p7w;0r)-

The desired estimate ([2.2)) follows now by means of standard covering arguments and par-
tition of unity over the cylinder Q. [
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