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Abstract

We derive the Calderón–Zygmund property in generalized Morrey spaces for the strong solutions
to 2b-order linear parabolic systems with discontinuous principal coefficients.
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1. Introduction

The present note deals with local regularity in Morrey-type spaces of the strong solutions
to 2b-order non-divergence linear parabolic systems

Pu := Dtu(x)−
∑
|α|=2b

Aα(x)Dαu(x) = f(x) (1.1)

with discontinuous coefficients. Here x = (x′, t) ∈ Rn × R is a generic point lying in
the cylinder Q = Ω× (0, T ), Ω is an n-dimensional domain with n ≥ 2. Fixed two integers
b,m ≥ 1, Aα(x) is the m×m matrix

{
ajkα (x)

}m
j,k=1

of the measurable coefficients ajkα : Q→ R
with α = (α1, . . . , αn), Dt := ∂/∂t and Dα ≡ Dα

x′ := Dα1
x1
. . . Dαn

xn with Di := ∂/∂xi. Given a
vector field f : Q → Rm, we will consider strong solutions of (1.1), that is, a vector-valued
function u : Q→ Rm which belongs to a suitable parabolic Sobolev space and that satisfies
(1.1) almost everywhere in Q.

The operator P will be supposed to be uniformly parabolic in the sense of Petrovskii that

means the p-roots of the m-degree polynomial det
{
p Idm−

∑
|α|=2b Aα(x)(iν)α

}
satisfy, for

some δ > 0 and all s = 1, . . . ,m, the inequality

Re ps(x, ν) ≤ −δ|ν|2b for a.a. x ∈ Q, ∀ν ∈ Rn. (1.2)

Indeed, the roots ps(x, ν) are the eigenvalues of the m×m matrix (−1)b
∑
|α|=2b Aα(x)(ν)α

and (1.2) ensures uniform ellipticity of the operator (−1)b
∑
|α|=2b Aα(x)Dα guaranteeing
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this way the representation formula (3.1). It turns out that (1.2) is not only sufficient but
also necessary (cf. [9, Sect. 5]) for the validity of the a priori estimate (2.2) obtained.

In our previous paper [9] a Calderón–Zygmund type theory has been developed for (1.1)
in the framework of the classical parabolic Morrey spaces Lp,λ, assuming the principal coef-
ficients of the operator P to be essentially bounded functions of vanishing mean oscillation
(VMO). On the other hand, in the recent years an exhaustive Calderón–Zygmund theory
has been elaborated both for elliptic and parabolic equations/systems in divergence form
with VMO-coefficients in the framework of the generalized Morrey spaces Lp,ω (cf. [3, 4] and
the survey [2]). These last spaces allow finer control of the local oscillation properties of a
function near its singular points and that is why regularity results in Lp,ω of solutions to
PDEs with discontinuous coefficients are of great importance in the applications to differ-
ential geometry, stochastic control, nonlinear optimization, adaptive discontinuous Galerkin
FEMs, etc.

In this note we obtain the Calderón–Zygmund property for the system (1.1) in the
settings of the generalized Morrey spaces. Precisely, we prove that f ∈ Lp,ω implies that
the higher-order derivatives Dtu and D2b

x′ u of any strong solution belong to the same space
Lp,ω once (1.2) and Aα ∈ L∞ ∩ VMO hold true. The proof of the generalized Morrey
regularity relies on the Calderón–Zygmund method ([5]) of expressing the highest order
spatial derivatives of u in terms of singular integral operators and their commutators with
the multiplication by the VMO-coefficients. Employing results on boundedness of these
singular integrals in Lp,ω leads to an a priori estimate of Caccioppoli whence the desired
regularity follows by interpolation.

2. Main result

For a given r > 0 consider the parabolic cylinders

Cr(x) :=
{
y = (y′, t) ∈ Rn+1 : |x′ − y′| < r, τ ∈ (t− r2b, t)

}
defined with respect to the parabolic metric ρ(x) = ρ(x′, t) := max{|x′|, |t|1/2b}, and note
that the Lebesgue measure |Cr| of Cr is comparable to rn+2b.

We allow the coefficients ajkα of (1.1) to be discontinuous functions, with discontinuity
measured in terms of VMO, in the sense of the following definition.

Definition 2.1. For a ∈ L1
loc(Rn+1) and any R > 0 set

γa(R) := sup
Cr,r≤R

1

|Cr|

∫
Cr
|a(y)− aCr | dy, aCr :=

1

|Cr|

∫
Cr
a(y) dy,

where Cr is any parabolic cylinder. We say that a ∈ BMO if ‖a‖∗ = supR>0 γa(R) < ∞,
while a function a is in VMO with VMO-modulus γa if a ∈ BMO and limR→0 γa(R) = 0.

In what follows, we consider a measurable function ω : Rn+1 × R+ → R+ and assume
there exist positive constants κ1, κ2 and κ3 such that for any x0 ∈ Rn+1 the weight ω satisfies

κ1 <
ω(x0, s)

ω(x0, r)
< κ2 ∀ 0 < r ≤ s ≤ 2r;

∫ ∞
r

ω(x0, s)

sn+2b+1
ds ≤ κ3

ω(x0, r)

rn+2b
. (2.1)
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Definition 2.2. see [7, 8] A function f ∈ Lp(Rn+1) with 1 ≤ p <∞ belongs to the general-
ized Morrey space Lp,ω(Rn+1) if the following norm is finite

‖f‖p,ω =

(
sup
Cr(x)

1

ω(x, r)

∫
Cr(x)
|f(y)|p dy

)1/p

.

For any bounded cylinder Q ⊂ Rn+1 we define the space Lp,ω(Q) of functions f ∈ Lp(Q) for
which

‖f‖p,ω;Q =

(
sup
Cr(x)

1

ω(x, r)

∫
Qr(x)

|f(y)|p dy

)1/p

<∞,

where the supremum is taken over all cylinders centered at any x ∈ Q and of radius r ∈
(0, diamQ] and Qr(x) := Q ∩ Cr(x).

The generalized Sobolev–Morrey space W 2b,1
p,ω (Q) consists of all functions u ∈ Lp(Q) with

generalized derivatives Dtu, D
α
x′u, |α| ≤ 2b, belonging to Lp,ω(Q) and endowed with the norm

‖u‖W 2b,1
p,ω (Q) = ‖Dtu‖p,ω;Q +

2b∑
s=0

∑
|α|=s

‖Dα
x′u‖p,ω;Q.

Similarly, u =
(
u1, . . . , um

)
∈ W 2b,1

p,ω (Q) means uk ∈ W 2b,1
p,ω (Q) and the norm ‖u‖W 2b,1

p,ω (Q) is

given by
∑m

k=1 ‖uk‖W 2b,1
p,ω (Q).

Remark 2.3. It is clear that if ω(x, r) = rλ with λ ∈ (0, n + 2b) then Lp,ω gives rise to
the classical Morrey space Lp,λ, while Lp,1 ≡ Lp and W 2b,1

p,1 reduces to the classical parabolic
Sobolev space W 2b,1

p (cf. [9]) when ω ≡ 1. In what follows, we will use also a localized version

W 2b,1
p,ω,loc(Q) of W 2b,1

p,ω (Q), where local means local only in the spatial variable x′ but global in

time t, that is u ∈ W 2b,1
p,ω,loc(Q) if u ∈ W 2b,1

p,ω (Ω′ × (0, T )) for each Ω′ b Ω.
It should be noted that the first part in (2.1) is a sort of “doubling condition” satisfied

by the weight ω, while the second one generalizes the original reguirement on ω due to Nakai
(cf. [8]) that ensures boundedness of the Hardy–Littlewood maximal operator. Thus (2.1)
takes into account the specific homogeneity n + 2b of the kernels of the singular integrals
involved in (3.1) and guarantees their boundedness in Lp,ω as shown in [10, 11].

The main result of the note is contained in the next theorem.

Theorem 2.4. Suppose (1.2), Aα = {ajkα } ∈ VMO(Q) ∩ L∞(Q) and let u ∈ W 2b,1
p,loc(Q) be

a strong solution to (1.1) with p ∈ (1,∞) such that u(x, 0) = 0. Let f ∈ Lp,ω(Q) with ω
satisfying (2.1).

Then u ∈ W 2b,1
p,ω,loc(Q) and

‖u‖W 2b,1
p,ω (Q′) ≤ C

(
‖f‖p,ω;Q + ‖u‖p,ω;Q′′

)
(2.2)

for all Q′ = Ω × (0, T ), Q′′ = Ω′′ × (0, T ) with Ω′ b Ω′′ b Ω, and where the constant C
depends on n, p,m, b, δ, ω, ‖Aα‖∞;Q, the VMO-moduli γAα and on dist(Ω′, ∂Ω′′).
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The proof of Theorem 2.4 relies on some real analysis results regarding boundedness of
Calderón–Zygmund type singular integral operators and their commutators.

Let K(x; ξ) : Rn+1×(Rn+1\{0})→ R be a variable Calderón-Zygmund kernel of parabolic
type (see [9, Definition 3.1]). Given a function f ∈ L1(Rn+1), define the singular integral
operator

Kf(x) := P.V.

∫
Rn+1

K(x;x− y)f(y) dy

and its commutator with multiplication by a function a ∈ L∞(Rn+1) as

C[a, f ](x) := P.V.

∫
Rn+1

K(x;x− y)[a(y)− a(x)]f(y) dy = K(af)(x)− a(x)Kf(x).

The Lp- and Lp,ω-boundedness of the operators K and C have been obtained in [6, 1] and
[10, 11], respectively. For the sake of completeness, we summarize these results below.

Proposition 2.5. Let the weight ω satisfy (2.1).
Then there exists a positive constant C = C(p, ω,K) such that

‖Kf‖p,ω ≤ C‖f‖p,ω, ‖C[a, f ]‖p,ω ≤ C‖a‖∗‖f‖p,ω

for any f ∈ Lp,ω(Rn+1) with p ∈ (1,∞).

3. Proof of Theorem 2.4

Let v ∈ W 2b,1
p (Rn+1) be compactly supported in x′ and such that v(x′, 0) = 0. Extending

v as zero for t < 0, [9, (3.9)] implies that for each multiindex α with |α| = 2b one has

Dαv(x) = P.V.

∫
Rn+1

DαΓ(x;x− y)Pv(y) dy (3.1)

+
∑
|α′|=2b

P.V.

∫
Rn+1

DαΓ(x;x− y)
(
Aα′(y)−Aα′(x)

)
Dα′

y′ v(y) dy

+

∫
Sn
DβsΓ(x; y)νs dσyPv(x)

=: Kα(Pv) +
∑
|α′|=2b

Cα[Aα′ , Dα′
v] + F(x)Pv(x),

where Γ(x′, t; y′, τ) is the fundamental matrix of the operator IdmDt −
∑
|α=2b Aα(x′, t)Dα,

and the derivatives DαΓ are taken with respect to y′. Each entry of the m × m matrix
Dα
y′Γ(x; y), |α| = 2b, is a Calderón-Zygmund kernel in the sense of [9, Definition 3.1], while

the second integral in (3.1) is its commutator with the multiplication by the coefficients
matrix Aα′ . As for the last term, F ∈ L∞ as consequence of the boundedness properties
of the Gauss kernel. In particular, if v ∈ W 2b,1

p (Cr(x0)) with v(x, t0 − r2b) = 0, then (3.1),
Proposition 2.5 and Aα ∈ VMO(Q) imply that for each ε > 0 there exists r0 = r0(ε, γAα)
such that

‖D2bv‖p,ω;Cr ≤ C
(
‖Pv‖p,ω;Cr + ε‖D2bv‖p,ω;Cr

)
4



whenever r < r0. Choosing ε small enough we obtain

‖D2bv‖p,ω;Cr ≤ C‖Pv‖p,ω;Cr . (3.2)

Remembering that u ∈ W 2b,1
p,loc(Q) with u(x, 0) = 0, we extend u as 0 for t < 0, and fix

an arbitrary point x0 ∈ supp u as a center of the parabolic cylinder Cr(x0). Let r ∈ (0, r0),
θ ∈ (0, 1), θ′ = θ(3− θ)/2 > 0 and define the cut-off function

ϕ(x) = ϕ1(x
′)ϕ2(t) with ϕ1(x

′) ∈ C∞0 (Br(x′0)), ϕ2 ∈ C∞(R)

such that

ϕ1(x
′) =

{
1 x′ ∈ Bθr(x′0)
0 x′ /∈ Bθ′r(x′0)

ϕ2(t) =

{
1 t ∈ (t0 − (θr)2b, t0]

0 t < t0 − (θ′r)2b .

Since θ′ − θ = θ(1− θ)/2, it is clear that

|Dsϕ| ≤ C(s)[θ(1− θ)r]−s, |Dtϕ| ≤ C[θ(1− θ)r]−2b, ∀ s = 1, 2, . . . , 2b.

Setting v = ϕu, (3.2) yields

‖D2bu‖p,ω;Cθr ≤ ‖D2bv‖p,ω;Cθ′r ≤ C‖Pv‖p,ω;Cθ′r

≤ C

(
‖f‖p,ω;Cθ′r +

2b−1∑
s=1

‖D2b−su‖p,ω;Cθ′r
[θ(1− θ)r]s

+
‖u‖p,ω;Cθ′r

[θ(1− θ)r]2b

)
,

whence

Θ2b ≤ C

(
r2b‖f‖p,ω;Cr +

2b−1∑
s=1

Θs + Θ0

)
(3.3)

as consequence of θ(1 − θ) ≤ 2θ′(1 − θ′) and the choice of θ′, and where Θs stands for the
seminorm

sup
0<θ<1

[θ(1− θ)r]s‖Dsu‖p,ω;Cθr ∀s ∈ {0, . . . , 2b}.

To get the claim, we need the following interpolation inequality.

Lemma 3.1. There is a constant C, independent of r, such that

Θs ≤ εΘ2b +
C

εs/(2b−s)
Θ0 for each ε ∈ (0, 2). (3.4)

Proof. We have
Θs ≤ 2[θ0(1− θ0)r]s‖Du‖sp,ω;Cθ0r

for some θ0 ∈ (0, 1) and therefore

Θs ≤ 2[θ0(1− θ0)r]sδ2b−s‖D2bu‖p,ω;Cθ0r +
2C ′[θ0(1− θ0)r]s

δs
‖u‖p,ω;Cθ0r
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in view of the standard interpolation inequalities and suitable scaling arguments. The bound
(3.4) follows by taking δ = [θ0(1− θ0)r]( ε2)1/(2b−s) above.

Turning back to (3.3) and choosing suitably ε ∈ (0, 2), we invoke (3.4) in order to get

Θ2b ≤ C
(
r2b‖f‖p,ω;Cr + Θ0

)
.

Fixing θ = 1/2 at the seminorm Θs leads to the following Caccioppoli-type estimate

‖D2bu‖p,ω;Cr/2 ≤ C
(
‖f‖p,ω;Q + Cr−2b‖u‖p,ω;Cr

)
. (3.5)

A similar bound holds also for Dtu, exploiting the parabolic structure of the equation and
the boundedness of the coefficients

‖Dtu‖p,ω;Cr/2 ≤ ‖A‖∞;Cr/2‖D
2bu‖p,ω;Cr/2 + ‖f‖p,ω;Cr/2 ≤ C

(
‖f‖p,ω;Q + Cr−2b‖u‖p,ω;Cr

)
.

The desired estimate (2.2) follows now by means of standard covering arguments and par-
tition of unity over the cylinder Q′′.
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