
24 April 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Speeding up a Rollout algorithm for complex parallel machine scheduling / Ciavotta, Michele; Meloni, Carlo; Pranzo,
Marco. - In: INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH. - ISSN 0020-7543. - 54:16(2016), pp. 4993-
5009. [10.1080/00207543.2016.1157276]

This is a pre-print of the following article

Original Citation:

Speeding up a Rollout algorithm for complex parallel machine scheduling

Published version
DOI:10.1080/00207543.2016.1157276

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/89887 since: 2022-06-07

July 17, 2015 International Journal of Production Research IJPR_CMP

To appear in the International Journal of Production Research
Vol. 00, No. 00, 00 Month 20XX, 1�18

RESEARCH ARTICLE

Speeding up a Rollout Algorithm for Complex Parallel Machine Scheduling

Michele Ciavottaa, Carlo Melonib,d and Marco Pranzoc

aDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy;
bDipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Bari, Italy

cDipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Università di Siena, Siena, Italy
dIstituto per le Applicazioni del Calcolo `M. Picone', Consiglio Nazionale delle Ricerche, Bari, Italy

(July 17, 2015)

The practice of operations management calls to tackle di�erent scheduling problems. Often the environ-
ment to consider can be modeled with a set of parallel resources to be scheduled and is characterized
by one or more application-speci�c constraints or objectives. To tackle these problems, this paper ad-
dresses the use of multi-heuristic Rollout algorithmic procedures. Main characteristics of the considered
methodology are its modularity, the adaptability to di�erent objectives and constraints, and the easiness
of implementation. Moreover, the multi-heuristic Rollout is able to easily incorporate human experience
inside its research patterns to ful�ll complex scheduling requirements as those of interest in services and
manufacturing applications. A drawback is often represented by the required computation time. This
paper proposes some alternatives of the full multi-heuristic Rollout algorithm aimed at improving the
e�ciency by reducing the computational e�ort while preserving the e�ectiveness. Namely, we propose
Dynamic Heuristics Pruning and Candidates Reduction strategies. As illustrative case studies, we ana-
lyze deterministic complex parallel machine scheduling problems showing how Rollout procedures can be
used to tackle several additional constraints arising in real contexts. An extensive campaign of compu-
tational experiments shows the behavior of the multi-heuristic Rollout approach and the e�ectiveness of
the di�erent proposed speed-up methods.

Keywords: job scheduling, parallel machines, Rollout algorithm, Pilot method

1. Introduction

Nowadays, the sti� international crisis embitters the competition and enforces to continuously im-
prove and innovate the production techniques in terms of both machinery and methodologies. There-
fore, production managers are ceaselessly challenged to enhance planning methods and scheduling
activities striving for better utilization of available resources in order to improve the reactiveness and
reduce production costs. Producers need, indeed, to increase responsiveness and �exibility and, at
the same time, achieve a reduction of manufacturing costs preserving the overall Quality of Service
(QoS). In this context, the automation of planning and scheduling activities allows the manage-
ment to focus on critical aspects of the manufacturing processes and to contribute to a plant-wide
responsiveness increase. In this paper we move in this direction introducing a general framework to
address scheduling problems arising in manufacturing production systems. Speci�cally, we consider
a metaheuristic strategy often referred to as Rollout method (Bertsekas et al. 1997) or Pilot method
(Duin and Voÿ 1999). This approach, which allows generating high quality solutions for a class of
discrete optimization problems, has been independently developed by Bertsekas et al. (1997) and
Duin and Voÿ (1994).
The rationale of this technique (henceforth named Rollout) is to exploit the good behavior of

one or more fast pilot heuristics by embedding them into a general constructive framework in order
to achieve near-optimal results in short times. The main merit of this methodology consists of
being easily adaptable to handle di�erent constraint families and objectives since it is suitable for

1

July 17, 2015 International Journal of Production Research IJPR_CMP

incorporating practitioners' experience into a computerized logic.
The aim of this work is threefold; �rst we demonstrate that Rollout is easy to implement and

results e�ective to solve even very complex scheduling problems. Then we present a real-life hard-
constrained case study where it has been satisfactory applied. We face a complex parallel machine
environment that includes batch production with family setups, due dates, deadlines and other
realistic constraints, for more details see Ciavotta et al. (2009).
To tackle this problem a Rollout algorithm encompassing multiple pilot heuristics at once has been

developed (i.e., a multi-heuristic Rollout) and it is, to the best of our knowledge, the �rst attempt
in the deterministic combinatorial optimization literature to realize such a complex scheme.
Finally, we propose several speed-up techniques (such as a dynamical heuristic pruning and state

reduction mechanisms) to apply on the classical Rollout scheme in order to reduce computation
times while preserving the quality of the solutions. We assess the e�ectiveness of the Rollout schedul-
ing framework by showing the improvements with respect to the basic Rollout behaviour, and the
fast heuristics that we expressly developed for this problem.
The paper is organized as follows. In Section 2 the proposed algorithmic approaches are described.

The case studies are illustrated in Section 3 whereas computational experiments are described and
discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. The algorithmic approach

In this section we describe a general approach to designing combinatorial algorithms that is easily
adaptable, modular and suitable for incorporating human experience in reusable and robust software
components for heuristic-driven search. As solution technique we use a metaheuristic strategy known
as Rollout method (Bertsekas et al. 1997) or Pilot method (Duin and Voÿ 1999). Notwithstanding
the fact that they started from di�erent considerations (dynamic programming for Bertsekas et al.
(1997) and discrete branch-and-bound for Duin and Voÿ (1999)) the authors ended up developing
essentially the same algorithm, which tries to overcome or, at least, mitigate the limits of a heuristic
procedure by means of a look-ahead strategy (Voÿ and Duin 2003). The Rollout scheme usually
does not exploit strong problem-related properties, but let the search process to be heuristically
guided by one or more basic or pilot procedures. These underlying procedures may, however, employ
some problem speci�c properties or may incorporate rules or policies based on the decision-maker
expertise. This is especially helpful when dealing with problems and models that su�er for a lack
of known properties to be exploited to design an ad-hoc solution method.
The literature reports several applications of this algorithmic approach including bus driver

scheduling problems (D'Annibale et al. 2007), Steiner tree problems (Duin and Voÿ 1999, 1994),
sequencing problems with stochastic routing (Secomandi 2003), sequential fault diagnosis problems
(Tu and Pattipati 2003), job shop scheduling problems (Meloni et al. 2004), scheduling in phar-
maceutical industry (Pacciarelli et al. 2011; Ciavotta et al. 2009), and variants of spanning tree
problems (Golden et al. 2008). Nonetheless, similar concepts and ideas have been proposed over
the years (e.g. see Néron et al. (2008); Glover, and Taillard (1993); Amberg et al. (1999)), and
look-ahead features may also be found in connection with various optimization schemes. A survey
on the Rollout methods for deterministic optimization applications is given by Bertsekas (2013).

2.1 The Rollout algorithm

Behind the Rollout algorithm there is the idea of iteratively splitting the search space into progres-
sively smaller search spaces and analyze each one of them by means of some heuristic procedures.
The most promising sub-space is then selected and the process is repeated until a near-optimal
solution is generated. We next illustrate more in detail the general scheme of this method.
Given an optimization problem P , let Σ be the �nite set of its feasible solutions, solving P means

�nding a solution ς ∈ Σ that minimizes a given objective function Φ. In order to apply the Rollout

2

July 17, 2015 International Journal of Production Research IJPR_CMP

scheme to P a solution ς must be representable as a collection ofm components or decision variables,
i.e. ς = (c1, c2, . . . , cm−1, cm). A partial solution in which the value of only k components has been
assigned is called k-state and referred to as sk. The 0-state is a dummy state, corresponding to
the situation in which no component has been assigned. From each (k − 1)-state it is possible to
move to a k-state by �xing one of the unassigned components. Finally, according to the nature of
problem, the component assignment order can be predetermined and �xed or be dependent on the
choices the algorithm made for each k-state.
Rollout is a metaheuristic developed in three phases namely Branching, Look-ahead and Selection.

The aim of the Branching is to create a set of feasible state candidates. To be more precise, consider
that at the k-th iteration the algorithm has at its disposal a state sk−1 and a set Uk of m− k + 1
unassigned components. Not all of them, however, are suitable for being assigned to sk−1, hence a
set Fk ⊆ Uk is de�ned as the set of components c ∈ Uk that can safely be assigned to the state sk−1

to obtain a feasible new state sk,c = (sk−1, c). The branching phase can be described, therefore, as
the procedure in charge of appoint each unassigned component to the current state sk−1 and check
the feasibility in order to generate a set of candidates for the k-state Ck = {sk,c|c ∈ Fk}. The second
phase is referred to as Look-ahead and employs one or more pilot procedures able to construct a
complete solution for the problem starting from any candidate state in Ck. In the combinatorial
optimization literature, only applications of Rollout implementing the simplest scheme with only
one pilot heuristic are reported. In this paper, however, we consider the more general strategy
reported in the Algorithm 1. More precisely, let H be the set of q pilot procedures, the i-th method
H i(·) ∈ H is a constructive algorithm that, starting from the candidate k-state sk,c, produces
a complete (or pilot) solution H i(sk,c) for the problem. Thereby, the look-ahead applies all the
methods in H on each candidate k-state in Ck, provided by the branching phase, and generates a
set of complete solutions referred to as Λc =

{
ς ic = H i(sk,c)|H i(·) ∈ H, c ∈ Fk

}
. Therefore, the aim

of this phase is to use a set of methods in order to heuristically explore the space of all solutions
that can be generated starting from a certain state. At each iteration of the algorithm, the Selection
phase is responsible for driving the search towards the most promising direction and to achieve this
goal it chooses one candidate state from Ck based on the quality of the pilot solutions generated
during the look-ahead phase. Selection procedure assigns to each k-state sk,c a value of a scoring
function ϕ. In order to evaluate the candidate components in the case of multiple pilot procedure,
two main approaches are suggested in Bertsekas et al. (1997). They consist of calculating the value
of the �tness function φi(·) = φ(H i(·)) for each pilot heuristic and computing the scoring function
at each state as:

• the weighted sum of the �tness values ϕ(·) =
∑

iwiφ
i(·)

• the minimum �tness value ϕ(·) = mini φ
i(·)

We decided to implement the second policy because the minimum value returned by the pilot
procedures represents a upper bound for the �nal solution and, therefore, by choosing it a no-
worsening search process is assured. Furthermore, this policy has no parameters to adjust. The
most promising component, i.e. the one having the best score is selected.

3

July 17, 2015 International Journal of Production Research IJPR_CMP

Algorithm 1: Multi-Heuristic Rollout

begin
s1 = (·)
for k = 1, . . . ,m do

ϕbest = +∞
cbest = Null
Fk = GetUnassignedComponents(sk)

forall the c ∈ Fk do
sk,c = (sk−1, c)
Λc = ∅
for i = 1, . . . , q do

ςic = Hi(sk,c)

Λc =
{

Λc, ς
i
c

}

ϕ(c) = minΛc
Φi(ςic)

if ϕ(c) ≤ ϕbest then
ϕbest = ϕ(c)
cbest = c

sk+1 = (sk, cbest)

The value of the scoring function ϕ(·) for sk,c is ϕ(c) = mini{φ(H i(sk,c))}. Then, let cbest =
arg minc∈Fk

{ϕ(c)}, we set sk = (sk−1, cbest) �xing the k-th component of the solution. Note that
the feasibility of the candidate component c at iteration k-th does not guarantee the feasibility of
the complete solution reachable from sk, at this aim we set φi(ς ic) = φ(H i(sk,c)) = +∞ if the ith
pilot heuristic fails in �nding a feasible solution. These three phases are iteratively repeated until
a complete solution is generated.
As the exploration of the whole search tree related to the procedure described via pseudo-code in

Algorithm 1 can be time consuming (even when a single pilot procedure is used), suitable speed-up
strategies have been designed and developed. This aspect is addressed in the next section.
In Figure 1 is reported a a schematic description of the multi-heuristic Rollout procedure. The

algorithm starts from a dummy 0-state and analyzes four possible 1-state candidates (Branching),
namely s1,1, s1,2, s1,3 and s1,4. For each candidate three pilot heuristics are executed (Look-ahead)
and the value of the �tness φi is calculated. The candidate state associated with the lowest �tness
(in this case φ1(s1,2) = 7) is selected (Selection) and the 1-state s1,2 = [2] is used as starting point
for the next iteration. Following the same Branching-Look-ahead-Selection pattern states s2,4, s3,1

and s4,3 are successively generated leading to the complete (and sub-optimal) solution ς = [2, 4, 1, 3].

2.2 Speeding up basic and multi-heuristic Rollout algorithms

As reported in the seminal works (Bertsekas et al. 1997; Duin and Voÿ 1994) and discussed by several
authors (see Voÿ et al. (2005); Meloni et al. (2004); Guerriero et al. (2002); Guerriero and Mancini
(2005)) one of the main drawback of Rollout metaheuristic is that, especially for large instances, it
might require large computation times even when only a single pilot procedure is implemented. In
fact, mainly during the �rst iterations, several alternatives must be evaluated yielding to a possible
high execution time.
In this context, Guerriero and Mancini (2005) resorted to parallel processing in order to reduce

Rollout's time requirements. Nevertheless, a di�erent approach that does not call for more complex
parallel implementations is possible. To this aim, several mechanisms have been proposed in the
literature to improve the basic Rollout scheme and they can be classi�ed according to the following
criteria:

Filter : At each step of the algorithm a speed-up can be achieved if only a reduced number of

a new solution is generated as a

sequence of m states

select feasible unassigned components

for each component a candidate k-state

is genereated

a set of complete solutions is

generated applying q pilot heuristics

to the k-state sk,c

the state candidate linked to the best

complete solution is selected

the k-state is consolidated

4

July 17, 2015 International Journal of Production Research IJPR_CMP

s0

s4,3 & = [2, 4, 1, 3]

s1,1

8
<
:
�1: 8
�2: 10
�3: 12

s1,2

8
<
:
�1: 7 'best

�2: 8
�3: 15

s1,3

8
<
:
�1: 8
�2: 11
�3: 12

s1,4

8
<
:
�1: 10
�2: 10
�3: 18

s2,1

8
<
:
�1: 10
�2: 9
�3: 11

s2,3

8
<
:
�1: 8
�2: 9
�3: 10

s2,4

8
<
:
�1: 7 'best

�2: 8
�3: 15

s3,1

8
<
:
�1: 7 'best

�2: 7
�3: 7

s3,3

8
<
:
�1: 10
�2: 8
�3: 12

Figure 1. Example of Multi-Heuristic Rollout paradigm

alternative components c are evaluated, i.e. if a �lter is applied in order to select only the
most promising candidates. Di�erent evaluation �lters have been proposed by Meloni et al.
(2004) and Voÿ et al. (2005).

Incomplete run: In this case, the idea is to limit the algorithm's execution time by stopping it
after a suitable number of iterations and returning the best pilot solution found so far as �nal
outcome. Incomplete runs have been proposed by Meloni et al. (2004).

Evaluation depth: Since the most consuming operation within Rollout is, by far, the execution
of the pilot heuristics, a considerable speed-up is achieved by reducing the evaluation depth,
that is by designing pilot procedures that return incomplete solutions. This approach has been
applied in (Voÿ et al. 2005) for several combinatorial problems.

Heuristic pruning : When a set of pilot heuristics is at the Rollout's disposal a speed-up is
achieved by dynamically reducing their number to only the most promising ones.

All these mechanisms are aimed at reducing the Rollout's computational requirement at the
expense of a, hopefully negligible, reduction of the solution quality. To compensate this unsought
side e�ect, however, some expedient might be considered, we mention here the use of several pilot
heuristics and the hybridization with a fast local search procedure.
To the best of our knowledge, no Rollout's implementation has been presented that uses more

than one pilot heuristic. Notwithstanding, the use of a collection of pilot procedures is meant to
explore a larger part of the solution space and this, therefore, should allow the method to �nd
higher quality solutions. Moreover, this approach is particularly promising when di�erent classes
of instances have to be solved as each heuristic could be e�ective in solving one or more of them.
However, for each pilot heuristic a remarkable overhead in terms of time has to be paid, for this
reason such approach can be really bene�cial only if it is associated with a mechanism for the
dynamic selection of the most suitable heuristic.
In the next sub-sections we describe two speed-up strategies introduced to accelerate the search

process, namely Dynamic Heuristics Pruning and Candidate Reduction.

Dynamic Heuristics Pruning (DHP)
This strategy applies only when several pilot heuristics are considered. The rationale of this speed-up
mechanism is to dynamically reduce the number of pilot procedures during the algorithm execution,
thus allowing an overall reduction of the running time trying, nonetheless, to not a�ect too much
the solution quality. This mechanism is aimed at identifying and pruning the less e�ective heuristics,

5

July 17, 2015 International Journal of Production Research IJPR_CMP

i.e. those that most rarely return the best scoring solution. In order to implement such a pruning
mechanism, the algorithm associates a counter countH(i) to each heuristic H i(·) that is incremented
every time the heuristic is selected. We say that a pilot heuristic is selected if its outcome is the
solution that minimizes the scoring function within the pilot set for a certain stage. In case of ties all
the related counters are incremented. Since many pruning paradigms are possible we implemented
and analyzed in a preliminary study a variety of di�erent strategies. Among those the three pruning
policy reported below demonstrated to overcome all the others.

Multi Never-win (PA): this policy considers the counters associated with the heuristics and at
every iteration it removes those that were not selected, that is they did not return the best
solution of at least one candidate k-state, namely their counter is equal to zero. The counters
are reset at every iteration. Clearly, possibly no heuristics are eliminated.

Single Never-win (PB): this policy acts in a similar manner to PA, with the di�erence that at
each iteration only one pilot heuristic is eliminated. In case of tie the �rst heuristic of the list
is pruned. Also in this policy possibly no heuristics are eliminated.

Linear-race (PC): every bm/qc iterations (where m is the number of components and q is the
number of pilot heuristics, with m ≥ q) the worst pilot heuristic is removed. Every time
one heuristic is discarded the counters are reset. Please notice the cardinality of H decreases
linearly and that at the last iteration the pilot set contains exactly one heuristic.

s0

s4,3 & = [2, 4, 1, 3]

s1,1

8
<
:
�1: 8
�2: 10
�3: 12

s1,2

8
<
:
�1: 7 'best

�2: 8
�3: 15

s1,3

8
<
:
�1: 8
�2: 11
�3: 12

s1,4

8
<
:
�1: 10
�2: 10
�3: 18

s2,1

⇢
�1: 10
�2: 9

s2,3

⇢
�1: 8
�2: 9

s2,4

⇢
�1: 7 'best

�2: 8

s3,1
�
�1: 7 'best s3,3

�
�1: 10

0
@

countH(1) = 3
countH(2) = 1
countH(3) = 0

1
A

✓
countH(1) = 2
countH(2) = 1

◆

Figure 2. Example of Dynamic Heuristic Pruning (PC)

Figure 2 shows a sketch of Rollout algorithm using the heuristic pruning technique PC . In this
simple four-iteration example the reader, helped by the reported counters countH(i), can observe
that heuristic H3(·) is never selected in the �rst iteration. Thus indicating that it could not be
adequate in this particular context and for this reason it is dropped from the optimization process
according to the adopted DHP. In the second iteration H1(·) is selected twice while H2(·) only once
and hence it is pruned. Eventually, only H1(·) is exploited to generate the optimized solution.

Dynamic Candidates Reduction (DCR)
As detailed in Section 2.1, at the k-th iteration the Rollout algorithm starts from a (k − 1)-state,
sk−1, and a set of feasible candidate components Fk, and returns a set of complete (hopefully
feasible) solutions

{
ς ic = H i(sk,c)|H i(·) ∈ H, c ∈ Fk

}
. The k-state is then created by choosing the

component c ∈ Fk associated to at least one pilot heuristic returning the best candidate solution,
that is the one that minimizes φi. Consequently, for a generic iteration |Fk| × |H| solutions are
generated.
The aim of the previously introduced DHP is to reduce the algorithm's complexity by progressively

pruning the less e�ective heuristics. Whereas, the goal of DCR is to identify the more promising

6

July 17, 2015 International Journal of Production Research IJPR_CMP

candidate components in order to have a smaller set of alternatives F ′

k ⊂ Fk to evaluate. Obvi-
ously, the candidate reduction can be performed according the several possible policies. The one
implemented in this work is based on a proximity principle. More precisely, consider that at the
k-th iteration in the look-ahead phase the heuristic pool generates a set of full solutions and, to a
closer inspection, not only the set of k-state candidates Ck but also sets of possible candidates for
next remaining states (Ck+1, Ck+2, etc.).
DCR enacts a proximity-based policy by selecting Ck+1 ⊆ Fk+1 (Ck+1 is trivially a subset of

all feasible unassigned components) as suitable set of candidates for iteration k + 1. In a nutshell,
the rationale behind this choice is that if one or more heuristics have elected a component to be
the k + 1 state in their solutions before, it is likely to be selected again since the heuristics (often
stateless) tend to return similar solutions in two subsequent iterations. As a consequence, it is
worth restricting the branching process to these elements alone discarding the others. In order to
implement such a speed-up mechanism, the algorithm associates a counter countc(i) to each suitable
candidate for the next iteration.

s0

s4,3 & = [2, 4, 1, 3]

s1,1

8
<
:
�1: 8
�2: 10
�3: 12

s1,2

8
<
:
�1: 7 'best

�2: 8
�3: 15

s1,3

8
<
:
�1: 8
�2: 11
�3: 12

s1,4

8
<
:
�1: 10
�2: 10
�3: 18

s2,3

8
<
:
�1: 8
�2: 9
�3: 10

s2,4

8
<
:
�1: 7 'best

�2: 8
�3: 15

s3,1

8
<
:
�1: 7 'best

�2: 7
�3: 7

0
BB@

countc(1) = 0
countc(2) = N/A
countc(3) = 1
countc(4) = 1

1
CCA

0
BB@

countc(1) = 2
countc(2) = N/A
countc(3) = 0
countc(4) = N/A

1
CCA

Figure 3. Example of Dynamic Candidate Reduction

In Figure 3 we depict the e�ects of applying this mechanism. Note that, in the second iteration
F2 contains only components 3 and 4, meaning that none of the three heuristics considered in the
example has returned a complete solution having component 1 placed in the second position (i.e.,
countc(1) = 0). A similar consideration can be drawn as regarding the third iteration. In this case
component 3 is discarded because it has been never selected as the third component of a complete
solution at iteration 2 (i.e., countc(3) = 0, while countc(1) = 2).

3. Case study: Complex Parallel Machine Scheduling

In this paper, we deal with a multi-objective parallel machines scheduling problem under a number
of both standard and realistic constraints, such as release times, due dates and deadlines, particular
sequence-dependent setup times, machine unavailabilities, and maximum campaign or lot size. This
problem has been introduced by Pacciarelli et al. (2011) and it is based on a real-world problem
arising in a pharmaceutical manufacturing plant. The two considered case studies address the
operations scheduling of dispensing and counting departments, respectively.
Following the Graham notation (Graham et al. 1979) the considered problems can be classi�ed

as

P2|ri, di, Di, sij ,MCS, unavail|Lex(Lmax, Cmax, U),

7

July 17, 2015 International Journal of Production Research IJPR_CMP

and

P3|ri, di, Di, unavail|Lex(Lmax, Cmax, U).

in which, P2 and P3 indicate identical parallel machines production environment with 2 and 3
machines; ri, di, and Di indicate that the jobs have release times, due dates, and deadlines, respec-
tively; sij indicates the presence of sequence-dependent setup times;MCS represents the constraint
on the maximum campaign size; unavail represents the possible machine unavailability constraint;
the objectives are (in lexicographic order): the minimization of Lmax the maximum lateness, Cmax

makespan U the number of tardy jobs. The maximum campaign size constraint imposes that a
major setup is incurred after a maximum number of consecutive operations belonging to the same
family. Besides, there may be planned temporary machine unavailability, which must be taken into
account when scheduling the production. This constraint allows to interrupt a setup operation and
resume it at the end of the unavailability without penalties, whereas ordinary processing operations
cannot be interrupted.
Parallel machine scheduling problems are widely studied (see for instance, Cheng and Sin (1990))

both with single and multiple objective functions (T'kindt et al. 2006). These kind of problems arise
quite frequently in industrial applications as described by Ovacik and Uzsoy (1997). Scheduling
problems with setups have been often addressed (Allahverdi 2015) in the literature, and a parallel
machine problem with sequence dependent setup times is addressed by Lee and Pinedo (1997) while
Tang (1990) also considers the case with minor and major setups. The latter case is particularly
frequent in chemical and pharmaceutical production processes in which minor setups are related
to successive processing of jobs belonging to the same family, while major setups occur when the
families of two successive jobs are di�erent and a more accurate time/work consuming changeover
operation is required. A survey on algorithmic approaches to address family-based setups in parallel
machines environments is given in Van der Zee (2015). Not all the constraints in these problems
have been extensively studied, in fact the maximum size of a campaign (MCS) and the particular
machine unavailability are not frequently addressed in the scheduling literature (Stefansson et al.
2006).

3.1 Pilot heuristics

In this subsection we brie�y introduce a set of pilot heuristics used in our experiments with di�erent
Rollout schemes. These basic heuristics dispatch the pre-ordered jobs (one at a time) among the
available machines preferring the machine with the shortest completion time. The pre-ordering of
jobs is obtained in di�erent ways determining an overall di�erent behaviour of the respective pilot
heuristic, as described in the following:

EDD: two versions of the Earliest Due Date (EDD) heuristic, proposed in (Jackson 1955), have
been realized. The �rst, referred to as EDD1, favors deadlines over due dates. For this reason,
the jobs are preliminarily divided into three sets; to the �rst set are assigned the jobs having
a deadline, the second one, instead, contains the jobs with only a due date, whereas the
remaining jobs are gathered to create the third set. Eventually, a permutation is created by
considering the jobs of the �rst set, ordered according to their deadlines, followed by the jobs
of the second set, ordered according to their due dates, while the jobs of the third set, taken
in the order they are loaded into the algorithm, completes the solution. The second version of
this heuristic (EDD2), due dates and deadlines are considered equivalent. Consequently, only
two job set are created, the one containing jobs with either deadlines or due dates and the
set of the residual jobs. Again, the permutation is created by concatenating the jobs of the

8

July 17, 2015 International Journal of Production Research IJPR_CMP

�rst set ordered according to their deadline or due date with the elements of the second sets

Algorithm 2: Modi�ed Jackson Schedule (MJS)

input: J , the set of jobs

input: U , the set of machine unavailabilities

input: S, the current schedule

input: ∆ ≥ 0, the selection threshold

begin
ς = (·)
repeat

t = getMinStartingTime(S,U ,J)
Mt = getIdle(S,U)
J t = {i ∈ J : ri ≤ t}
J t
D = {i ∈ J t : Di > 0}
J t
d = {i ∈ J t : di > 0}

if J t
D 6= ∅ then
Dmin = min

i∈J t
D

Di

JCand = {ji : Di ≤ Dmin + ∆}
else if J t

d 6= ∅ then
dmin = min

i∈J t
d

Di

JCand = {ji : di ≤ dmin + ∆}
else

JCand = {i : i = arg min
i∈J t

ri}

j,m = �ndBestMatch(JCand,Mt, S)
S = updateSchedule(S,m, j)
J = J \ {j}
ς = (ς, j)

until J = ∅
return S, ς

select candidate jobs having deadline

in the range [Dmin, Dmin + ∆]

select candidate jobs having duedate in

the range [dmin, dmin + ∆]

select candidate jobs with the smallest

release time

get the minimum starting time

get machines idle at t

select the job and the machine with the

smallest setup and update the schedule

S, the set J and solution ς

MJS: the rationale of this heuristic rule, which is a modi�ed version of the Jackson Schedule
(Jackson 1955), is to extend the EDD1 rule by taking into account the state of the machine and
of the job campaigns. Details on the MJS are illustrated in Algorithm 2. The reader can easily
notice that, again, the a set of jobs is divided into three sorted groups (jobs with deadline, due
date and others, respectively). However, unlike the EDD1 rule only the jobs released before t
(set J t) are eligible to be scheduled. Time t, in turn, is the smallest completion time calculated
over all the machines considering the current partial schedule and the unavailabilities. If
J t
D 6= ∅, that is if there is at least one candidate job j ∈ J t with deadline associated, the

smallest deadline Dmin is found and all the jobs with deadline in the range [Dmin, Dmin + ∆]
are selected. ∆ is a selection threshold that allows the application to consider a variable
number of jobs as possible candidates. A similar candidate selection procedure is implemented
as far as the set of jobs with due dates is concerned whereas when it comes to consider the
remaining jobs, the ones with minimum release time are selected. Finally, the candidate jobs
are analyzed individually and the one that can complete the earliest, taking into account
sequence-dependent setup times, job campaigns and machine availabilities is selected. The
heuristic executes m step in total, being m the number of components in a complete solution;
each time t and the current partial schedule S are updated accordingly.

SPT : this heuristic is the simplest one among the one realized to be part of the Rollout pilot
heuristic. This approach implements the classical Shortest Processing Time ordering rule
for single machine scheduling ordering the candidate jobs in non-decreasing order of their
processing times.

9

July 17, 2015 International Journal of Production Research IJPR_CMP

Name Heuristic Name Heuristic

H0 EDD1 H5 MJS(∆ = 7 hours)
H1 EDD2 H6 MJS(∆ = avg(pi,j))

H2 MJS(∆ = 0) H7 MJS(∆ =
avg(pi,j)

2
)

H3 SPT H8 LLF(∆ = 7 hours)
H4 LLF(∆ = 0) H9 LLF(∆ = avg(pi,j)

Table 1. Pilot heuristics implemented for the case study

LLF: this pilot heuristic, whose name is the acronym for Largest Lateness First, implements a
threshold mechanism similar to that described for the MJS. In particular, it considers the
current schedule, and for each candidate job and each machine calculates the its lateness
values; for each job the minimum possible lateness is considered and using such values the
maximum lateness Lmax is computed. Finally, the jobs with lateness in the range [Lmax −
∆, Lmax] are considered and, among those, the job with minimum completion time is selected
and the schedule is updated accordingly.

4. Computational Experiments

The proposed algorithms have been tested on randomly generated realistic instances �rst introduced
in Ciavotta et al. (2009), each instance representing a two-week production plan of two departments
in a pharmaceutical plant. The instances can be divided into two groups according to the number
of machines (two or three parallel machines). The number of jobs in the two machine group ranges
from 40 to 60, whereas the instances with three parallel machines have from 400 to 480 jobs. A
further classi�cation divides the instances in three categories according to the presence of deadlines.
In a �rst category jobs do not have deadline. In the second group 20% of the jobs have a deadline
(i.e., are urgent or high priority jobs) and �nally in the last category 40% of the jobs have a deadline.
Moreover, instances can be further classi�ed into two groups according to the number of random
machine unavailabilities. More speci�cally, in the �rst group there is only one random machine
downtime, in which a machine cannot process any jobs. More unavaliabilities are present in the
second group of instances. On the whole there are 12 set of instances and each set includes 15
instances, for a total of 180 instances in the test set.
In this section we present the results of the experimental campaign obtained by varying each

factor that de�nes the con�guration of the algorithm in the two considered complex parallel machine
scheduling problems. Five factors have been considered, namely:

Heuristic: A �rst factor speci�es the heuristic adopted by the algorithm. Eleven levels have been
considered. Ten levels are obtained by using each heuristic alone (H0�H9), while the last level
(indicated as 10H) runs all the ten heuristic and selects the best resulting solution.

Rollout: This factor describes the use of the Rollout algorithm. A �rst level implies that no Rollout
is applied to improve the solutions (NRH), whereas the second level implies the use of the
rollout framework (RH).

Candidate Reduction: The candidate reduction factor assumes two levels, according to the use of
the Dynamic Candidate Reduction speed-up introduced in Section 2.2 (DCR) or not (NCR).

Heuristic Pruning: The heuristic pruning factor describes the pruning strategies e�ects. It as-
sumes 4 levels, one for each pruning described in Section 2.2 (PA, PB, PC) and one for the
reference case (NP), i.e., the no pruning case. Recall that, the pruning strategies can be
applied only in the case of Rollout with multiple pilot heuristics.

Therefore, for example, the single stand-alone heuristic 6 is denoted simply as H6, whereas H6-RH
is the Rollout using heuristic H6 and a Rollout algorithm using all the ten heuristics with pruning
strategy PB and dynamic candidate reduction strategy is denoted as 10H-RH-DCR-PB. Observe
that the total number of con�gurations to be tested is 39.
Since each algorithm is deterministic there is no need of multiple runs to extract meaningful

10

July 17, 2015 International Journal of Production Research IJPR_CMP

Algorithm Time Lmax Cmax U %feas

H0 0.00 11101.64 23170.28 30.13 1.00
H1 0.00 3614.37 20610.92 14.62 0.53
H2 0.00 3618.37 20075.81 14.56 0.96
H3 0.00 22521.33 25996.24 42.66 0.33
H4 0.00 13419.49 25224.14 49.41 0.33
H5 0.00 3210.57 20116.37 12.82 0.72
H6 0.00 3210.57 20116.37 12.82 0.72
H7 0.00 3210.57 20116.37 12.82 0.72
H8 0.00 9776.22 20549.61 11.86 0.46
H9 0.00 10020.23 20674.76 11.47 0.46
10H 0.00 3210.57 20116.37 12.82 0.72

H0-RH 0.07 9860.73 22794.12 27.52 1.00
H1-RH 0.07 2906.40 19799.06 9.47 0.70
H2-RH 0.44 2781.99 19531.49 9.48 1.00
H3-RH 0.09 9825.82 22012.80 28.33 0.37
H4-RH 0.42 5297.37 21227.98 32.26 0.39
H5-RH 0.48 2650.66 19586.27 7.59 0.90
H6-RH 0.47 2650.66 19586.27 7.59 0.90
H7-RH 0.49 2650.66 19586.27 7.59 0.90
H8-RH 0.41 4717.06 20031.93 14.98 0.58
H9-RH 0.41 4653.71 20107.48 15.17 0.60
10H-RH 3.28 2722.32 19552.49 9.11 1.00

Table 2. Performance of heuristics and Rollout on two-machine instances

results. A full factorial design of experiments resulting in 39 algorithm con�gurations has been
applied to 180 instances for a total 7020 runs. All the algorithms are single threaded and written
in C. They run on an Intel XEON E5420 processor at 2.5 GHz with 8 Gb of RAM under Linux
operating systems.
The results are organized as follows: (i) �rst, in Section 4.1, we show the in�uence of the multi-

pilot Rollout. In other words we are going to compare the e�ect of the single-pilot rollout algorithms
over the simple heuristics and then we introduce the multi-pilot and analyze its e�ect; (ii) next,
in Section 4.1.1, we evaluate e�ects of the candidate reduction speed-up technique; (iii) in Section
4.1.2 we show the e�ect of the second proposed speed-up (DHP) which can be applied only to
multi-pilot Rollouts; (iv) �nally, in Section 4.1.3, we report on the best con�gurations obtained by
the test campaign for both the two- and three-machine problem.

4.1 E�ects of Multi-Heuristic Rollout

In this section we study the performance of the Rollout algorithm over the simple heuristics and
when the multiple heuristics are employed. The results are, therefore, restricted to 22 con�gurations
without speed-ups:

• {H0, . . . , H9}: the 10 single heuristics
• 10H: the best among the 10 stand alone heuristics
• {H0-RH, . . . , H9-RH}: ten single-pilot Rollouts
• 10H-RH: the multi-pilot Rollout

The results are shown in Tables 2-3 for the two-machine and three-machine instances respectively.
For each algorithm we present the computation time (Time) in seconds, the objective functions
values of maximum lateness Lmax, makespan Cmax (both expressed in minutes), number of tardy
jobs U (observe that the number of tardy jobs is computed over all the jobs having deadline or
duedate), and the percentage of feasible instances (%feas), i.e., percentage of instances in which the
deadline constraints are not violated. All the values in each row of the tables are the average over
a set of 90 instances for each algorithm.
From Table 2 and Table 3 the single heuristic algorithms H0, . . . ,H9 have a very di�erent be-

haviours with some heuristics being not able to obtain good average solutions while others only
rarely are able to produce a feasible solution. Among them only H2, H5, H6 and H7 consistently

11

July 17, 2015 International Journal of Production Research IJPR_CMP

Algorithm Time Lmax Cmax U %feas

H0 0.00 12432.71 22618.09 220.67 1.00
H1 0.00 3600.32 20637.89 45.23 0.33
H2 0.03 1087.16 17802.61 9.62 1.00
H3 0.00 23160.33 24851.32 390.63 0.33
H4 0.05 17634.91 22408.68 225.61 0.33
H5 0.03 965.49 17766.94 6.90 1.00
H6 0.03 811.81 17727.78 5.30 0.96
H7 0.03 811.81 17727.78 5.30 0.96
H8 0.05 11676.60 18099.52 36.78 0.33
H9 0.05 10950.60 18095.93 37.31 0.33
10H 0.30 811.81 17727.78 5.30 0.96

H0-RH 100.44 11335.67 22406.21 200.04 1.00
H1-RH 92.80 3480.08 20513.79 38.73 0.34
H2-RH 1879.98 806.46 17517.51 5.61 1.00
H3-RH 102.50 17971.97 23539.84 340.71 0.33
H4-RH 3142.94 7527.69 20184.67 132.69 0.33
H5-RH 1956.70 735.59 17545.09 4.17 1.00
H6-RH 1948.26 584.11 17535.23 2.87 0.98
H7-RH 1953.89 584.11 17535.23 2.87 0.98
H8-RH 3122.44 6854.29 17831.09 31.32 0.40
H9-RH 3132.90 5438.40 17905.19 31.72 0.42
10H-RH 17454.51 580.69 17531.00 3.76 1.00

Table 3. Performance of heuristics and Rollout on three-machine instances

yield to good performance both in terms of solution quality (Lmax) and feasibility (%feas). We
observe that 10H (i.e., the algorithm selecting the best among the ten considered heuristics) is fast
and able to obtain frequently a feasible solution.
When considering the simple Rollout algorithms (H0-RH, . . . ,H9-RH) we observe three very dis-

tinct behaviours.
In �rst place, the Rollout is always able to consistently improve the performance of each single

pilot heuristic.
Secondly, we observe that some Rollout algorithms (i.e., H1-RH, H3-RH, H4-RH, H8-RH and H9-

RH) perform even worse than 10H. This clearly implies that the pilot heuristic on which they are
based performs extremely poorly on average, and that the Rollout framework is not able to salvage
the performance. In practice, some pilot heuristic could be designed to address a speci�c class of
instances and this, in general, leads to worsening its average behaviour. It can be noted that by
removing these heuristics also the multi-heuristic Rollout could improve its average performances.
This observation is at the basis of DHP speed-up technique which dynamically tries to exclude a
heuristic when it appears to be not e�ective on the given instance.
Third, there are some Rollouts (H2-RH, H5-RH, H6-RH and H7-RH) that improve over the simple

10H con�guration even if they rely on a single pilot algorithm. The best simple Rollout algorithms
turn out to be H6-RH and H7-RH, although their are not able to �nd a feasible solution in a few
cases (about 3%). Observe that, H6 and H7 are two variations of the same basic greedy heuristic
(MJS) obtaining the same results, and being the Rollout scheme deterministic, in this tests they
obtain the same improvements. The computation times of the basic Rollouts for the two machine
instances (Table 2) are always under half second, whereas for the larger and more complex three
machine instances the CPU times range from 100 to 3000 seconds (Table 3).
However, when we compare these algorithms with the multi-heuristic Rollout (10H-RH) proposed

in Section 2.1 we observe that the multi-pilot e�ect is evident since the quality of the obtained solu-
tions is improved over all the single Rollouts. This bene�t has a drawback of an increased computa-
tion time. When considering Cmax objective we observe that the di�erences among the algorithms
are evident when comparing the full multi-heuristic Rollout 10H-RH with the worst performing
single greedy H3. The improvement of the makespan Cmax of 10H-RH over H3 is almost 25% and
30% in the two-machine and three-machine, respectively. On the other hand, when considering the
number of tardy jobs the ranges between the best performing and worst performing algorithms are
even more remarkable (especially in the three-machine instances) since they range from 390 tardy

12

July 17, 2015 International Journal of Production Research IJPR_CMP

Algorithm Time Lmax Cmax U %feas

H∗-RH 0.33 4799.50 20426.37 16.00 0.73
H∗-RH-DCR 0.03 6702.29 21342.76 20.52 0.66
10H-RH 3.28 2722.32 19552.49 9.11 1.00
10H-RH-DCR 0.80 2913.17 19612.59 9.88 1.00

Table 4. E�ect of dynamic candidate reduction speed-up on two-machine instances

Algorithm Time Lmax Cmax U %feas

H∗-RH 1743.29 5531.84 19251.39 79.07 0.68
H∗-RH-DCR 19.30 5978.03 19608.28 104.81 0.67
10H-RH 17454.51 580.69 17531.00 3.76 1.00
10H-RH-DCR 580.80 555.67 17458.38 4.63 1.00

Table 5. E�ect of dynamic candidate reduction speed-up on three-machine instances

Algorithm Time Lmax Cmax U %feas

10H-RH 3.28 2722.32 19552.49 9.11 1.00
10H-RH-PA 0.44 3104.08 19750.87 11.06 1.00
10H-RH-PB 1.06 2908.49 19602.99 9.66 1.00
10H-RH-PC 2.82 2862.41 19539.08 9.47 1.00

10H-RH-DCR 0.80 2913.17 19612.59 9.88 1.00
10H-RH-DCR-PA 0.06 3226.58 19851.88 11.63 1.00
10H-RH-DCR-PB 0.27 3228.68 19849.57 11.66 1.00
10H-RH-DCR-PC 0.61 2960.56 19658.61 10.09 1.00

Table 6. E�ect of heuristic pruning speed-up on two-machine instances

jobs on average to less than 3. Of course the worst performing heuristics are the ones like H3 that
are based on the SPT rule, thus completely disregarding the presence of due dates and deadlines.
Additionally, also the feasibility is not an issue since 10H-RH is the only algorithm able to always
obtain a feasible solution on all the 180 instances. The large computation time required by the
multi-pilot Rollout 10H-RH calls for the use of speed-up techniques that are the main focus of this
paper.

4.1.1 E�ects of candidate reduction

We now assess the e�ects of the candidate reduction speed-up for the two- and three-machine
problems (Tables 4�5), respectively. Rows H∗-RH and H∗-RH-DCR show the average results of all
the single Rollout algorithms grouped over the candidate reduction factor over a set of 90 instances.
Whereas, 10H-RH and 10H-RH-DCR show the results of the multi-pilot Rollout con�gurations with
and without dynamic candidate reduction and without applying pruning speed-up over a set of 90
instances.
From Tables 4 and 5 the average e�ects of the dynamic candidate reduction can be easily observed.

Its adoption cuts the computing time up to two orders of magnitude with only a small degradation
on the di�erent objective functions. On the three-machine instances the 10H-RH-DCR even yields
to a reduction of the maximum lateness over the 10H-RH algorithm.

4.1.2 E�ects of heuristic pruning strategies

In order to assess the e�ects of heuristic pruning strategies we show detailed results of the multiple
pilot heuristics Rollout con�gurations grouped by varying the heuristic pruning and candidate
reduction factors. In Tables 6 and 7 each row refers to a speci�c con�guration and the presented
results are an average over 90 instances.
The e�ects of the three pruning strategies (PA, PB and PC) are rather di�erent. In fact, while PA

and PB cut the computing times up to two order of magnitude at the expense of a small increase of
the maximum lateness, PC causes only a small reduction of the computing times but at almost no
expense in term of solution quality. More in details, when considering the two-machine case (Table
6) we observe that the no-pruning option produces the best solution but employing more CPU time.

13

July 17, 2015 International Journal of Production Research IJPR_CMP

Algorithm Time Lmax Cmax U %feas

10H-RH 17454.51 580.69 17531.00 3.76 1.00
10H-RH-PA 318.89 693.92 17627.82 5.07 1.00
10H-RH-PB 1033.03 678.36 17614.21 4.51 1.00
10H-RH-PC 14243.42 575.47 17500.59 4.79 1.00

10H-RH-DCR 580.80 555.67 17458.38 4.63 1.00
10H-RH-DCR-PA 147.80 705.47 17647.32 5.31 1.00
10H-RH-DCR-PB 158.63 694.65 17637.38 4.92 1.00
10H-RH-DCR-PC 467.84 567.41 17484.35 4.76 1.00

Table 7. E�ect of heuristic pruning speed-up on three-machine instances

While adopting the pruning strategy one could reduce the CPU time at expense of solution quality:
PA and PB are the more aggressive pruning options resulting in 10 times speed-ups at the expense
of 6-14% of loss in solution quality, while PC results in a smaller speed-up and a loss limited to
5%. Interestingly, no option results dominated. When considering three-machine instances (Table
7) the situation is similar. PA and PB are extremely aggressive having a 100 times speed-up and
a 16-19% of loss, whereas PC dominates the no pruning option since it is able to produce solution
having a slightly better quality and being slightly faster. This could happen since the use of heuristic
pruning may lead the search process on a di�erent area of the search space thus �nally yielding to
di�erent �nal solutions. Among the three proposed pruning strategies we observe as PA and PB

have a similar behavior and when compared to PC both lead to a larger reduction in computing
times but at the expense of a worse solution quality (Lmax), while smaller relative di�erences are
observed in terms of Cmax.
When considering the combined e�ects of dynamic candidate reduction and heuristic pruning

speed-ups we observe that the computation times are further reduced, and the di�erence between
the faster pruning strategies PA and PB and the slowest strategy PC is reduced.
When considering the secondary objectives (Cmax and U) the use of the speed-ups does not

in�uence their values too much. This is not surprising considering that in the lexicographic order
they are evaluated after the maximum lateness.
With respect to the feasibility, it is interesting to observe how the use of the proposed speed-ups

does not a�ect the feasibility of the solutions and that all the proposed speed-ups when applied
to the multi-pilot Rollout lead to a reduction of computing times but without impacting on the
feasibility.

4.1.3 Non-dominated con�gurations

As it often happens in practice, when selecting the �best� algorithm for a given problem the decision
makers have to �nd a balance between the available computational time and the solution quality.
To this aim, we now analyze the trade-o� faced by decision makers when evaluating the adoption
of a multi-pilot and the proposed speed-ups described in this paper.
In Figures 1 and 2 we show the Pareto front obtained by all the considered con�gurations for

the two- and three-machine instances, respectively. More precisely, Figure 1 (a) and 2 (a) show all
the non-dominated Rollout con�gurations, while 1 (b) and 2 (b) restrict the analysis only to the
non-dominated multi-pilot Rollout con�gurations. Each dot on the plots shows the computational
time/solution quality (expressed in terms Lmax) of a given algorithm. In order to maintain the
clarity, only the non-dominated algorithms are represented in the plot. An algorithm results domi-
nated if there exists at least another algorithm which, on average, obtains better solutions (lateness
objective function) in smaller computational time.
From Figure 1 (a) there are �ve non-dominated Rollout algorithms. The fastest option is the

Rollout (H3-RH-DCR) using only H3 with DCR enabled. This con�guration results in a negligible
computation time although the solution quality, expressed by the Lmax, is extremely poor. Con�g-
uration H1-RH-DCR only requires 0.01 seconds and it is able to greatly improve over the previous
con�guration. Then con�gurations H5-RH-DCR and H6-RH-DCR both require only 0.03 seconds to
attain a 2859 of maximum lateness. Finally the last two non-dominated con�gurations (H2-RH and

14

July 17, 2015 International Journal of Production Research IJPR_CMP

04

25004

50004

75004

100004

125004

150004

175004

200004

225004

0,004 0,054 0,104 0,154 0,204 0,254 0,304 0,354 0,404 0,454 0,504

Av
g.
4L
at
en

es
s4

Avg.4Time4

H6LRH4 H2LRH4 H6LRHLDCR4 H1LRHLDCR4 H3LRHLDCR4

26004

27004

28004

29004

30004

31004

32004

33004

0,004 0,504 1,004 1,504 2,004 2,504 3,004 3,504

Av
g.
%L
at
en

es
s%

Avg.%Time%

10HLRHLDCRLPA4 10HLRHLDCRLPC4 10HLRHLDCR4 10HLRH4

Figure 1. (a) Non-dominated Rollout con�gurations on two-machine instances. (b) Non-dominated multi-pilot con�gurations
on two-machine instances.

2504

7504

12504

17504

22504

27504

32504

37504

04 1004 2004 3004 4004 5004 6004

Av
g.
%L
at
en

es
s%

Avg.%Time%

10HLRHLDCR4 10HLRHLDCRLPC4 H7LRHLDCR4 H1LRHLDCR4

5004

5504

6004

6504

7004

7504

1004 1504 2004 2504 3004 3504 4004 4504 5004 5504 6004

Av
g.
%L
at
en

es
s%

Avg.%Time%

10HLRHLDCR4 10HLRHLDCRLPC4 10HLRHLDCRLPB4 10HLRHLDCRLPA4

Figure 2. (a) Non-dominated con�gurations on three-machine instances. (b) Non-dominated multi-pilot con�gurations on
three-machine instances.

H6-RH) require more CPU time (about 0.4 seconds) but they improve over the previous alternatives
in terms of solution quality. From this �gure we observe as the candidate reduction produces faster
algorithms, while best results are obtained when no speed-up is adopted.
When restricting the analysis to only multi-pilot con�gurations on the two-machine instances

(Figure 1 (b)) the faster options uses both speed-ups (10H-RH-DCR-PA and 10H-RH-DCR-PC).
The fastest con�guration requires 0.06 seconds and the maximum lateness is 3226, while using PB as
heuristic pruning strategy requires 0.6 seconds for a 2960 maximum lateness. The next con�guration
does not adopt any pruning strategy (10H-RH-DCR), it still requires less than 1 seconds to be
solved and slightly improves over the previous con�guration. The last con�guration instead does
not include any speed-up and results in a substantially slower algorithm (3.28 seconds) but with
Lmax = 2715. When comparing this set of non-dominated solutions with the one shown in Figure
1 (a) we observe that the multi-pilot Rollouts are dominated by their single pilot counterparts.
When considering the three machine cases Figure 2 (a) the non-dominated con�gurations are as

follow. The fastest algorithm is a Rollout with H1 and dynamic candidate reduction. This algorithm
requires about 1 second but produces poor solutions (Lmax = 3567). Switching from H1 to H7 the
resulting algorithm requires 25 seconds but slashes the maximum lateness to 690. Further lateness
reductions can be obtained by using a multi-pilot Rollout with dynamic heuristic reduction and
PC pruning but at the expenses of greater CPU requirements (467 seconds). The slowest non-
dominated con�guration (580 seconds), although yielding to the better solutions (Lmax = 555), is
10H-RH-DCR. From this plot we can observe as all the non-dominated con�gurations make use
of candidate reduction speed-up, and the multi-pilot is used to achieve better performance. This
�nding is of interest since it shows that the e�ects of multi-pilot can be better than just using one
single highly performing heuristic. In other words, the combined use of di�erent heuristics yield to
better performance.
While restricting the analysis to only multi-pilot Rollouts (Figure 2 (b)) the non-dominated

15

July 17, 2015 International Journal of Production Research IJPR_CMP

con�gurations are, as in Figure 2 (a), 10H-RH-DCR and 10H-RH-DCR-PC and two additional
con�gurations. Namely, 10H-RH-DCR-PB and 10H-RH-DCR-PA. These two �fast� con�gurations
require 158 and 147 seconds respectively, and their solutions have, on average, about 700 minutes of
maximum delay. Also in this case all the non-dominated con�gurations adopt the dynamic candidate
reduction speed-up.

5. Conclusions

In this paper we extended the Rollout framework by using multiple pilot heuristics and introducing
some speed-up techniques. We evaluated the proposed extensions on some complex parallel machine
scheduling problems. Rollout algorithms are known to be, an easy to implement, general constructive
metaheuristic. However one of their main drawbacks is the high computing time requirements. The
proposed speed-ups strategies have been applied to two pharmaceutical manufacturing problems
involving both standard and uncommon constraints. From an extensive campaign of computational
experiments turns out that the use of multiple heuristics in the Rollout scheme yields to better
results overcoming the single heuristic approaches and that the proposed speed-up techniques result
in a remarkable reduction of computing times at the expense of a minor reduction in solution quality.
Overall the resulting algorithm, when compared to the standard Rollout approach, produces better
quality solutions while maintaining acceptable computation times.
The main �nding of the paper is that multi-heuristic Rollout with speed-ups can be an easy

to apply algorithm ables to accomodate several heuristics into a single adaptive metaheuristic
framework enabling improvements over the performances of the single heuristics. These methods are
inherently simple and easy to code. Moreover, their results are easy to reproduce, adopt and extend
for industrial practitioners enabling a learning-by-improving process. This approach is particularly
promising when di�erent classes of instances have to be solved as each basic heuristic could be
e�ective in solving one or more of them.
Future research directions include the development and test of di�erent speed-up methods, ap-

plying these techniques to other scheduling issues and more general combinatorial optimization
problems, analyze the performance ratios of the Rollout schemes (e.g. see Bertazzi (2012); Mastin
and Jaillet (2014), and exploring the potentialities o�ered by parallel and cloud computing frame-
works.

References

Allahverdi, A. 2015. The third comprehensive survey on scheduling problems with setup times/costs Euro-
pean Journal of Operational Research 246 345�378.

Amberg, A., L. Gouveia, P. Martins, and S. Voÿ. 1999. Iterative heuristics metastrategies. In Proceedings of
the Third Metaheuristics International Conference MIC'99, Rio de Janeiro, Brazil, 13�16. July.

Bertazzi, L. 2012. Rollout Minimum and Worst-Case Performance Ratios of Rollout Algorithms. Journal of
Optimization Theory and Applications, 152: 378�393.

Bertsekas, D. P., J. N. Tsitsiklis, and C. Wu. 1997. Rollout Algorithms for Combinatorial Optimization.
Journal of Heuristics 3 (3): 245�262.

Bertsekas, D. P. 2013. Rollout Algorithms for Discrete Optimization: A Survey. In P.M. Pardalos et al. (eds.),
Handbook of Combinatorial Optimization,. 2989�3013. Springer, New York.

Cheng, T. C. E., and C. C. S. Sin. 1990. A state-of-the-art review of parallel-machine scheduling research.
European Journal of Operational Research 47 (3): 271�292.

Ciavotta, M., C. Meloni, and M. Pranzo. 2009. Scheduling Dispensing and Counting in Secondary Pharma-
ceutical Manufacturing. AIChE Journal 55 (5): 1161�1170.

D'Annibale, G., R. De Leone, P. Festa, and E. Marchitto. 2007. A new meta-heuristic for the Bus Driver
Scheduling Problem: GRASP combined with Rollout. In Proceedings of the 2007 IEEE Symposium on
Computational Intelligence in Scheduling (CI-Sched 2007), 192 �197. April.

16

July 17, 2015 International Journal of Production Research IJPR_CMP

Duin, C., and S. Voÿ. 1994. Steiner Tree Heuristics: A Survey. In Proceedings of the 22nd Annual Meeting
of DGOR, 485�496.

Duin, C., and S. Voÿ. 1999. The pilot method: A strategy for heuristic repetition with application to the
Steiner problem in graphs. Networks 34 (3): 181�191.

Glover, F., and E. Taillard. 1993. A user's guide to tabu search. Annals of Operations Research V41 (1):
1�28.

Golden, B., S. Raghavan, and D. Stanojevi¢. 2008. The prize-collecting generalized minimum spanning tree
problem. Journal of Heuristics 14 (1): 69�93.

Graham, R.L., E.L. Lawler, J.K. Lenstra, and A.H.G Rinnooy Kan. 1979. Optimization and approximation
in deterministic machine scheduling: a survey. Annals of Discrete Mathematics 5: 287�326.

Guerriero, F., and M. Mancini. 2005. Parallelization Strategies for Rollout Algorithms. Computational op-
timization and applications 31 (2).

Guerriero, F., M. Mancini, and R. Musmanno. 2002. New Rollout Algorithms for Combinatorial Optimization
Problems. Optimization methods and software 17 (4): 627 � 654.

Jackson, J.R. 1955. Scheduling a Production line to Minimize Maximum Tardiness. Research Report 53. Los
Angeles, CA: Management Science, University of California.

Lee, Y. H., and M. Pinedo. 1997. Scheduling jobs on parallel machines with sequence-dependent setup times.
European Journal of Operational Research 100 (3): 464�474.

Mastin, A., and P. Jaillet. 2014. Average-Case Performance of Rollout Algorithms for Knapsack Problems.
Journal of Optimization Theory and Applications 165 (3): 964�984.

Meloni, C., D. Pacciarelli, and M. Pranzo. 2004. A Rollout Metaheuristic for Job Shop Scheduling Problems.
Annals of Operations Research 131 (1-4): 215�235.

Néron, E., F. Tercinet, and F. Sourd. 2008. Search tree based approaches for parallel machine scheduling.
Computers & Operations Research 35 (4): 1127�1137.

Ovacik, I.M., and R. Uzsoy. 1997. Decomposition methods for complex factory scheduling problems.
Boston/Dordrech/ London: Kluwer Academic Publishers.

Pacciarelli, D., C. Meloni, and M. Pranzo. 2011. Models and Methods for Production Scheduling in the Phar-
maceutical Industry. Vol. 152 of International Series in Operations Research and Management Science.
429�459. Springer New York.

Secomandi, N. 2003. Analysis of a Rollout Approach to Sequencing Problems with Stochastic Routing
Applications. Journal of Heuristics 9 (4): 321�352.

Stefansson, H., N. Shah, and P. Jensson. 2006. Multiscale planning and scheduling in the secondary phar-
maceutical industry. AIChE Journal 52 (12): 4133�4149.

Tang, C. S. 1990. Scheduling batches on parallel machines with major and minor set-ups. European Journal
of Operational Research 46 (1): 28�37.

T'kindt, V., J.-C. Billaut, and H. Scott. 2006. Multicriteria Scheduling: Theory, Models and Algorithms.
Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Tu, F., and K. R. Pattipati. 2003. Rollout strategies for sequential fault diagnosis. IEEE Transactions on
Systems, Man, and Cybernetics, Part A 33 (1): 86�99.

Van der Zee, D.-J. 2015. Family-based dispatching with parallel machines. International Jorurnal of Pro-
duction Research, in press.

Voÿ, S., and C. Duin. 2003. Look Ahead Features in Metaheuristics. In MIC2003: The Fifth Metaheuristics
International Conference, 79-1, .

Voÿ, S., A. Fink, and C. Duin. 2005. Looking Ahead with the Pilot Method. Annals of Operations Research
136 (1): 285�302.

17

