
Vol.:(0123456789)1 3

Tribology Letters (2022) 70:117 
https://doi.org/10.1007/s11249-022-01658-4

ORIGINAL PAPER

On the Role of Roughness in the Indentation of Viscoelastic Solids

Carmine Putignano1,2   · Giuseppe Carbone1,2

Received: 2 May 2022 / Accepted: 24 September 2022 / Published online: 17 October 2022 
© The Author(s) 2022

Abstract
A numerical boundary element methodology is employed to understand how fractality intervenes when a 1D rigid rough 
profile indents a linear viscoelastic half-plane. The focus is, in particular, on the viscoelastic dissipation and how this is 
influenced by the profile statistical parameters, namely, the mean square roughness h

rms
 of the profile, the mean square slope 

m
2
 and the Hurst exponent H. Our numerical investigation, properly supported by a dimensional analysis, reveals that, in the 

one-dimensional case under investigation, the leading role is played by h
rms

 and, thus, mainly by the large scales of the rough 
spectrum. Clearly, on an experimental level, this implies that a simple measure of the roughness parameter h

rms
 is sufficient 

to determine the viscoelastic dissipation.

Keywords  Normal indentation · Viscoelastic dissipation · Roughness · Fractality

1  Introduction

Surface topography governs a variety of phenomena on sev-
eral orders of magnitude, from the macro to the nano-scales, 
and, thus, constitutes the focus of most of the research efforts 
currently carried out in Tribology. Indeed, it is nowadays 
fundamental to understand how roughness is related to 
aspects like friction [1, 2], wear [3–5], hysteretic dissipa-
tion [6–8, 48], fluid percolation [9–11] and lubrication [12, 
13]. A clear comprehension of these phenomena is needed 
not only due to reasons related to pure theoretical interest, 
but is also driven by a very ambitious goal: current research 
trends in surface engineering aim, in fact, at shaping the 
surface to control frictional, wear and adhesive properties 
[14, 15]. A field, where these research efforts have reached 
significant advancements, includes surely the laser micro-
textured surfaces: under lubricated conditions, a pattern of 
micro-dimples has proved to be effective in reducing fric-
tion and increasing the loading capacity [16–18]. On the 
other hand, mushrooms at the micro-scales have been suc-
cessfully employed to enhance adhesion [19, 20]. These are 

just examples of the groundbreaking potential implied in 
understanding and controlling roughness, but yet explain 
all the attention paid to surface tribology. In this context, 
theoretical and numerical models play a major role as they 
constitute a virtual laboratory to obtain rapid information on 
the phenomena previously discussed.

Hence, it is straightforward to understand the particular 
efforts made, in the last decades, to develop multi-scale 
simulations approaches which, at the same time, account 
for macro-features and micro- and nano-roughness. This 
is really crucial when dealing with materials with a time-
dependent rheology: in this case, morphology and materials 
properties combine to determine the solution in terms of 
stresses, strains and, ultimately, friction. The problem was 
pioneered in the 1960s by Lee and Radok [21] and, later, by 
Hunter [22] to study the contact mechanics of smooth solids 
on viscoelastic layers. Only in the last two decades, Persson 
has proposed an analytical theory which takes into account, 
with a good level of approximation, the role of roughness in 
this kind of contacts [1, 2]. Parallelly, from a numerical point 
of view, a variety of methodologies has been developed. 
These include Finite Element Methods (FEM) [23]: in spite 
of their generality, however, FE approaches imply a really 
high computational load that is likely to become unfeasible 
when considering the entire rough spectrum. On the other 
hand, there exist well-established atomistic and molecular 
techniques (MD) that provide an accurate description at the 
nano-scales, but are hardly scalable at the macro-dimensions 
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[24, 25]. A good compromise is represented by the Bound-
ary Element Methods (BEM): these approaches, developed 
in the last decade by different research groups in the world 
[26–31], allow to account for a large number of rough scales, 
considering at the same time what happens at the mesoscale. 
They have proved to be fully effective when dealing with 
materials exhibiting a time-dependent rheology: indeed, 
several investigations have been conducted to understand 
how roughness is related to hysteretic dissipation in slid-
ing contacts [7]. Sliding motion has been widely studied 
due to its applicative importance and, in particular, to the 
so-called viscoelastic friction: the latter is related to the 
periodic deformation occuring during the sliding mechan-
ics and is shown to be dependent on the entire roughness 
spectrum. To this extent, numerical calculations have quali-
tatively corroborated what was predicted on analytical basis 
by Persson’s theory [1] and have generalized the analysis 
to different geometries, including thin layers [31], to sev-
eral kinetic conditions, including the reciprocation of rough 
solids [31], and also to biphasic interfaces, with a number 
of studies enlightening the so-called visco-elasto-hydrody-
namic regime [32–35].

Surprisingly, no such attention has been paid to evaluat-
ing the indentation, in the normal direction, of viscoelastic 
solids. In fact, following the original study by Lee and Radok 
on the indentation of Hertzian profiles, few contributions have 
been brought to this field. Normal contacts have, however, a 
specific applicative prominence: this is, for example, the case 
of creep tests [36–38]. Furthermore, let us cite, as sketched in 
Fig. 1, also the case of soft grasping, where human fingers -or, 
equivalently, artificial prostheses - are in normal contact with 
surfaces, which are nominally flats, but actually are rough on 
several orders of magnitude. Similar issues are found also in 
different areas, like industrial engineering, where, for exam-
ple, vibrations in viscoelastic media are related, inter alia, to 

normal contacts [39–42]. In spite of the theoretical and practi-
cal interest in the theme, how rough scales influence normal 
contact is, however, something that has only recently started 
to be systematically studied [43], and multiple points are 
still obscure and out of our comprehension. This study aims 
at filling this gap in the understanding of the mechanics of 
rough interfaces: specifically, we will investigate how fractal 
parameters, including the fractal dimension, the root-mean-
square and the mean slope of the heights, influence the nor-
mal contact features and, ultimately, the hysteretic losses. The 
paper is structured as follows. Section 2 includes the numerical 
methodology employed to carry out our analysis, while Sect. 3 
shows the main numerical results and discuss how fractality 
is related to viscoelasticity in normal contacts. Final remarks 
close the paper.

2 � Methodologies

In this section, we describe the numerical methodology imple-
mented to analyze the viscoelastic indentation. Let us start 
by recalling that a linear viscoelastic material presents time-
dependent strain and stress distributions, being respectively 
equal to �(t) and �(t) and related throughout the following 
integral relation [44, 45]:

where the symbol ‘ ⋅ ’ refers to the time derivative and J(t) 
is the so-called creep function. It is well know that the latter 
may be related to the material viscoelastic properties and 
specifically to the rubbery and glassy elastic moduli, being 
respectively defined as E0 and E∞ , to the creep spectrum 
C(�) and to the relaxation spectrum distribution � . In fact, 
we can write J(t) as:

(1)�(t) = ∫
t

−∞

dt�J
(

t − t�
) ⋅

�
(

t�
)

,

Fig. 1   Example of a mutli-scale 
indentation contact problem 
involving viscoelastic materials
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where the Heaviside step function H(t) is introduced to sat-
isfy the causality principle as J(t < 0) = 0 . Interestingly, 
Eq. (2) can be easily discretized by redefining the creep 
spectrum as C(�) =

∑

k Ck�
�

� − �k
�

 , thus rewriting J(t) as 
J(t) = H(t)

�

1∕E0 −
∑n

k=1
Ck exp

�

−t∕�k
��

 , where Ck and �k 
are the creep coefficients and the relaxation times.

Now, we can deal with the contact problem and, specifi-
cally, on a 1D geometrical domain, where a rigid punch 
indents a viscoelastic half-plane. Let us notice that focus-
ing on one-dimensional problem will alleviate compu-
tational efforts without penalizing the generality of the 
investigation; furthermore, 1D profiles are a qualitatively 
valid approach to deal with anisotropic surfaces, which are 
a common result of various manufacturing processes [48]. 
Now, given such a domain, we can rely on the translational 
invariance for the geometrical domain. Furthermore, the 
system is linear [46]. All this allows us to write the fol-
lowing integral equation between the normal surface dis-
placement u(x, t) and the normal interfacial stress deriva-
tive 𝜎̇(x, 𝜏):

where x is the position coordinate, t is the time, Gtot is the 
global Green’s function depending on the space and the time 
domains. Under the assumption of a perfectly homogenous 
solid, the integral equation kernel in Eq. (3) can be factor-
ized in two terms, thus writing:

where J(t) is the aforementioned creep function, whereas 
G(x) is a spatial Green’s function, related to the distance 
between the points involved in the contact area. Different 
approaches can be followed to solve Eq. (4) depending on 
the kinetic conditions set in the contact problem. In gen-
eral, as detailed in Ref. [46], in order to be solved, Eq. (4) 
requires to discretize both the time and the space domains, 
but, when analyzing particular sliding conditions, as for 
example in the case of steady-state [26] or reciprocating con-
tacts [31], Eq. (4) can be rewritten as a convolution integral 
where there exists just a Green’s function spatial term para-
metrically dependent on the steady-state speed [26] or on the 
time step during the reciprocating cycle [31]. Computational 
complexity is dramatically reduced in this way. In this paper, 
however, since we are interested in the normal indentation, 

(2)
J(t) = H(t)

[

1

E0

− ∫
+∞

0

d�C(�) exp (−t∕�)

]

= H(t)

[

1

E∞

+ ∫
+∞

0

d�C(�)(1 − exp (−t∕�))

]

(3)u(x, t) = ∫
t

−∞

dt� ∫ dx�Gtot

(

x − x�, t − t�
)

𝜎̇
(

x�, t�
)

,

(4)u(x, t) = ∫
t

−∞

dt� ∫ dx�G
(

x − x�
)

J
(

t − t�
)

𝜎̇
(

x�, t�
)

,

we are not following a similar strategy and we will solve 
directly Eq. (4). Interestingly, as in an indentation process, 
the contact region is well defined,the spatial domain remains 
contained: the computational load is, consequently, still low 
enough to allow the study of rough interfaces.

As suggested in Ref. [49], to approach Eq. (4), it is neces-
sary to further develop the Green’s term G(x) . In particular, 
as the aim of our investigation is to study rough profiles, it is 
convenient to impose periodic conditions: the most effective 
way is, to this aim, to define a periodic G�(x) . This can be 
done by starting to Fourier-transform Eq. (4) as:

and, further, again in the case of a linear viscoelastic homo-
geneous solid, as [50]:

where � and E(�) are respectively the Poisson ratio and the 
viscoelastic modulus in the Fourier domain, being easily 
related to the Fourier transformed creep function J(�) as 
E(�) = [i�J(�)]−1 , whereas the Fourier-transformed spatial 
term G(q) is equal to G(q) = −

(

2
(

1 − �2
)

∕q
)

S(q) . We note 
that such a formulation is fully general and can be applied 
to any linear viscoelastic material, with any viscoelastic 
modulus E(�) and Poisson ratio � . Furthermore, let us notice 
that S(q) is a correcting factor which takes into account the 
boundary conditions imposed on the viscoelastic substrate 
[50]: clearly, S(q) is unitary in the case of a half-plane.

Now, as we need to impose periodic boundary condi-
tions to a system that will have a spatial periodicity � , as 
anticipated, it is necessary to define and determine a spatial 
periodic function G�(x) . The latter is the displacement that 
will be found by imposing to the system a distribution of 
uniform pressures ��(x) : each term of the distribution will 
act over a strip with length a and will be periodically applied 
at a wavelength � . On this basis, by adopting the numerical 
procedure detailed in Refs. [47–49], it is possible to deter-
mine G�(x) as the following Fourier series:

This may be easily computed by means of an IFFT (Inverse 
Fast Fourier Transform) algorithm. Now, Eq. (4), where 
the spatial Green’s function can be set equal to G�(x) , 
may be solved numerically. More details can be found in 
Appendix 1.

Now, once the mathematical formulation has been devel-
oped, it is crucial to define the features of the rough profiles 
under investigation. The 1D rough profile is described by the 
following Fourier series:

(5)u(q,�) = i�J(�)G(q)�(q,�)

(6)u(q,�) = −
2
(

1 − �2
)

E(�)

1

q
S(q)�(q,�)

(7)G�(x) =
q0

2�

+∞
∑

k=−∞

G
(

kq0
)

2 sin
(

1

2
kq0a

)

kq0
eikq0x.
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where q� is the long-distance cut-off q� = 2�∕� with � being 
the fundamental periodicity length. The profile is generated 
numerically in a fractal self-affine form. To this end, let us 
assume for the power spectral density C(q), that is the Fou-
rier-transfrom of the autocorrelation function of the profile, 
the following form:

where qr and qc are the roll-off and the cut-off wavevec-
tor, being equal respectively to qr = N0q� and to qc = Nqr : 
N0 and N are, thus, the roll-off number and the number of 
scales. The presence of a roll-off vector is taken to improve 
the ergodicity of the system. Finally, C0 is a constant to be 
chosen accordingly with the desired properties of the profile 
and, specifically, as shown later, with its statistical moments.

For time being, let us focus on the numerical generation 
of the profile: we have to determine the amplitudes hk and 
the phases �k . For the phases �k , it is possible to choose 
random values uniformly distributed in the interval [−�,�[ 
: as shown in detail in Ref. [50], this ensures the invariance 
of the profile statistical properties. To obtain the amplitude, 
let us write the power spectral density (PSD) of the profile 
in Eq. (8):

From Eq. (10), we obtain that C(kq�) =
⟨

|

|

hk
|

|

2
⟩

�(0) and, 
thus, we can write:

Consequently, once 
⟨

|

|

h1
|

|

2
⟩

 and the Hurst exponent H of the 
profile are chosen, all the amplitude coefficients can be com-
puted. However, regarding the probability density distribu-
tion (PDF) of the coefficients |

|

hk
|

|

 , a choice has to be taken 
to completely determine the statistics of the process. As sug-
gested by Persson et al. in Ref. [2], this can be done by 
assuming that the PDF of |

|

hk
|

|

 is just a Dirac’s 3b4 function 

c e n t e r e d  a t  
⟨

|

|

hk
|

|

2
⟩1∕2

 ,  t h a t  i s ,  p
(

|

|

hk||
)

= �
(

|

|

hk|| −
⟨

|

|

hk||
2
⟩1∕2

)

 . Incidentally, we observe that the pro-

file generated accordingly to this profile is periodic, thus 
allowing us to avoid any finite-size effect in our analyses.

(8)h(x) =

+∞
∑

k=−∞

hk cos
(

kq�x + �k

)

(9)C(q) =

⎧

⎪

⎨

⎪

⎩

0

C0

�

q∕qr
�−(2H+1)

0

q𝜆 < q < qr
qr < q < qc

q > qc

(10)C(q) =

+∞
∑

k=−∞

⟨

|

|

hk
|

|

2
⟩

�(q − kq�).

(11)
⟨

|

|

hk
|

|

2
⟩

=
⟨

|

|

h1
|

|

2
⟩

k−(2H+1)

Now, given the specific purpose of this paper, that is, 
to understand, on statistical basis, the influence of the 
profile features on the indentation solution, it is crucial 
to observe that, given the self-affinity of the process, just 
three independent parameters are necessary to determine 
its statistics. Our choice is to employ the following ones: 
(a) the mean square roughness 

⟨

h2
⟩

 of the profile, which 
coincides with the zeroth order moment of the PSD, that 
is, 

⟨

h2
⟩

= h2
rms

= m0 = ∫ dqC(q) ; (b) the mean square 
slope 

⟨

h′2
⟩

 , which is the second order moment of the pro-
file PSD, i.e., 

⟨

h�2
⟩

= m2 = ∫ dqq2C(q) ; (c) the Hurst expo-
nent H, that is related to the profile fractal dimension Df 
as Df = 2 − H . Incidentally, the choice of these parameters 
is, to some extent, arbitrary, but it has been driven by their 
straightforward relation to the PSD of the profile. Ultimately, 
now, our aim is to understand how the contact properties 
change with these parameters.

3 � Results and Discussion

We study the indentation process of a 1D profile into a lin-
ear viscoelastic solid by controlling the mean separation 
s̃ = s∕hrms throughout the following time law:

where s̃0 and Δs̃ are respectively the dimensionless mean 
value s̃0 = s0∕hrms and amplitude Δs̃ = Δs∕hrms of the oscil-
lating indentation, and Ω and t̃ are the dimensionless oscil-
lation frequency Ω = �� and time t̃ = t∕𝜏 with � being the 
material relaxation time. In fact, in order to illustrate the 
main features of the system, but without any loss of gen-
erality, we employ a one-relaxation-time material with 
the glassy and the rubbery moduli respectively equal to 
E∞ = 107 Pa and E0 = 106 Pa, the Poisson’s ratio � = 0.5 and 
the relaxation time � = 0.1 s. Regarding the rough profiles, 
in order to reach a statistical relevance, results are obtained 
by averaging the numerical outcomes of 150 different reali-
zations and setting the roll-off number N0 equal to N0 = 4 ; 
the number of scales, included in the analysis, is N = 128 
and, to obtain numerical convergence, the smallest scale is 
sampled with 32 points. Finally, we observe that the results 
are reported when all the transient effects have expired.

We start our study with a profile with hrms = 4.5 � m, 
m2 = 4.5 × 10−4 and H = 0.6 : the analysis is carried out 
for s̃0 = 0.35 , Δs̃ = 0.1 ⋅ s̃0 and Ω = 6.8 . Figure 2 reports 
the deformed profile in terms of dimensionless displace-
ment ũ = u∕hrms as a function of the dimensionless abscissa 
x̃ = x∕𝜆 , for different time steps t̃ after enough cycles have 
been completed to consider the transient concluded. Let us 
focus, now, on the main features marking the viscoelastic 

(12)s̃(t) = s̃0 − Δs̃ sin (Ωt̃)
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indentation compared to what would happen for a non-time-
dependent rheology: indeed, both in the full-size graph and 
in the zoom frames, we observe that, when a region is locally 
indented, once the contact has been released, the viscoelastic 
substrate keeps on showing there the shape assumed during 
the indentation. This memory effect is typical for a viscoe-
lastic contact [49] and, crucially, is preserved also at the 
rough scales during the indentation cycle: as we will later 
see, this is intrinsically related to the work hysteretically dis-
sipated in the indentation cycle. To this extent, in Fig. 3, for 
a given time-step and, precisely, for t̃ = 3.25 , we can observe 
the pressure distribution: interestingly, the methodology is 

fully accurate and allow to obtain, in each contact cluster, a 
fully convergent distribution.

In order to assess the evolution of the entire indentation 
cycle, we can look at the global quantities and, specifically, 
at how the dimensionless separation s̃ , the dimensionless 
real contact area ã = a∕𝜆 and the dimensionless global 
load per unit of lengthP̃ = P∕

(

E0hrms

)

 evolve over the 
time. In Fig. 4a, we observe s̃ as a function of P̃ : as the 
load increases, the mean separation decreases, but corre-
spondingly, with a diminishing load, separation soars. In this 
loading/unloading cycle, it is well clear that some energy 
is hysteretically dissipated. This is evident also in Fig. 4b 
and c, where we plot the contact area ã versus the load P̃ 

Fig. 2   Dimensionless displacement ũ (red) indented by the rough profile (blue). The full-size graph refers to t̃ = 3.625 while the zoom frames are 
taken for different time-steps t̃  describing the entire indentation cycle (Color figure online)
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and the separation s̃ : the paths followed during the loading 
and the unloading process are clearly different due to the 
energy dissipation. Interestingly, at the two extreme dead-
points of the cycle, the trends are non-symmetrical own to 
the well-known non-linear relation between area and mean 
separation [48].

From this results, it is clear that the key quantity to 
consider during viscoelastic indentation is the dissipated 
work per unit of length W̃  . The latter can be defined as a 
dimensionless quantity and, specifically, as the integral W̃ =  
∮ P̃ds̃ . In Fig. 5, where we plot W̃  as a function of the fre-
quency Ω , we observe the bell-shaped curve that is expected 
in processes involving viscoelastic dissipation: at the very 
low and very high frequencies, where the material retrieves 
an elastic behavior, W̃  vanishes whereas, in the middle of 
the frequency range, we find a maximum for the dissipation.

At this stage, we can raise a question that is fundamen-
tal for the purposes of this paper and, specifically, we may 
wonder how the fractal features of the rough profiles influ-
ence the dissipation. As discussed in the previous section, 
a rough profile can be univocally identified on statistically 
basis by the mean square roughness hrms , the mean slope 
m2 and the Hurst exponent H. In Fig. 6, we plot the maxi-
mum dissipated power W̃max during the cycle as a function 
of the aforementioned parameters. The values are chosen 
over a wide range and, specifically, are equal to hrms = 1 , 
4.5, 20, 100 � m, m2 = 10−4 , 4.5 × 10−4 , 20 × 10−4, 10−2 and 
H = 0.6 , 0.7, 0.8, 0.9. Incidentally, let us observe that the 
frequency corresponding to W̃max may vary slightly, but, as 
we will see, this will be due to the statistical scattering that 

affects the different realizations. In fact, the whisker boxes 
in Fig. 6 reveal that, despite a relatively large dispersion, 
mainly due to the different maximum height values in each 
numerical realization of the profile, there is no statistically 
significant difference for W̃max . This is a crucial result as it 
implies that, for rough profiles, the curve in Fig. 5 does not 
depend on the statistical properties of the profile. To bet-
ter understand this, let us carry out a simple dimensional 
analysis. The total load per unit of length P can be estimated 
as P = �m� = |E(�)|�m� with �m being the mean stress and 
�m the corresponding deformation. It is well known that the 
stress distribution mainly depends on the large scales, while 
the small ones produce just a perturbation of such a distribu-
tion. This implies that the total load P is mainly related to 
the large scales contribution: consequently, we can estimate 
�m as �m ≈ hrms∕� and, on this basis, the load can be quanti-
fied as P ≈ |E(�)|hrms . Now, as the separation s is on its turn 
proportional to hrms , i.e., s ≈ hrms , the dissipated work per 
unit of length W can be written as:

and, since the dimensionless work W̃  is in practise equal 
to W̃ = W∕h2

rms
 , we understand why the dimensionless dis-

sipated power W̃  does not appear to be influenced by the 
statistical parameters of the profile. In fact, for 1D profiles, 
the root-mean-square of the heights seems to be the only 
parameter that counts for the dissipated work. This is cer-
tainly important as hrms is mainly determined by the large 

(13)W = ∮ Pds ≈ |E(�)|h2
rms

,

Fig. 3   Dimensionless displacement ũ (red) indented by the rough profile (blue): the zoomed graph reports the pressure distribution p̃ (Color fig-
ure online)
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scales, thus meaning that the small scales, in the case of 
alternate indentation, do not play a significant role in the 
viscoelastic dissipation. Such a behavior marks a signifi-
cant difference with sliding contacts, where the leading 
parameter for viscoelastic friction is m2 and, therefore, all 
the scales contribute to the viscoelastic friction [7]. This 
has interesting practical implications. In fact, an open prob-
lem in Tribology is to determine the cut-off vector when 

carrying out calculations on viscoelastic friction in sliding 
conditions: possible approaches, which relate the cut off to 
the material degradation or to the presence of interfacial 
micrometric particles, have been proposed in literature [1, 
51], but a definitive theory is still missing. On the contrary, 
this paper shows that, when dealing with normal indentation, 
the process is governed by the large scales and, thus, by the 
roughness hrms : the latter can be easily determined by an 
experimental profilometer measure.

4 � Conclusions

In this paper, we investigate the normal indentation of a 
rough profile on a viscoelastic half-plane with the specific 
aim to understand how the fractal parameters influence the 
process and, precisely, the viscoelastic dissipation. To this 
end, we employ a boundary element methodology being 
capable of discretizing, with high accuracy, both the time 
and the space domains: this allows us to obtain the contact 
solution, at different time-steps, for profiles being rough 
on a large multi-scale range.

In our analysis, we focus on an indentation occuring 
with a sinusoidal time law. Interestingly, unlike what hap-
pens in the linear elastic case, we observe that, after being 
indented, the material needs time to relax and recover 
the past deformation: such a time-dependent behavior is 
strictly related to the energy hysteresis occuring during 
the periodic indentation cycle. This is well clear when 
studying the separation as a function of the load (or, 
equivalently, of the area): the loading path is different 
from the unloading one, as expected in a hysteric process. 
We have, therefore, computed the dissipated energy as a 
function of the indentation frequency and, for a simple 
one-relaxation-time materials, we have found the clas-
sic viscoelastic bell-shaped trend: at very low and very 
high frequencies, the material behaves elastically, while 
for intermediate values, we have the proper viscoelastic 
trend. At this stage, we can focus on the maximum dis-
sipation value and on the crucial aim of this paper, that 
is, the influence of fractality on dissipation. Numerical 
results show that the dissipated work W, defined per unit 
of length in the 1D contact, depends exclusively on h2

rms
 

and, thus, mainly, on the large scales, which determine 
the root mean square of the height distribution. To this 
extent, the phenomenon is clearly different from what hap-
pens in sliding contacts, where the leading role is taken 
by m2 and, so, by the entire rough spectrum. Interestingly, 
this results implies that, once made non-dimensional with 
respect to h2

rms
 , the bell-shaped dissipation curve in the 

indentation of a 1D profile can be considered universal as 
it is independent on the mean square slope and the Hurst 
exponent. Clearly, this has experimental consequences as 

(a)

(b)

(c)

Fig. 4   Separation s̃ as a function of the load P̃ (a), contact area ã ver-
sus the load P̃ (b) and the separation s̃ (c)
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it means that dissipation will depend just on this simple 
roughness parameter.

Appendix 1: Numerical Implementation 
of the Boundary Element Approach

In order to implement a numerical approach to solve Eq. 
(4) and, specifically, a Boundary Element approach, let us 
mesh the one-dimensional spatial domain with N equally-
spaced elements, having a length a, whilst the time domain 
is discretized with a step Δt . Thus, we can discretize Eq. (4) 
and, at a certain time step �Δt , write the displacement u of 
the centroid xi as:

To efficiently solve Eq. (14), let us isolate two terms that are 
already known at the time step �Δt at which the equation is 
formulated. Specifically, these are b(xi, �Δt) and c(xi, �Δt):

and

(14)
u(xi, �Δt) =

N
∑

j=1

G�(xi − xj)

�
∑

k=0

J(Δt(� − k))

×
(

�
(

xj, kΔt
)

− �
(

xj, (k − 1)Δt
))

.

(15)
b(xi, �Δt) =

N
∑

j=1

G�(xi − xj)

�−1
∑

k=0

J(Δt(� − k))

×
(

�
(

xj, kΔt
)

− �
(

xj, (k − 1)Δt
))

Fig. 5   Dimensionless dissipated 
work W̃ as a function of the 
frequency Ω

(a) (b) (c)

Fig. 6   Dimensionless maximum dissipated work W̃
max

 as a function 
of the h

rms
 , m

2
 and H. On each box, the central mark refers to the 

median, while the bottom and top edges of the box indicate the 25 

and 75th percentiles, respectively. The whiskers extend to the most 
extreme data points that are not considered outliers, whereas the out-
liers are reported individually using the marker +
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These definitions allow us to write Eq. (14) as:

The latter can be formulated for each boundary element in 
the spatial domain, thus giving place to the following linear 
system:

where {�} is the stress array, where the jth-term 
represents the pressure value at the centroid of 
the boundary jth-element, while 

{

uc
}

 is the cor-
rected displacement array, whose ith-term is equal to 
uc(xi, �Δt) = u(xi, �Δt) − b(xi, �Δt) − c(xi, �Δt) . Finally, 
[G�] is the intercorrelation matrix at the given time step.

Once Eq. (14) is expressed as a linear system, we can 
solve the contact problem by means of the same iterative 
techniques already successfully employed in the linear 
elastic case and in the viscoelastic one under steady-state 
assumptions [26]. Basically, once we assume a tentative 
value for the contact area, as contact continuity gives us the 
displacement distribution in this area, the stresses, which are 
clearly null out of the contact area, can be found by simply 
inverting the linear system in Eq. (18). Then, at each itera-
tion, the contact area is updated by cancelling the elements 
with negative pressure and adding those for which there is 
interpenetration: the iterative procedure converges when the 
contact area does not vary anymore.
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(16)c(xi, �Δt) = −

N
∑

j=1

G�(xi − xj)J(0)�
(

xj, (� − 1)Δt
)

.

(17)

u(xi, �Δt) − b(xi, �Δt) − c(xi, �Δt)

=

N
∑

j=1

G�(xi − xj)J(0)�
(

xj, �Δt
)

.

(18)
{

uc
}

= [G�]{�}
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