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Abstract In software development, Non-Functional Requirements (NFRs) play a
crucial role in decision making procedures for architectural solutions. A strong re-
lation exists between NFRs and design patterns, a powerful method to support the
architectural design of software systems, but due to their complexity and abstrac-
tion, NFRs are rarely taken into account in software design. In fact, the knowledge
on NFRs is usually owned by designers and not formalized in a structured way.

We propose to structure the knowledge associated to NFRs via a Fuzzy Ontol-
ogy, which we show is able to model their mutual relations and interactions. The
declarative approach makes possible to represent and maintain the above men-
tioned knowledge by keeping the flexibility and fuzziness of modeling thanks to
the use of fuzzy concepts such as high, low, fair, etc.

We present a decision support system based on (i) a Fuzzy OWL 2 ontology
that encodes 109 design patterns, 28 pattern families and 37 NFRs and their
mutual relations, (ii) a novel reasoning service to retrieve a ranked list of pattern
sets able to satisfy the Non-Functional Requirements within a system specification.
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1 Introduction and motivation

In software development the main goals to accomplish are customer and quality
requirements satisfaction, correct execution of the software systems, and cost ef-
fective adaptation to future changes [1]. In order to reach these challenging goals,
tools and techniques may help to manage and retrieve the knowledge necessary
for decision making processes. For this reason, recent research trends are focused
to strengthen the reasoning and decision-making process to reach these goals [1].

The development of a software system is in fact determined partly by its func-
tionality i.e., what the system does - and partly by requirements about qual-
ity attributes or about development [16]. Such requirements are known as Non-
Functional Requirements (NFRs). During architectural design the selection of
NFRs is a relevant task, since can be used as selection criteria for choosing the
proper design solution among several ones. On the other hand, exploiting design
decisions during development emerges as a Software Architecture [5,63,31,21]. The
software architecture is the result of the work of an architect or of a designers team
[5]. The architectural design of a software system is made up of a set of selected
quality attributes; in this sense, the architecture can be modeled by taking into
account the needed quality attributes. To reach this goal, an architect can use
primitive design techniques. These primitives are known as tactics. Generally a
tactic can be considered as a modeling solution and is related to satisfying a given
quality attribute. An architectural strategy is made up of several tactics. The ar-
chitect takes design decision based on a strategy, hence selects a set of tactics, and
hence a set of patterns.

The design process requires a choice of the best combination of tactics to
achieve the systems desired goals [5]. For this reason during architectural de-
sign phase a challenging task is the selection of patterns able to satisfy desired
requirements [26,52,58]. A main difficult derives from the relationship between
patterns that can be complementary, can be composed, sometimes cooperate to
solve a larger problem or are exclusive in a modeling task.1 Existing classifica-
tions or quality models have been defined to categorize quality attributes and
requirements [56], anyway a systematic classification of NFRs towards architec-
tural design and a description of their use during system modeling are missing [57,
2]. Moreover, only little work has been done in using a knowledge-based approach
to support such activities [49].

The main objective of this research is the realization of a semi-automated tool
aimed at supporting decision makers to derive knowledge able to solve architectural
problems.

More precisely we aim to develop a Decision Support System for supporting
designers and software architect – having greater or lesser experience – in the
architectural design process.

To achieve this goal, we will define a theoretical framework to model and reason
on the knowledge about requirements and reusable schema for design in order to
obtain a model of the system satisfying given requirements, quality attributes
optimized with reusable and composable design schema.

Toward this goal, the following research questions will be addressed:

1 E.g., [12] addresses this problem by proposing a specific pattern language.
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Q1. What are the main categories of requirements a software may be asked to
fulfill? Q2. What are the main reusable solving schema for given classes ( or families
) of design problems? Q3. How do categories of requirements, reusable schema and
classes of problems are related? Q4. How to facilitate the decision making process
for software design modeling by using relations among these categories of elements?
Q5. How to use this knowledge to support modeling during software design?

To achieve the main objective of this research and answer the research ques-
tions, the following research process has been taken: 1. Propose a theoretical
framework for modeling knowledge about NFRs, pattern and define a reasoning
algorithm to manipulate the modeled knowledge; 2. Build a prototype system to
implement the theoretical framework; 3. Validate the prototype with use cases; 4.
Compare solutions provided by the decision support system with human proposed
solutions to software design problems.

The framework we propose to represent and reason about NFRs is based on
Fuzzy Description Logics (FDLs) (we refer the reader to [65] for a description
about FDLs), which are the theoretical counterpart of Fuzzy OWL 2 [9], the main
formalism to specify fuzzy ontologies. We recall that FDLs are logical languages
specifically tailored to model structured information about vague concepts that
naturally occur in NFRs. For instance, in our context, FDLs allow one to model
that “portability and adaptability are directly proportionate”, “stability and adapt-
ability are inversely proportionate” (ontological knowledge) or that “the Adapter
pattern has high portability” (factual knowledge). New knowledge about a pattern
is obtained by combining existing knowledge, for example ontological or factual
through a reasoning task. For instance it can be inferred that “the Adapter pattern
has high adaptability and low stability”. Another type of expression allowed in our
framework is “high adaptability implies a medium maintainability”. Let us note
that in the previous statements, we can use fuzzy sets [71] to characterize con-
cepts like high, medium and low. We would like to stress the point that a formal
encoding of the knowledge about patterns, NFRs and family of patterns is partic-
ularly useful to automatize the task of selecting a set of patterns that encounters
user’s needs. Specifically, we will show how the following task can be addressed:
given a desired set of NFRs, perform the task of retrieving the smallest subset of
patterns that best match them. Eventually, in order to make the approach feasible,
we collected the knowledge about 109 design patterns, 28 pattern families and 37
NFRs together with their mutual relations and represented them as a Fuzzy OWL
2 ontology and show its application in a use case scenario.2

In summary, this paper provides the following contributions:

– we provide a method to model and reason with mutual relations among NFRs
in architectural software patterns by relying on fuzzy ontologies;

– the definition of a novel formal reasoning task being able to retrieve a set
of patterns that maximally match a user query expressed in terms of desired
NFRs;

– the construction of a Fuzzy OWL 2 ontology;
– a use case scenario application to validate the method;
– an implementation of the theoretical framework in a decision support system.

2 The ontology is available online at http://sisinflab.poliba.it/semanticweb/
ontologies/architecturalpatterns/
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No other method similar to the proposed one was found. This paper consid-
erably extends our previous work [22] where the initial idea and examples were
sketched and presented. More specifically, w.r.t. [22], we: extend two new sections
on Fuzzy Description Logics and Architectural Patterns and NFRs; define the
fuzzy sets to be used in the definition of NFRs mutual relations; formally define
and implement the Covering Answer Set reasoning task to be used for patterns
retrieval; extend the use-case scenario by showing a step-by-step retrieval task and
add a new use-case; present the implementation of a novel fuzzy OWL 2 ontology,
which is publicly available online.

In the following, we proceed as follows. We start by recalling basic definitions
about ontologies and FDLs. Then, we proceed with main properties of design
patterns and quality models used to model NFRs. In Section 4, we state the ad-
dressed problem and the proposed approach. In Section 5 we describe a case study.
In Section 6 the implemented decision support system is described. In Section 7
we validate the approach and in Section 8 we address related work about exist-
ing (ontological) approaches for Knowledge representation in software engineering,
design patterns and NFRs modelling. Conclusions close the paper.

2 Fuzzy Description Logics

Ontologies play a key role in the success of the Semantic Web [7] since they are the
recognized knowledge representation formalism for specifying domain knowledge
and for sharing and reusing this knowledge. Description Logics (DLs) [3] are at
the core of the Semantic Web ontology description language OWL 2 [18]. In fact,
OWL 2 is based on a specific DL named SROIQ(D) [43]. In recent times, it
has been noted that classical ontologies and its languages are not appropriate to
deal with vagueness and imprecise knowledge, which is fundamental to several real
world domains [62]. To handle this problem, the use of fuzzy logics with ontology
offers a solution. Fuzzy ontologies and its description logics for the semantic web
can handle probabilistic or possibilistic uncertainties and vagueness. Research on
fuzzy ontologies began in the early 2000’s with the focus on simplistic models
used for improve an Information Retrieval System [14]. Fuzzy DLs (FDLs) are an
extension of DLs to deal with fuzzy concepts (see [65,8] for an overview). In these
logics, satisfactions of axioms is based on a degree of truth that generally is a value
in [0, 1].

2.1 Recap of Fuzzy Description Logics Basics

The fuzzy DL we are considering here is called ALCB(D), whose expressiveness is
enough to illustrate our approach. Our framework extends to more expressive fuzzy
DLs easily. We recall that ALCB(D) is a ALC, in which the letter B represents the
individual value restrictions that are restricted kind of nominals, and the letter D
indicates the fuzzy concrete domains [64].

For making the paper self-contained, we recap here some basic definitions about
fuzzy sets and the fuzzy DL ALCB(D).
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Fig. 1 (a) Trapezoidal function trz (a, b, c, d), (b) triangular function tri(a, b, c), (c) left shoul-
der function ls(a, b), and (d) right shoulder function rs(a, b).

2.1.1 Fuzzy Sets

Let X be a countable crisp set, i.e. a set in which an element is a either mem-
ber of the set or not. A fuzzy set [71] A over X is characterized by a func-
tion A : X → [0, 1], called fuzzy membership function. Typical operations on
fuzzy sets are defined as: Intersection (A ∩ B)(x) = min(A(x), B(x)), Union
(A ∪B)(x) = max(A(x), B(x)) and Complement Ā(x) = 1−A(x). Figure 1 illus-
trates some frequently used membership functions for specifying fuzzy sets.

2.1.2 The Fuzzy DL ALCB(D)

At first, let us recap the notion of fuzzy concrete domain [64] that is a tuple
D = 〈∆D, ·D〉 where ∆D is the data type domain and ·D is a mapping that as-
signs an element of ∆D to each data value, and a 1-ary fuzzy relation over ∆D to
every 1-ary data type predicate d. Hence the mapping ·D relates each data type
predicate to a function from the domain ∆D to [0, 1]. The data type predicates d
we are considering here are the membership functions shown in Figure 1: trape-
zoidal trz(a, b, c, d), triangular tri(a, b, c), left-shoulder ls(a, b) and right-shoulder
rs(a, b):

d → ls(x, y) | rs(x, y) | tri(x, y, z) | trz(x, y, z, t)
| ≥v | ≤v | =v | ∈V ,

and v ∈ ∆D and V ⊆ ∆D. To what concerns our framework, we will consider the
following fuzzy concrete domain as illustrated in Figure 2. The values/ratings in

{verybad, bad, medium, good, verygood}

are macros for some predefined numerical values.
Now, let us consider the following notations: the set of atomic concepts or

concept names is denoted as A, the set of role names denoted as R, the set of
individual names denoted as I. We assume that a role can be a data type property
or an object property. Using DL constructors, concepts are built from concept
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Fig. 2 The fuzzy sets we use to deal with Non-Functional Requirements.

names A, object properties R and data type properties S. The syntactic rule used
for concept construction is the following:

C → > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | C1 → C2

| ∃R.C | ∀R.C | ∃S.d | ∀S.d | ∃R.{a} .

Concepts of the form {a}, with a ∈ I, are called nominals. In ALCB(D), they can
only appear in concepts of the form ∃R.{a}.

A Fuzzy Knowledge Base (or fuzzy Ontology) K = 〈A, T 〉 contains a fuzzy
ABox A with axioms about individuals and a fuzzy TBox T with axioms about
concepts.

A fuzzy ABox contains a finite set of fuzzy assertions of the following types: (i)
Concept assertions of the form 〈a:C,α〉, with α ∈ (0, 1] and stating that individual
a is an instance of concept C with degree greater than or equal to α; and (ii) Role
assertions of the form 〈(a, b):R,α〉, α ∈ (0, 1], meaning that the pair of individuals
(a, b) is an instance of role R with degree greater than or equal to α. A fuzzy TBox
consists of a finite set of fuzzy General Concept Inclusions (fuzzy GCIs), which
are expressions of the form 〈C1 v C2, α〉, α ∈ (0, 1], meaning that the degree of
concept C1 being subsumed by C2 is greater than or equal to α.

For the rest of the paper we also make the following assumptions: (i) in fuzzy
assertions and GCIs, we may omit the degree α and in that case the value 1 is
assumed; (ii) we may write ∃R in place of ∃R.>; and (iii) we use the GCI C ≡ D
as a macro of both expressions C v D and D v C, dictating that C and D are
‘equivalent’ concept expressions.

Concerning the semantics, let us fix a fuzzy logic. Unlike classical DLs, in fuzzy
DLs, an interpretation I maps a concept C into a function CI : ∆I → [0, 1] and,
thus, an individual belongs to the extension of C to some degree in [0, 1], i.e., CI

is a fuzzy set.

Specifically, a fuzzy interpretation is a pair I = (∆I , ·I) consisting of a nonempty

(crisp) set ∆I (the domain) and of a fuzzy interpretation function ·I that assigns:

(i) to each atomic concept A a function AI : ∆I → [0, 1]; (ii) to each object prop-

erty R a function RI : ∆I × ∆I → [0, 1]; (iii) to each data type property S a

function SI : ∆I × ∆D → [0, 1]; (iv) to each individual a an element aI ∈ ∆I

such that aI 6= bI if a 6= b (Unique Name Assumption); and (v) to each data

value v an element vI ∈ ∆D. Now, a fuzzy interpretation function is extended to
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concepts as specified below (where x ∈ ∆I):

⊥I(x) = 0 , >I(x) = 1 , (C uD)I(x) = CI(x)⊗DI(x) , (C tD)I(x) = CI(x)⊕DI(x) ,

(¬C)I(x) = 	CI(x) , (C → D)I(x) = CI(x)⇒ DI(x) , (∀R.C)I(x) = infy∈∆I{RI(x, y)⇒ CI(y)} ,
(∃R.C)I(x) = supy∈∆I{RI(x, y)⊗ CI(y)} , (∃R.{a})I(x) = RI(x, aI) ,

(∀S.d)I(x) = infy∈∆D{SI(x, y)⇒ dD(y)} , (∃S.d)I(x) = supy∈∆D{SI(x, y)⊗ dD(y)} .

The satisfiability of axioms is then defined by the following conditions: (i) I sat-
isfies an axiom 〈a:C,α〉 if CI(aI) ≥ α; (ii) I satisfies an axiom 〈(a, b):R,α〉 if
RI(aI , bI) ≥ α; (iii) I satisfies an axiom 〈C v D,α〉 if (C v D)I ≥ α where3

(C v D)I = infx∈∆I{CI(x)⇒ DI(x)}. I is a model of K = 〈A, T 〉 iff I satisfies
each axiom in K.

The most common reasoning tasks on fuzzy DLs, which are usually inter-
definable [65], are the following ones (K is a fuzzy KB): (i) Consistency (or KB
satisfiability). Check if K has a model ; (ii) Fuzzy concept satisfiability. A fuzzy
concept C is α-satisfiable w.r.t. K iff there is a model I of K such that C(x)I ≥ α
for some element x ∈ ∆I ; (iii) Entailment. A fuzzy axiom τ is a logical consequence
of K (or K entails τ), denoted K |= τ , iff every model of K is a model of τ . (iv) Fuzzy
concept subsumption. C2 α-subsumes C1 w.r.t. K iff every model I of K satisfies
∀x ∈ ∆I , CI1 (x)⇒ CI2 (x) ≥ α; (v) Best Entailment Degree (BED). The BED of an
axiom φ ∈ {a:C, (a, b):R, C v D} w.r.t. K is defined as bed(K, φ) = sup {α | K |=
〈φ, α〉}; (vi) Best Satisfiability Degree (BSD). The BSD of a concept C w.r.t. K
is defined as bsd(K, C) = supI|=K supx∈∆I CI(x); (vii) Answer Set. The answer
set of a concept C w.r.t. K is the set ans(K, C) = {〈a, α〉 | α = bed(K, a:C)}.
Each element in ans(K, C) is called an answer to C w.r.t. K; (viii) Top-k Answer
Set. The top-k answer set of C w.r.t. K, denoted ansk(K, C), is the set of top-k
ranked answers of to C w.r.t. K. Formally, ansk(K, C) ⊆ ans(K, C) is maximal un
set inclusion, |ansk(K, C)| ≤ k, there is no 〈a, 0〉 ∈ ansk(K, C), and there is no
〈b, β〉 ∈ ans(K, C) \ ansk(K, C) with β > α for some 〈a, α〉 ∈ ansk(K, C). Each
element in ansk(K, C) is called a top-k answer to C w.r.t. K.

Eventually, fuzzy DL reasoners enable to manage fuzzy ontologies in practice
(see [10] for an overview). fuzzyDL [10] is an expressive fuzzy ontology reasoner (the
supported language is more expressive that the one presented here) that supports
the three main semantics of fuzzy logics: Zadeh,  Lukasiewicz, and classical DLs,
for ensuring compatibility with crisp ontologies.

3 NFRs, Design and Architectural patterns

Non-Functional Requirements. A software system design is obtained as the results
of both functional requirements implementation i.e., what the system does - and
requirements about development specifications or quality attributes. Such require-
ments concern development features, operational costs, but also quality attributes
[16]. Non-Functional Requirements (NFRs) are crucial in software design since
help designers in selecting the supposed best design solution among several alter-
natives. For this reason, best practices in taking into account these requirements
is the basis for ensuring successful development. Also taking properly into account
requirements can prevent errors which may have negative impact on management

3 However, note that under standard logic v is interpreted as ⇒z and not as ⇒kd.
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and costs of the whole software project [28] [20] [16]. Non-Functional Requirements
lend to a qualitative assessment more than an objective definition, for this rea-
son identifying a particular NFR is a challenging task. Besides, identifying NFRs
is a architectural task, so the availability of reusable solutions that ensure satis-
faction of a given NFR or of a set of NFR gives a valid support to performing
architectural modeling. Description of knowledge about NFRs is proposed in NFR
catalogues [51],[19] those enabling reuse and catalogation and a useful way of
addressing the need for help on NFR elicitation. In literature, a plethora of def-
initions can be found of Non-Functional Requirements (NFRs). A series of such
definitions is summarized in the work by M. Glinz [33]:

a) “Describe the non-behavioral aspects of a system, capturing the properties and
constraints under which a system must operate.”

b) “The required overall attributes of the system, including portability, reliability,
efficiency, human engineering, testability, understandability, and modifiability.”

c) “Requirements which are not specifically concerned with the functionality of
a system. They place restrictions on the product being developed and the
development process, and they specify external constraints that the product
must meet.”

d) “...global requirements on its development or operational cost, performance,
reliability, maintainability, portability, robustness, and the like. ... There is not
a formal definition or a complete list of nonfunctional requirements.”

e) “The behavioral properties that the specified functions must have, such as
performance, usability.”

f) “A property, or quality, that the product must have, such as an appearance,
or a speed or accuracy property.”

g) “A description of a property or characteristic that a software system must
exhibit or a constraint that it must respect, other than an observable system
behavior.”

Design and Architectural Pattern. Reusable solutions of design models are avail-
able mainly realized using patterns. These approaches are important vehicles for
constructing high-quality software architectures since provide already tested solu-
tions [30,13].

Design patterns were proposed during the last decades are reusable solutions
to modeling recurrent problems. They are mainly based on the expert’s experience
that use solution proposed for similar problems [30,13].

Therefore, the use of patterns or tactics [57,6,34] for architectural modeling
constitutes an effective solution for addressing design decisions [38]. They also
support the construction and documentation of software architectures. In sum-
mary, patterns provide a set of predefined design schemes for software systems
organization, and provide an abstract formalization of the design solution [13,42,
67].

According to [12], design patterns can be classified into families that identify
a problem area addressing a specific topic. The pattern language proposed in [12]
includes 114 patterns, which are grouped into thirteen problem areas addressing
a specific technical topic.

The main purpose of families and problem areas is to make the language and
its patterns more tangible and comprehensible. In Table 1 we briefly describe and
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summarize some relevant families of patterns as described in [12] to which we also
add the family of Cloud patterns [27].

Table 1 Some of the most relevant families of patterns.

Family Description
Distribution Infrastructure Patterns concerning middleware’s issues, i.e., distribution

infrastructure software that help to simplify applications
in distributed systems.

Interface Partitioning Patterns that specify usable and meaningful component
interfaces. Interfaces inform clients about the compo-
nent’s responsibilities and usage protocols.

Object Interaction Patterns for make object interact in standalone programs.

Application Control These patterns separate interface from application’s main
functionality. Transforming user input for an application
into concrete service requests, executing these requests,
and transforming results back into an output that is
meaningful for users.

Event Demultiplexing It concerns patterns that describe different approaches for
managing events in distributed and networked systems.

and Dispatching
Synchronization Patterns addressing the problem of synchronous access to

shared components, objects and resources.

Concurrency Patterns that deal with concurrency control.

Adaptation and Extension Patterns for making applications and components adap-
tive to specific environments.

Modal Behavior Patterns that support the implementation of state-
machines.

Resource Management These patterns for managing resource’s lifecycle and avail-
ability to clients.

Database Access Patterns belonging to this family manage the access to re-
lational databases and the mapping with other data mod-
els.

Cloud Patterns belonging to this family describe different types
of clouds, the services they provide, how to build appli-
cations with them and the interconnections between pat-
terns.

4 Problem statement and approach

A typical software design problem can be stated as follows:

“Given a set of requirements define the software design that best matches
them”.

Software design and software architecture design model, requirements and spec-
ifications are composed of Functional Requirements (FRs) and Non-Functional
Requirements (NRFs). Generally, modeling and definition of FRs is a strong and
wide phase of software development process. On the other hand, enterprise archi-
tects could take advantage also from formalization and validation of NFRs. In fact
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NFRs compliance impacts on the long-term benefit of the system. So being able to
predict and evaluate NFRs from the first stages of the development process would
ensure a high quality level of the software systems. Anyway this remains still a
challenging task.

With respect to the general problem stated before, we can re formulate its
statement by restricting our attention to the relation among patterns, NFRs and
families. Specifically, with reference to the design problem at the beginning of this
section, we address the following problem:

“Given a software design to model, a set of NFRs and the problem areas the
software refers to, which are the components/patterns that best fit them?”

The task poses some difficulties that we are going to highlight:

– some NFRs cannot be satisfied together some others may be disjoint;
– patterns satisfying the required NFRs may not be contained in families;
– not all the patterns providing a given NFR or belonging to a family may be

known by the designer.

4.1 Representing and reasoning about NFRs via fuzzy DLs

We propose the use of fuzzy DLs and fuzzy reasoning services (i) to define a formal
model of the relations among problem areas, design patterns and satisfied NFRs;
and (ii) to provide the designer a reasoning mechanism as a support for selecting a
set of patterns that ensure the satisfaction of a set of desired requirements. More
specifically:

– we use fuzzy DL statements to model the domain of architectural modeling at
a high level and to model relations among Non-Functional Requirements;

– we propose a fuzzy DL reasoning service to deduce new knowledge about mu-
tual relation between NFRs and to answer the retrieval problem of finding sets
of patterns that satisfy desired requirements.

In the following, detail about addressing the two above mentioned steps are pro-
vided.

The (upper) ontology (TBox) is used to formalize the knowledge about the
NFRs, about patterns and families that pattern belong to. The upper ontol-
ogy is composed by three main classes SoftwareDesignPattern, Families and
NonFunctionalRequirement. Its formal definition can be encoded in (classical)
DLs as:

∃isInFamily v SoftwareDesignPattern (1)

∃nFR v SoftwareDesignPattern (2)

> v ∀isInFamily.Families (3)

> v ∀nFR.NonFunctionalRequirement (4)

In the first two statements are defined the Domain restrictions to check the first
two statements while range restrictions are defined in the last two statement. To
better explain the meaning of restriction, let us consider that isInFamily is a role
that the concept SoftwareDesignPattern to the concept Families by connecting
their instances. Instead, the role nFR relates the class SoftwareDesignPattern to
the class NonFunctionalRequirement through their instances. Of course, we may
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easily extend the ontology to deal also with other elements, such as FRs, which,
however, we are not going to address here.

In our ontology, we make statements about the description of a pattern, related
the pattern to the family it belongs to and make statements about the NFRs it
satisfies. Such statements make up the ABox of the knowledge base we defined. To
better explain the knowledge modeling in the ontology let us consider the following
statements using the classical DL syntax:

proxy:SoftwareDesignPattern (5)

resourceManagement:Families (6)

reliability:NonFunctionalRequirement (7)

loadBalancing:NonFunctionalRequirement (8)

reusability:NonFunctionalRequirement (9)

(proxy, resourceManagement):isInFamily (10)

In the example, the pattern proxy is defined as an instance of the class SoftwareDesignPattern;
the family resourceManagement of the class Families and the NFRs reliability,
loadBalancing, reusability as individuals of the class, NonFunctionalRequirement;
definition are provided respectively in the statements 5-9. Moreover, statement 10
asserts that proxy belongs to the resourceManagement family.

Additionally, the pattern proxy has a level of NFRs Load Balancing and Re-
liability. To specify such properties we define new properties, that are related to
NFRs. The fuzzy sets used by our framework are the ones represented in Figure 2.
Such datatype properties are formally represented using R that stands for rating.
The rating models a ordered set {verybad, bad, medium, good, verygood}. We refer
toe the following axioms:

∃nFR.{reliability} ≡ ∃reliabilityRate. ∈R (11)

∃nFR.{loadBalancing} ≡ ∃loadBalancingRate. ∈R (12)

∃nFR.{reusability} ≡ ∃reusabilityRate. ∈R (13)

∃nFR.{adaptability} ≡ ∃adaptabilityRate. ∈R (14)

∃nFR.{maintainability} ≡ ∃maintainabilityRate. ∈R (15)

These axioms states that a pattern that has associated a NFR will have a degree
So we can state for example:

proxy:∃loadBalancingRate. =good (16)

proxy:∃reliabilityRate. =good (17)

Besides the modeling of the ABox relations, we use FDLs also to explicitly model
relations among NFRs. Consider the NFRs reliability, load balancing, reusability
as previously defined (statement (7)-(9). An example of mutual relation between
NFRs is the one between load balancing and reliability. Indeed, they are directly
proportionate, i.e., if the loadBalancing increases (decreases) the same happens
for the reliability. Such a relation can be written in fuzzy DLs as

∃loadBalancingRate.High v ∃reliabilityRate.High (18)

∃loadBalancingRate.Fair v ∃reliabilityRate.Fair (19)

∃loadBalancingRate.Low v ∃reliabilityRate.Low (20)

We also know that a system cannot be reliable and reusable at the same time.
That is, the two NFRs are inversely proportionate. Hence, if a pattern guaran-
tees reliability it cannot guarantee also reusability. We may encode such disjoint
relations with the following statement:

∃reusabilityRate.High v ∃reliabilityRate.Low (21)
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In the same manner, we may also represent statements like

∃adaptabilityRate.High v ∃maintainabilityRate.Fair (22)

stating that “a system with a high adaptability has a fair maintainability”, in
fact if a system has an adaptable behavior to different requirements or to changes
in the context, it is poorly maintainable.

Note that from statements (18)-(21), it can be inferred that the pattern proxy
cannot guarantee a high degree of reusability, since it has a high degree of load
balancing. Of course, many other kind of implicit relations can be automatically
inferred that support the search for better results during the design phase.

4.2 Proposed reasoning task

We conclude this section by proposing a novel reasoning task called Covering
Answer Set, which will result fundamental for our modelling method to solve the
defined problem statement.

Let C1, . . . , Cn be concepts and let @ be an aggregation operator [69]. We
recall the Aggregation Operators (AOs). They are mathematical functions that
combine real values. Specifically, an AO has a dimension n and is a mapping
@ : [0, 1]n → [0, 1] such that4 @(0) = 0, @(1) = 1. Besides, the aggregation oper-
ator @ is monotone in its arguments. Typical examples of Aggregation Operators
are maximum (@MAX), weighted maximum @wmax

W , minimum (@min), weighted

minimum @wmin
W , median, arithmetic mean (@AM ), weighted sum @ws

W , strict
weighted sum (@wsz

W ).

Now, the covering answer set of C1, . . . , Cn w.r.t. @ and K,

ans(@,K, C1, . . . , Cn) ,

is defined as follows:

1. determine ans(K, C1), . . . , ans(K, Cn);
2. consider the set of tuples

A@
C1,...,Cn,K = {〈{a1, . . . , an}, β〉 | 〈a1, α1〉 ∈ ans(K, C1), . . . ,

〈an, αn〉 ∈ ans(K, Cn),

β = @(α1, . . . , αn)} .

That is, a tuple in A@
C1,...,Cn,K is built by picking up an element from each

answer set and then by aggregating the individual scores.
3. Eventually, ans(@,K, C1, . . . , Cn) is obtained from A@

C1,...,Cn,K by removing

from A@
C1,...,Cn,K all non-maximal scores and non-minimal subsets, i.e.,

ans(@,K, C1, . . . , Cn) = {〈S, β〉 ∈ A@
C1,...,Cn,K | β > 0,

6 ∃〈S′, β′〉 ∈ A@
C1,...,Cn,K s.t. β′ > β, S ⊆ S′

and 6 ∃〈S′, β′〉 ∈ A@
C1,...,Cn,K s.t. S′ ⊂ S} .

4 With 0 and 1 we identify a vector whose elements are all 0 or 1 respectively.
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Each element in ans(@,K, C1, . . . , Cn) is a covering answer to C1, . . . , Cn w.r.t.
@ and K. Eventually, the top-k covering answer set of C1, . . . , Cn w.r.t. @ and
K, denoted ansk(@,K, C1, . . . , Cn), is the set top-k ranked covering answers to
C1, . . . , Cn w.r.t. @ and K. We say that each element in ansk(@,K, C1, . . . , Cn) is
a top-k covering answer to C1, . . . , Cn w.r.t. @ and K.

5 Use Case Scenario

In the following we describe a Cloud-Social-Adaptable System use case to illustrate
how to apply the proposed modeling.

We consider a social domain in which user’s data are stored on cloud platforms and
distributed on different clusters or data centers; data are managed by interacting
distributed applications. A similar context would require a software architecture
based on an extensible model consisting of loosely coupled components. Let us
think of web applications for mobile devices, client applications for web-based
systems and let us assume that there is a main component – a sort of manager –
that performs coordination activities, and other two key components: a manager to
gather and manage multimedia data and a location-based application that records
all movements made by the user.

On the basis of variations in the user’s information needs or changes in the
external environment, the system is able to dynamically and extensively change
applications to be loaded.

Suppose a user is traveling on a weekend or holiday, the idea is that the system
automatically launches an app that organizes the archived multimedia material
(photo, movies etc.) relating to the travel destination by creating albums, photo
collections with captions, stories etc.

In addition to user’s localization, other conditions dependent on the context
set in the application may allow the system to dynamically load different applica-
tions. The dynamically loaded applications may compromise the system properties,
therefore runtime mechanisms to monitor and guarantee the preservation of the
properties of interest are needed.

This solution provides flexibility in the architecture as well as access to a public
service which is made possible by exploiting the resources available and preserving
costs.

Furthermore, virtual machines are loosely coupled, so a possible failure in one
of them does not impair the operation of the other guaranteeing an acceptable
level of fault tolerance. The virtual machines are located on the middleware and
are launched directly from it only if requested by the consumer.

In case of failure the remaining virtual machines would not be affected and the
content is made available by the presence of a network.

In order to model the scenarios just described, we have to search for patterns
that belong to the family Cloud as regards the management of features related
to the cloud; but it also requires the solution of problems relating to the com-
munication of process and the middleware so belong to the family Distribution
Infrastructure. Furthermore the model also requires the use of patterns able to
make the system adaptable to changes in the context. So another family to con-
sider is that related to pattern ensuring adaptability.
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So, given the application context of the system to be modeled, it is necessary to
ensure adaptability. Also, since the software must operate in the cloud the model
will have to contemplate elasticity requirements. Another fundamental require-
ment to ensure fault tolerance, and hence reliability. A low level of coupling is also
needed since the system implements features of a cloud environment the coupling
should be low. Formally, the previously described analysis can be posed as a query
as follows:

– retrieve pattern belonging to the following families: Distribution Infrastructure,
Application Control, Adaptation and Extension, Cloud Patterns;

– and satisfying the following NFRs: a low degree of coupling, a high level of
adaptability, a high fault tolerance, a high level of elasticity.

To show how requirements and families necessary to describe the proposed scenario
can be modelled using fuzzy DLs, we are going to define the related knowledge
base K. The Abox A contains the following statements. We initially introduce
families, patterns and their relations:

applicationControl:FamiliesadaptationAndExtension:Families distributionInfrastructure:Families
cloud:Families

observer:SoftwareDesignPattern
broker:SoftwareDesignPatternreflection:SoftwareDesignPattern
hypervisor:SoftwareDesignPattern
strictConsistency:SoftwareDesignPattern

(hypervisor, cloud):isInFamily
(broker, distributionInfrastructure):isInFamily .(strictConsistency, cloud):isInFamily
(observer, applicationControl):isInFamily
(reflection, adaptationAndExtension):isInFamily

We then define the NFRs and we state how the patterns previously introduced
satisfy them:

adaptability:NonFunctionalRequirement
dependability:NonFunctionalRequirement
reliability:NonFunctionalRequirement
elasticity:NonFunctionalRequirement
faultTolerance:NonFunctionalRequirement
loadBalancing:NonFunctionalRequirement
flexibility:NonFunctionalRequirement
coupling:NonFunctionalRequirement
robustness:NonFunctionalRequirement
reflection:∃adaptabilityRate. =verygood

strictConsistency:∃dependabilityRate. =verygood

strictConsistency:∃reliabilityRate. =good

hypervisor:∃elasticityRate. =verygood

hypervisor:∃faultToleranceRate. =good

hypervisor:∃loadBalancingRate. =good

observer:∃flexibilityRate. =good observer:∃adaptabilityRate. =medium

broker:∃loadBalancingRate. =verygood broker:∃robustnessRate. =medium

broker:∃faultToleranceRate. =bad broker:∃reliabilityRate. =good .

The TBox contains axioms defining inverse and direct relations between pairs of
NFRs. Namely:

∃flexibilityRate.High v ∃couplingRate.Low

∃elasticityRate.High v ∃adaptabilityRate.High
∃elasticityRate.Fair v ∃adaptabilityRate.Fair
∃elasticityRate.Low v ∃adaptabilityRate.Low
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∃robustnessRate.High v ∃faultToleranceRate.High
∃robustnessRate.Medium v ∃faultToleranceRate.Medium
∃robustnessRate.Low v ∃faultToleranceRate.Low

∃faultToleranceRate.High v ∃reliabilityRate.High
∃faultToleranceRate.Medium v ∃reliabilityRate.Medium
∃faultToleranceRate.Low v ∃reliabilityRate.Low

∃reliabilityRate.High v ∃dependabilityRate.High
∃reliabilityRate.Medium v ∃dependabilityRate.Medium
∃reliabilityRate.Low v ∃dependabilityRate.Low

∃loadBalancingRate.High v ∃elasticityRate.High
∃loadBalancingRate.Medium v ∃elasticityRate.Medium
∃loadBalancingRate.Low v ∃elasticityRate.Low .

Retrieval of the set of patterns that best satisfies the needed requirements, will be
obtained using the novel covering answer set reasoning task we have introduced
in Section 4.2. That is, we define a covering answer set query of the form

Q = ans3(@AM ,K, C1, C2, C3, C4) , (23)

which we are going now to build incrementally. First of all let us now consider the
query:

– families to consider are the following: Adaptation and Extension;
– needed NFRs is adaptability with a high degree.

The requirements is modeled as:

C′ = ∃isInFamily.{adaptationAndExtension} u ∃adaptabilityRate.High.

Under standard fuzzy logic, it can be shown that ans(K, C′) contains the following
statements:

〈reflection:∃isInFamily.{adaptationAndExtension}, 1〉
〈reflection:∃adaptability.High, 1〉
〈reflection:C′, 1〉

〈strictConsistency:∃isInFamily.{adaptationAndExtension}, 0〉
〈strictConsistency:∃adaptability.High, 0〉
〈strictConsistency:C′, 0〉

〈hypervisor:∃isInFamily.{adaptationAndExtension}, 0〉
〈hypervisor:∃adaptability.High, 1〉
〈hypervisor:C′, 0〉

〈observer:∃isInFamily.{adaptationAndExtension}, 0〉
〈observer:∃adaptability.High, 0.66〉
〈observer:C′, 0〉

〈broker:∃isInFamily.{adaptationAndExtension}, 0〉
〈broker:∃adaptability.High, 0.66〉
〈broker:C′, 0〉 .

∃couplingRate.Low v ∃scalabilityRate.High

∃adapatabilityRate.High v ∃interoperabilityRate.High
∃adapatabilityRate.Fair v ∃interoperabilityRate.Faie
∃adapatabilityRate.Low v ∃interoperabilityRate.Low

∃responseTimeRate.High v ∃performanceRate.High
∃responseTimeRate.Medium v ∃performanceRate.Medium
∃responseTimeRate.Low v ∃performanceRate.Low .

C′ is satisfied by the list of pattern in:

ans(K, C
′
) = { 〈reflection, 1〉, 〈strictConsistency, 0〉,

〈hypervisor, 0〉, 〈observer, 0〉, 〈broker, 0〉 } .
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Please note that, although there is no explicit statements about the adaptability
value of Hypervisor patterns, thanks to the interaction between elasticityRate

and adaptabilityRate stated in the TBox, we infer that Hypervisor has a high
level of adaptability.

We now add all the other families required to solve our task. Therefore, we
modify C′ in C1 as follows:

C1 = (∃isInFamily.{adaptationAndExtension}
t∃isInFamily.{cloud}
t∃isInFamily.{applicationControl}
t∃isInFamily.{distributionInfrastructure})

u∃adaptabilityRate.High.

It can be shown that ans(K, C1) under standard fuzzy logic contains the following
statements:

〈reflection:∃isInFamily.{adaptationAndExtension}, 1〉
〈reflection:∃isInFamily.{cloud}, 0〉
〈reflection:∃isInFamily.{applicationControl}, 0〉
〈reflection:∃isInFamily.{adaptationAndExtension}, 0〉
〈reflection:∃adaptability.High, 1〉
〈reflection:C1, 1〉

〈strictConsistency:∃isInFamily.{adaptationAndExtension}, 0〉
〈strictConsistency:∃isInFamily.{cloud}, 1〉
〈strictConsistency:∃isInFamily.{applicationControl}, 0〉
〈strictConsistency:∃isInFamily.{distributionInfrastructure}, 0〉
〈strictConsistency:∃adaptability.High, 0〉
〈strictConsistency:C1, 0〉

〈hypervisor:∃isInFamily.{adaptationAndExtension}, 0〉
〈hypervisor:∃isInFamily.{cloud}, 1〉
〈hypervisor:∃isInFamily.{applicationControl}, 0〉
〈hypervisor:∃isInFamily.{distributionInfrastructure}, 0〉
〈hypervisor:∃adaptability.High, 1〉
〈hypervisor:C1, 1〉

〈observer:∃isInFamily.{adaptationAndExtension}, 0〉
〈observer:∃isInFamily.{cloud}, 0〉
〈observer:∃isInFamily.{applicationControl}, 1〉
〈observer:∃isInFamily.{distributionInfrastructure}, 0〉
〈observer:∃adaptability.High, 0.66〉
〈observer:C1, 0.66〉

〈broker:∃isInFamily.{adaptationAndExtension}, 0〉
〈broker:∃isInFamily.{cloud}, 0〉
〈broker:∃isInFamily.{applicationControl}, 0〉
〈broker:∃isInFamily.{distributionInfrastructure}, 1〉
〈broker:∃adaptability.High, 0.66〉
〈broker:C1, 0.66〉 .

Based on the previous results, it follows that

ans(K, C1) = { 〈reflection, 1〉, 〈strictConsistency, 0〉,
〈hypervisor, 1〉, 〈observer, 0.66〉, 〈broker, 0.66〉 } .

We are now ready to define also C2, C3 and C4 in Equation (23).
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C2 = (∃isInFamily.{adaptationAndExtension}
t∃isInFamily.{cloud}
t∃isInFamily.{applicationControl}
t∃isInFamily.{distributionInfrastructure})

u∃elasticityRate.High.

C3 = (∃isInFamily.{adaptationAndExtension}
t∃isInFamily.{cloud}
t∃isInFamily.{applicationControl}
t∃isInFamily.{distributionInfrastructure})

u∃faultToleranceRate.High.

C4 = (∃isInFamily.{adaptationAndExtension}
t∃isInFamily.{cloud}
t∃isInFamily.{applicationControl}
t∃isInFamily.{distributionInfrastructure})

u∃couplingRate.Low.

With reference to these concepts, the results for ans(K, Ci) with i = 2 . . . 4 are
illustrated in Table 2.

Table 2 Answer Sets Use Case I.

ans(K, C2) ans(K, C3) ans(K, C4)
〈reflection, 0〉
〈strictConsistency, 0〉
〈hypervisor, 1〉
〈observer, 0〉
〈broker, 1〉

〈reflection, 0〉
〈strictConsistency, 0〉
〈hypervisor, 1〉
〈observer, 0〉
〈broker, 0.33〉

〈reflection, 0〉
〈strictConsistency, 0〉
〈hypervisor, 0〉
〈observer, 0〉
〈broker, 1〉

We can finally compute the result for Equation (23):

Q = { 〈{hypervisor, broker}, 1〉,
〈{reflection, broker}, 0.8325〉,
〈{observer, broker}, 0.75〉 } .

The pair of pattern hypervisor and broker is the best solution; the second
rank is the pair broker and reflection; the third is the pair broker and observer.

Please note that e.g. 〈{broker}, 0.75〉 is ruled out from Q as there exists a
superset with strictly higher score (e.g., {〈hypervisor, broker}, 1〉).

6 Implementation

In this section we present the implemented fuzzy ontology-driven decision support
system. The overall architecture is depicted in Figure 3.

The tool was developed using Eclipse as a Web development platform inte-
grating Apache Tomcat 5 as application server. The business layer is consisting
of a modules that implements the principal functionalities of the tool. First of
all enable (i) search of patterns, NFRs and Pattern Families query the ontology
showing their annotations; and (ii) solve Covering Answer Set query.
Ontology Administration provides for three main functionalities, that are, the in-
sertion of a new pattern or a new NFR, the insertion of a Fuzzy DL statements

5 https://tomcat.apache.org/
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Fig. 3 Model of our tool, and linked components.

(relations intercurring between NFRs) and the editing of ontology individuals (Pat-
tern or NFR). Before executing any change on the ontology, i.e. any of the admin-
istrator functionalities, a consistency check is performed.
The Linked components are the following:

– Fuzzy DL Reasoner is a java-based reasoner allowing to work with vague
information, previously described;

– Gurobi is a library for mathematical programming. It is focused on linear
programming solver (LP solver), quadratic programming solver (QP solver),
quadratically constrained programming solver (QCP solver), mixed-integer lin-
ear programming solver (MILP solver), mixed-integer quadratic programming
solver (MIQP solver), and mixed-integer quadratically constrained program-
ming solver (MIQCP solver) and it is used within the Fuzzy DL reasoner for
MILP calculations;6

– Protégé is an open source ontology editor that supports the Web Ontology
Language (OWL); 7

– FuzzyOWL plugin is a plugin for Protege 4.1 that allows users to edit, save
Fuzzy OWL 2 ontologies, and submit queries to the underlying inference engine
FuzzyDL.

6 The library is available at www.gurobi.com.
7 It is available for free download at http://protege.stanford.edu/download/download.

html.
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(a)

(b)

Fig. 4 (a) Home page of the tool Search your Pattern., (b) Screenshot of tool query compo-
sition.

Screenshots in Figure 4 show the home page of our tool. Figure 4 (b) shows the
form for selecting the main elements needed to solve the task that will be translated
in the Covering Answer Set query formalism as described in Section 4.2.

The core component of our tool is the Fuzzy ontology. We constructed a Fuzzy
OWL 2 ontology [9] according to the framework presented so far8. Table 3 sum-
marizes the metrics associated to our fuzzy ontology, whose consistency has been
checked and validated with the fuzzyDL Reasoner.

Figure 5 (a) shows a screenshot of the Protégé editor GUI illustrating the main
classes of our ontology and part of the individuals in the ABox. The Fuzzy OWL
2 plug-in for Protégé made aleviated the modeling of the fuzzy sets as well as
of data properties assertions as shown in Figure 5 (a) - (b). Axioms as those in
Equations (5) - (10) and Equations (18) - (22) can be modeled in the General class
axioms tab. Figure 6 reports their equivalent form with the Manchester syntax
of OWL 2.9 During the modeling we adopted the Linked Data principles10 and

8 The fuzzy ontology is available online at http://sisinflab.poliba.it/semanticweb/
ontologies/architecturalpatterns/

9 http://www.w3.org/TR/owl2-manchester-syntax/
10 http://www.w3.org/DesignIssues/LinkedData.html
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Table 3 Ontology metrics.

Metrics

Axiom 1672
Logical axiom count 975
Class count 3
Object property count 2
Data property count 26
Individual count 174

Class axioms

SubClassOf axioms count 31
EquivalentClasses axioms count 23
GCI count 54

Object property axioms

ObjectPropertyDomain axioms count 2
ObjectPropertyRange axioms count 2

Data property axioms

FunctionalDataProperty axioms count 26
DataPropertyRange axioms count 26

Individual axioms

ClassAssertion axioms count 174
ObjectPropertyAssertion axioms count 399
DataPropertyAssertion axioms count 289

tried to reuse URIs already available in the Web. For instance, we associated the
URI http://dbpedia.org/resource/Non-functional_requirement to the class
NonFunctionalRequirement. The same principle has guided the selection of the
URIs for design patterns and NFRs. We referred to DBpedia11 as it is a “de
facto” standard in the representation of entities in the Web.12

7 Discussion

In order to evaluate the degree of usefulness for the tool, we designed a controlled
experiment. We sketched the Cloud-Social-Adaptable System example presented
in Section 5 and we then proposed it to six different teams of students. The teams
were assembled so that each one would be composed by three second year graduate
students. All students were trained during the MSc course on software design,
architectural pattern, NFRs modelling, architectural design.

Three teams (T1, T2, T3) solved the problem supported by the tool while the
other three teams (T4, T5, T6) solved the problem using only their own experience.
The teams had no idea that other teams were working on the same use case and
they had been instructed not to comment the experiment with anyone else. The
solution to each design problem was provided as the design of an architecture con-
sidering quality aspects and choosing the patterns that best model NFRs suitable
for the given context, domain and goals.

The teams T1, T2, T3 were provided with an abstract description in natural
language of the use case scenario and each team formulated the query to be sub-
mitted to the tool. As shown in Table 4, all the three teams composed a query that
slightly differs from one another only for the NFR degree (high, medium, low).

The other three teams – T4, T5, T6 –, being provided with the entire query,
solved the problems using only their own experience.

11 http://dbpedia.org
12 See, e.g. the diagram available at http://lod-cloud.net.
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(a)

(b)

Fig. 5 (a) Individuals Tab, (b) Creation of a fuzzy datatype Fair with the Fuzzy OWL plug-in.

Fig. 6 General class axioms Tab.
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Table 4 Queries formulated by each team and corresponding answers (best solution).

Team
Query

Best Solution
Families NFRs

T1 Distribution Infrastructure, Application
Control, Adaptation and Extension, Cloud
Patterns

low coupling, high adaptability, high
fault tolerance, high elasticity

Hypervisor, Broker

T2 Distribution Infrastructure, Application
Control, Adaptation and Extension, Cloud
Patterns

medium coupling, high adaptability,
high fault tolerance, high elasticity

Hypervisor, Broker

T3 Distribution Infrastructure, Application
Control, Adaptation and Extension, Cloud
Patterns

low coupling, medium adaptability,
medium fault tolerance, high elastic-
ity

Hypervisor, Broker

T4 Distribution Infrastructure, Application
Control, Adaptation and Extension, Cloud
Patterns

low coupling, high adaptability, high
fault tolerance, high elasticity

Hypervisor, Broker

T5 Distribution Infrastructure, Application
Control, Adaptation and Extension, Cloud
Patterns

low coupling, high adaptability, high
fault tolerance, high elasticity

Reflection, Broker

T6 Distribution Infrastructure, Application
Control, Adaptation and Extension, Cloud
Patterns

low coupling, high adaptability, high
fault tolerance, high elasticity

Integration Provider
Pattern, Observer

The three solutions provided by the last teams are not expected to be the
same, since the answer derives from the experience, from their reasoning, and
from creativity. Measuring the goodness of results is not immediate. We compared
the solutions provided by the three teams which were supported by the tool with
those provided by the teams not supported by the tool and with the human expert-
provided solution. Based on the previously described analysis in Section 5 the best
formulated query is composed as follows:

– Families: Distribution Infrastructure, Application Control, Adaptation and Ex-
tension, Cloud Patterns;

– NFRs: a low degree of coupling, a high level of adaptability, a high fault toler-
ance, a high level of elasticity.

The set of top-3 ranked answers Q for the provided query is the same as the
one reported at the end of Section 5.

At the end of the modeling process, each team was supplied with the solution
proposed by the others. A qualitative evaluation of the approaches was asked to the
teams. Table 5 summarizes the results for this qualitative evaluation: the solutions
provided with the support of the tool where judged fully correct and complete by
the others teams; on the other hand, among the solutions provided by the teams
not using the tool, one was considered fully acceptable by all of the other teams
while the other two needed respectively minor/ major revisions.

Table 5 Cross Evaluation among teams.

full acceptance minor revision major revision

T1, T2, T3 Solutions 3 0 0
T4, T5, T6 Solutions 1 1 1

Note that the initial queries for the first three teams were slightly different since
each team faced the problem starting from a different point of view. Nevertheless,
the answers for these queries was the same, corresponding to the best solution.
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Table 6 shows the time used by the teams to solve the problem. We measured
the efficiency of the process, in term of time elapsed between the starting point of
the work and the final solution provided by each team.

Table 6 Elapsed time to solve the problem.

Team Elapsed time

T1 2 days
T2 1 day and a half
T3 2 days
T4 4 days
T5 5 days
T6 4 days and a half

Subsequently, in order to measure the matching degree of retrieved patterns
with the three ones proposed by the human expert, we measured the similarity
between the proposed solutions by the six teams with respect to these three. To
this end we used a combination of Jaccard coefficients [48]. We recap that the
Jaccard similarity between two sets A and B is defined as:

J(A,B) =
| A ∩B |
| A ∪B |

In detail, we compare the similarity of each solution with the ranking provided
by the covering answer set algorithm; w.r.t. the standard Jaccard Similarity coef-
ficient we introduce an exponential decay for each retrieved covering answer set.
Formally, being:

– k, the number of covering answer set to retrieve;
– ansTj the solution set provided by the j-th Team (Tj);
– Qi the i-th answer set composing the top-k covering answer set Q;

the similarity between the solutions set provided by each Team ansTj and the
top-k ranked answers Q is defined as in the following:

sim(ansTj , Q) =

∑k
i=1 J(ansTj , Qi) · e−(i−1)

k
, with i = 1 . . . k (1)

Table 7 illustrates the similarity values obtained by using Equation (1).
In particular, the first column illustrates the similarity value with respect to

the best solution Q1. Note that the similarity analysis is in line with the qualitative
analysis carried out in the first step and that the teams using the tool performed
better than those without it.

Table 7 Similarity values with respect to Q1 (best solution) and Q (the top-3 ranked answers).

Team J(ansTj ,Q1) J(ansTj ,Q)

T4 1.00 0.389
T5 0.333 0.249
T6 0.00 0.056
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8 Related work

Existing approaches for knowledge representation in software engineering are listed
in this section. An emphasis is posed on modeling of NFRs, modeling of design
pattern, relationships among NFRs and design patterns, approaches for supporting
decision making in software architecture design and existing tools.

A systematic mapping study about application of method based on knowl-
edge Representation to solve typical problems of software architecture is proposed
in [49]. The authors outline the most relevant research directions and the weak-
nesses in the two domains and in their combination. The study witnesses an
increased use of knowledge representation based methods to modeling software
architectures, especially concerning the model of architectural essentials and rela-
tionships among them. In particular, (1) the study calls for more deep investigation
on use of knowledge representation to study impact analysis of software architec-
tures. (2) also approaches of knowledge recovery needs to be further explored; (3)
the architectural implementation can benefit from knowledge sharing; (4) auto-
matic and semiautomatic reasoning should be improved; (5) the study shows the
need of deep studies about benefit of knowledge approach to software architecture;
(6) knowledge based approaches could be implied in several new domains.
Ontological approaches. Ontologies are frequently used in several contexts of
software engineering. [59] provides a complete analysis for using ontologies in Soft-
ware Engineering, especially in the development process. In [32] the use of ontolo-
gies in software engineering is surveyed, by considering all the phases of soft-
ware development Kruchten [46] models architectural design decision in software-
intensive systems using an ontology in which each architectural design decision
belongs to one of the following categories: existence decisions, behavior decisions,
property decisions. The ontology is supported by a tool able to list decision and
relations, visualizing design structure and temporal view of design decisions. The
works [40,41] propose the modeling of patterns by means of ontologies, but only
for a set of patterns, i.e., the usability design patterns. A metamodel for design
pattern language in proposed in [41]. In [45] a Design Pattern Intent Ontology
(DPIO) to formalize relationships among Gang of Four’s (GoF) patterns is pro-
posed, the ontology is used to suggest a pattern to solve a given design problem.
An Extended version of DPIO ontology to suggest patterns to solve integration
problems is in [36]. Formalization of web design pattern is modeled in [54] using
ontologies. A pattern scanner for the Java language based on a OWL design pat-
tern ontology is proposed in [24] for recognizing patterns in source code. In [4]
an ontology for modeling the enterprise architecture domain is proposed, while
an ontology to model architectural design decisions is described in [47]. More re-
cently, in [35] NFRs are defined from an ontological point of view and a language
is proposed to model them. Differently from our approach in [35] there is no rela-
tion with patterns and their families. The authors identify the fuzziness of NFR
specifications but their approach is to a more conceptual level. Analogously, the
authors of [60] define an annotated ontological vocabulary of NFRs with the main
aim of classifying natural language sentences with reference to software specifi-
cations. Chi-Lun Liu proposes in [50] a modeling of NFRs that mixes ontologies
with rules with the goal of catching inconsistencies in information systems speci-
fications. Unfortunately, neither the overall modeling does not take into account
the fuzzy nature of NFRs nor considers relations with architectural patterns. The
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same issues can be found in [25] where an ontology to model NFRs is proposed.
Design patterns and NFRs modeling. In [53] features of design pattern
are modeled using formal methods that capture temporal properties. The authors
in [66] propose a language named Balanced Pattern Specification Language (BPSL)
for specification of behavioral features and structural aspects of patterns [68]. The
language derives from Temporal Logics of Action and First Order Logic. In [37]
the authors study relationships between design pattern: they consider application
of pattern and tactics by using an entity diagram for annotating information about
used tactics. Use of NFRs is studied by Chung et al. in [17] and in [11]. While [33,
29] survey several definitions of NFRs. Mylopoulos et al. in [55] describe the use of
NFRs with process or product oriented approaches. Several automated tools have
been proposed for supporting the enterprise architect in architectural modeling,
such as [44,15,70,23].

Eventually, relationship between patterns and NFRs has been addressed in
[61] that defines the policy to specify how an attribute affects the quality of non-
functional properties. [34] studies the relationships between NFRs and design pat-
terns. A framework to formalize relations between patterns and tactics is proposed
by Harrison et al. in [39] to study the impact at implementation level. The impact
of a tactic on quality attributes is described in [39].

9 Conclusion

In this work was proposed as main goal the development of a Decision Support
System for supporting designers and software architect – having greater or lesser
experience – in the process of modeling a software system’s architecture. Achieve-
ment of the proposed goal was supported by listing some useful research questions.
We describe hereby how the five research questions have been addressed through-
out the work. For the first two questions, Q1, and Q2 we studied state of the art
concerning main categories of requirements – functional and non-functional – by
posing great interest in non functional requirements. Answer to question Q1 can
be found in the Section 3 and in a more extended study in the related work in
Section 8, where the use of catalogues of NFRs was found as the more relevant
approach. To answer question Q2, we reviewed some state of the art approaches for
pattern categorization or classification. The results of this study is summarized in
Section 3, where pattern, pattern languages, problem area and frameworks avail-
able are cited; a more extended study is reported in the related work in Section 8.
The answer to question Q3 was derived from studying all the approaches to relate
NFRs and pattern described in Section 3: relationship between NFRs and reusable
schema are introduced as the starting point of the work we developed. This study
allowed us to build the theoretical framework of our approach that is the answer
to question Q4 by defining the fuzzy ontology in which we catalog the NFRs, the
Families and the Pattern according to catalogues and categorizations found in the
state of the art descriptions. By defining the Covering Answer Set algorithm for
retrieval of pattern from the fuzzy ontology we solved the problem of facilitating
the decision making problem in architectural design.

Question Q5 led us to implement and validate the decision support tool de-
scribed in the paper through the use case scenario and preliminary performed
experiment on the method.
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Main strengths of our approach is the use of fuzzy ontologies for modeling
Knowledge that relates NFRs with patterns and with the Families they belong
to. The fuzzy nature of the adopted language makes it possible to express and
reason with concepts like “the Proxy pattern has a good load balancing level” or
that “the load balancing level is directly proportional to the level of reliability”.
The proposed formalism and the reasoning service was implemented in a tool
for supporting the human expert, the architect or the designer to select a set of
patterns that matched the desired requirements. To this end, we have also defined
a novel reasoning task able to retrieve a ranked set of patterns that match the user
requirements expressed in terms of NFRs. The use of a formal approach inherently
guarantees the correctness and consistency of the data entered and the trust of the
approach. The reasoner used to build the ontology is able to detect and prevent
inconsistent data and incongruences. At last, we have presented a use case and
have developed a Fuzzy OWL 2 knowledge base describing 28 pattern families, 37
Non-Functional Requirements, 109 design patterns and their relations. The use
case was experienced using the tool by an expert whose solution is provided in the
work and by a number of teams whose solution were compared with those provided
by the expert supported by the tool. Results proved that solutions proposed by the
tool-supported teams were more efficient in term of elapsed time and similarity.
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42. Henninger, S., Corrêa, V.: Software pattern communities: Current practices and challenges.
In: Proceedings of the 14th Conference on Pattern Languages of Programs, p. 14. ACM
(2007)

43. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceedings
of the 10th International Conference on Principles of Knowledge Representation and Rea-
soning (KR-06), pp. 57–67. AAAI Press (2006)

44. Jansen, A., Van Der Ven, J., Avgeriou, P., Hammer, D.K.: Tool support for architectural
decisions. In: Software Architecture, 2007. WICSA’07. The Working IEEE/IFIP Confer-
ence on, pp. 4–4 (2007)

45. Kampffmeyer, H., Zschaler, S.: Finding the pattern you need: The design pattern intent
ontology. In: Model Driven Engineering Languages and Systems, pp. 211–225. Springer
(2007)

46. Kruchten, P.: An ontology of architectural design decisions in software intensive systems.
In: 2nd Groningen Workshop on Software Variability, pp. 54–61. Groningen, The Nether-
lands (2004)

47. Kruchten, P.: An ontology of architectural design decisions in software intensive systems.
In: 2nd Groningen Workshop on Software Variability, pp. 54–61 (2004)

48. Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5323), 34–35 (1971)
49. Li, Z., Liang, P., Avgeriou, P.: Application of knowledge-based approaches in software

architecture: a systematic mapping study. Information and Software technology 55, 777–
794 (2013)

50. Liu, C.: Ontology-based conflict analysis method in non-functional requirements. In: 9th
IEEE/ACIS International Conference on Computer and Information Science, IEEE/ACIS
ICIS 2010, 18-20 August 2010, Yamagata, Japan, pp. 491–496 (2010)
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