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Abstract. In this paper, we suggest a general theory that enables to describe experiments associated with 

reproducible or quasi-reproducible data reflecting the dynamical and self-similar properties of a wide class of 

complex systems. Under complex system we understand a system when the model based on microscopic 

principles and suppositions about the nature of the matter is absent. This microscopic model is usually 

determined as "the best fit" model. The behavior of the complex system relatively to a control variable (time, 

frequency, wavelength, etc.) can be described in terms of the so-called intermediate model (IM). One can 

prove that the fitting parameters of the IM are associated with the amplitude-frequency response of the 

segment of the Prony series. The segment of the Prony series including the set of the decomposition 

coefficients and the set of the exponential functions (with k = 1,2,…,K) is limited by the final mode K. The 

exponential functions of this decomposition depend on time and are found by the original algorithm 

described in the paper. This approach serves as a logical continuation of the results obtained earlier in paper 

[1] for reproducible experiments and includes the previous results as a partial case. In this paper, we consider 

a more complex case when the available data can create short samplings or exhibit some instability during 

the process of measurements. We give some justified evidences and conditions proving the validity of this 

theory for the description of a wide class of complex systems in terms of the reduced set of the fitting 

parameters belonging to the segment of the Prony series. The elimination of uncontrollable factors expressed 

in the form of the apparatus function is discussed. 
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To illustrate how to apply the theory and take advantage of its benefits, we consider the experimental data 

associated with typical working conditions of the injection system in a common rail diesel engine. In 

particular, the flow rate of the injected fuel is considered at different reference rail pressures. The measured 

data are treated by the proposed algorithm to verify the adherence to the proposed general theory. The 

obtained results demonstrate the undoubted effectiveness of the proposed theory. 

 

List of acronyms: 

IM – Intermediate Model 

QR – Quasi-Reproducible  

QP – Quasi-Periodical 

CRIS – Common Rail Injection System 

ECU – Electronic Control Unit 

ET – Energizing Time 

GPS –  Generalized Prony Spectrum 

LLSM – Linear Least Square Method 

FLSM –  Functional Least Square Method  

PID – Proportional-Integral-Derivative 

 

 1. Introduction and formulation of the problem 

The subject associated with treatment of data of different nature and from different fields or 

applications is today considered as well developed. It includes many books [2-10], a massive 

amount of papers (that cannot be enumerated here) and numerous conferences; they create a clearly 

expressed trend that is supported by many researches working in this field. The directed trend can 

be simply formulated: if an experimentalist has a set of accurately measured data obtained from a 

reliable equipment, then the problem of a theoretician is to find the microscopic/empirical model 

and to describe these data (after elimination of the influence of the apparatus function and random 

fluctuations) in terms of the fitting parameters that follow from the "best-fit" (microscopic) model. 

This is the basic tendency that forms a specific interaction between any theory and experiment and 

many researches follow and support this paradigm. In particular, non-trivial fractal model for 

description of the averaged motions in mesoscale was found [11]. It enables to describe a wide set 

of blow-like signals that can arise in many complex systems. Here we should mark the recent 

review paper [12] totally dedicated to consideration of different methods used in analysis of 

complex systems. The active interest in investigation of properties of many complex systems where 

the microscopic model cannot be created allows us to put forward the following problem: is it 

possible to formulate a general theory based on an intermediate model (IM) for description of the 



properties of a wide class of complex systems in one unified scheme? This intermediate model 

should present a "universal" platform containing the reduced set of the fitting parameters which can 

describe the measured data of the considered complex system with high accuracy in order to 

compare different responses (measured data) in one unified scheme. If this platform can be created, 

then it will present an interest for the theoreticians as well. Namely, any theory (or suggested 

microscopic model) expressed in the parameters of the IM will be compared with experimental data 

that are expressed also in the same set of the fitting parameters. This unified scheme detects 

possible errors that are admitted by both sides to achieve the true coincidence between the 

competitive theory and data cleaned from the influence of the apparatus and other distortions.  

We want to prove that an "ideal" IM can be presented by the segment of the Fourier series, 

F-series for short, in the case of the "ideal" experiment [1], or by the segment of the generalized 

Prony series. Below, it will be proved that the IM can be presented by a function of the type 
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where T is a mean period of time between two successive measurements, Pr1,2(t) and 1,2(t) are 

periodic functions with respect to the value of T. These functions can be presented by the segments 

of the F-series  
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The function (t) is associated with any periodic function figuring in expression (1). The 

coefficients of this F-series (including the coefficient A0, the mean value of T and the value of the 

final mode K) form the set of the desired fitting parameters (Ack, Ask, k = 1,2,…,K) that can describe 

the response of the analyzed complex system. The periodic functions 1,2(t), under reasonable 

suppositions described below, express the influence of the apparatus function and the procedure of 

its elimination reduces the IM to the segment of F-series  

 1 2( ) Pr ( ) Pr ( ), ( )F t t t F t T F t    ,    (3) 

that corresponds to an "ideal" experiment, when all measurements are becoming identical to each 

other. This problem is a logic continuation of the previous investigation that produced the results 

shown in paper [1], where the approximate expression (1) for the case 

1 1 2 2 1,2( ) , ( ) ,t t const         was obtained. In comparison with equation (12) considered in [1] 

(see also equation (4) below), we put the constant b = 0 and consider the simple case L = 2, when 

the memory between measurements is short. The equation (1) describes also a more complex case, 

when the measured data are quasi-reproducible (i.e. they can be varied during the measuring 



process). Earlier, it was supposed that these measurements are relatively stable (reproducible). The 

applicability of this general theory and its possible limitations will be discussed in the last section. 

The structure of this paper is organized as follows. In the second section, we give the basics of the 

new theory, the third section is related to the description of important details associated with 

experimental measurements that are used for confirmation of this theory. The fourth section 

contains the algorithm and describes the basic treatment stages that can be also applied to data 

obtained from other complex systems. The fifth section is related to discussion of the obtained 

results and to further steps that will be useful and constructive for further research.  

 

 2. The basics of the general theory related to the treatment of reproducible data 

In paper [1] the general theory of experiments containing reproducible data was considered. 

The basic equation that was confirmed earlier on available data [12-14]  
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reflects the existence of the strong correlations (memory) between successive measurements. Here x 

is the input ("control") variable, which can coincide with time, frequency, wavelength or another 

external factor. Tx as before is identified with the mean period of this variable between successive 

measurements. Mathematically, this memory between measurements is expressed by a set of 

constants al (l = 0,1,…,L-1) which, in turn, are found easily from (4) by the linear least square 

method (LLSM). This supposition is verified as correct when we have relatively large sampling 

(number of measurements M > 100) and stable measurements that are statistically close to each 

other. In case of strong influence by uncontrollable factors, this approximate supposition is not valid 

and we should consider a more complex case when the set of the parameters al(x) are the functions 

of the input variable x. We define this case (when the measured data can be significantly varied) as 

quasi-reproducible (QR). So, we should consider the functional equation 
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which includes the previous functional equation as a partial case. We omit here the additive 

constant b figuring earlier in equation (4) (see [1]). In order to find the solution of the functional 

equation (5) in analytical form, we suppose that the set of the functions al(x) are periodical with 

respect to Tx i.e. al(x  Tx) = al(x). Another obstacle is related to the fact that these functions are not 

known and can be derived only from the set of quasi-periodic (QP) measurements. We show how to 

find them for the simple case in which the memory is limited to the previous two (L=2) 

experiments: 
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Here the index m determines the set of the successive measurements, while the unknown functions 

<a1(x)> and <a0(x)> can be obtained from the averaging procedure (described below) based on 

available data and they are supposed not having dependence on m. To find them, we multiply (6) by 

the functions Fm+1(x), Fm(x), correspondingly, and then take the average value over all the 

admissible measurements. We introduce the pair correlation function of the type  
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After realization of this procedure with the functions Fm+1(x) and Fm(x) in equation (6) we obtain  
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From this system of linear equations one can easily find the desired unknown functions <a1(x)> and 

<a0(x)>. General approach and justification of this procedure (expressed by relationships (8)) are 

considered in Appendix 1.  

Coming back to (6), we are looking for the solution of this equation in the form 
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Substitution of expression (9) into equation (6) leads to the following quadratic equation  
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So, the solution of equation (6) is written in the form (1), where the function F(x) (at m = 0) 

coincides with an "initial" measurement F0(x) and the unknown periodic functions Pr1,2(x) should 

be presented in the sense of the segments of the F-series (2). In practice, it is preferable to operate 

with small samplings when M >3. How to apply equation (6) in this case? For M > 3, we use an idea 

that has been applied in the previous papers [1, 12-14]. In brief, this idea helps to divide all 

measurements on three groups relatively to the slopes Slm belonging to each measurement (m) 



which are calculated, in turn, with respect to the mean measurement. Really, let us define these 

slopes as 
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Here we give the conventional definition of the slope between the current measurement ym and the 

mean measurement <y>. The parenthesis determines the scalar product between two functions 

having j=1,2,…,N measured data points. Here we suppose that the initial measurements ym(x), for m 

= 1,…, M, coincide approximately with functions Fm(x) ( ( ) ( )m my x F x ) figuring in the functional 

equation (6). If we construct the plot Slm as a function of the successive measurement (m) and 

rearrange all measurements in the descending order SL1 >SL2>…>SLM , then all measurements can 

be divided in three groups. The "up" group has the slopes located in the interval (1+, SL1), the 

mean group (denoted by "mn") with the slopes in (1-, 1+), and the down group (denoted by "dn") 

with the slopes in (1-, SLM). The value  is chosen for each QP experiment separately. This curve 

has a great importance and reflects the quality of the realized successive measurements and the used 

equipment. Preliminary analysis realized on many available data allows to select three different 

cases. They are shown in Figs. 1(a,b,c). The bell-like curve (that can be fitted with the help of four 

fitting parameters α, β, A, B) is described by the beta-function  

   ( ; , , , )Bd m A B A m M m B
 

     ,    (12) 

and reflects the quality of the realized measurements. The straight line (it can have a slope) divides 

all measurements in three groups: (a) the beginning point of a bell-like curve up to the first 

intersection point determines the number Nup of measurements in the “up” group and is 

characterized by the Yup(x) curve; (b) the region between the two intersection points determines the 

number Nmn of measurements in the “mn” group with slope close to one and characterized by the 

set of measurements forming the curve Ymn(x) and, finally, (c) the rest of the measurements Ndn in 

the “dn” group is covered by the curve Ydn(x). If the number of measurements Nmn > Nup+Ndn 

then these measurements are characterized as "good", in the case when Nmn  Ndn  Nup the 

measurements (and the corresponding equipment) are characterized as "acceptable", and the case 

when Nmn < Nup + Ndn is characterized as "bad". Quantitatively, all three cases can be 

characterized by the ratio 
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In the expression (13), M determines the total number of measurements. Based on this ratio one can 

determine easily three classes of measurements: "good" when 60% < Rt < 100%, "acceptable" when 

30% < Rt < 60%, and "bad" when 0 < Rt < 30%. This preliminary analysis is supported by Figs.1(a, 

b, c).  

Coming back to expression (10), we make the following remark. If the function 1(x) is always 

positive (1(x) > 0) and, correspondingly, the function 2(x) is negative (2(x) < 0) for all values of 

the input variable x then the solution is rewritten in the form  
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Expressions (14) demonstrate the final result that can be tested on real data. In comparison with the 

previous case [1], all quasi-reproducible (QR) data depend only on two initial measurements F0(x) 

and F1(x) that can be corrected by the functions (10) and the recurrence relationship (6) for other 

measurements. We do not give the corresponding formulae that can be associated with an "ideal" 

experiment [1]. In this complex case, the pure periodic function cannot be extracted easily. It can be 

a linear combination of periodic, anti-periodic or other more complex combinations. In the case of 

strong data variability, the elimination of the "apparatus" function, i.e. the influence of the 

experimental equipment, needs a special consideration in each partial case. If we reduce the M 

measurements to three averaged measurements F2(x) = Yup(x), F1(x) = Ydn(x), F0 =Ymn(x) then we 

have the relationship 
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In expression (15) each summation includes the different measurements ym(x) that enter in three 

independent groups "up", "mn" and "dn" in accordance with the "slopes" criterion defined by 

expressions (11)-(13). These three artificially created measurements added to the initial set of 

measurements do not change essentially the values of the mean functions <a1(x)>, <a0(x)>. 



 3. The experimental set-up  

In this section, we illustrate the real system considered to produce data from experimental 

measurements. The system is a Common Rail Injection System (CRIS), which is currently the main 

fuel delivery system that is used in automotive industry for light/heavy-duty Diesel engines (see 

Figure 2). The aim of CRIS is to meter the injected fuel amount and to optimize the fuel/air ratio 

into the cylinders for an optimal combustion process. The CRIS can be divided into three basic 

circuits and related components: the low-pressure supply circuit (fuel tank, low-pressure pump), the 

high-pressure delivery circuit (high-pressure pump, common rail, injectors), and a backflow circuit 

in which the excess fluid returns to the tank.  

The injection process is managed by a control module within an Electronic Control Unit 

(ECU) that ensures, in the entire operating range, a stable high pressure level in the common rail 

and a proper amount of fuel to be injected according to the engine demand. 

In the load mode, when the vehicle accelerator pedal is pressed down and a specific engine torque is 

requested, the ECU calculates the required fuel injection quantity and the rail pressure set-point to 

reach from a combination of pre-established basic maps. The low-pressure pump sends the fuel 

coming from the tank to the pump chamber of the high-pressure pump. Thanks to the radial pistons 

driven by the camshaft, the high-pressure pump allows to increase the pressure and feeds the 

common rail through a delivery valve. The rail pressure raises to reach the reference set-point and 

to hydraulically feed the injectors. During the injection phase, a reference voltage of a given 

duration indicated by ET (Energizing Time) is applied to the solenoid valve of the electro-injector, 

which indirectly determines the lift of a plunger-needle mechanical coupling inside the injector, 

then the injection of fuel into the cylinder through the nozzles. An open-loop pre-control (for the 

steady-state response) and a closed-loop PID (Proportional-Integral-Derivative) control (for the 

transient response) are implemented in the ECU to ensure pressure regulation and a fast response 

with limited overshoots and undershoots with respect to the set-point. According to the actual rail 

pressure, which is acquired by a dedicated sensor, the leakage flow and the injection quantity, the 

ECU controls the lamination of the excess flow towards the backflow circuit in three ways 

depending on the operating conditions: a) by the metering control valve within the high-pressure 

pump; b) by the pressure control valve in the rail; c) and by a combination of both.   

To reduce energy consumption, noise, and pollutant emissions, while ensuring high-level 

performance indexes, an engine test bench with a proper measurement instrumentation is required 

to calibrate the controller parameters and to evaluate the response of the main variables. In 

particular, the injected flow rate is one of the most important quantities to acquire with high 

accuracy.  



Namely, properly shaping the flow rate strongly affects the combustion process and therefore the 

overall performance.  

The electro-injector is analyzed and characterized on the test bench at several operating conditions: 

the set-point values of the rail pressure can be 300, 800, 1200, 1600 [bar]; ET can be 300, 700, 1300 

[µs]. The injected flow rate Qinj is measured by the Bosch Rate of Injection Meter [13-16] by means 

of the pressure wave that is produced by the injection into a length of compressible fluid. The meter 

(Figure 3) consists of an injector housing, a measuring tube, an orifice, and a check valve. The 

injector housing allows to force the injector tip at the beginning of the measuring tube and to 

acquire the pressure waves by the strain gages. A variable orifice plate is positioned in the middle of 

the measuring tube to determine the reflected pressure waves and the transmitted pressure waves to 

the second part of tube. The inside diameter and the length of the measuring tube determines the 

magnitude of the pressure waves and the attenuation efficiency of the meter respectively. The check 

valve located at the end of the tube adjusts the back pressure to the reference. 

The injected flow rate is obtained from the pressure-velocity equation in a non-stationary flow 

condition: 

 P = c ρ u, (16) 

where P is the pressure, c is the speed of sound in the fluid, ρ is the density of the fluid and u is the 

flow velocity. Combined with the continuity equation, the injected flow rate is derived as: 

      
  

  
 

 

   
   (17) 

where V is the volume of fuel and  
  

  
 is the volumetric flow rate. 

The time resolution is related to the data acquisition system (< 1µs) and to the pressure transducer, 

while the sensitivity is about 0.1 mg/stroke. 

 

 4. The processing of the measured data in the frame of the unified scheme 

The basic aim of this paper is to show the application of the general approach to the treatment of 

real data related to the complex system illustrated in the previous section. We consider the injection 

flow rate data taken at the fixed reference rail pressure of 800 bar and for the three fixed values of 

the energizing time (ET): 300s, 700s, 1300s.  For each value of ET, M = 100 experimental flow 

rates are measured: y1 [mm
3
/ms] , .... , y100 [mm

3
/ms], each occupying a time length (injection 

duration) of 8.3 ms and with sample time of 5s. In order to understand clearly the general 

approach, we divide the whole treatment procedure in some stages that play an important role in the 

possible application to other kinds of data.  

 



Stage 1. The separation of all measurements in three mean curves  

We illustrate this stage by the Fig. 4. Here we show some randomly taken measurements 

representing all the set (M=100) as the function of time in the interval [0, 8.3 10
-3

] s and with 

respect to their mean function <y>. The plot shown above in Fig. 4 demonstrates strong correlations 

between measurements. The distribution of the slopes (see equation (11)) for all measurements m 

(m = 1,2,…,M) is shown on Fig. 5(a). We select approximately the value of =1/3 and divide the 

span between the ordered measurements (the curve SL) in three parts: "up" with (1+up, max(SL)), 

"mn" with (1-dn, 1+up), "dn" with (min(SL), 1-dn,), where up = [max(SL)-1]/3 and dn = [1-

min(SL)]/3. The numbers of measurements that are located in each selected interval are Nup = 11, 

Nmn = 65, Ndn = 24. This procedure is shown also on Fig.5(a). After subtraction of the unit value 

and the subsequent integration, we obtain the bell-like curve shown on Fig.5(b). The quality of 

measurements calculated in accordance with expression (13) is equal to Rt = 65%. Clusterization 

realized with the help of expression (15) helps to receive only three mean curves Yup, Ydn, Ymn 

shown on Fig.6. These averaged curves can be added to the previous set of measurements. The 

realization of the procedure described by expressions (7) and (8) shows that the values of the 

averaged constants <a0,1(x)> are practically unchanged.  

Stage 2. Reduction to three incident points  

If one looks at these three mean curves Yup, Ydn, Ymn, they still contain high-frequency (HF) 

fluctuations. To decrease their influence, we apply the procedure defined as the reduction to three 

incident points. This procedure was successfully applied to many random functions [17-21] proving 

their self-similar (fractal) properties. We choose s = 1,2,…,b=16 points (Y1,Y2,…,Yb) and reduce 

them to three incident points (max(Y), mean(Y), min(Y)) by keeping them invariant relatively to the 

permutations inside the chosen b points. Having in mind the total number of data points L=1660 and 

the length of a small "cloud" of points b = 16, we obtain the reduced number R of data points as the 

integer part of [L/b] (R=100), by keeping the form of the initial curve almost unchanged relatively 

to this transformation. The result of the reduction procedure is shown on Fig.7. If one compares the 

curves depicted on Fig.6 and Ymn depicted on the upper plot of Fig.7, then they are similar to each 

other. The calculations of the functions 1,2(t) by the formulae (7)-(10) are shown on Fig.8. Direct 

application of the reduction procedure to these functions is impossible because the HF fluctuations 

destroy completely the self-similar property [18,20]. In order to restore this property and then apply 

the reduction procedure, we should smooth preliminary the functions 1,2(t). They are shown on 

Fig. 8 by bold lines. These smoothed functions can be reduced again and after reduction we obtain 

the reduced functions r1,2(x) from the smoothed roots. These functions are shown on Fig.8 above.  

Stage 3. The fitting of the mean reduced function.  



The previous stages have a preparatory character. The basic result will be obtained when we fit the 

reduced function Y(x) (Y = Mn, x = tmn) to the function (14). For convenience we rewrite this 

function in the form 

   
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(18) 

Here the known functions r1,2(x) should be associated with the reduced values of the smoothed roots 

1,2(t), The functions 
(2) (2)( ), ( )k kEc x Es x take into account the fact that the root r2(x) is negative. The 

function F(x; K, Tx) contains only two nonlinear fitting parameters that can be found from the 

minimization of the relative error surface 

 

 
( ) ( ; ,

min 100%
( )

xstdev Y x F x K T
RelError

mean Y x

  
  

    

,    (19) 

that are given by (K, Tx). Usually, Tx is not known and lies in the interval (0.5Tin < T < 2Tin), Tin = 

(x1 – x0)length(x). The minimal value of the final mode K is found from the condition that the level 

of the relative error should be located in the interval (1% – 10%). After minimization of the value 

(19), the amplitudes 
(1,2) (1,2)

0 , ( ), ( )k kA Ac x As x are found by the LLSM. 

The result of application of this procedure is shown on Fig. 9. The quality of the fitting curve (18) is 

very high because the number of the amplitudes 4K=104 is comparable with number of the reduced 

points R=100. The total distribution of amplitudes is shown by the figure 10(a). Actually, this 

distribution together with other fitting parameters (shown in the Table 1) represents itself the 

desired IM. We should stress also the importance of the bell-like curve (Fig. 10(b)) that serves as a 

useful tool for analysis of spectrograms containing large number of the discrete amplitudes (>100). 

The separated distributions of the amplitudes 
(1,2) (1,2)( ), ( )k kAc x As x  are shown on Figs. 10(c).  

In the same manner, we can treat other files corresponding to P = 800 bar but with other values of 

the energizing time (ET) that are equal to 700 s and 1300 s. In order not to overload the context 

by a large number of figures, we give only the important ones: (a) the distribution of the slopes 

(expressed in the form of bell-like curves) that demonstrate the quality and stability of the 

measurements performed for each value of ET (see Fig. 11); (b) the fit of the reduced curves for the 

values of ET equal to 700 s and 1300 s. The fitting curve for 300 s cannot be placed together 

with these two ones because it has a small scale (see Fig.12); (c) the total distribution of all 

amplitudes expressed in the form of bell-like curves for 3 values of ETs for their comparison (see 



Fig.13(a)). The separate distributions of the amplitudes 
(1,2) (1,2)( ), ( )k kAc x As x  for 700 s and 1300 s 

are presented by Figs. 13(b, c). Additional values of the fitting parameters for all ETs are collected 

in the Table.  

 5. Results and discussion  

In this paper, we suggest the general theory for description of the QR-data and the finding of 

the fitting function that is defined as the IM. This IM is expressed in the form of the finite segment 

of the generalized Prony spectrum (GPS). All quantitative parameters characterizing the given 

random function Y(x) can be expressed in the form of the GPS. Schematically, it can be written as 

 (1,2) (1,2)

0( ) ( ), , , , ,x k kY x t T A K Ac As      (20) 

The functions characterizing the roots (t) can be also presented by the segment of the F-series, 

because of their periodicity. Other parameters of the IM for the specific experimental situation 

considered in paper are determined by expression (18). If necessary, one can add also 4 fitting 

parameters characterizing the behavior of the bell-like curve (12) that describes the quality of the 

realized measurements. All these fitting parameters describe quantitatively the suggested IM.  

Actually, this IM can be used as the general platform were the properties of different 

complex systems can be analyzed and compared with each other in the frame of the unified scheme. 

All theoretical functions that follow from the microscopic/empirical theory (defined in this paper as 

the "best-fit" theory) can be presented also as a segment of the generalized Prony decomposition 

and compared with experimental measurements on the basic of this general platform. In comparison 

with the previous version [1], the more general variant presented in this paper takes into account the 

temporal dependence of the exponential functions     1,2exp / ln ( )t T t   that increases essentially 

the region of its applicability and allows to consider the so-called "quasi-reproducible" experiments, 

where the influence of uncontrollable external factors during the process of measurements are 

essential (chemical experiments, biological measurements, etc.).  

Attentive researchers may pose the following question: if the authors pretend on some 

generalization of the conventional theory of measurement, then is it possible to consider a more 

general relationship in comparison with supposition (6) and realize the forecasting procedure, if the 

IM is supposed to be found? In other words, is it possible to extend the observations out of the 

admissible interval if the fitting function in the given interval is known? The answers on these 

posed questions are considered in Appendices 1 and 2. Another important question is related to 

application of this general theory for the short samplings. We deliberately considered the case when 

the number of measurements is relatively high (M=100) but for some unreproducible data the 



number of measurements can be small. The approach suggested in this paper allows to consider the 

case when we have a minimal number of measurements. Imagine that we do not have sufficient 

number of measurements and the allowed number of measurements M=3. What we should do in 

this "unpleasant" case? Coming back to (6) we have 

 
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The expression (8) remains valid but for M=3 we obtain 
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     (22) 

One can show that the functions 1,0 ( )a x  are reduced to the constants A1,0 that can be calculated 

with the help of the LLSM. The justification of expressions (8) and (21) associated with coupling of 

the measured functions is proved in Appendix 1. So, this observation allows to correct the definition 

of the term quasi-reproducible data. Under the QR-data one can understand the data when the 

influence of the uncontrollable factors are essential and should be taken into account (in the form of 

the temporal dependence of the roots 1,2(t)) and the number of measurements M  3. But what 

about the rare and unique events when M=1? This question remains still open and is needed in the 

further research. 

The nontrivial example of the chosen complex system associated with consideration of the CRIS 

functioning shows that all peculiarities (including the desired fit of the basic characteristics (see 

Figs. 9,12) can be expressed in terms of the common fitting parameters that follow from the 

proposed approach. Similarly, one can consider another system. We omit the consideration of the 

system studied for other values of the input parameters P = 800, 1200, 1600 [bar]; ET = 300, 700, 

1300 [µs] in order not to overload the essence of this theory by large numbers of figures and similar 

details. Probably, all specific details associated presumably with the CRIS functioning will be a 

subject of the further research.  

The proposed general theory can receive a wide propagation in various practical applications. In the 

end of this section, from our point of view, we want to remind at least a couple important problems 

that can be solved with the help of this approach.  

1. Creation of a fully computerized laboratory. Really many routine experiments can be completely 

computerized and finally present all measured random functions in terms of the fitting parameters 

belonging to the IM. Any "best-fit" theory pretending for explanation of these phenomena should be 

expressed in terms of the fitting parameters belonging to the IM, also. The proper comparison of the 



IM with the specific model can give a significant impact for more deeper understanding of the 

studied phenomenon.  

2. Creation of a unified metrological standard. Any attentive reader had a chance to notice that any 

measured "quality" can be expressed quantitatively in terms of the fitting parameters belonging to 

the GPS. It signifies that any precise measurements characterizing the pattern equipment can serve 

as the unified metrological standard for comparison of the same type of product (unifying different 

equipments/instruments) with the product that was chosen as the pattern one. The GPS facilities 

also the complete product acceptance when any tested product is compared with the pattern product. 

If the unified standard determines the acceptable range of parameters received from the pattern 

product for the party of the tested product, then all process can be organized automatically in 

accordance with the "traffic light" principle. All acceptable products will pass on the "green" light, 

while the abandoned product marked by "red light" can be a subject of analysis of the qualified 

personnel.  

 

Appendix 1.  

The functional least square method (FLSM) and the general solution for the functions <al(x)> 

In this section, we consider the more complex case when the memory between successive 

measurements is relatively long and occupies L independent measurements. For this case we have  
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As before, the functions ( ) ( )l la x T a x   are supposed to be periodic with mean period T. How 

to find the unknown functions ( )la x in this general case for any L? We require that the quadratic 

dispersion between the left and the right sides of expression (A1-1) should be minimal 
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Taking the functional derivatives of the function (x) with respect to the functions ( )la x and 

equating each partial derivative to zero we have  
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In the last expression we added also the averaging procedure over all admissible measurements 

(m=1,2,…, M–L) because the unknown functions ( )la x do not depend on index m. After 

introducing the notations  
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from (A1-3) we obtain the system of equations for the finding of unknown functions  
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So, here we obtained the important result: the generalization of the LLSM for the finding of the 

unknown set of the functions ( )la x , which is natural to define as the functional least square 

method (FLSM). In the partial case for L=2 this general result is reduced to expression (8). It is 

instructive also to obtain the result for L=1. For this simple case we have 
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Here we suppose that the function b(x) is periodical (i.e. ( ) ( )b x T b x  . From the general 

expression we have  
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From the system of linear equations (A1-7) one can find easily the unknown functions <a0(x)> and 

b(x). The solution of the functional equation (A1-6) for the conditions mentioned above is written in 

the form 
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    (A1-8) 

The function F0(x) can be associated with the initial measurement. Other functions Fm(x) (m 

=1,2,…,M) can be restored from expression (A1-6). Finishing this section it is necessary to write 

the solution of the functional equation (A1-1) for the case when the functions are supposed to be 

periodical ( ) ( )l la x T a x  . We are looking for the solution in the form  

 
/

0 ( ) ( ) Pr( )xx T
F x x x  ,     (A1-9) 



where, as before  Pr Pr( )xx T x  . Inserting this trial solution in (A1-1) we obtain 
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which is the equation for the finding of the desired functions ( ), 1,2,...,q x q L  . So, the general 

solution of the functional equation (A1-1) for the initial function F0(x) can be finally written in the 

form 
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Other solutions for m=1,2,…,M can be found easily from (A1-11)  

 
1

( ) ( ) ( ) Pr ( )x

L x
s

T
s x l l

l

F x F x sT x x




    .    (A1-12) 

The last expressions (A1-11, 12) can be defined as the generalized Prony series (GPS) because the 

exponential factor figuring before the periodic function is the function of input variable x.  

Appendix 2.  

How to find the behavior of the fitting function out of the measurement interval [0, Tx]?  

We want to show here that the general solution (A1-11) solves another important problem as 

prediction of behavior of the measured function F(x) out of the interval of observation of the 

input/control variable x. Imagine that the measured data are fitted properly in the frame of the 

model (A1-11) and that the aim is to continue this fit out of the interval [0, x] adding some shift  to 

the admissible interval 0  x Tx+ . Is it possible to solve this problem in the same frame of the 

introduced general concept or not? From the mathematical point of view, it is necessary to express 

the function F(x + ) with the help of the function F(x) by reducing the new interval of observation 

to the previous one. The solution expressed in the form of (A1-11) admits this separation:  
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where 
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where the last expression represents the rotation matrix which connects the previous decomposition 

coefficients ( ) ( ),l l

k kAc As with the new ones. The same rotation property holds true for the functions 

l(x  ) = l(x, ) because they are supposed to be periodical also alongside with the functions 

Prl(x, ). As one can notice from expression (A2-1), the variables x and  are separated and one 

receives a possibility to consider the shifted function F(x + ) staying in the initial observation 

interval for the input variable x. To avoid misunderstanding we should stress here that the shifting 

value  represents an independent variable and does not depend on index l.  
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Fig.1(a). These plots illustrate the idea of separation of all measurements (including the corresponding 

equipment) on three classes (clusters). Here most of the slopes (77) are located in the vicinity of unitary 

slope. If we divide all values of the ranged slopes (marked as SL) on three intervals (min(SL), 1–dn) (1–dn, 

1+up), (1+up, max(SL)), then 77% of measurements score in the central interval. So, they can be 

characterized as "good" measurements in accordance with the proposed criterion. 
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Fig.1(b). Here the selection on three intervals remains the same up=(max(SL)–1)/3dn =(1–min(SL))/3, but 

the number Nmn entering in the central interval is 38. So, these measurements can be characterized as 

"acceptable".  
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Fig.1(c). Here we show the case of "bad" measurements. The value of Nmn=13 and most of measurements 

are located in "up" (Nup=38) and "dn" (Ndn=49) regions, correspondingly.  

 

 

Fig. 2: The Common Rail Injection System 

 

 

 



 

 

Fig. 3: Scheme of the Bosch Rate of Injection Meter 
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Fig. 4. This plot demonstrates real injection data measured at a rail pressure of 800 bar and with energizing 

time (ET) of 300 s. We show only 6 randomly taken data together with the mean value <y>. The total 

number of measurements is M=100. The plots of these data with respect to <y> demonstrate their strong 

correlations (see small figure above).  
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Fig.5(a). Distribution of the slopes corresponding to M = 100 measurements for P = 300 bar, ET = 300s.  
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Fig.5(b). The bell-like curve corresponding to the distribution shows that Rt=65% of measurements scored 

into the central interval. So, they can be characterized as "good" measurements.  
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Fig.6. This plot shows the results of the clusterization procedure. Instead of 100 successive measurements 

we receive only 3 averaged and strongly correlated (see the upper plot) measurements that are very close to 

each other. We select only the mean measurement Ymn(x) for the realization of the further fitting procedure.  
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Fig.7. Here we show the result of the reduction procedure. 16 points of the initial curve Ymn are reduced to 

three incident (with invariant relatively permutations) points. The curve Mn reflects the distribution of mean 

values, Mup the maximal values and Mdn the minimal values for each segment, correspondingly. The 

number of segments is determined as the integer part of the ratio R = L(1660)/b(16) =100. The value tmn is 

determined as a mean value of time corresponding to each chosen interval. 
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Fig.8. Here we demonstrate the behavior of the roots 1,2 and their smoothed values (shown by solid lines). 

On the upper plot we show the reduced values of the smoothed roots. These functions can be used for the 

fitting of the Mn function shown on the previous figure.  
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Fig.9. The fitting of the function Y(x) (Y = Mn, x = tmn ) with the help of expression (18). This function can 

be fitted with very high accuracy (RelErr < 0.01%). The amplitude-frequency response (AFR) serves as an 

intermediate model (IM) of this function.  
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Fig. 10(a). This plot demonstrates the distribution of all amplitudes 
(1,2) (1,2)

0 , ( ), ( )k kA Ac x As x that enter to 

expression (18). We note that the number of these amplitudes are comparable with number of the reduced 

points (R=100) that provides the practical coincidence of the fitting curve with Y(x).  
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Fig. 10(b). This curve is very useful in analysis of distribution of all amplitudes (shown on the previous 

figure) when the number of this amplitudes are relatively large (>100). This distribution can be fitted with 

the help of the function (12) and can be "read" in terms of 4 fitting parameters. The maximal value of this 

bell-like curve corresponds to the amplitude having the minimal value.  
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Fig.10(c). The separate distribution of the amplitudes 
(1,2) (1,2)( ), ( )k kAc x As x that enter into the fitting function 

(18).  
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Fig.11. Here we show the bell-like curves for two set of measurements corresponding to 700s (upper curve) 

and 1300s. The bell-like curve depicted on Fig.5(b) cannot be placed here because its range is high. Here 

we want to say that the maximal value of this curve reflects the range of the measurements with respect to 

the slope having the unit value. The minimal range corresponds to 1300s and, correspondingly, the 

maximal value corresponds to the ET=300s (Fig.5(b)). The quality of the performed measurements in 

accordance with classification (13) is shown also. 
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Fig.12. Here we demonstrate the fit for the reduced curves corresponding to mean values and realized with 

the help of the procedure described in the stage 3 for ET=700 and 1300 s, correspondingly. The fitting 

curve depicted on Fig.9 (because of the big difference of their ranges) cannot be placed here.  
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Fig.13(a). The total distribution of the amplitudes 
(1,2) (1,2)( ), ( )k kAc x As x  calculated for all ETs. This plot is 

informative when the number of modes is high (>100) and it is necessary to evaluate the corresponding 

spectrograms in general. One can notice here that the amplitudes figuring in the fitting function (18) increase 

with increasing the value of the energizing time.  
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Fig.13(b). The separate distribution of the amplitudes 
(1,2) (1,2)( ), ( )k kAc x As x that enter into the fitting function 

(18) for P=800 bar, ET=700s.  
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Fig.13(c). The separate distribution of the amplitudes 
(1,2) (1,2)( ), ( )k kAc x As x that enter into the fitting function 

(18) for P=800 bar, ET=1300s.  

 



Table of additional fitting parameters that enter to the fitting function (18) 

ET(s) Toptimal ln(mean(1)) ln(mean(2)) A0 Range(Atot) RelErr(%) K 

300 4.24 -0.99862 -1.40454 0.67379 1.01499 8.68702E-5 26 

700 4.24 -0.99862 -1.40454 0.22757 16.7135 9.22558E-5 26 

1300 4 -0.99862 -1.40454 9.02344 51.6305 0.44392 24 

 

The range of the function is determined conventionally as the difference between the maximal and minimal 

values i.e.: Range (F) = max(F) – min(F). The relative error is determined by expression  

Table(s)




