
21 May 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Robust optimal demand-side management in smart grids / Hosseini, Seyed Mohsen. - ELETTRONICO. - (2021).
[10.60576/poliba/iris/hosseini-seyed-mohsen_phd2021]

This is a PhD Thesis

Original Citation:

Robust optimal demand-side management in smart grids

Published version
DOI:10.60576/poliba/iris/hosseini-seyed-mohsen_phd2021

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/264880 since: 2024-01-18

Publisher: Politecnico di Bari



 
 

 
 

Department of Electrical and Information Engineering 

ELECTRICAL AND INFORMATION ENGINEERING               

Ph.D. Program 
 

SSD:  ING-INF/04 Automatica 

 

Final Dissertation 
 

 
 

 
Robust Optimal Demand-side Management 

in Smart Grids 
 

 

 
by 

Seyed Mohsen Hosseini 

 

Supervisor: Prof. Mariagrazia Dotoli 

Co- Supervisor: Dr. Raffaele Carli 

 

 

Coordinator of Ph.D. Program: 

Prof. Luigi Alfredo Grieco 

 
 

 

 

33rd Cycle, 01/11/2017-31/12/2020 



 
 

 

 
 

Department of Electrical and Information Engineering 

ELECTRICAL AND INFORMATION ENGINEERING               

Ph.D. Program 
SSD:  ING-INF/04 Automatica 

 

Final Dissertation 
 

 

 
Robust Optimal Demand-side Management 

in Smart Grids 
 

 

 

by 

Seyed Mohsen Hosseini 
 

 
 

Referees: Supervisors: 

Prof. Alessandra Parisio 

Prof. Michela Robba 

Prof. Mariagrazia Dotoli 

 

Dr. Raffaele Carli 

 

 

Coordinator of Ph.D. Program: 

Prof. Luigi Alfredo Grieco 

 

 

 
 

 

33rd Cycle, 01/11/2017-31/12/202



 
 

1 

 

Robust Optimal Demand-side Management in Smart Grids 

by  

Seyed Mohsen Hosseini 

 

A thesis submitted to the Department of Electrical and Information Engineering in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy in 

Electrical and Information Engineering 

 

 

 

 

 

 

 

 

 

Abstract 

Smart grids (SGs) are experiencing an increasing growth due to their economic, social and 

environmental benefits. The concept of SG has recently gained significant attention from the 

research community due to its ability to effectively integrate distributed energy resources 

(DER) including renewable energy sources (RES), energy storage systems (ESS) and the 

demand side management (DSM) programs. A SG can change the operation paradigm of the 

electric grid to ensure an efficient and sustainable electricity supply with lower losses and 

greater reliability and security. Despite these potential benefits, the massive penetration of 

DERs in SGs may impose new challenges to the system design and functioning. A substantial 

challenge arises from system uncertainties due to forecast errors. For instance, the inherent 

intermittency of RESs, the unpredictable changes in users’ electricity demand, and the volatility 

of the dynamic electricity price in electricity markets can inject considerable amounts of 

uncertainty into the electric grid. 

Facing these challenges, this thesis investigates the integration of DERs and DSM programs 

as great sources of flexibility and essential elements for effective supply-demand balancing into 

SGs in the presence of uncertainty. Firstly, we present a comprehensive classification, review 

and analysis of existing approaches and findings for DSM to highlight key features and 

components of energy management systems for more flexible and intelligent grids. We provide 

a definition of DSM and introduce the reader to the functionalities and achievements of DSM 

applications in SGs. We then focus on the state-of-the-art decision-making and control 
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approaches for DSM, followed by a comprehensive description of demand side applications 

detailed for smart users, distribution networks and transmission networks. 

Afterwards, we characterize our novel methodologies presented in this thesis in two main 

parts including centralized and decentralized/distributed approaches. 

In the first part, we present five novel robust centralized DSM approaches for the optimal 

scheduling of residential microgrids (MGs) comprising a number of interconnected end-use 

consumers with various types of electrical loads, RESs, ESSs, and plug-in electric vehicles 

(PEVs). The general objective of the optimal scheduling is minimizing the expected electricity 

cost while satisfying device/comfort/contractual constraints of the system under the 

uncertainties on RES generation and users’ electricity demand. In addition, we deal with the 

conservativeness of the proposed approaches for different scenarios in terms of the cost saving, 

the peak-to-average ratio (PAR), and the constraints’ violation rate. The proposed robust DSM 

approaches allow the decision maker (i.e., the energy manager of the system) to make a 

satisfactory trade-off between the electricity cost and constraints’ violation rate considering the 

system technical limits and the users’ comfort. We validate the effectiveness of the proposed 

approaches on several simulated case studies and provide comparisons and discussions on the 

results. 

In the second part, we explore decentralized and distributed DSM approaches for the 

coordinated optimal charge control of PEVs in SGs. In particular, we develop a novel fully 

distributed control strategy for the optimal charging of large-scale PEV fleets aiming at the 

minimization of the aggregated charging cost and battery degradation, while satisfying the 

PEVs’ individual load requirements and the overall grid congestion limits. The proposed 

resolution algorithm requires a minimal shared information between PEVs that communicate 

only with their neighbors without relying on a central aggregator. Thus, it guarantees the PEV 

users’ privacy. We validate the proposed approach on numerical experiments with a large 

number of PEVs to demonstrate the ability of the approach in finding a global optimum solution 

with a favorable computational efficiency. Moreover, we present a new robust decentralized 

framework for day-ahead charge control of PEV fleets under uncertainties on the dynamic 

electricity price and the inelastic loads demand. The main objective of this work is minimizing 

both the overall charging cost and the aggregated battery degradation cost of PEVs while 

preserving the robustness of the solution against perturbations in the uncertain parameters. In 

addition, power congestion limits of the overall capacity of the distribution network and the 

PEVs’ individual needs such as charge level requirements and battery degradation cost are 

taken into account. 
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1. Introduction 

1.1. Background and motivation 

The electric grid is going through a great technological evolution with the development of 

the SG concept. This evolution impacts the whole electricity supply chain (i.e., electricity 

generation, distribution, consumption, storage, and load management) and all the involved 

actors, allowing an effective integration of RESs and more interaction between the supply side 

and the demand side of the electric grid [1]. The development of SGs as a result of the 

integration of control, information and communication technologies has provided a unique 

opportunity for energy companies and consumers to effectively communicate with each other 

for the management of the energy demand [2]. This ability, which is called demand-side 

management (DSM) and is known as a key property of the SG, is widely acknowledged as an 

important source of flexibility and an essential element to balance supply and demand more 

effectively. DSM programs are adopted to use the available energy more efficiently without the 

need to expand new generation and transmission infrastructure [3]. In this context, demand-

side flexibility can be described as an extend of the energy demand that could be reduced, 

increased or shifted in a specific period [4]. Demand-side flexibility sources, such as DERs, 

can effectively participate in DSM programs to profit different power system stakeholders in 

transmission, distribution and end-use levels of the electric grid. Whereas end-use consumers 

have conventionally been a passive part of the electric grid, DSM technologies now enable 

them to be actively involved in the energy sector renovation process. Traditionally, DSM 

programs were applied to large electricity users to make them more active contributors by 

encouraging them economically. However, it has by now become evident that small end users 

such as smart homes can be seen as key enablers for the transition toward a low-carbon, low-

electricity cost and self-controllable energy sector, ensuring the efficient and sustainable use of 

natural resources from the electricity provider and consumer perspectives. Letting the 
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consumers automatically control and manage their individual consumption patterns, combined 

with mechanisms for the electricity price management, results in an electric grid that is more 

secure and efficient, easier to operate, and that simultaneously facilitates the integration of 

DERs and ESSs. Despite the broad benefits of DSM programs for both electricity providers 

(the supply side) and consumers (the demand side), in the field test environment, the dynamic 

behavior of the energy system components and the presence of unexpected disturbances in 

some electricity resources and users’ demand impose many challenges to the optimal design of 

a DSM program. For instance, the inherent intermittency of RES generation (e.g., photovoltaic 

systems (PVSs) or domestic wind turbines (DWTs)) enforces significant forecast uncertainty 

to the supply side [5]. On the other hand, the users’ electricity demand is largely affected by 

demand-side uncertainty, due to the unpredictable changes in users’ preferences. In this context, 

the presence of forecast errors may endanger the security of the system operation [6]. Therefore, 

there is an emerging need to define advanced energy management strategies to tackle the issue 

of forecast uncertainty. Accordingly, this thesis aims to propose several centralized and 

distributed/decentralized DSM approaches which are robust, generic and flexible as they can 

be applied to different structures of energy systems considering various types of uncertainty in 

local energy generation or demand. 

1.2. Thesis objectives and research contributions 

This research is divided into three main parts, which are briefly explained in the sequel. 

In the first part of the thesis, we present a comprehensive classification, review and analysis 

of DSM approaches and findings to highlight key features and components of energy 

management for more flexible and intelligent grids. We provide a definition of DSM and 

introduce the reader to the functionalities and achievements of DSM applications in SGs. We 

then present a critical review of the decision-making and control approaches for DSM, followed 

by a comprehensive description of demand-side applications detailed for smart users, 

distribution networks and transmission networks. We conclude this part by discussing and 

suggesting relevant and promising future research directions in each domain. 

In the second part of the thesis, we focus on exploring centralized techniques for the energy 

management of smart residential users under forecast uncertainty. We present several novel 

day-ahead and online energy scheduling approaches for residential MGs. The main elements 

of novelty and original contributions of this part can be summarized as follows: 

1) We present several models and systematic robust methodologies to state and solve the 

optimal energy scheduling problem of residential MGs with multiple components 

incorporating controllable loads (CLs), non-controllable loads (NCLs), RESs, energy 

ESSs and PEVs. Furthermore, we investigate the cases when the smart users can share 
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a given number of RESs and ESSs under dynamic linear or quadratic pricing, and when 

the MG is further able to sell its extra power back to the electric grid.  

2) We deal with the forecast uncertainty caused by the RESs energy profiles, as well as 

the users’ energy demand. The uncertainty in both the objective function and some 

corresponding contractual constraints is addressed. The problem includes uncertain 

terms both in the objective function and in the left-hand side (LHS) and the right-hand 

side (RHS) of the inequality constraints. To the best of our knowledge, no robust 

quadratic programming approach for the energy scheduling of the residential MGs has 

ever been proposed to tackle the uncertainties associated with RES energy generation 

and users’ energy demand under quadratic pricing. 

3) We propose frameworks which are generic and flexible as they can be applied to 

different structures of MGs considering various types of uncertainty in energy 

generation or demand. 

4) We deal with the conservativeness of the proposed approaches for different scenarios 

and quantify the effects of the budget of uncertainty on the cost saving, the PAR and 

the constraints’ violation rate. Our proposed robust approaches enable the decision 

maker (i.e., the energy manager of the MG) to make a trade-off between the users’ 

payment and constraints’ violation rate by adjusting the values of the budget of 

uncertainty. 

In the third part of the thesis, we focus on exploring novel decentralized/distributed 

techniques for the energy management of PEV fleets in a SG. Firstly, we present a distributed 

approach for the charge control of PEV fleets considering grid congestion and battery 

degradation. The main elements of novelty and original contributions of the proposed approach 

can be summarized as follows: 

1) we address the optimal charging of PEV fleets tackling both the power capacity limits 

related to the distribution network and the impact of charging strategies on battery 

degradation, in order to preserve the reliability and efficiency of both the electric grid 

and the individual PEVs. 

2) we establish a novel fully distributed control strategy for the optimal charging of large-

scale PEV fleets, in order to coordinate PEVs and eliminate the need for a central 

coordinator, reducing the computational complexity and guaranteeing the PEV users’ 

privacy. Our objective is obtaining a global optimum solution which minimizes the 

aggregated charging cost and battery degradation cost based on the PEVs’ individual 

satisfactions and requirements. Considering a realistic quadratic cost function for the 

energy purchased from the electric grid, and a quadratic PEVs battery degradation 

model as well, we formulate the optimization problem as a convex quadratic 

programming (QP) problem, where all the PEVs’ decision variables are coupled both 
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via the objective function and some grid resource sharing constraints. Hence, we adopt 

the distributed control algorithm for waterfilling of Networked Control Systems 

(NCSs) with coupling constraints to solve our iterative distributed strategy effectively. 

Secondly, we propose a novel robust decentralized charge control approach for large-scale 

PEV fleets in a system incorporating multiple PEVs as well as inelastic loads connected to the 

power grid under power flow limits. We aim at minimizing both the overall charging energy 

payment and the aggregated battery degradation cost of PEVs in the presence of data 

uncertainty. We take into account the power congestion limits of the overall capacity of the 

distribution network and the PEVs’ individual needs such as charge level requirements and 

battery degradation cost. The main elements of novelty and original contributions of the 

proposed approach can be summarized as follows: 

1) We present a novel mathematical model and an iterative coordinated framework, 

without relying on a central decision-maker, using an extended Jacobi-Proximal 

Alternating Direction Method of Multipliers (ADMM) algorithm [7] to minimize the 

aggregated charging cost of large-scale PEV fleets under both PEVs’ individual 

requirements and grid power flow limits.  

2) We account for the data uncertainties associated with the dynamic electricity price and 

the inelastic load demand by formulating a robust counterpart of the charge scheduling 

problem using the so-called uncertainty set-based robust optimization where uncertain 

parameters are assumed to take their values from different domain sets independently. 

3) We define suitable robustness factors to mitigate the conservativeness of the proposed 

approach and we investigate the effects of such robustness factors on the robustness of 

the solution against variations of the uncertain parameters within the given uncertainty 

sets. 

1.2.1. List of publications by the author 

Journal Articles: 

I. S. M. Hosseini, R. Carli and M. Dotoli, “Robust Optimal Energy Management of a 

Residential Microgrid Under Uncertainties on Demand and Renewable Power 

Generation,” in IEEE Transactions on Automation Science and Engineering, 2020. 

doi: 10.1109/TASE.2020.2986269. 

II. S. M. Hosseini, R. Carli, G. Cavone, M. Dotoli, “Distributed Control of Electric 

Vehicle Fleets Considering Grid Congestion and Battery Degradation,” in Internet 

Technology Letters, vol. 3, no. 3, pp. 1-6, 2020. doi: 10.1002/itl2.161. 



 
 

14 

 

III. S. M. Hosseini, A. Parisio, R. Carli and M. Dotoli, “Decision and Control 

Approaches for Demand-side Management in Smart Grids: A Survey,” in IEEE 

Transactions on Control Systems Technology – under submission. 

 

Conference Proceedings: 

I. S. M. Hosseini, R. Carli, A. Parisio and M. Dotoli, “Robust Decentralized Charge 

Control of Electric Vehicles under Uncertainty on Inelastic Demand and Energy 

Pricing,” IEEE International Conference on Systems, Man, and Cybernetics (SMC), 

Toronto, Canada, Oct 11-14, 2020. 

II. S.M. Hosseini, R. Carli, M. Dotoli, “Robust Day-ahead Energy Scheduling of a 

Smart Residential User under Uncertainty,” IEEE European Control Conference 

(ECC), Naples, Italy, June 25-28, 2019. 

III. S.M. Hosseini, R. Carli, M. Dotoli, “Robust Energy Scheduling of Interconnected 

Smart Homes with Shared Energy Storage under Quadratic Pricing,” IEEE 

International Conference on Automation Science and Engineering (CASE), 

Vancouver, Canada, August 22-26, 2019. 

IV. S.M. Hosseini, R. Carli, M. Dotoli, “A Residential Demand-Side Management 

Strategy under Nonlinear Pricing Based on Robust Model Predictive Control,” 

IEEE International Conference on Systems, Man, and Cybernetics (SMC), Bari, 

Italy, October 6-9, 2019. 

V. S.M. Hosseini, R. Carli, M. Dotoli, “Model Predictive Control for Real-Time 

Residential Energy Scheduling under Uncertainties,” IEEE International 

Conference on Systems, Man, and Cybernetics (SMC), Miazaki, Japan, October 7-

10, 2018. 

VI. S.M. Hosseini, R. Carli, G. Cavone, M. Dotoli, “Distributed Control of Electric 

Vehicles Charging Considering Grid Congestion and Battery Degradation,” 

International Workshop on Smart Mobility in Future Cities (SMFC), Bari, Italy, 

October 6, 2019. 

VII. S.M. Hosseini, R. Carli, M. Dotoli, “A Model Predictive Control Based Scheduling 

of Energy Systems with Shared Energy Generation and Storage”, Extended 

Research Abstract, Poliba PhDays, Bari, Italy, December 11-12, 2017



 
 

15 

 

1.3. Thesis structure 

The rest of this thesis is structured as follows: Chapter 2 presents an overview of the key 

features and components of DSM for flexible and intelligent grids, with a particular focus on 

decision-making and control aspects. In order to provide readers an exhaustive overview of the 

SG development and DSM routemap within the last decade, we conduct a detailed analysis of 

the various decision-making and control approaches available in the literature. We categorize 

them in three main application domains, namely smart end users, transmission network and 

distribution network. We cluster all surveyed publications according to these three domains to 

present a systematically structured survey. In Chapter 3, we present five centralized DSM 

approaches aiming at providing a cost-effective solution for energy management of residential 

MGs under different technical/operational/contractual/ constraints in presence of both 

generation and demand uncertainties. Firstly, we propose a day-ahead robust approach based 

on a box uncertainty set model for the optimal scheduling of a residential MG. Then, we present 

an online approach based on model predictive control (MPC) and another online approach 

based on robust MPC (RMPC) regarding the cardinality-constrained uncertainty set model for 

the DSM of residential MG. Finally, we present a comprehensive model and a systematic robust 

methodology to state and solve the optimal energy scheduling problem of a grid-connected 

residential MG with several users incorporating individually owned RESs, NCLs, energy-based 

and comfort-based CLs, and PEVs. In Chapter 4, we firstly address the problem of coordinated 

energy management of PEVs in SGs considering grid congestion and battery degradation, then 

we present a fully distributed control strategy for the optimal charging of large-scale PEV fleets 

aiming to minimize the aggregated charging cost and battery degradation, while satisfying the 

PEVs’ individual load requirements and the overall grid congestion limits. Furthermore, we 

propose a novel robust control algorithm to optimally control the battery charging of electric 

vehicles under grid resource sharing constraints in a decentralized fashion. We tackle the 

uncertainties on the dynamic electricity price and the inelastic load demands to preserve the 

robustness of the approach against the disturbances. The thesis ends with conclusions and future 

work proposals presented in Chapter 5. 

 



 
 

16 

 

 

 

 

 

 

 
 

2. Demand-side Management in Smart Grids; 

Background, Opportunities and Challenges 

2.1. Introduction 

DSM refers to technologies, actions and programmes on the demand-side of energy metres 

that seek to manage or decrease energy consumption, in order to reduce total energy system 

expenditures or contribute to the achievement of policy objectives such as emissions reduction 

or balancing supply and demand [8]. Another well accepted definition states that Demand-side 

management is the planning, implementation, and monitoring of those utility activities designed 

to influence customer use of electricity in ways that will produce desired changes in the utility’s 

load shape, that is, changes in the time pattern and magnitude of a utility’s load [9],[10]. 

DSM encompasses a broad range of programs, from classical direct consumer load control 

to ancillary service provision, and can include energy conservation, energy efficiency, costumer 

generation, and demand response (DR) programs [8],[10]. In particular, DR is defined as 

changes in electric usage by end-use customers from their normal consumption patterns in 

response to changes in the price of electricity over time, or to incentive payments designed to 

induce lower electricity use at times of high wholesale market prices or when system reliability 

is jeopardized by the U.S. Department of Energy (DOE) and the Federal Energy Regulatory 

Commission (FERC) [11],[12].  

DSM is widely acknowledged as an important source of flexibility and then as an essential 

element to balance supply and demand more effectively in intelligent and sustainable power 

grids. The implementation of DSM programs can aid in improving stability and reliability of 

the grid, in addition to the many advantages for consumers. For instance, DERs, especially local 

RESs and ESSs, can provide consumer’s demand in hours of high energy prices, which reduces 

the dependence of consumers on the grid. The shifting of the consumers’ demand from high 

energy price periods to lower energy price periods reduces consumers’ energy costs and reduce 
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the amount of peak demand on the network. Reducing unnecessary loads at the certain periods 

(peak demand period or at the request of the system operator) will lead to further savings in 

energy consumption and cost reduction. 

Demand-side flexibility sources can effectively participate in DSM programs to profit 

various power system stakeholders in transmission, distribution, and costumer levels of the 

power grid. Several flexibility sources are expected to be increasingly available in power 

systems, such as: 

• dispatchable energy resources (i.e., distributed generation and distributed storage, 

including multi-energy generation such as cogeneration or combined heat and power 

(CHP)); 

• flexible loads (e.g., smart appliances, heating, ventilation, and air conditioning (HVAC) 

systems, heat pumps (HPs) and electric vehicles (EVs) with smart charging); 

• technical and commercial aggregation structures (e.g., virtual power plants (VPP), 

microgrids (MGs), aggregators, virtual storage plants (VSP)); 

• local markets for balancing and demand-side services. 

Novel control and decision-making frameworks will be the backbone of a more intelligent 

and sustainable power system, and control is the cornerstone of an efficient DSM as well 

[13],[14]. The advances in information and communication technologies and control can make 

DSM a viable and attractive solution to increase the power system flexibility and the penetration 

of RESs. To this end, future power systems are expected to integrate these intelligent 

technologies across the entire system, from electric power generation, transmission, and 

distribution to final electricity consumers.  

Taking advantages of the demand-side flexibility sources, the development of DSM aims at 

contributing to 1) reduce the costs of energy consumption, system operation, maintenance, and 

planning; 2) guarantee the controllability, observability and stability of the power system; 3) 

enhance the sustainability, reliability and security of the grid support services [15]. 

Significant research has been devoted to the design and implementation of control and 

decision-making frameworks for DSM, with particular focus on energy efficiency and DR. 

Researchers have explored the application of DSM to diverse areas, such as frequency control 

[16],  peak demand shaving in datacenters coupled with battery storage systems [17], capacity 

credit of renewable energy sources [18], transmission expansion and investment deferral [19]. 

However, a review of the extensive body of studies on control and decision-making frameworks 

for DSM is missing. Hence, a thorough exploration of this timely and relevant topic, with a 

particular emphasis on the current barriers, concerns and possible control solutions for an 

efficient and holistic design of DSM programs is a great matter of importance to spotlight the 

pathway of ongoing and future research.  
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2.2. Motivation and Contributions 

Several review papers and surveys can be found in the literature focusing on DSM and its 

classification from different perspectives. For instance, a group of papers overview the existing 

literature on the role of DSM in open electricity markets [20],[21],[22],[23]. The authors in [23] 

discuss the state-of-the-art on electricity retail decision-making schemes, including long-term 

retailer load forecasting, energy procurement strategies, retail pricing schemes, and risk 

management in the retail market. Other studies only focuses on the application of DSM in 

specific sectors, for instance, in residential area, where DSM optimization strategies aim to 

reduce the operational costs and the peak load demand [24],[25],[26]. In particular, the authors 

in [25] review the literature on the home energy management systems (HEMS) that integrate 

DR programs, smart technologies, and load scheduling controllers. They compare the 

effectiveness of various heuristic optimization techniques in terms of computational speed and 

complexity. The survey [27] overviews DR programs applying on end-users in SGs. The 

authors focus on two major branches of DR programs, namely incentive-based DR programs 

where customers are paid by utilities for participating in demand reduction in the case of 

emergencies, and price-based DR programs where customers change their demand in response 

to time-varying electricity price signals in different time periods. They also explore some 

commonly used mathematical models and problem formulations in the context of DR. The 

authors in [28] classify DR models and characterize them according to six different features 

including thematic properties referring to the research content, methodological properties 

including models and mathematical perspectives, temporal properties regarding models’ 

temporal perspective and resolution, spatial properties including geographic location, 

technological properties according to energy demand sectors and practical properties referring 

to the type of DR activity such as price- and incentive based measures. Furthermore, in [29] the 

state-of-the-art on modeling, operation strategy and market behavior of integrated DR programs 

in multi-energy systems (MES) as well as their applications throughout the world is 

investigated. 

The previous survey and review papers mostly focus on DR and on individual power-related 

aspects as well as on electricity markets. Hence, there is a lack of a comprehensive survey on 

decision-making and control strategies for DSM, which not only covers the impacts of DSM 

programs on the actors in downstream power network, i.e., individual energy consumers, but 

also takes thoroughly into consideration the benefits to the upstream power network i.e., to the 

aggregation of generators and consumers/prosumers connected to the distribution network 

(DN) as well as to the transmission network and to the network as a whole, through the 

provision of adequate ancillary services. 
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Aiming at filling this gap, this work reviews the key features and components of DSM for 

more flexible and intelligent grids, with a particular focus on decision-making and control 

aspects. In order to provide to the readers an exhaustive overview of the SG development and 

DSM routemap within the last decade, we conduct a detailed analysis of the various 

optimization and control approaches available in the literature. They can be categorized in three 

main domains, namely smart end-users, transmission level and distribution level. We cluster 

all surveyed publications according to these three domains to present a systematically 

structured survey. We conclude this survey by discussing and suggesting relevant and 

promising future research directions in each domain. 

In the remainder of the paper the existing studies on the decision-making and control 

approaches for DSM applications are classified and reviewed. The background information of 

the main decision-making/control structures in SGs is firstly introduced in Section 2.3. Section 

2.4 gives a summary of existing studies on uncertainty consideration in DSM strategies. Section 

2.5 outlines some important DSM research categories applied to the power system. Section 2.6 

comprehensively illustrates the main decision-making and control strategies focusing on 

individual smart users, whilst Sections 2.7 and 2.8 explore the related works at distribution and 

transmission levels, respectively. Section 2.9 presents the current research gaps and the future 

research directions. Finally, the paper ends with conclusions in Section 2.10. 

2.3. Methodology: selection and classification of the 

papers for the review 

In order to provide a comprehensive overview of the research topic, we adopted a systematic 

search strategy by following some critical steps for finding the most relevant and principal 

research papers to the topic. Firstly, we selected a large sample of related papers from two 

important databases of high quality and innovative papers, i.e., Science Direct and IEEE Xplore 

databases, which have various advanced search options for a precise search, as well as from 

some important technical reports databases such as Pacific Northwest National Laboratory 

(PNNL) and Energy Policy Acts. Then, we used a list of research terms including “demand-side 

management”, “demand response”, “energy efficiency” and “energy management”, also once 

alongside the keywords “decision making”, “control” as well as “smart users”, “distribution 

network” and “transmission network” to search for the relevant articles. In total, we selected 

1034 scientific publications in this step. 

Then, for the sake of filtering the sheer number of extracted papers and selecting the most 

updated, cited and relevant researches in the context, we firstly considered a time/citation 

filtering frame for the resulting papers consisting of three sub-frames as: (f.1) the papers 
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published during the last two years from 2019 to January 2021, (f.2) the papers published from 

2016 to the end of 2018 and were cited more than 5 times, and (f.3) the papers published from 

2013 to the end of 2015 and were cited at least 15 times. Accordingly, the review totally covers 

the last 8 years of related literature with threshold criteria of being updated and/or being highly 

cited. In the next step, we deeply reviewed the remaining papers according to the topics of focus 

in terms of conceptual, theoretical, and methodological aspects to organize the structure of the 

review, intended sections and sub-sections. Within this step, we also applied a further filter on 

the publications to only keep the related papers with a special focus on the decision-making 

and control while clustered them according to their applications to the different power levels 

from transmission to distribution and consumption levels as well. After distinguishing 

authoritative and critical perspectives to the topic and defining a precise structure for the 

review, we launched a new search in the same databases considering all defined topics and sub-

topics to achieve a highly comprehensive dataset of various related research efforts. A final 

filtering was made to remove duplicate papers or unrelated papers to the topics. Lastly, we 

analyzed each group of papers to include logical research patterns, and to provide a degree of 

analysis and conceptual information while identifying research gaps and pointing the way for 

future work. 

In total, we reviewed 295 publications, of which 38% were placed within the frame f.1, 37% 

within the frame f.2, and the remaining 25% within the frame f.3. 

Looking at all publications investigated in this review, on the one hand, the decision-making 

and control approaches for DSM in terms of methodological perspective were clustered into 

the following categories: 

• Optimization techniques/algorithms 

• Transactive control 

• Artificial intelligence approaches 

• Optimal control and dynamic programming 

• Model predictive control 

• Game theory 

• Multi-agent systems 

On the other hand, we classify the applications of decision-making and control approaches 

for DSM regarding the following stakeholders: 

• Smart users (i.e., residential/commercial/industrial consumers, electric transport, 

and public facilities) 

• Distribution network 

• Transmission network 
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Fig.  1. Statistical percentage of reviewed publications in terms of (a) year of publications, and (b) number of 

citations 

 

A statistical report of all surveyed articles in this work in terms of years of publication and 

number of citations is shown in Fig. 1. The general overview on the methodological-based 

content cluster as well as the application-based content cluster of the research topics 

investigated in this review are depicted in Fig. 2 and Fig. 3, respectively. 

 

 
Fig. 2. An overlook on the state of the art on DSM topic in terms of methodologies 

 
Fig. 3. An overlook on the state of the art on DSM topic in terms of applications to the main power 

system stakeholders 
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2.4. Decision-making/control structure 

In this section we introduce main decision-making/control structures regarding physical, 

interaction and communication architectures of control, information units and system 

components. In this regard, three main architectures can be distinguished: centralized, 

decentralized, and distributed systems. Although a full exploration of these three architectures 

is beyond the scope of this paper, we aim at identifying some of their key characteristics, 

advantages, and drawbacks together with recent developments within the context. 

 

2.4.1. Centralized systems 

Indeed, in a centralized system, a central server is in charge of collecting all the information 

from individual subsystems and forecasting systems to centrally perform the decision-

making/control task of all subsystems [30]. The centralized architecture has been a prevalent 

and effective control schema that has dominated control systems for years. In the context of 

energy management, analytical and conceptual models of centralized decision-making and 

control for smart systems’ operation are widely provided in the literature with various 

objectives such as reducing total energy costs and enhancing energy savings [31],[32], 

declining peak-to-average ratio (PAR) of demand profiles with beneficial impacts on the 

efficiency of generation, transmission and distribution systems [33],[34], and maintaining grid 

stability [35],[36]. In all aforementioned works, customers send a request as subsystems to a 

central authority and receive the response decision. From an important perspective, centralized 

decision making and control approaches can be further categorized into so called offline 

algorithms such as day-ahead or multiple-day-ahead approaches [32]-[38] where the decision-

making/control task is executed once upon a defined time window, and so called online 

algorithms such as iterative real-time approaches [31],[39],[40] where the decision-

making/control task is repeatedly performed over a time window while gathering data, 

processing them, and updating the system at each time slot. Whereas the former group usually 

ignores the dynamic behavior of the system as well as the intermittency and variability of 

parameters (except for stochastic and robust methodologies [34],[36]), the latter group 

frequently monitors the system in real time for responding to the sudden change of system 

inputs. Although most of decision-making and control techniques for DSM in literature has 

been developed in a centralized setting, this paradigm has evident limitations which 

overshadow its potential benefits. The centralized techniques generally show effective results 

and are usually easy to implement. However, they suffer from poor privacy protection of users, 
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for instance in the energy scheduling of appliances where users may not be comfortable with 

the idea of seeing their appliances controlled by someone else. Moreover, centralized 

techniques have limited communication capability among the subsystems and limited 

computation ability in one single controller for large-scale systems. Indeed, the practical 

realization of energy management techniques, in particular for large-scale power systems 

consisting of various interconnected DER or subsystems with more complicated processing of 

measurements and control computation, necessitates more systematic approaches with more 

advanced information interfaces. Motivated by this necessity, most recent studies are 

alternatively oriented toward decentralized and distributed approaches. 

2.4.2. Decentralized systems 

In a decentralized system, the computation is distributed across several local servers, but a 

centralized authority oversees collecting information from each subsystem and transmitting 

updates to all of them [41]. In such systems, users are considered as independent decision-

makers/controller under the influence of the central authority and/or other users. For instance, 

in [42] a decentralized control structure based on genetic algorithm is proposed for the energy 

management of smart homes with RES and ESS aiming to minimize the daily electricity bill of 

the users. The authors define a multi-agent system to model the entities of the power grid where 

the utility company, the smart homes and a central authority are considered as agents. They 

consider the central authority as a third-party entity that can receive electricity profiles data 

from the smart homes, determine the aggregated neighborhood profile and dynamic price, and 

finally send the updated data back to the smart homes. The work of [43] deals with a similar 

problem but by employing a decentralized online algorithm to minimize total energy bills of 

smart homes within a neighborhood, while further taking into account the uncertainty on RES 

generation. They assume a central authority that is responsible for purchasing enough electricity 

from wholesale electricity markets. The central authority only requires the total grid energy 

usage for all smart homes to preserve the privacy of the users. However, the algorithm ignores 

the possibility of two-way electricity transfers between smart homes and the power grid. The 

authors in [44] propose an agent-based decentralized decision-making approach based on a 

reinforcement learning (RL) for a cluster of non-residential buildings to minimize the energy 

use and to maximize the buildings’ comfort. An example of a decentralized DSM strategy for 

the optimal control of large-scale plug-in hybrid electric vehicles (HEVs) is presented in [45] 

aiming at minimizing the charging cost and the battery degradation for each user. The most 

aforementioned studies have addressed only one single type of energy, optimizing either 

electrical or thermal energy. However, other group of DSM techniques are also implemented 

for enhancing the efficiency, the flexibility and the scalability of the whole energy system 
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including different sources of energy (i.e., electricity, heat, and gas) [46],[47]. For instance, the 

authors in [47] suggest a fully decentralized decision-making approach for a multi-energy 

system (MES) comprising various types of flexible and hybrid energy appliances. The authors 

further compare the performance of the proposed decentralized approach with a centralized 

approach using a test case study. They demonstrate that although the decentralized approach 

might end up in a local minimum in some cases, but it offers an efficient performance for 

dealing with scalability as well as flexibility due to smaller local optimization problems. It is 

worth noting that a drawback of such decentralized systems is that each local controller is 

generally operate by ignoring the interactions from other subsystems and by solely using its 

locally available information. Therefore, the controllability of the system is restricted, 

deteriorating the system control performance. One typical example of such deficiency in power 

grids is the widespread blackout in North American in August 2003, where each subsystem 

only focused on preserving its own stability and transferred the extra load to other subsystems 

and eventually caused a severe overload and cascading corruption [48]. These challenges can 

be tackled by letting the local controllers communicate with their neighboring controllers to 

establish a distributed control system. 

2.4.3. Distributed systems 

Differently from a decentralized system, in a distributed system not only the computation 

but also the communication between subsystems is distributed, and local controllers can 

exchange information with neighboring controllers [41]. A distributed system usually consists 

of many interconnected users, which are required to cooperate for obtaining a desirable global 

objective [49]. In such systems, each user is considered as a local controller which performs 

local computation based on its own information and those received from its neighboring users 

through the underlying communication network. The associated benefits with distributed 

approaches, such as high privacy protection, high flexibility and scalability, reduced 

communication overhead and robustness to failures, have recently led scholars to further 

develop distributed decision-making and control approaches for DSM applications. Various 

methods can be found in literature for the realization of distributed DSM techniques in SGs. 

Among them, the most prominent approaches are based on dual decomposition [50]-[52] and 

alternating direction method of multipliers (ADMM) [53]-[56]. For instance, the dual 

decomposition, where the original large-scale problem is broken up into smaller sub-problems 

and the coupling between sub-problems is relaxed using Lagrange multipliers, is adopted in 

[50] for the distributed energy management of a MG with high penetration of RES. The 

objective is to reduce the cost of conventional generation while maintaining the constraint of 

the supply-demand balance affected by the intermittency of RES. Instead, the ADMM 



 
 

25 

 

approach, which is another advanced method for splitting the original large-scale problem into 

smaller sub-problems with a property of high accuracy, convergency and decomposability, is 

proposed in [53] for multi-agent system (MAS) based MGs. In the proposed approach, the 

agents (i.e., local controllers) can defer/skip the computation and transmission of updates. It 

means that each agent can update its local information and communicate with their neighbors 

relying on its own local timer without a global synchronization, leading to an efficient and fully 

distributed solution for saving the overall energy cost of MGs. Due to the great scalability 

feature of distributed approaches, a bunch of distributed algorithms are proposed for 

coordinated optimal charging of large-scale EVs fleets in SGs. For example, the work of [57] 

introduce a distributed EVs’ charging strategy to smooth the daily grid load profile concerning 

communication and computational overhead as well as EV users’ privacy. In addition, a 

distributed approach, so called waterfilling algorithm, subject to individual constraints and 

coupled waterlevels is developed in [58] and implemented on EVs’ fleets for the optimal 

charging. More recent distributed DSM approaches tackling data uncertainties in the system’s 

parameters using distributed robust methods [59], distributed robust real-time methods [60], 

and distributed stochastic methods [61]. Summing up, the research on the development of 

distributed approach for DSM applications are still ongoing to overcome some of its limitations 

such as challenging set up and developments as well as the presence of uncertainty in the final 

consensus-based solutions. 

 
Fig. 4. An overview on the features, pros, and cons of the main decision-making/control structures 
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2.5. Uncertainty consideration in demand-side 

management 

Real engineering systems are vulnerable to external disturbances and noises, and 

mathematical models used for the design and the actual system are mostly inconsistent [62]. A 

crucial challenge in energy management of SGs is to account for the intermittency and 

variability of uncertain parameters of the system. In fact, an efficient DSM strategy is required 

to satisfy certain performance levels in the presence of disturbance signals, unmodeled power 

system dynamics and parameter forecast variations. The deterministic DSM approaches, which 

do not consider the effects of uncertainties, only focus on finding the best possible system 

response. However, this response is usually estimated from a limited historical dataset and 

therefore may be far from the true model with actual parameters [63]. In contrast, uncertainty-

based DSM approaches tend to optimize the responses of the system while minimizing the 

variability of the responses to assess the impact of input uncertainty on the estimated 

performance measures in a statistically valid and computationally efficient way. Owing to the 

massive and ever-growing penetration of RES linked to transmission or distribution systems, 

in particular photovoltaic (PV) systems and wind turbines with intermittent and unpredictable 

nature, as well as inadvertent users’ energy demand (e.g., electricity and heat demands), a 

considerable amount of uncertainty can be imposed to the power grid design and functioning. 

Regarding relevant research to the context, the major sources of uncertainty in SGs can be 

distinguished as the forecast uncertainties in RES generation profiles [34],[36],[43],[59]-

[61],[65] users’ energy behavior [36],[59], [60],[64] energy price signals [34],[59], and 

devices’ usage times [34]. Coping with these challenges, two widely used sets of approaches 

for DSM of SGs in uncertain environments including robust techniques [50],[59],[60],[64],[66] 

and stochastic techniques [34],[36],[43],[61],[65] are introduced. More specifically, the robust 

techniques deal with the inconsistency of uncertain parameters by modeling uncertainty sets 

for guaranteeing the robustness of the solutions against the worst-case outcomes within these 

sets. For instance, the work of [66] deals with the uncertainty of RES generation in the energy 

cost minimization problem for a SG by establishing a robust counterpart problem relying on 

the uncertainty sets of possible realizations of the uncertain parameters. More widely, the 

authors in [67] consider an optimal energy scheduling problem of a grid-connected MG under 

uncertainties on both RES generation and users’ energy demand trough a cardinality-

constrained uncertainty set approach where decision makers can flexibily adjust the level of 

conservativeness. On the other hand, the stochastic techniques tackle uncertainties by modeling 

probability distribution functions of uncertain parameters based on statistical data for their 

successive unknown changes. A comprehensive example of such methodology to deal with the 
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uncertainty in SGs is presented in [34] where a scenario-based stochastic modeling approach is 

proposed to tackle uncertainties in electricity prices, RES generation and users’ behavior in 

using different types of appliances in a residential environment. In general, while stochastic 

DSM approaches often show effective performance facing uncertainty, they suffer from some 

limitations such as the necessity for the knowledge of the probability distribution of uncertain 

parameters, insufficient historical data for new cases, dependence between some uncertain 

parameters, and high computational effort due to high number of scenarios. 

2.6. Approaches for Demand-side Management 

In this section the development of approaches for energy management in different sectors 

of power systems with ever-increasing complexities and dynamics is surveyed. The main 

decision-making and control approaches for DSM applications are illustrated and critically 

reviewed. We present a general overview of the most popular topics of research on DSM in 

power grids, in particular the optimization techniques, market-based, learning-based, dynamic, 

and predictive-based control approaches as well as game-theoretical and multi-agent strategies. 

2.6.1. Optimization Techniques/Algorithms 

Optimization techniques seek to effectively solve the problem of maximizing/minimizing 

particular functional or operational objectives in a finite dimensional Euclidean space under 

relevant technical, operational and contractual constraints [68]. Within the SG domains, the 

main objective of optimization for energy management is to compute a feasible optimal solution 

for maximizing the overall benefits in terms of the performance criteria and target properties of 

the system. 

 
Fig. 5. Different levels of SG architecture including generation, transmission, distribution, and smart users based 

on two-way power and information flows. 
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In this regard, optimization techniques mainly provide optimal or near-optimal operational 

plans for smart loads (e.g., smart appliances [33],[34],[66],[67],[69], HVACs [37],[70], CHPs 

and HPs [37],[38],[67],[69],[71]), storage systems [32],[66],[67],[69] and EVs [34],[67] aiming 

at, for instance, minimizing the total energy costs [32]-[34],[37],[38],[66],[69],[71], shaving 

high-peak demands [33],[34], maximizing costumers’ comforts [37],[72] and environmental 

benefits [69],[71]. The topic of optimization for energy management for different applications 

is well studied in the technical literature, and in general, the applied methods can be 

distinguished as exact (also, it is called as deterministic), approximation, heuristic, and 

metaheuristic algorithms. Within this context, a wide class of studies deal with the optimization 

problems using exact algorithms that guarantee to find an optimal solution for the optimization 

problem. For example, the work of [72] presents a technical approach for the energy 

management of multiple buildings in a MG using a mixed-integer nonlinear programming 

(MINLP). This paper presents the economic advantages of optimizing the operation of heating, 

ventilation, and air conditioning units, lighting appliances, PV generation and ESS of each 

building. The authors solve the cost function via a set of linearization techniques and equivalent 

representations to convert the original MINLP into a simplified MILP problem. An example of 

optimization approaches for providing ancillary services is presented in [73] to leverage the 

participation of EVs for secondary frequency regulation by formulating the problem of 

frequency support as a MILP problem. The main challenge in the implementation of such 

algorithms arise when the size and complexity of the problem grow. In more complex large-

scale problems, it is generally hard to solve the problem within a rational time by using the 

exact algorithms. For instance, the optimal energy management of large-scale EVs fleets is 

usually a large-size multi-objective, nonconvex, and nonlinear optimization problem, which is 

difficult to be solved by conventional exact algorithms [74]. To this end, recent research efforts 

are rapidly moving toward finding alternative approaches that can support and capture 

efficiently the solution of the optimization problems that may not be optimal but are fully 

acceptable in terms of computation time, such as approximation, heuristic, and metaheuristic 

algorithms. Approximation algorithms provide an approximate solution with a guarantee of 

performance in both computation time and solution quality. For instance, the authors in [75] 

address a multiobjective optimization problem to manage frequency deviations, to handle EV’s 

charge demand, to maximize the vehicle-to-grid (V2G) support to EV users while minimizing 

EV’s battery degradation. This paper adopts an approximation algorithm to decompose the 

complex multiobjective optimization problem into subproblems, and then to solve the 

formulated subproblems iteratively using interior point method. In [76] an approximation 

approach based on search-swapping algorithm (SSA) is proposed for the charging coordination 

of EVs. The method results in minimizing charging cost, reducing computational cost, 

improving final state-of-charge (SOC) uniformity, and eliminating charging interruption. Such 
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approximation algorithms crucially require a mathematical proof guaranteeing that the quality 

of the obtained solutions is within worst-case boundaries. In contrast, heuristic and 

metaheuristic algorithms such as particle swarm optimization (PSO) and genetic algorithm 

(GA) try to find reasonably good solutions but generally without a clear indication at the outset 

on when they may succeed or fail. For example, the authors in [74] present a population-based 

heuristic approach based on a particle swarm optimization (PSO) for the large-scale utilization 

of EVs in power systems aiming at minimizing total charging cost, reducing power loss and 

voltage deviation of the power grid. In [77] a heuristic algorithm is proposed to reduce peak 

demand on the power grid by intelligent management of electric water heaters (EWHs) with 

thermal storage capacity. Aiming at reducing electricity cost, PAR, carbon emission, and 

ensuring users’ comfort in residential buildings with huge number of appliances, the recent 

work of [78] adopt multiple efficient heuristic approaches including hybrid genetic particle 

swarm optimization (HGPO) algorithm, genetic algorithm (GA), binary particle swarm 

optimization algorithm (BPSO), ant colony optimization (ACO), wind-driven optimization 

algorithm (WDO) and bacterial foraging algorithm (BFA) to efficiently schedule smart 

appliances to obtain the desired objectives. They demonstrate by the simulation results that 

their proposed optimization technique reduces the electricity cost by 25.55%, PAR by 36.98%, 

and carbon emission by 24.02% in comparison to the case of without scheduling. The authors 

in [79] address the energy scheduling problem of smart appliances in residential area by a 

heuristic approach, and then they evaluate the performance of the method in terms of cost and 

computation time compared to an exact algorithm. They demonstrate that the cost obtained by 

the heuristic algorithm is within 5% of the one obtained by the exact algorithm while the 

computation time is exponentially reduced in the heuristic case. 

The common heuristic optimization algorithms, such as PSO, are usually exposed to be 

easily trapped in certain local minima. Moreover, they are computationally complex, and they 

show difficulty in selecting optimal control parameters. The author in [80] show that the 

heuristic energy management algorithm based on binary PSO is relatively inefficient regarding 

computational time, demonstrating that it is unsuitable for the application in real-time energy 

scheduling. The other group of research develop metaheuristic algorithms for optimization 

problems which can be defined as high-level heuristic algorithms with an improved evolution 

in the search space. An important feature of such metaheuristic approaches is that they do not 

require particular knowledge on the optimization problems to be solved, then they can be 

considered as general problem-solving models for other related optimization problems. This 

feature is interesting in the context of decision-making for energy management of power 

systems with ever-increasing complexities and dynamics. For instance, metaheuristic 

algorithms have been recently used for the optimization of ancillary services in power systems. 

For instance, the authors in [81] propose a metaheuristic optimization algorithm based on a 
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variant of PSO to tackle the problem of energy resource management in MGs. They aim to 

minimize operating costs and to maximize the revenue of the energy aggregator that accumulate 

different available energy resources from the MG. The work of [82] compares the performance 

of three metaheuristic algorithms, namely harmony search algorithm (HSA), an improved 

harmony search (IHS) algorithm, and biogeography-based optimization (BBO) algorithm (see 

[82] for more details regarding these three algorithms), for solving the problem of economic 

dispatch of the power grid, i.e., the economic operation of generation facilities, under various 

technical power constraints. The author reveal that the HIS algorithm shows a more effective 

performance than others in terms of lower fuel cost and higher convergence characteristics 

response. 

2.6.2. Transactive Control 

Transactive control (TC) is one of the leading control approaches relying on an interaction 

among agents by economic signals to optimize the allocation of resources. The initial idea of 

TC was firstly introduced in [83],[84] where it was defined as a type of market-based distributed 

control to change the operational state of responsive assets so as to obtain an equilibrium 

between supply and demand through economic incentive signaling. In a transactive DSM, 

various agents, such as consumers, prosumers, and distributed generation units, automatically 

negotiate their actions with each other and with the utility system through efficient and scalable 

electronic market algorithms [85]. Scholars have extensively studied and discussed the benefits 

of incentive price mechanisms to control electricity demands, alleviate congestions and service 

provision in electric power systems (see, e.g., [85],[86] and references therein). The 

applications of TC in the SG domain range from the realization of DR programs in residential 

and commercial buildings considering grid operational constraints [70],[87],[88],[89] to 

frequency regulation and control [90] and voltage and congestion management in distribution 

networks [91]. One way to categorize the methodologies of TC in literature can be elicited from 

how the methods find an equilibrium among the users and complete the transactions. 

Accordingly, TC approaches can be differentiated according to their information exchange 

timing as the approaches with one-time information exchange [70],[88],[89],[91] or iterative 

information exchange [87],[90]. In the former, participants send the bid of their available 

flexibility to a coordinator in order to enable the coordinator to find the clearance price through 

price discovery mechanisms and control the devices accordingly. While in the latter, which 

mostly relies on the concept of dual decomposition, an upper-level entity repeatedly sends the 

price signals to a lower-level entity containing all participants and receives the corresponding 

responses from them. After specific iterations, the clearance price is set by the upper-level entity 

after meeting operational objectives. An important example of TC applications within DSM 
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paradigm relates to their wide use in different buildings. Various works for TC in residential 

and commercial buildings offer a special focus on HVAC and Thermostatically Controlled 

Loads (TCLs) [70],[87],[88],[89]. Two demonstration projects launched by Pacific Northwest 

National Laboratory implemented on the Olympic Peninsula and the American Electric Power, 

Ohio (AEP Ohio) are presented in [87],[88] to evaluate the market-based coordination 

strategies for residential loads. These projects demonstrate the effectiveness of the TC approach 

in an energy market to efficiently resolve the allocation of HVAC loads during operating 

interval, and they provide valuable insights for the coordination of residential loads from the 

practical point of view. A TC mechanism for HVACs in commercial buildings is further 

proposed in [89] for DR targets. The authors develop the transactive market structure, the 

distributed transactive market mechanism, and the agents bidding strategies aiming at social 

welfare maximization and load peak shaving. In [70], a bidding and market clearing strategy 

based on the coordination of a group of TCLs is presented to maximize a team objective, i.e., 

the social welfare, with incomplete information (due to the users’ privacy) subject to a peak 

energy constraint. The authors assume a system with a coordinator, which obtains energy from 

the wholesale market. A potential concern in the formulated problem of this work is that a 

clearing price may not always exist for an arbitrarily given team optimal solution. To cope with 

this issue, they present a novel bidding and clearing strategy to guarantee that the cleared price 

realizes the team optimal solution. The work of [90] develop a hierarchical TC approach in SGs 

and apply it to an IEEE 30-bus sample system. The control strategy combines market 

transactions at the higher levels with inter-area and unit-level control at the lower levels aiming 

to ensure frequency regulation using optimal allocation of resources in the presence of 

uncertainties in RES and demand, to reduce the cost of reserves, and to increase the social 

welfare. In [91], a market-based control approach for the DSM of EVs taking the grid 

constraints into account to avoid voltage drops or overloading of the distribution transformers. 

2.6.3. Artificial intelligence approaches 

Decision-making and control for DSM targets require intelligent solutions that flexibly 

address an increasing complexity of the system operation and management in future power 

systems due to cyber-physical nature and high penetration of heterogeneous components in an 

unknown, dynamic, and uncertain environment. Analyzing the large deal of data generated by 

the technologies such as internet-of-Things (IoT) and advanced metering infrastructures (AMI) 

implemented in such energy systems is sometimes unmanageable for human operators, 

especially in more complex and scalable systems. This emerges an essential need for automated 

approaches to analyze the resulting data [92]. Such challenge can be addressed by Artificial 

Intelligence (AI) technology thanks to its great ability for developing computer programs to 
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perform a variety of tasks, and to simulate the intelligent way of problem solving by humans 

[93]. Recently, AI approaches are employing to forecast electricity or thermal demands [94]-

[99], system protection device errors [100] and electricity pricing [95],[101], to optimize 

decisions of EVs [102],[103], and to provide better stability and efficiency of the power grid 

[101]. The work of [92] presents a comprehensive and detailed overview on the trend of AI 

approaches for DR applications, and it shows the growing interest of the research and industrial 

communities for AI approaches in the DR sector between 2009 and 2019. A wide look at the 

research works going on the topic of control and energy management in power grids shows that 

a vast research is being conducting on two core subsets of AI, namely machine learning (ML) 

[94]-[99],[101],[105] and deep learning (DL) [102],[103],[106],[107],[108]. ML relies on 

working on datasets to learn a group of actions from data by examining and comparing them to 

automatically identify common patterns, employ these patterns for prediction, and solve 

control/decision making problems in an uncertain and dynamic environment [104]. Depending 

on the type of the data and the model to be created, ML-based approaches can be broadly 

categorized into supervised learning (SL) [94],[95], unsupervised learning (USL) [96],[97] and 

reinforcement learning (RL) [98],[99],[101],[105] approaches (see [104] for more details). A 

SL assumes an available labelled set of input-output pairs for all training samples to train an 

algorithm with a known set of input data and known responses to make predictions. SL-based 

approaches have been extensively adopted to predict the users’ demand [94], distributed 

generation and electricity prices [95]. For example, the work of [94] presents two ML-based 

approaches for enhancing the accuracy of load prediction in a large-scale residential area. The 

authors develop a multi-layer neural network architecture to increase the prediction accuracy. 

A case study is investigated based on a dataset of 8-week electricity consumptions at 1-hour 

resolution from 2337 residential customers, where the first 7 weeks’ data was devoted to train 

the model and the last week data was used to validate the results. They demonstrate that their 

proposed SL approach allows multiple residential customers to obtain an acceptable load 

prediction over 94%. Unlike SL-based approaches, a USL-based approach only uses a series of 

input values without any corresponding target value. In this case, the goal is to detect clusters 

of similar examples in a dataset. An advantage of USL-based approaches compared to SL-

based approaches is that they can be applied to a more extensive types of problems as they do 

not require labelled data which are usually difficult to gain. The wide use of USL-based 

approaches for DSM targets can be observed in finding typical shapes of users’ load profiles, 

identifying potential group of users for DR targets, and discovering the loads which are 

contributing to the DR programs. A UCL-based clustering approach applied to smart meters 

energy consumption is proposed in [96] to extract critical information from data aiming at 

achieving efficient energy demand management while considering users’ behavior uncertainty 

in orders, times, and frequencies of appliances usage. The work of [97] deals with one of the 
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major challenges with the application of USL in energy monitoring process of smart homes, 

i.e., high computational complexity, through a fuzzy clustering algorithm. The authors provide 

an experimental evaluation of the method to demonstrate the great ability of the algorithm to 

learn useful appliance models in unseen energy data. RL is another subset of ML that enables 

an agent to learn through interacting with an uncertain environment. In contrast to the USL, it 

trains the machine through a trial-and-error process using a feedback from its actions and 

experiences instead of sample data. The dominant applications of RL in decision-making and 

control programs is related to energy scheduling of EVs and appliances relying on interactions 

with users to take the users’ preferences into account. RL-based approaches have also adopted 

for DR targets at consumer and service provider levels [98],[99],[105], as well as for learning 

DR pricing mechanisms [101]. For example, a RL technique is proposed in [98] to obtain the 

optimal electricity and natural gas consumptions in residential areas. The authors devise a new 

configuration of smart energy hub (for more detail about energy hubs, see Section VI(E)) based 

on a cloud computing system and they show that the method can incentivize customers to 

participate in DR programs by both shifting their energy consumption and changing their 

energy resources. A RL scheme is further developed in [101] for service providers, which 

allows them to adaptively calculate the retail electricity price in a hierarchical electricity 

market. An extension of the fitted Q-iteration as a variant of the batch RL technique is proposed 

in [99], which can provide a more effective decision-making process for DR programs, when 

some prior expert knowledge about the system dynamics and the monotonicity of the solution 

are available. A more detailed overview of the studies with the focus on the applications of RL 

for DSM at the building level is discussed in [105]. The authors review the state-of-the-art on 

the applications of RL to control energy systems such as DG, PV systems, EVs, electrical 

energy storage and HVAC in buildings. They show that most of the relevant papers only focus 

on single-agent systems with demand-independent electricity prices and a stationary 

environment, and there is still a need to further explore and develop RL to coordinate multi-

agent systems that can participate in DSM programs under demand-dependent electricity 

prices. Moreover, they propose a standardized evaluation framework for future research to 

improve the analyzability, comparability, and reproducibility of the results in the diverse 

problems within the area. DL is another subset of AI, which is also a subset of ML. However, 

we investigate it separately from other types of ML-based approaches due to its important 

characteristic for discovering new features to be used for detection and classification in a 

completely automated manner using deep neural networks. DL relies on a number of processing 

layers in the neural network to enable the learning of complicated and highly non-linear 

relationships and correlations. These outstanding features of DL -also sometimes in 

combination with RL as deep reinforcement learning (DRL)- have been widely adopted in DSM 

of smart systems to obtain load profile prediction and feature extraction in household- and 
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building-level SGs [106],[107], decision-making tasks for EVs charging [102],[103], and 

optimal energy management policy for industrial facilities [108]. For instance, a spatial-

temporal load forecasting approach is proposed in [106] for household loads taking advantage 

of a combination of compressive sensing and data decomposition. The authors aim to exploit 

the low-dimensional structures governing the interactions among the nearby houses. However, 

a potential challenge may arise when the length of receding horizon and the number of houses 

increase, so that the size of datasets significantly grows. The interesting work of [107] argue 

that direct implementation of DL in household load forecasting cannot necessarily improve the 

obtained results due to more parameters and relatively fewer data in more complex systems. 

This issue may result in the occurrence of overfitting. To tackle this issue, they a pooling-based 

DL for forecasting of household loads under high uncertainty and volatility which facilitate 

learning spatial information shared between interconnected customers to compensate 

insufficient temporal information. In [102] a deep neural network charging strategy for EV 

users is proposed to minimize the overall EVs energy cost. The method trains a decision-

making model to obtain real-time optimal decisions for smart EVs charging without any 

knowledge of the future energy prices and the car usage. 

Even though a growing interest can be observed in the application of learning-based 

approaches to address decision-making and control problems, there are still associated 

downsides which may limit their applicability in real physical systems. For example, these 

techniques usually require massive data sets and computation which is not always available or 

expensive in current energy systems, they suffer from curse of dimensionality in large-scale 

systems such as grid-scale RES adoption or EVs fleets, and they are basically not robust against 

perturbations in the data sets, which may cause the algorithm not to perform as per the 

expectation. These aspects should be further explored in future studies. 

2.6.4. Optimal Control and Dynamic Programming 

Optimal control (OC) is the process of finding a control for a dynamical system given some 

objective criteria relying on the optimization of an objective function containing state and 

control variables over a time horizon [109]. The OC is one of the most used approaches for 

DSM problems which concerns with modelling and solving sequential decision-making/control 

problems in smart energy systems mostly in an uncertain environment. The most used 

applications of OC within the energy system area can be identified for regulation service 

provision for the power grid, in particular, frequency regulation and optimal power flow [110]-

[115], buildings’ thermal management [111],[116],[117], energy management and control of 

ESS [115],[118],[119]  minimizing the energy usage and cost in MGs [118]. For example, in 

[110] a probabilistic programming approach based on a variant of Monte Carlo method, as a 
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computer–driven sampling method for estimating posterior distributions, is developed to 

reduce the imbalance energy, i.e., the energy gap between contracted supply and actual demand, 

and its associated cost. Load-side participation in frequency control is tackled in [111] by a 

distributed primary/secondary frequency regulation approach to rebalance supply and demand 

after disturbances, to restore the nominal frequency, and to preserve the inter-area power flows 

and the thermal limits of the power system. Stochastic dynamic programming is further utilized 

in [112] for regulation service provision in smart buildings. The authors develop an optimal 

dynamic pricing policy for a smart building operator to obtain an effective provision of 

regulation service reserves through flexible loads. The work of [117] provides an overview on 

optimal control approaches applied to HVAC systems for buildings’ thermal management. The 

authors argue the great potential of optimal controllers for energy saving realization leading to 

the development of energy efficient and sustainable buildings. In [118] a robust OC strategy 

for an ESS of a grid-connected MG is proposed where a MILP-based rolling horizon controller 

of the energy management system periodically updates the control schedule by solving an 

optimization problem. The proposed method aims to maintain a high level of economic benefit 

even under demand prediction error conditions. OC approaches are shown to provide a high-

performance multivariable control with rapid responses which is beneficial for the control of 

smart energy systems. However, a challenge of OC approaches is the necessity to identify an 

appropriate model of the system. Moreover, the evaluation and real-time implementation of the 

control in more complicated problems with nonlinear objective functions and constraints can 

be challenging in terms of computational burden. 

Dynamic programming (DP) provides an alternative approach to design OCs for solving 

more complex optimization problems that can be discretized and sequenced. In this case, the 

original problem is split into simpler subproblems and the obtained solutions of subproblems 

are used to achieve an optimal solution for the original problem. DP approaches can be 

implemented in various energy management applications. A DP approach is presented in [120] 

for the optimal energy management of an improved elevation system with energy storage 

capacity. The authors validate the method in a real test tower with an ESS to show its capability 

in reducing grid power peaks by 65% and braking resistor energy losses up to 84%. DP in 

combination with RL employing two neural networks is presented in [121] to provide an 

optimal control policy and an approximate cost-to-go function for MG operation under 

uncertainty. The interesting concept of stochastic dynamic programming (SDP), a prevalent 

type of DP where the system behavior is described statistically, is employed for optimal 

dispatch of energy hubs [122] and for energy management of smart homes with EV energy 

storage [123]. 

2.6.5. Model Predictive Control 
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Model predictive control (MPC) is known as an advanced intuitive model-based approach 

for real-time process control which repeatedly solves an optimal control problem over a finite 

prediction horizon [124]. It uses the concept of receding horizon feedback as it solves a new 

optimal control problem at the beginning of each time interval by updating all the measured 

states in that point of time. MPC is increasingly gaining ground for optimal decision making 

and control of smart energy systems, in particular owing to its capability to tackle system 

parameters uncertainty such as RES generation profiles and unpredictable costumers’ energy 

demands. It has been shown in literature that by handling problems with multiple variables 

through future prediction of control actions, MPC is one of the most promising approaches to 

address large and complex power system problems [125]. So far, there have been presented 

many versions of MPC approaches for decision-making/control tasks in power systems. Finite 

control set MPC is the most used one due to its simplicity and accuracy. For example, an 

interesting application of MPC in combination with MILP is presented in [126] for the optimal 

operation planning of MGs. The authors aim at minimizing the overall MG operating costs 

while taking into account unit commitment and economic dispatch of all generation and storage 

units, buying and selling of energy from/to the power grid, and curtailment schedule of internal 

generations. An MPC approach is further proposed in [127] to optimize the operation of MGs 

by decomposing an original MINLP problem into two separated unit commitment (UC) and 

optimal power flow (OPF) problems which are solvable in more efficient way. The models 

proposed in recent works [128] and [129] are particularly interesting as they develop stochastic 

MPC (SMPC) using Markov chains for the predictive optimal energy management of hybrid 

EVs. The advantage of this model is that the closed-loop system can effectively adjusts to the 

uncertainty that arises from the environment around the vehicle. In [69] a two-stage stochastic 

framework for the optimal economic/environmental operational planning of a MG is proposed, 

and the optimization problem is solved by a combination of MPC and MILP. In [130] a MPC-

based coordination framework for a cement plant is proposed, based on a combination of 

industrial loads and on-site energy storage, aiming to provide power regulation or load 

following ancillary services. The authors consider the number of active machines and the 

charging power of the energy storage as decision variables, where the optimal control provides 

a high-performance regulation service in a cost-effective way. In [64] a robust MPC scheme 

integrated with the design-then-approximate (DTA) method, where the controller is first 

designed by developing the governing differential equation and the system model is solved 

through approximate methods, is introduced for aggregated thermostatically controlled loads 

(TCLs), to provide a robust tracking of a desired power trajectory under uncertainty in the 

TCLs’ parameters. A robust MPC (RMPC) scheme based on a data-driven stochastic approach 

is presented in [131] to optimize the operation of energy hubs and district buildings. Among 

more recent MPC-based approaches, distributed MPC (DMPC) has also recently received a 
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great deal of interest in the development of DSM. In DMPC, there are multiple MPC 

controllers, each for a particular system, where local controllers with partial system-wide 

information receive state information and cooperatively solve a constrained optimal control 

problem in a receding horizon fashion. For instance, DMPC is adopted in [132] and [133] for 

the cooperative energy management and supply-demand balancing between distribution 

network operators (DNOs) and MGs. Alternatively, hierarchical MPC (HMPC) approaches 

with multilayer/multilevel control structures are implemented in some prior research, where the 

system is composed by a number of subsystems placed at different layers. For example, HMPC 

is employed in [134] for optimal power balance and critical load avoidance in MGs, and in 

[135] for fuel saving of power-split hybrid EVs. Furthermore, in [136] and [137], economic 

MPC (EMPC) schemes are devised for DSM programs, as a predictive feedback control 

integrating economic optimization and process control. Summing up, the applications of MPC 

is rapidly increasing in literature during recent years due to its unique features. For instance, as 

it employs a feedback mechanism, it provides a high level of robustness against uncertainty. 

Moreover, its operation depends on predictions and future behavior of the system, which is of 

great interest for the systems relying on RES generation and energy demand forecasts. 

Furthermore, it can address various system constraints such as generator capacity and ramp rate 

limits (i.e., the rate that a generation unit can increase or decrease generation to match with 

demand variations). 

2.6.6. Game Theory 

The essential need for an effective coordination of large communities of 

consumers/prosumers for an optimal energy management of the whole system necessitates an 

intelligent interaction among all involved actors. Game theory has drawn great attention 

recently as a method for steering and effectively promoting this interaction. Game theory can 

be generally viewed as a set of analytical tools which provides an insight on existing events 

observed when decision makers interact [138]. Game theory is extensively employed to 

enhance the flexibility and adaption of decision-making and control to energy systems as game 

environments under dynamical changes and limited information [20],[139]. Game-theoretic 

approaches generally model a DSM problem considering the consumers as players, the 

consumers’ strategies for optimizing the utility function as actions, and the optimal outcome of 

the utility function as the solution. A survey on the application of game theory for DSM targets 

in the context of the open electricity market is provided in [20]. The existing state-of-the-art on 

game-theoretic approaches for DSM is mainly based on non-cooperative games with 

competition between individual players [140]-[142], cooperative games where groups of 

players may enforce cooperative behavior [143], and evolutionary games where the players 
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constantly adjust their own strategies according to environmental changes and the strategies of 

other players [144],[145]. A Nash equilibrium is a determined solution of a non-cooperative 

game in which each player lacks any incentive to change his/her own initial strategy.  This 

concept is used in [140] to obtain the solution of a non-cooperative differential game in a smart 

heterogeneous network, as the authors describe the dynamic of each users’ energy state based 

on a differential equation. The objective is to minimize the energy costs and to control the 

energy consumption automatically. The study in [142] presents a DR market framework based 

on game theory to achieve an optimal bidding strategy for each DR aggregator to sell its stored 

energy in storage devices, aiming at maximizing its own payoff. A bargaining-based 

cooperative game where the players bargain over how to divide the gains from trade is proposed 

in [143] for the systems with overlapping consumers who enroll and participate in DSM 

programs planned by multiple aggregators. A hierarchical comparison algorithm is used to find 

the Nash equilibrium. The evolutionary game theory is adopted in [144] to solve the problem 

of minimizing overall energy cost of networked SGs, where players can switch between grid 

power and local power according to strategies of their neighbors. The authors introduce a new 

binary optimal control to optimize the transient performance of the networked evolutionary 

game. A multi-follower bilevel programing for optimal energy management of CHP-based 

MGs is presented in [146], where the framework constitutes a Stackelberg game as a 

hierarchical-based game theory which includes just one leader, in which a MG owner (MGO) 

is the leader and CHPs owners (CHPOs) are the followers. The target of this work is to 

guarantee profits to both MGO and CHPOs. Among the most prevalent game-theoretic 

approaches for decision-making and control in SGs, we can further mention the multi-leader-

follower games [147] as a class of hierarchical games in which leaders participate in a Nash 

game based on the Nash equilibrium constrained by the equilibrium conditions of the follower. 

Moreover, we can denote Bertrand games [148], where all players are considered as leaders, as 

well as stochastic games [149], where players repeatedly interact and the underlying state of 

the environment changes stochastically in response to players’ behavior. 

It can be concluded from the related literature that game theoretic approaches can relatively 

address the interactions and interdependencies among participants for optimal energy 

management in power systems. However, the high complexity of future power systems due to, 

for example, growing number of participants with various locations, repeated auctions in the 

electricity market and intermittency nature of new electricity sources can be a major obstacle 

for  standard game theoretic techniques to be conveniently modeled. In particular, participants 

or players should be able to repeatedly change and adapt their strategies to achieve a common 

goal, which may result in further computational complexity and burden that is difficult to 

represent by conventional techniques. An appealing extension to the traditional approaches 

includes the use of agent-based modeling to study complex large-scale systems. 
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Fig. 6. DSM strategy relying on: (a) individual interactions between users and the utility (a TSO, DSO, or 

real-time energy markets), (b) cooperative interactions among users and the utility 

 

2.6.7. Multi-agent Systems  

A promising decision-making/control process for the energy management of complex 

energy systems with diverse energy careers can be realized by integrating a network of multiple 

interacting agents, called as multi-agent systems (MAS). An agent is an entity which acts within 

an embedded environment either for solving a problem by itself, or coordinately finding a 

solution together with other entities [150]. Indeed, a MAS can be defined as a group of 

networked agents which interact and coordinate their activities through some agent-

communication languages to achieve specific global objectives [151]. Two contributions [150] 

and [152] presented by the IEEE Power Engineering Society’s (PES) Intelligent System 

Subcommittee explore the potential benefits of MAS to power engineering applications, and 

offer guidance and technical recommendations on the design and implementation of MAS in 

the power and energy sectors. A MAS can be particularly applied to power systems in the roles 

of monitoring, control, protection, forecasting, trading, and planning. Recent studies have 

proved that MAS is a powerful tool to deal with an extensive variety of DSM problems in the 

power system ranging from power quality enhancement [153], security, economic and 

environmental benefits to MGs [53],[154], energy management of smart buildings and smart 

cities [44],[155], optimal control and charging of EVs and distributed ESS units [156] and 

energy market planning [157],[158]. For example, in [153] a MAS is introduced to effectively 

address the decentralized frequency control of an autonomous MG. The authors show that the 
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proposed strategy based on average consensus algorithm can improve the convergence speed 

of the solution independently from the system configuration, and consequently, can enhance 

the frequency stability of the MG. In [154] a MAS for distributed hierarchical control of MGs 

is proposed to realize a reliable and efficient penetration of RES in MGs. Three agents are 

considered including the generation unit agent, the energy switch agent at the interconnection 

point between the main grid and the MG, and the main grid agent. The authors analyze the 

effect of communication delay on the convergence rate of consistency algorithm. Instead, the 

work of [53] deals with the minimization of the total energy cost of a MAS-based MG by 

considering a collection of DG agent, ESS agent, and DR agent which can update their local 

information and communicate with their neighbor agents asynchronously. The focus on the 

scope of smart buildings is considered in [44] where an agent-based decentralized decision-

making approach based on RL is presented for a cluster of buildings. The authors establish a 

multi-objective problem with two conflicting objective functions, i.e., energy consumption 

minimization and comfort maximization. A weighted aggregation method along with particle 

swarm optimization (PSO) is adopted to solve the optimization problem. Other group of studies 

apply the concept of MAS to the energy market. As an example, the authors in [158] present a 

two-level agent-based decision-making framework, where at the top level a retailer agent 

purchases energy from the wholesale market and sells it to the consumers. Instead, at the lower 

level, the consumer agents optimize their consumption patterns independently using their local 

controllers after receiving the retail prices from the retailer agent. Recent technological 

developments allow designing power systems to include multiple energy carrier systems, such 

as electricity, natural gas and heat aiming to improve energy utilizing efficiency, to decrease 

CO2 emission, and to increase the operation economy and flexibility. In such systems, different 

energy carriers and systems can be planned as agents which interact together in an efficient and 

synergistic way [47],[159]. Accordingly, an energy hub, i.e., a functional unit for conversion 

and storage of different energy carriers, needs to be properly employed as a promising option 

for integrated management of such systems and to balance different types of energy demands. 

An example of this is presented in [159] considering a large-scale multiple energy carrier 

system with RES, gas turbine and CHP units including several energy hubs as agents. The 

authors introduce a multi-agent bargaining learning approach to minimize the total energy costs 

and the total energy losses simultaneously, while meeting the constraints related to the RES 

generation, the capacity limits of all energy sources, the energy balance, the prohibited 

operating zones of thermal generating units for faults prevention, and a limit for the dispatch 

factor. 



 
 

41 

 

 
Fig. 7. A framework of MAS in the SG 

 

Summing up, the development of MAS technology improves several functionalities inherent 

to SGs, such as fast problem-solving by parallel computations, efficient distributed and real-

time monitoring, individual learning ability for each agent, fast response to condition changes, 

reconfigurability support, diagnosis, self-maintenance, and negotiation capability in the system, 

leading to realizing a flexible, interoperable, and scalable solution to the DSM programs. 

However, despite a large number of related research, the wide real-life implementation of 

MAS-based decision-making/control systems in the SG domain is quite slow. As MAS is a 

relatively new technology in the SG domain, several technical challenges need to be resolved 

for realizing their wide and effective usage. For instance, the implementation of MAS-based 

approaches generally requires enormous investments on the evolution process of many levels 

of the existing power grid infrastructure. Also, there is a lack of standardized agent architectures 

as well as mature and well accepted design methodologies for MAS in SGs. Moreover, the 

cooperation of agents results in the creation of a nonstationary environment that naturally 

makes it very difficult to achieve a convergence. Further, the adaptation of agents to the 

dynamic behavior of other agents is another challenge [155]. To obtain a systematic application 

of agent-based architectures, the future research works need to focus on defining suitable and 

well accepted methodologies, agent architectures, and tools that are clearly specific to the 

energy management of smart energy systems. Finally, a more study on the convergence features 

of cooperative MAS strategies to obtain an equilibrium is necessary. 
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Table 2. 1. Comparative summary of decision-making and control approaches for DSM investigated in this 

subsection 

Methods 
Type of 

load 
(n.o.p) 

Main objectives 
(n.o.p) 

System 
componen
ts (n.o.p) 

Main constraints 
(n.o.p) 

Solution methods 
(n.o.p) 

Optimization 
techniques 
for energy 
scheduling 

Residential 
(17) 

Industrial 
(5) 

Communal 
(4) 

Commercial 
(3) 

N.S. (17) 

Energy cost min. (28) 
Utility profit/User 
comfort max. (10)  

ESS degradation min. (4) 
DER penetration max. (3) 

Emissions min. (3) 
Privacy protection (2) 

Frequency regulation (2) 
PAR min. (2) 

Forecast error min. (1) 
Charging loss min. (1) 
Power fluctuation min. 

(1) 

RES (16) 
ESS (14) 
PEV (10) 
DG (8) 
TES (4) 
CHP (3) 

Boiler (2) 
HVAC (1) 

Technical power limits 
(23) 

SOC (12) 
Power balance (9) 

Demand fulfilment (8) 
Power feasibility 

constraint (4) 
Battery degradation (3) 

SOH (2) 
Price fluctuation (2) 
Input gas limits (2) 

DG generation limits (2) 
Temperature range (1) 

 

Cooperative mechanism 
(17) 

Robust optimization (5) 
PSO (3) 
IPM (3) 
SDP (4) 

Lyapunov technique (3) 
ANN (2) 
GA (2) 

Fuzzy-logic (1) 
 Artificial immune system 

(1) 

Transactive 
control 

Residential 
(3) 

Commercial 
(1) 

N.S. (3) 

Energy cost min. (5) 
Social welfare max. (2) 
Power market reg. (1) 

Frequency regulation (1) 
Peak shaving (1) 

Voltage control (1) 

HVAC 
(2) 

PEV (1) 
TCL (1) 

Technical power limits (4) 
Power balance (2) 

SOC (1) 
Peak energy constraint (1) 
Conditioned air limits (1) 
Power flow constraints (1) 

Cooperative mechanism (3) 
MPC to clear TM (1) 

Learning-
based control 

Residential 
(1) 

Communal 
(1) 

N.S. (3) 

Energy cost min. (5) 
Comfort max. (2) 

Energy usage min (2) 
Utility profit max. (1)  

CHP (1) 
Boiler (1) 
ESS (1) 
TES (1) 
TCL (1) 
HP (1) 
EV (1) 

Technical power limits (4) 
Thermal capacity (2) 
Congestion constraint 

(1) 

RL (3) 
ANN (1) 

Expectation–max. (EM) (1) 
Anal. of variance 

(ANOVA) (1) 
Service-oriented app. 

(SOA) (1) 
Markov decision proc. 

(MDP) (1) 

Optimal 
control and 

dynamic 
programming 

Residential 
(1) 

Industrial 
(1) 

N.S. (5) 

Energy cost min. (5) 
Valley-filling (2) 

Privacy protection (2) 
Imbalance energy min. 

(1) 
Frequency control (1) 
Regulation service (1) 

ESS degradation min. (1) 

ESS (3) 
PEV (2) 
TCL (1) 

Technical power limits 
(4) 

SOC (4) 
Energy balance (3) 

Usage schedule const. 
(2) 

Demand deviation (1) 
Temperature limits (1) 

Battery degradation (1) 
Battery terminal volt. 

const.(1) 

Price leveling algo. (2) 
SDP (2) 

Markov decision proc. 
(MDP) (1) 

Hierarchical cooperative 
(1) 

Model 
Predictive 

Control 

Residential 
(7) 

Industrial 
(1) 

Communal 
(1) 

N.S. (5) 

Energy cost min. (11) 
Power balancing (3) 

RES penetration max. (3) 
Energy saving (3) 

Power regulation (2) 
PAR min. (2) 

Emissions min. (1) 
On/off cost of DG min. 

(1) 
Critical load avoidance 

(1) 
Comfort max. (1) 

Demand flexibility (1) 

ESS (7) 
RES (6) 
PEV (4) 
TCL (1) 
TES (1) 
HP (1) 

Boiler (1) 
Chiller 

(1) 
CHP (1) 
DG (1) 

Technical power limits 
(10) 

SOC (8) 
Energy balance (6) 

Battery charging rate (4) 
Demand fulfilment (3) 
Thermal capacity (2) 
Thermal balance (2) 

Switching limitation (1) 
Comfort constraint (1) 
Temperature limits (1) 

Cooperative MPC (2) 
DMPC (2) 
HMPC (2) 
EMPC (2) 

Game theoretic MPC (1) 
RMPC (1) 

Data-driven RMPC (1) 
MPC to clear TM (1) 
Stochastic MPC (1) 

Conventional MPC (1) 

Game theory 

Residential 
(2) 

Commercial 
(1) 

N.S. (8) 

Energy cost min. (7) 
Aggregator payoff max. 

(5) 
Opt. bidding strategy (3) 

Opt. power flow (2) 
Agents’ profit max. (2) 
Privacy protection (1) 

Peak shaving (1) 
Social welfare max. (1) 
ESS maintenance min. 

(1) 

ESS (2) 
DG (2) 
RES (1) 
PEV (1) 
WH (1) 
AC (1) 
TES (1) 
CHP (1) 

Technical power limits 
(4) 

Energy balance (3) 
Voltage limit (2) 

DG generation limits (2) 
Demand fulfilment (1) 
Temperature limits (1) 

Bidding price constraint 
(1) 

Exchangeable power 
limit (1) 

Power flow limits (1) 

Non-cooperative game (3) 
Evolutionary game (2) 
Bargaining cooperative 

game (1) 
Stackelberg game (1) 

Multi-leader-follower game 
(1) 

Bertrand game (1) 
Stochastic game (1) 

Differential game (1) 

Multi-agent 
system 

Residential 
(2) 

Commercial 
(2) 

Communal 
(2) 

N.S. (3) 

Energy cost min. (11) 
Utility profit/User 
comfort max. (6) 

RES penetration max. (2) 
Volt./freq. regulation (2) 

Emissions min. (2) 
Efficiency max. (1) 

Social welfare max. (1) 
Peak shaving (1) 

RES (4) 
ESS (3) 
DG (3) 
TCL (1) 
CHP (1) 
SH (1) 
AC (1) 
PEV (1) 

Technical power limits 
(6) 

DG generation limits (3) 
DG ramp rate limit (3) 

Battery charging 
capacity (2) 

Hot/chilled water limit 
(1) 

Comfort constraint (1) 
Temperature limits (1) 

RES generation limit (1) 
Gas emission limits (1) 

MA distributed hierarchical 
(1) 

MA reinforcement learning 
(1) 

PSO (1) 
MA bargaining learning (1) 

MA decentralized (1) 
ADMM (1) 

MA multi-layered 
hierarchical (1) 

Note-The list of new acronyms used: AC (Air conditioner), CHP (Combined heat and power), HP (Heat pump), HVAC 
(Heating, ventilation, and air conditioning), IPM (Interior-point method), MA (Multi agent), PSO (Particle swarm 
optimization), SDP (Stochastic dynamic programming), SOC (State of charge), SOH (State of heat), TCL (thermostatically 
controlled load), TES (Thermal energy storage), WH (Water heater). 
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2.7. Demand-side Management for Smart Users 

As DSM is not a one-size-fit-all program, its design, development, and performance can 

directly depend on the detailed data of consumers’ nature and behavior. The effectiveness of a 

DSM program can be significantly increased by taking into consideration the types of 

consumers that are applied to. This section reviews some essential aspects of DSM focusing on 

different end-use sectors (e.g., individual apartments with smart appliances, buildings - single 

owner with behind the meter onsite generation and/or storage, commercial buildings, individual 

EVs or storage systems, single industrial consumers/plan/facility). 

2.7.1. Introduction 

The growing tendency towards the development of the small-scale SGs and MGs stems from 

the potential of DSM programs to fundamentally change the social dynamics of electrical 

systems [160]. The recent advances in information and communication technologies (ICTs), 

smart sensors, smart meters and monitoring systems enable the consumers to behave as an 

active energy actor and to be widely engaged in DSM programs. By integrating information on 

the users' preferences and activities, a DSM program helps end-users to modify their level and 

pattern of electricity demand leading to mitigation of excessive grid loading from “peak 

periods”. A DSM program provides to end users suggestions and information about when and 

how to optimally buy/sell their required/locally-generated electricity from/to the power system. 

By doing so, a DSM program can play an essential role in the optimized utilization of the 

available power generation capacity and in ensuring a real-time balance between supply and 

demand [67]. To date, a considerable body of research has been conducted on decision making 

and control of smart end users in SGs. In this context, in following subsections we investigate 

the existing state-of-the-art on DSM programs for smart end-users by categorizing them into 

different categories. As illustrated in Fig. 8, four different end-use sectors are the major 

electricity consumers, namely residential, industrial, transportation and commercial users, 

which are thoroughly reviewed in this section in terms of DSM targets. We further make an 

overlook at the application of DSM for energy management of public facilities as they recently 

account for a large share of the urban electricity consumption. 
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Fig. 8. Electricity use growth by end-use sectors from 1990 to 2050 in the Annual Energy Outlook (AEO) 2020 

[161] 

2.7.2. DSM for Residential Users 

A residential SG can be generally considered as a number of interconnected smart homes 

equipped with domestic electrical (and thermal) appliances such as controllable loads (CLs) 

such as dishwasher and washing machine with flexible and programmable operation, non-

controllable loads (NCLs) such as televisions and computers with inflexible and fixed power 

curve, and non-interruptible loads (NILs) such as refrigerators which must operate continuously 

until the end of their task. These interconnected smart homes also commonly include local 

DERs (e.g., photovoltaic system or micro-CHP) and onsite small-scale battery storage units 

which can be autonomously controlled for interacting with each other and the power grid 

[162],[163]. Household energy consumption can be effectively monitored by energy 

consumption controllers (ECCs) integrated in the home energy management system (HEMS) 

through internet protocols and local area networks (LANs) [164]. As households account for a 

considerable portion of total energy consumption worldwide, the residential sector should be a 

major component of a DSM strategy which can be realized through energy efficiency or DR 

programs. Moreover, it offers cost-effective opportunities with the lowest investment needs 

[165]. However, the design of an efficient DSM strategy for residential users is significantly 

more complicated than one for industrial or commercial sectors. The reason behind this fact is 

that residential consumption patterns are highly subject to volatility and intermittency due to 

random users’ behavior which necessitates a more intelligent design and modelling 

[36],[59],[60],[64]. The promotion of DSM strategies for the residential sector has been of 

interest to numerous scholars [162]-[172]. In the literature, the most prevalent aspect of DSM 

implementation within the residential sector is related to the DR application [25],[139]. In 

particular, DR programs are adopted to reduce or shift electricity consumption of smart homes 

for cost reduction and peak shaving [167],[168],[169]. This can be realized either by incentive-

based schemes where the management of consumers’ loads during emergency or peak periods 

is controlled by utility companies based on a mutual agreement (e.g., as in [167] and [168] for 
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direct load control (DLC) of large-scale residential buildings), or price-based schemes where 

consumers are encouraged to reduce or shift their energy consumption from peak periods in 

response to different price signals provided by the utility (e.g., as in [169] through adaptive 

pricing scheme for residential DSM). In [170], the authors classify residential consumers for 

DSM based on different categories: a) long range consumers, who can shift their consumption 

pattern over a wide range of time in response to changes in prices, b) real world-postponing 

consumers, whose perception only depends on current and future prices, c) real world-

advancing consumers, which are similar to postponing consumers except that the consumer 

perception only depends on current and past periods, d) real-world mixed consumers, who are 

a mix of postponing and advancing customers, and e) short range consumers, who do not care 

about optimizing their loads, and only take care about the electricity price at the current time 

instant. In [67], three types of loads including NCLs (e.g., TV), energy-based CLs (e.g., 

dishwasher) and comfort-based CLs (e.g., a heat pump system) are modeled in a residential 

MG. The authors develop a DSM approach to provide the decision maker a tradeoff between 

electricity payment minimization and the contractual power constraint satisfaction, which is 

advantageous for both the residential MG and the power grid. However, they do not insert NILs 

into the system modeling. There are other important considerations that should be included 

during the design of a DSM strategy for residential users. One is the exploitation of local power 

generation such as rooftop PVSs or DWTs. For instance, the interesting work of [34] includes 

wind turbine and solar panel in the structure of residential users. The authors adopt a stochastic 

optimization approach to find the optimal scheduling for a HEMS while dealing with the 

uncertainties on electricity prices, RES generations, and consumers’ behavior. As mentioned 

before, a large body of related studies essentially take the effect of uncertainty in costumers’ 

behavior [34],[60],[67],[96] or distributed generations [34],[43],[60],[65] into account when 

modeling a residential MG. Another consideration arises from the integration of individual EVs 

into smart homes [34],[67],[98],[171]. For example, a two-stage real-time DSM for a residential 

MG incorporating EVs with V2G option is proposed in [171], which aims at minimizing the 

daily total cost and maintaining the supply-demand balance in an uncertain environment. The 

authors examine several test cases to confirm the effectiveness of the method for achieving 

economic benefits, and for improving the system net load characters of the MG system. 

Although the most taken objectives of DSM applications in residential sector are cost 

minimization and PAR reduction, other groups of studies utilize the potential of residential SGs 

for maintaining power quality, reliability and sustainability [169],[172]. In [169], an adaptive 

pricing scheme is presented for residential DSM programs, which not only motivates users to 

manage their energy consumption for cost saving, but also allows the utility system to maintain 

grid reliability and sustainability. Instead, in addition to users’ cost minimization, reactive 

power compensation is further addressed in [172] to enhance the power factor (PF) of home-
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to-grid integration points in a residential energy system incorporating RES, E V and energy 

storage systems. 

Most popular used software for implementing and simulating DSM strategies in the 

residential sector are MATLAB, GAMS, CPLEX and LINGO. It can be concluded from the 

existing literature that most important challenges ahead of residential DSM programs are to 

ensure an effective and robust strategy for tackling uncertainty, to provide a safe exploitation 

of locally generated powers, and to fulfill diverse technical and comfort constraints of multiple 

electrical appliances with various energy requirements, operational times, and arrival rates of 

power requests. 

2.7.3. DSM for Commercial Buildings  

As one of the major electricity consumers, commercial sector accounts for a significant 

share of the total energy consumption worldwide. For instance, commercial sector consumes 

more than one third of the total electricity consumption in the United States which is almost the 

same as the one for the residential sector [161]. According to the 2018 Commercial Buildings 

Energy Consumption Survey (CBECS) [173], the main energy consumers in the commercial 

sector are offices, supermarkets, shopping malls, educations, healthcare, and warehouses. Heat 

ventilation and air conditioning (HVAC), lighting, appliances and electronics are the major 

electricity consuming end-users in commercial buildings [174]. So far, commercial sector has 

drawn only minor attention of researchers for DSM applications due to its different load 

demand patterns which cannot be generalized as opposed to the residential load demand. 

Nevertheless, recent study of [175] demonstrates that commercial consumers have a great 

potential to participate in the DSM programs. It is stated in [176] that the most promising 

segments for contributing to DSM programs can be ranked as universities and schools, 

hospitals, malls, hotels, and offices. Recently, scholars are identifying commercial consumers 

as important potential players to DSM. Focusing on load reduction and cost savings, the work 

of [177] presents an energy management scheme for HVAC systems in a university building. 

The authors formulate the energy management problem as a MILP problem which is solved 

through a heuristic-based algorithm. In [89] a TC market structure is proposed for commercial 

HVAC systems aiming at peak shaving, load shifting, and strategic energy conservation. DSM 

programs are further applied to HVAC systems in [178] for frequency regulation and balancing 

services and in [179] for optimizing energy cost and costumers’ comfort level through an 

economic MPC approach in commercial buildings. By a similar way, an economic MPC is 

employed in [180] to develop a building-aggregator-grid contract for the energy management 

of HVAC systems to not only reduce the grid operating costs and emissions, but also to enhance 

the grid reliability and market efficiency by maximizing the penetration level of RES and 
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reducing the need of ancillary services provided by generators. Most of the relevant works 

disregard the importance of ESS and EV integration, as well as some appliances such as the 

lighting system, which is the second major electricity consumer in commercial buildings. In 

this regard, along with the energy management of a HVAC unit, an integration of lighting 

appliances, PV system and ESS is further considered in [72] to minimize the total energy cost 

and to manage the energy demand and generation of buildings while meeting operational 

constraints of the power grid. The authors in [181] serve a building air conditioning and 

mechanical ventilation (ACMV) as a virtual storage system in combination with a priority-

based load shedding and an ESS to deal with the fluctuation of PV generation in commercial 

buildings. The presented method maintains users’ thermal comfort while lowering the 

computational burden and the ESS activities cost. It may be inferred from the technical 

literature that cost saving, load reduction and thermal comfort enhancement are the most taken 

objectives for the commercial DSM. The approaches have commonly used CPLEX, MATLAB 

and EnergyPlus for modeling and solving the commercial DSM programs. 

It is worth noting that the consumption level of individual customers in the commercial 

sector is significantly higher than one in the residential sector. Therefore, compare to the 

residential sector, applying an effective DSM program on the same number of consumers in the 

commercial sector can yield much greater impacts on the power grid, and consequently, would 

affect the overall system significantly. 

2.7.4. DSM for Industries 

Diverse energy-intensive industries such as manufacturing, mining, and construction (e.g., 

steel, aluminum, cement, and chemicals industries) use electricity for processing, producing, or 

assembling goods. The industrial sector consumes less than a third of the total electricity 

consumption, however, it is still recognized as one of the main electricity consumer sectors. 

Thus, it can potentially contribute to the optimal management of several hundred megawatts of 

electricity [182]. The largest share of electricity in the industrial sector goes to supply diverse 

machine drives, to use for heating and cooling, and to serve electro-chemical processes. The 

rising cost of electricity drives small- and medium-sized industrial enterprises to change their 

energy consumption behavior and move toward executing DSM strategies in return for 

financial rewards [183]. As opposed to residential and commercial loads which usually operate 

independently and not necessarily in cooperation or sequence, industrial loads are generally 

interdependent and many manufacturing processes have critical temporal dependencies, which 

must be scheduled with high timing precision. Thus, they usually need to follow specific 

operational sequences with millisecond monitoring and control [139], [184]. For instance, a 

real-time energy management and smart manufacturing for the industrial process of extracting 
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olive oil from raw olives is presented in [185]. The process includes several sequential stages 

such as cleaning, washing, and milling where all these steps require a certain amount of 

electricity use. The authors adopt an economic MPC to perform an optimal power scheduling 

and an optimal multi-carrier power dispatch aiming at minimizing the energy costs. In [183], 

the authors present a discrete manufacturing production model and design a real-time demand 

bidding (DB) program -as a type of incentive-based DR- to obtain the optimal load-reduction 

bid and generate dynamic adjusted production and effective energy plans. Instead, a 

combination of low-temperature thermal energy storage (TES) and off-grid PV system is 

proposed in [186] together with an optimization-based time-of-use DSM to shift the peak 

demand and reduce the annual electricity consumption costs of industrial consumers. 

Minimizing electricity-derived carbon emissions and costs are tackled in [187] by optimally 

rescheduling the production process of a cement plant in the UK while satisfying its overall 

production targets and meeting the constraints of the available inventory storage. Industrial 

customers can also effectively participate in the energy markets to buy or sell electricity within 

a market environment [183],[188]. For instance, an optimized energy purchase allocation in the 

forward market, day-ahead market, and real-time market for an industrial costumer is addressed 

in [188] to minimize the procurement cost and the associated volatility risk. 

An important challenge in DSM of large-scale industrial customers is that they only concur 

to change their production schedule if it is economically viable. In general, the amount of 

residential electricity demand varies depending on the season and the time of day due to 

increased air conditioning and the lighting uses. In the commercial sector, the electricity 

demand tends to be highest during operating business hours, and to significantly decrease 

during nights and weekends. However, the industrial electricity demand is not subject to a 

drastic change over the day or seasons as in the residential and commercial sectors. Moreover, 

due to confidentiality and competitive reasons, industrial loads are usually not willing to share 

their information and their operational models with their customers and other industrial units. 

To cope with these challenges a significant attention has been recently drawn to distributed 

algorithms for DSM of industrial sectors. For example, a distributed framework based on 

ADMM for cooperative DSM of industrial loads is proposed in [189], where the industrial load 

and its customers only exchanges minimal information about agreed product demand profiles 

and prices, which meets data privacy considerations. A multi-agent deep RL-based approach 

for the DSM of industrial manufacturing systems is proposed in [190] to obtain the optimal 

schedule of different machines with the aims of minimizing the electricity costs and fulfilling 

the production tasks. Scholars have mostly used CPLEX, LINGO and MATLAB to simulate 

DSM algorithms in the industrial systems. Whereas the residential and commercial DSM 

programs mainly pursue the cost minimization and the comfort maximization as two main 

objectives, the decision-making in industrial loads is highly associated with more complexity, 
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and is concerned with further challenges such as meeting sequential industrial process needs, 

capturing the physical characteristics of different machines, maintaining production tasks as 

well as interdependencies and correlations between industrial loads and their customers. 

Therefore, realizing an effective industrial energy management requires a detailed 

understanding of the whole industrial system and process. Other barriers ahead of an extensive 

implementation of DSM programs in the industrial sector arise from the lack of sufficient 

incentives for industry owners. For instance, industrial companies are usually producing at their 

maximum capacity with no extra capacity in process sections, they need several hours to regain 

a stable production after a stop, the cost of electricity accounts for a small percentage of their 

total cost of production, they usually have fixed price contracts with utility companies for their 

required electricity, and they commonly see the implementation of DSM programs complicated 

and uneconomical. Therefore, stronger short- and medium-term incentives are required to 

encourage such industries to participate in DSM programs. 

2.7.5. DSM for electric transportation (EVs) 

The expansion of EVs (including electric passenger cars, taxicabs and buses) has been 

broadly accepted as a vital technology for supporting the decarbonization of the transport sector 

and thus a more sustainable urban logistics. However, it may cause significant technical 

challenges to the reliability, the security, and the efficiency of power systems such as equipment 

and lines congestion [191]. More precisely, uncontrolled simultaneous charging of a cluster of 

EVs, in addition to the other loads, may cause a peak demand in the power grid, resulting in 

the need for additional power generation capacity and electricity infrastructure. To manage 

these issues and to exploit the potential of EVs for demand-side flexibility, the design and 

assessment of intelligent optimal charging strategies for EVs have become a timely and 

important topic of research. An intelligent coordinated communication of EV networks 

possibly benefits all types of participants in a power grid. The applications of DSM approaches 

for EVs range from the simple optimal EVs’ charge/discharge scheduling problems [58],[192] 

to more complex problems with diverse constraints and settings such as costumer’s preferences, 

deadlines and mobility constraints [45],[57],[102],[103], grid power congestion constraints 

[91],[171], technical, safety, state-of-charge (SoC) and dynamic constraints of EVs’ batteries 

[45],[135], the presence of uncertainty on forecast data [128],[129], optimal location of 

charging stations [193], and providing grid services like regulation [73],[74]. 

An overview on the energy management of EVs focusing on economic and incentive aspects 

considering unidirectional and bidirectional energy flows in the electricity market is provided 

in [194]. The authors argue the total benefits earned by the presence of EVs in the society and 

the importance of proper market design since the market structure directly impacts the actors’ 
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behaviors. Ma et al. [192] present a leading work for developing the optimal charging control 

of a large number of EVs which selfishly share electricity resources on a finite collection of 

charging intervals. The authors form the problem as a non-cooperative game which converges 

to a Nash equilibrium where all EVs simultaneously update their strategy regarding the average 

charging strategy of all EVs. However, this work does not consider local considerations such 

as users’ preferences, availability time and deadline constraints, or battery state of health 

concerns. Instead, studies such as [195] and [196] not only pursue economic benefits to EVs 

users but also consider users’ preferences for charging EVs to a required level by a specified 

time. In [197] and [198] power grid congestion management is further taken into account 

alongside overall cost minimization through an optimal EVs charging control. A cost 

minimization algorithm for vehicle-to-grid (V2G) EV energy activities is proposed in [199], 

which combines an offline demand shaping and an online demand response to day-ahead and 

real-time markets for the aggregated demand. Although the EV behavior may depend on 

different parameters, it can be generally parameterized in terms of time of charge, connection 

charge location and charge magnitude. With this in mind, the authors in [200] develop an online 

algorithm to estimate the maximum and minimum adjustable power limits of EVs and to 

contribute to the power system dispatch. The algorithm uses an accurate knowledge of the real-

time initial SoC and the available time duration parameters through mobile phone applications 

and vehicle’s interface system for obtaining optimal charge scheduling. The authors in [201] 

employ a fuzzy logic controller for optimal charging of EVs at different points of connection, 

where voltage conditions may not be the same. The proposed controller is decentralized and 

makes all the decisions at the local level to ensure a minimum real-time communication and to 

preserve the users’ privacy. Differently, the work of [45] develop a decentralized control of 

large-scale hybrid EVs (HEVs) using the theory of mean filed (MF) game aiming at minimizing 

the energy cost and the battery degradation for each user. The authors take into account both 

the gasoline and the battery modes, the charging and discharging modes, the traveling time and 

the distance limitations. Although a majority of studies on DSM of EVs are based on 

simulation, some studies have been carried out experimentally. It is argued in [202] that in a 

real system, some dynamics with respect to the inherent behavior of EVs such as unknown 

energy demand, transitions between operation modes or voltage and current drops may not be 

properly and evidently modelled in detail. The authors of [202] present a comparison between 

the experimental results obtained from two energy management strategies for hybrid electric 

buses on a test-bench platform, and then they demonstrate that there can be a gap between the 

simulation-based and the experiment-based energy management of EVs. Instead, in [203] an 

online dynamic programming approach is implemented on a prototype HEV under 

development at Renault to optimally control the power flows between the fuel and electricity 
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sources, which ensures high efficiency and acceptable drivability of the energy management 

approach. 

2.7.6. DSM for Public Facilities  

The energy consumption of public facilities such as public transport (e.g., train and bus), 

water supply, sanitation and public buildings has recently attracted interest from researchers. 

Scholars have been studying energy management frameworks mostly to obtain sustainable and 

optimal energy plans. The key reason for this tendency is that such parties are centrally 

possessed and controlled. Moreover, although they account for a large share of the urban energy 

consumption and carbon emissions, they need a minor modification in their electrical and 

communication system and facilities to allow optimized operation. Besides, they have a great 

potential to involve large-scale distributed energy resources such as wind and solar plants at 

the distribution network. A related example is provided in [204], where the public water supply 

is considered as an excellent candidate for DSM applications owing to its great potential for 

various operating modes and a high degree of flexibility over the timing of pumping. The 

authors propose a market-driven DSM for water networks benefiting both the water utility by 

reducing the energy cost as well as the power system by increasing the wind power utilization. 

Among other prominent studies, the authors in [205] present an approximate dynamic 

programming (DP) approach for energy scheduling of subway trains that simultaneously 

considers service quality and energy consumption issues. They provide a comparison between 

the results obtained by GA and differential evolution algorithm with the proposed DP-based 

algorithm to ensure that a faster tradeoff among the utilization of trains, adequate comfort level, 

and energy efficiency can be achieved with the proposed approach. 
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Table 2. 2. Comparative summary of DSM approaches for smart users investigated in this subsection 

Smart user 

type 

Main objectives 

(n.o.p) 

System 

components 

(n.o.p) 

Main constraints 

(n.o.p) 

Solution methods 

(n.o.p) 

Math. type 

(n.o.p) 

Residential 

users 

Energy cost min. (9) 

Peak shaving (2) 

PAR min. (2) 

Reactive power 

compensation (1) 

Supply-demand 

balance (1) 

Load prediction (1) 

Power factor 

improvement (1) 

PEV (7) 

ESS (5) 

RES (4) 

DG (1) 

Technical power limits (8) 

Active power balance (7) 

SOC (5) 

Charging/discharging power 

limits of PEVs (3) 

Task deadline (2) 

Demand fulfilment (2) 

Energy transaction limits (2) 

Battery charging capacity (1) 

Reactive power balance (1) 

Cooperative 

mechanism (3) 

Markov Chain (2) 

DLC (1) 

Adaptive pricing (1) 

MPC (1) 

MILP (5) 

MIQP (2) 

LP (1) 

QP (1) 

Commercial 

Buildings 

RES penetration max. 

(2) 

Energy cost min. (1) 

Load shedding (1) 

ESS cost min. (1) 

ESS\PEVpenetration 

max. (1) 

Peak shaving (1) 

ESS (3) 

RES (3) 

ACMV (1) 

Virtual 

storage (1) 

HP (1) 

PEV (1) 

Technical power limits (2) 

Battery charging capacity (2) 

Temperature limits (1) 

Power balance (1) 

Thermal comfort (1) 

Battery degradation (1) 

SOC (1) 

Charging/discharging power 

limits of PEVs (1) 

SP (1) 

Elitist GA (1) 

MILP (1) 

LP (1) 

NLP (1) 

Heuristic (1) 

Industries 

Energy cost min. (6) 

Manufacturer’s profit 

max. (2) 

Total revenue max. 

(2) 

Peak shaving (2) 

High sustainable 

business model (1) 

Social benefit max. 

(1) 

Load reduction (1) 

Optimal power 

dispatch (1) 

Emissions min. (1) 

Procurement cost 

min. (1) 

Volatility risk min. 

(1) 

 

ESS (3) 

Manufactur

ing 

machine (1) 

TES (1) 

Boiler (1) 

EM (1) 

Mill (1) 

Technical power limits (3) 

Battery charge/discharge rate 

(2) 

Battery charging capacity (2) 

Buffer storage capacity (1) 

RES (1) 

SOC (1) 

Production timing (1) 

power balance (1) 

Line voltage/current limits (1) 

Risk constraints (1) 

EMPC (1) 

Value mapping tool 

(1) 

SP (1) 

Cooperative 

mechanism (1) 

ADMM (1) 

MILP (2) 

LP (1) 

MIP (1) 

LP (1) 

QP (1) 

MINLP (1) 

Public 

facilities 

RES penetration max. 

(1) 

Energy cost min. (1) 

WP (1) 
Water volume limits (1) 

Service reservoirs levels (1) 
GA (1) Heuristic (1) 

Electric 

vehicles 

Energy cost min. (4) 

Battery degradation 

min. (2) 

Privacy protection (2) 

Social welfare max. 

(1) 

Procurement cost 

min. (1) 

PEVdispatch (1) 

Voltage regulation 

(1) 

Peak shaving (1) 

PEV (6) 

Charging/discharging power 

limits of PEVs (6) 

SOC (6) 

Power balance (3) 

Battery degradation (2) 

Technical power limits (2) 

Grid congestion limits (2) 

DWA (1) 

Lagrangian 

Relaxation (1) 

Cooperative 

mechanism (1) 

FL (1) 

Mean filed game (1) 

SQP (2) 

QP (1) 

MILP (1) 

LP (1) 

Note-The list of new acronyms used: ACMV (Air conditioning and mechanical ventilation), DLC (Direct load control), EM 

(Electric motor), FL (Fuzzy logic), HP (Heat pump), HVAC (Heating, ventilation, and air conditioning), SP (Stochastic 
programming), SOC (State of charge), TES (Thermal energy storage), WP (Water pump). 
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2.8. Demand-side Management at Distribution Level 

A distribution network (DN) manages the transfer of bulk electricity received from the 

transmission or sub-transmission system to end users. In this section we review decision-

making and control strategies focusing on aggregation of generators, consumers/prosumers 

connected through the distribution network (DN), including, or not including network 

constraints. Both technical and commercial aggregation structures are included, e.g., 

aggregators, MGs, virtual power plants (VPP), community of consumers as a whole. 

2.8.1. Introduction 

DNs account for over 90% of the total electrical network length while a major portion of all 

electrical demand and distributed power generation is connected to DNs as well [206]. As DNs 

comprise more than half of the total capital expense and a significant percentage of total system 

losses and power outages, they have a great potential for extensive modifications and savings. 

The growing size and complexity of most DNs call for between 65% and more than 80% of all 

the network investments to maintain and establish DNs to 2050 [206]. These challenges create 

an essential need for a targeted consideration of DNs in the energy management planning and 

expansion. In recent years, significant benefits for DNs are known to be realized through 

carefully planned DSM programs, including notable impacts on asset utilization, operational 

efficiency, sustainability and flexibility of overall power systems. Whereas the objectives of 

DSM strategies at consumption level (i.e., smart users) mainly focus on minimizing the 

electricity bills and maximizing the users’ comfort, the adoption of DSM programs for 

distribution utilities further concerns about the DN’s operational objectives [207]. These 

objectives can be sorted as power grid efficiency (e.g., managing feeder losses), 

safety/reliability/security (e.g., improving power quality and mitigating power outages), 

economic benefits (e.g., reducing operating and maintenance costs), environmental benefits 

(e.g., reducing CO2 emissions by shifting peak loads and integrating low-carbon technologies) 

as well as large-scale RES and coordinated EVs integrations (e.g., integrating distributed 

generation and providing opportunities for consumer/prosumer involvement). The importance 

of such objectives is further felt considering that in modern power systems with broad numbers 

and diversity of the actors and assets, the distribution security and reliability events such as 

overload-related outages constitute around 90% of the total sustained interruptions, which 

represent the largest portion of the customer’s annual interruption [208]. The reliability 

enhancement is typically sought by continuous infrastructure investment and maintenance. 

However, the investment required to establish and maintain a DN will be significant. Instead, 
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as an alternative way, incorporating DSM programs (including DR, energy efficiency and 

strategic load growth strategies) into DNs can defer the network investment and result in 

economic, sustainability and reliability opportunities. For instance, peak shaving as a result of 

DSM programs not only significantly reduces the needs for purchasing electricity by the utility 

during peak hours resulting in economic benefit to the utility, but also provides capacity margin 

to the power system assets. Consequently, the system upgrades for future endeavors can be 

deferred [209]. However, there are still various challenges to an effective and optimal design 

of such programs for the DN operation. A significant consideration is with respect to the 

interface between DN and TN operation. In other words, evolutions in the power grid operation 

toward the SG concept will require a closer cooperation between TN and DN stakeholders. For 

example, voltage instability in the DN can spread to the TN and cause a major blackout [210]. 

Thus, network flexibility and stability achieved by a DSM plan in the DN level can also play a 

crucial role in supporting the TN operation. This fact highlights the significance of a continuous 

coordination between TN and DN stakeholders during all steps of planning and road mapping 

process for development of a DSM program. More discussion and assessment on the need for 

a coordination between TN and DN operation in SGs is provided in [211]. Another challenge 

arises from the integration of DSM and distributed power generation going together with other 

energy sectors such as thermal and transport. The main concern is to effectively maintain a 

balance between demand and generation in a distributed energy supply system dominated by 

different forms of RES, and in particular, in multi-energy systems (MES) with various types of 

energy sources. Besides, a number of technical challenges related to the infrastructure of 

communications, the metering infrastructure, integrated thermic/electric storage technologies 

and micro-CHP installations needs to be properly resolved. A technology roadmap focusing on 

SG deployment in DNs at the national, regional or municipal level is presented in [206]. This 

roadmap aims to define a series of milestones in a predetermined timeline for the sustainable 

deployment of SGs at the DN level spanning from the short-term (i.e., up to five years) to the 

long-term (e.g., up to 2050) efforts. Regarding significant potentials for a rapid deployment of 

demand-side participation in the DN sector to support the overall development and 

transformation of the electricity system, an overview and classification of DSM resources for 

maintaining or enhancing the system reliability, efficiency and sustainability is provided in 

[212]. The authors further discuss and compare the status of the energy management 

contribution in U.S. electricity markets offered by different Independent System Operators 

(ISOs) and regional transmission organizations (RTOs). As mentioned before, applying DSM 

strategies to single energy carrier systems (e.g., only electricity) cannot fully utilize the demand 

side resources when the number of inelastic and must-run loads in an energy system is high. 

This concern motivates scholars to promote the concept of MES which can be introduced as 

the integration of various forms of energy such as electricity, thermal energy, and natural gas. 
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The MES provides new insights into energy management systems by allowing all the energy 

users to actively participate in the DSM program (this will be further discussed in subsection 

VI(E)). As to that, the authors [29] provide a review of the state-of-the-art of integrated DSM 

in the MES and of related engineering projects within this field worldwide. Another relevant 

overview of the existing research on the deployment of DR aggregators in DNs is conducted in 

[213]. The authors explore the values of aggregators in DNs and divide their potential values 

into three categories including: fundamental values, which are independent of the market or 

regulatory context in permanent or near permanent conditions, transitory values, which are 

under current and future regulatory and technology contexts in the present and near-future 

conditions, and opportunistic values, which are in response to regulatory or market design flaws 

and may harm power system economic efficiency. The work investigates the role of the 

aggregators in power systems under different technological and regulatory scenarios. An 

alternative way for the DSM of some large-scale and power-intensive costumers which are 

typically connected to the DN is to instantly migrate power consuming activities among various 

locations instead of temporal flexibility approaches such as load shedding and load shifting. 

Data center (DC) is a great example of such loads, since the processing of information goods 

is not necessarily tied to a specific location, and the information goods can be conveniently 

transferred through communication networks. The work of [214] focuses on the spatial load 

migration of power-intensive process information goods in DCs. The authors state that the 

transferability feature of the information activities through communication networks enables 

the economic feasibility of spatially migrating loads between different locations of DCs. 

Differently from the above-mentioned overview studies, in the following subsections we 

provide a review on the current state-of-the-art for the application of DSM programs in the DN 

domain, with a particular focus on their contributions to local balance services (e.g., voltage 

support), large-scale RES and coordinated EVs integration into the DN, as well as to the optimal 

management of MGs, MESs, building to grid (B2G) services and VPPs. 

2.8.2. DSM for local balancing services in DNs 

Realizing the full benefits of DSM programs at the DN level requires proper knowledge and 

identification of spatial and functional features of system loads in the specific area where the 

DSM strategy is designed to be applied. Most DSM strategies are basically designed to reshape 

load profiles at the system level. Accordingly, such strategies can effectively impact the 

requirements of a DN as they may bring significant changes in the total load curve of an area. 

Spatial distribution of different customer classes which can be realized by for instance, 

estimating future load profiles through load growth factor applied to existing loads, is another 

important consideration in designing an efficient DSM strategy in the DN. Knowing the 
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appropriate information of the desired system, DSM programs can be used to provide effective 

local balancing services at aggregated levels for distribution network operators (DNOs). These 

services not only contribute to the enhancement of the DN operation, but also are effective in 

supporting the TN operation. These local services can range from voltage stability 

[74],[91],[170],[201],[202],[215], DN congestion management [91],[170], equipment 

preventive maintenance [216], investment defer and improvement of system sustainability 

[217], flexibility [89],[201] and reliability [73],[74],[89]. Plenty of research focus on local 

services provided by DSM in ensuring voltage stability, which is known as one of the major 

concerns in power system planning and operation, at the DN domain. Voltage stability refers 

to the ability of the power system to automatically maintain acceptable voltage levels over the 

system buses under normal or disturbed operating conditions. Voltage instability at DNs can 

be a consequence of the growing number of single-phase distributed generation units and EVs 

charging stations. In [170] and [215], promising results are obtained from DSM strategies in 

reducing voltage instability. The authors of [215] design a DSM algorithm for TCLs to 

compensate the voltage unbalance in power systems through voltage sensitivity analysis. The 

method controls minimum number of TCLs by detecting the most effective bus that affects 

point of common coupling (PCC) voltage. Consequently, they achieve more effective voltage 

regulation with less TCL control. Instead, the authors of [170] not only examine the impact of 

DSM on the voltage profile improvement, but also analyze the potential of the DSM in 

mitigation congestion in the network. The contribution of DSM programs to congestion 

management is generally due to flattening the overall load profile and reducing the duration of 

peak load periods. On the other hand, the proven ability of DSM for the reliability and flexibility 

of the DN operation is shown as a real-world case study on an urban Finnish distribution 

network in [218] and [219]. The results from these studies verify that by negligible adjustments 

in the operation of responsive loads, great reliability and flexibility benefits can be achieved 

from the implementation of DSM strategies at DNs. An optimal DSM plan can further 

contribute to postpone the preventive maintenance of system components by developing 

security-constrained preventive maintenance scheduling [216]. Moreover, it can defer 

investment needs in new generation units and the expansion of DN capacities [217]. Although 

relevant studies in recent years have yielded positive results for the participation of DSM 

programs in the provision of services to the DN, many challenges and issues still remain 

unsolved, and many potential benefits of DSM have not been yet explored. For instance, there 

can be observed a shortage in the thorough assessment of the required considerations and 

impacts of DSM programs in providing balancing services to different DN topologies (e.g., 

meshed and radial network structures) and ever-increasing DC distribution networks (DCDNs), 

to assess the compromise between the cost of implementing DSM programs and achieved 

service benefits, the potential benefits of energy efficiency programs for reliability 
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improvement, the performance of DSM strategies under different types of uncertainty (e.g., 

load profiles, DSM measures, energy price, distributed generation and failure rates) and an in-

depth analyze and assessment of existing approaches as well as a practical instruction for 

supporting decision makers to choose between running DSM programs or building new 

structures during distribution system expansion planning. Future studies should be directed 

toward a thorough investigation and consideration of such issues within the DN domain. 

2.8.3. DSM for RES and coordinated EVs 

integration 

Low-to-moderate penetration of RESs in the DN can profit both the utility and customers in 

different ways such as supplying local loads [42], minimizing network losses [61], deferring 

investments in network upgrades [217], and providing flexibility and stability to the network 

[47]. However, such benefits may be undermined in the case of large penetration of RESs, in 

particular when the power generation exceeds the load and the DN starts to export power [154]. 

This is because the traditional DNs have been typically designed for top-down energy flows 

and not to properly face generation features with the opposite direction of power flow [220], 

[221]. In this case, RES may introduce operational challenges to DSOs. The most common 

challenges arising from large penetration of RES in the DN include voltage violation, increased 

power loss and power quality issues, increased grid congestion, and additional stress on DN 

equipment [222]. The main reason for these issues is the discrepancy between RES generation 

time periods (e.g., in PV systems the maximum generation capacity is from mid-morning to the 

afternoon) and the high demand time periods (the daily peak demands is usually from the late-

afternoon to early-evening) leading to excessive power flow into or from the area through 

feeding transformers [32],[221]. Moreover, the intermittent nature of RES can impose a serious 

challenge to supply the demand in a reliable way [34],[36],[43],[59]-[61],[65]. These 

challenges should be addressed through coordinated operation between different RESs, bulk 

ESSs and loads through efficient DSM strategies. Plenty of research have focused on 

developing novel DSM strategies to mitigate the negative impacts of RES penetration on the 

DN, and to maintain a safe operation of the whole power system. Coordinated DSM strategies 

for the integration of large-scale RESs in DNs is studied in either centralized [67],[223],[224] 

or decentralized/distributed manners [50],[53],[59]-[61],[159]. A group of studies have dealt 

this problem in a centralized way (e.g., in [224] where the optimal scheduling of distributed 

energy resources including RES is stated in the form of MINLP problem for a 33-bus test 

system and a 180-bus test system which is centrally solved through a metaheuristic algorithm). 

However, due to some challenges in these centralized strategies such as slow convergence rate 
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and curse of dimension, the decentralization is recently identified as a more promising and 

efficient way for addressing such integration. Several decentralized/distributed approaches 

have been introduced to optimize the high RES penetration at the DN level including dual 

decomposition approach with challenging constraint of the supply–demand balance raised by 

the intermittent nature of RES [50], MAS-based energy management via ADMM approach 

[53],[59], MPC-based approaches via artificial intelligence [60], distributed stochastic 

programming for optimal power flow problem in DNs considering both real and reactive power 

control of RESs [61], and learning-based approach applied to distributed energy hubs [159]. In 

most of the aforementioned approaches, an intelligent combination of RES generation and ESS 

capabilities (e.g., as bulk battery storage or large-scale EVs) is utilized as a key strategy to 

prevent RES generation wastage. 

Apart from the large integration of RES into the DN, the broad deployment of EVs 

connected to DNs, responding to the increasing fuel demand and greenhouse gas emissions, 

imposes another significant challenge to the secure operation of DNs, and to the quality of the 

power supply. On the one hand, the storage potential of EV batteries can support the peak 

demand at local areas and thus postpone the need for the infrastructure upgrades [91]. 

Moreover, smart charging/discharging of large-scale EVs has potential to balance some 

variability issues associated with intermittent RES utilization [225],[226], and to provide local 

services such as voltage and frequency regulations to the DN [73],[74],[201],[202]. On the 

other hand, the significant population of EVs will bring about the astonishing change in DN 

power flow. Uncontrolled penetration of EVs may cause many issues in the DN such as 

increasing phase imbalance due the large connection of single-phase EVs charger to the grid, 

voltage dip and voltage fluctuation, harmonics due to the power conversion in EVs’ chargers, 

and magnitude of real power leading to more power losses [191]. Thus, it is advisable that 

coordinated charging of EVs considering the operational requirements of customers and the 

DN as well as optimum place and charging capacity of charging stations can enhance the load 

factor and reduce power losses of the DN. A detailed discussion of the impacts of an 

uncoordinated EV charging on DNs in terms of power losses, power quality (e.g., voltage 

profile, unbalance, harmonics), peak loads and system efficiency is provided in [227]. Over 

recent years, a broad spectrum of works has explored advanced schemes for an intelligent 

coordination of EV charging, mostly integrated with RES, either in centralized or 

decentralized/distributed fashion. For instance, Tesla has developed a Solar City to meet the 

required electricity for supplying Tesla EVs using solar energy [225]. A representative study 

for the large integration of EVs is [226], where a distributed decision-making approach relying 

on a real-time interaction between aggregators and EV users is proposed. The authors take into 

account the impacts of low and high EV penetration on the voltage unbalance, and interactively 

employs a PV system and EVs to mitigate the unbalance in low-voltage DNs. The authors in 
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[228] examine the contribution of smart EV charging stations integrated within the DN 

operation framework. They adopted a queuing model followed by a supervised neural network 

learning to obtain optimal charging profiles aiming at minimizing the feeder losses while 

maximizing the number of EV charged during a day. The proposed approach benefits both local 

distribution companies and EVs’ owners. In [229] a DSM approach through EVs for a cloud-

based energy management service is proposed, which provides financial incentives to 

customers with a higher participation level compared to those with a lower participation level 

within the same community. The fluctuation in the EV penetration is constrained and smoothed 

to meet the local constraints and technical/operational requirements of the DN such as the 

capacity of the power distribution line, and consequently, to provide a grid-friendly operation 

of DERs and EVs within the community. Instead, a coordinated charging process for EVs in 

the context of energy hubs is presented in [230], where the authors develop a multi-objective 

optimization framework for identifying optimal charging patterns while addressing both EV’s 

owners needs and system operator requirements. 

 

2.8.4. DSM and Optimal Management of 

Microgrids 

MGs are subsystems of DNs that widely accepted as captivating and emerging solutions for 

integrating electrical loads, distributed generation, ESS and EV, operating as coordinated 

systems [40]. MGs can operate either connected to the main power grid [133],[153] or operated 

independently in the stand-alone mode [127] and can both purchase and sell power to and from 

their energy suppliers. The optimal performance of an MG is extremely important as it can 

manage the coordination among different components of the system in a more decentralized 

way reducing the need for the centralized coordination and management [126]. However, an 

effective decision making and control of MGs while guaranteeing a reliable, secure and 

economical operation of the whole power network is still a challenging and complicated task 

in both theory and practice [13]. One reason for this complication appears from the complicated 

modeling of vast MG’s components including ESSs (with continuous decision variables such 

as storage charge/discharge rates and discrete decision variables such as storage 

charging/discharging mode) [118], CLs (with discrete decision variables such as ON/OFF 

states of controllable HVACs or EVs) [72], as well as the modeling of power exchange with 

the DN (in the form of linear or quadratic models along with discrete decision variables for 

buying/selling energy from/to the power grid) [67],[103]. Hence, the problem is generally 

formulated as a MINLP which is hard and computationally expensive to solve [126]. Another 
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aspect which complicates the control and management of MGs comes from the high amount of 

uncertainty in the load demand, RESs generation and energy prices [59],[63],[66]. Coping with 

these challenges, an increasing research interest toward the engagement of efficient DSM 

strategies in MGs can be observed in literature, where various decision-making and control 

strategies have been proposed. An overview of the existing technologies, developments, and 

remaining challenges of MG design is provided in [231]. In this survey the authors classify the 

reviewed control strategies based on the three levels of the MG control hierarchical structure, 

namely primary, secondary, and tertiary, according to the speed-of-response and the 

infrastructure requirements. The authors in [232] review the classification of the control 

techniques and the objectives of DERs interconnected to MGs in terms of voltage and frequency 

stability. Differently, the authors in [233] review and categorize the various power sharing 

control and inverter output control strategies of DERs substantially focusing on primary control 

in islanded MGs. An interesting review on features and characteristics of distributed control 

and management strategies for MGs along with corresponding challenges and opportunities is 

provided in [234].An in-depth look at the relevant studies conducted can conclude that a MG 

may be generally modelled based on a number of modeling components: 1) load energy 

demand, 2) RESs generation (e.g., PV and wind generation), 3) non-RESs generation (e.g., DG 

and micro turbine (MT)) 4) ESS and EV activities, 5) internal and external power flows, 6) 

control unit, 7) information flows, and 8) DSM programs (e.g., DR strategies). Considering the 

importance and popularity of the objectives of DSM programs in MGs, the first-priority 

objective is to minimize the short- to long-term operational costs such as the cost of generation, 

storage, load shedding strategies, and energy purchased from the grid [50],[53]-

[56],[67],[72],[118],[121],[126],[127],[154],[171],[235]. For instance, effective distributed 

strategies based on ADMM is proposed in [53] and [54] for the optimal energy management of 

MGs with high penetration of RESs, aiming to minimize the cost of power generation while 

maintaining the constraint of the supply-demand balance affected by the intermittency of RES. 

The interesting work of [235] addresses the problem of interactions between DNO and clusters 

of MGs through a bi-level stochastic formulation which benefits both DNO and MG owners in 

terms of operation costs. The next prominent objective of DSM programs within MG domain 

can be stated as guaranteeing the quality of service for DNOs and customers 

[115],[153],[215],[236]. An example of this is provided in [236] where different energy supply 

constraints in the form of power outages are taken into consideration, and a game-theoretical 

DSM using the blockchain technology is employed to achieve security and privacy protection 

in the MG operation. Another critical objective for the implementation of DSM programs in 

MGs is with respect to network power loss minimization subject to various technical and 

operational constraints such as load constraints, DER constraints, and power flow constraints 

[237],[238]. For example, minimizing power losses in the DN in the case of large-scale 
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penetration of hybrid EVs in a MG is pursued in [237] through a two-stage optimization method 

with low computational complexity. A wide review on relevant published works can conclude 

that although numerous efforts have been conducted to improve the planning, operation and 

control of MGs, there is still plenty of room for further studies to develop various modern 

control strategies for MG energy management. For instance, potential future developments of 

DSM strategies for MGs should include more innovative and efficient control strategies for 

developing control of flexible multi-MG systems focusing on more decentralized and agent-

based coordination techniques, tackling reliability issues such as voltage harmonies, 

overvoltage and overcurrent protections, stability and uncertainty issues due to intermittent PV 

systems and wind turbines, as well as detailed investigation of the ESS management systems 

to reduce the costs of DERs integrated within MGs. 

2.8.5. DSM for Multi-energy Systems 

Most studies on energy management systems address only one single form of energy, e.g., 

electrical or thermal, whereas a tight and growing interaction is observed between various 

energy sectors recently [29]. Multi-energy systems (MES) wherein multiple forms of energy 

vectors (e.g., electricity, heating, and cooling) interact with each other at different levels of 

aggregation (e.g., in a district, city or region) can enhance the system efficiency, economic and 

environmental performance, and rise the reliability and flexibility of the energy supply [247]. 

The MES provides new insights into the energy management systems by allowing all the energy 

users to actively participate in the DSM program. Flexibility and complementary features of 

MESs enable them to efficiently accommodate high penetration of RESs, and to be an 

interesting option for applying integrated DSM programs [248]. The prevalent components of 

a MES can be listed as RESs, ESSs, combined heat and power (CHP) plants, heat pumps (HPs), 

micro-turbines (MTs), gas furnaces (GFs), thermal energy storage (TES) systems, hydrogen 

storages (HSs), air conditioning (AC) systems, hydrogen production plants (HPPs), fuel cell 

(FCs), and refrigeration systems [29],[122],[249]. However, most of the studies incorporate 

electricity, heat and gas energies in the presence of RESs and ESS. A major challenge for 

developing sustainable MESs is to construct or upgrade the multi-energy infrastructures and 

facilities to enable consumers flexibly switch between various energy sources [250]. This 

requires a tight interaction among different sources of energy at DN level. In this context, DSM 

programs are the most suggested solutions in the technical literature for moderating coupling 

between different energy sectors [29]. The development of advanced metering infrastructure 

(AMI) on the demand side enables consumers in a MES to implement DSM programs thorough 

different energy carriers [251]. The consumers are able to take advantage of this flexibility to 

actively interact within the MES not only by shifting their time of energy usage but also 
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switching the sources of energy to meet their requirements [29]. A sample effort for the large 

integration of RES into CHP-based MESs using the flexibility provided by a DSM program is 

presented in [248]. The authors develop a two-stage optimization problem to jointly optimize 

the placement of AMIs, the installation of RESs as well as the relevant pricing strategy for 

demand side to achieve lower total costs and higher RES utilization. In addition, in [249] a 

DSM approach is detailed for the decentralized energy management of a neighboring area 

including smart houses with flexible and inelastic electricity, heating, and cooling power 

demands. The authors consider a comprehensive MES comprising CHPs, HPs, ACs, EVs and 

RESs which optimally interact with each other to minimize total energy costs. Another 

interesting decentralized decision-making approach for a MES comprising various types of 

flexible and hybrid energy appliances is proposed in [47]. The authors evaluate the performance 

of decentralized approach compared to a centralized approach to demonstrate that the 

decentralized energy management of MESs offers more efficient performance for dealing with 

scalability as well as flexibility due to smaller local optimization problems. Promising results 

for multi-energy conversion in MESs can be achieved through energy hubs 

[46],[98],[122],[131],[159],[230]. An energy hub is a multi-carrier energy unit which can 

convert, regulate, and store different sources of energy and satisfy different varieties of energy 

demands [29]. The energy management of an energy hub is addressed in [46] through a 

probabilistic approach to achieve the optimal energy carriers to be purchased, then to be 

converted or stored in a MES, in order to fulfill the energy requests of the consumers. The 

authors establish an objective function consisting of the cost of electricity and gas purchased 

from the grid as well as the number of startups and shutdowns of the gas furnace and the CHP 

unit. The authors of [98] demonstrate that a respective reduction of up to 30% and 50% can be 

obtained in the total energy cost and electrical peak load of a residential energy hub by applying 

a RL-based DSM strategy. The risk consideration for the accumulated operational cost in the 

energy management of an energy hub with various sources of energy is tackled in [122]. The 

uncertainties associated with energy hub’s input parameters (in particular, in load demand and 

prices of different energy sources) is the matter of significant importance, needing to be 

properly modeled in the optimal scheduling problem to reduce the risks of violation from the 

optimal solution. Dealing with these uncertainties have been discussed in studies such as 

[46],[122]. 

It can be inferred from the relevant research that the energy management of MESs is often 

a large-size problem in the form of MILP or MINLP with multiple continuous and integer 

variables along with many technical and operational constraints. Thus, the development of 

heuristic/metaheuristic as well as decentralized/distributed strategies for applying to such 

systems is becoming the most remarkable way for dealing with their computational complexity 

and convergence issues efficiently. The most frequently considered constraints in DSM of 
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MESs can be sorted as energy demand constraints (e.g., balancing constraints of electricity, 

heat and natural gas), conversion capacity constraints (e.g., power limits of energy converters), 

startup and shutdown constraints (e.g., safety and cost constraints for changing ON and OFF 

states of HPs and hydrogen production plant) and energy storage constraints (e.g., electrical, 

thermal and hydrogen storages). The room for future work can be exploring the optimal 

operation schedules of energy hubs participating in transactive energy markets, and study on 

more realistic limitations in the energy conversion between different energy carriers to involve 

more types of consumers into DSM programs (e.g., the consumers with must-run loads where 

the only available form of energy is electricity). 

2.8.6. Building-to-grid and DSM for Multiple 

Electrical Loads 

Building sector is an ideal source of cost-effective demand flexibility as it accounts for 

consuming the largest portion of the total electricity worldwide (e.g., over 70% of all U.S. 

electricity consumption) [161]. Building electricity consumption also drives a large share of 

peak power demand so that integrating them into the smart grid concept is critical for flexible 

load control and enhancing associated infrastructure costs and safety [252]. Moreover, 

buildings have a potential to reduce their consumption by 20–38% through advanced metering 

and controls while almost 90% of the commercial buildings can be aggregated to connect to the 

power grid [253]. Hence, exploring and understanding the coupling between buildings and 

power grids has emerged as a promising strategy for energy management and control targets 

[252]. The idea of building-to-grid (B2G) integration refers to the interface of buildings and 

power grids by allowing smart buildings to actively contribute to the seamless and reliable 

operation of the whole system by changing their overall demand patterns in response to grid 

operations. A B2G mode is developed in [254] for integrating the power systems economic 

dispatch with the buildings’ thermal dynamics and end-use constraints. The authors formulate 

B2G model as an optimization problem to minimize the daily electricity generation cost 

including the fuel and carbon emissions costs while satisfying power system operational 

constraints and the power balance constraint. A B2G integration is provided in [134], where a 

hierarchical MPC is proposed for load control to redistribute power consumption in the grid to 

avoid critical operating conditions and regulate the voltage and the line current. Regulation and 

balancing service provisions through smart buildings have been a focus of [112] and [178]. 

More than 41% of energy consumption in building sector is directly related to HVAC systems 

[207]. Besides, HVAC systems are flexible to provide DSM service to the power grid [255] 

(for more detail on optimal control approaches applied to buildings’ HVAC systems, see [117] 
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and references therein). Promising results are obtained from DSM of buildings incorporating 

HVAC systems which benefits both entities involved in the B2G system, i.e., the operations of 

the buildings and the DN [89],[177],[179],[180],[207],[255]-[257]. In this regard, the 

application of MPC has been a focus of many research works for the optimal DSM of buildings’ 

HVAC systems [179],[180],[207],[255],[256]. Razmara et al.  [255] employ MPC to control 

the power flow of the power grid, RES, and ESS to a commercial building with HVAC systems. 

They demonstrate that their MPC-based framework applied on a B2G system can provide DSM 

service to the system by reducing the maximum load ramp-rate of the power grid which 

prevents high peak demand issues while increasing the penetration of RES in the grid. The 

scope of [256] is to investigate the impact of model uncertainty on MPC controllers for a 

building HVAC system, and to develop a robust MPC utilizing uncertainty knowledge to 

enhance the nominal MPC performance for the control of the HVAC system. In [180] an 

economic MPC is introduced to develop a building-aggregator-grid contract for the DSM of 

buildings’ HVAC systems to minimize the grid operating costs and emissions, and to improve 

the grid reliability and market efficiency. The authors of [207] develop a bilevel optimization 

framework in B2G interaction and apply it on a cluster of commercial buildings connected to a 

33-node distribution test feeder with the actual parameters obtained from an office building at 

Michigan Technological University. The results reveal that compared to the unoptimized case, 

MPC-based DSM can reduce commercial buildings’ monthly electricity costs by 25% in Winter 

while enhancing the system load factor. Differently, the authors of [257] argue that by 

implementing DLC mechanism for buildings’ HVAC systems, a reduction of up to 60% in the 

peak demand can be achieved while the indoor temperature can be maintained within the 

defined limits. Two works of [167] and [168] further utilize DLC-based approaches for DSM 

of large-scale residential buildings. Load peak shaving, load shifting, and strategic energy 

conservation are pursued in [89] through the distributed transactive market mechanism for 

HVACs in commercial buildings. A more interaction between residential, commercial, and 

industrial buildings with the DNs can be expected in the future modernized power grids due to 

the recent advances in the information and communication technologies and in control and 

automation systems. However, some challenges may slow the large-scale deployment of B2G 

integration. One is with regard to infrastructural challenges such as interoperability between 

devices at building levels, compatibility issues related to the diversity of data with different 

resolution and communication standards, and bandwidth limitation. Another challenge comes 

about mechanism barriers such as lack of appropriate models to provide incentive to consumers 

for participating in DSM programs, uncertainty in weather and price forecasts, and scale ability 

and computational limits for real-time applications in practical sized systems. 

2.8.7. DSM for VPPs 
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A Virtual power plant (VPP) is an aggregation of several independent small- and medium-

scale DERs, ESSs and flexible loads interacting with each other and with supervisory entities 

(e.g., MG controllers) through a cloud-based control system as a single virtual power plant with 

the aim of optimizing the energy resources [258]. A VPP can participate in the energy trading 

within the wholesale electricity markets while operating its own devices to provide a reliable 

power and services for its consumers [147]. An energy management strategy for the optimal 

operation of integrated components in the VPP is of a vital importance for its effective 

integration into the power grid [259]. Two recent studies of [260] and [261] investigate the 

potential impacts of VPPs on RES integration and power system dynamic response, 

respectively. So far, the optimization and control of VPPs have been topics of numerous 

research activities. These studies can be clustered in terms of different perspectives such as 

problem-solving approaches, formulation types, and uncertainty modeling [262]. Regarding 

problem solving, the related approaches for DSM of VPP systems are implemented in 

centralized [262],[263],[264],[267] or decentralized/distributed fashions [265],[266]. In 

centralized modes, the VPP employs a central coordination entity to integrate and manage 

diverse DSM resources. For instance, references [263] and [264] present centralized models 

that maximize benefits for DSM participant consumers of VPPs participating in energy 

markets. The authors of [263] detail a DSM model for a VPP where a central aggregator 

participates in a wholesale market while further managing an internal market for VPP 

participants who are able to buy or sell electricity with the aim of minimizing total electricity 

cost. In [264] the infrastructure of a VPP is used to provide flexible demand in low-voltage 

DNs by optimizing the power consumption of a number of electric space heaters. The concept 

of VPP can be expanded to diverse geographical areas, in which decentralized/distributed 

approaches can provide more efficient solutions [260]. For example, a recent work of [265] 

proposes a decentralized aggregation strategy for a MES through bi-level interactive 

transactions of VPP to efficiently utilize distributed resources for participating in the market 

while maximizing the VPP benefits. In [266] optimal dispatch of geographically distributed 

components of a VPP are conducted hierarchically through a distributed optimization algorithm 

based on the MAS concept. The formulation types regarding DSM problems in VPPs are 

commonly based on MILP [263],[264], MINLP [265],[266], stochastic programming 

[262],[267],[268], and intelligent algorithms [147]. The operation of VPPs is particularly 

affected by uncertainty due to the intermittency of large-scale distributed resources, energy 

prices in day-ahead and real-time markets, and retail customers’ demand [267]. This reason 

motivates a group of works to devise strategies for estimating the effects of the uncertainties 

on such systems. Of all the related approaches, stochastic programming is the most frequently 

used approach to capture the uncertainties in VPP systems [259]. In [267] and [268], multi-

stage stochastic programming models are proposed to achieve the optimal bidding strategies of 
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VPPs under system uncertainties. Reference [262] presents a stochastic scheduling model for a 

VPP to maximize the net profit of the VPP and to fulfill the thermal and electrical loads 

considering the constraints of network security and uncertainties in RESs, loads and market 

price. Although stochastic programming can effectively model uncertainties in stochastic 

parameters of the VPP, it typically suffers from the poor scalability when the number of 

stochastic parameters increases (see Section III), which is an important issue for VPP systems 

with diverse distributed components. Another group of approaches handle uncertainties in the 

VPP through fuzzy optimization. A major benefit of fuzzy optimization in comparison to other 

approaches is that it avoids increasing the problem size notably as the number of uncertain 

parameters increases. A fuzzy day-ahead optimization model is proposed in [269] for a VPP 

that serves multiple DERs affected by uncertainty aiming to optimize the day-ahead bidding 

strategy of the VPP and to maximize the VPP’s profit in the day-ahead and the real-time 

markets. The authors further compare the fuzzy-based approach with a deterministic and a 

probabilistic day-ahead optimization in terms of real-time market performance considering 

uncertainty to validate that the highest realized profits can be obtained through fuzzy 

optimization. However, this work ignores to include ESSs as an important source of flexibility 

in VPPs. Instead, the work of [260] employs a fuzzy optimization to maximize the daily profit 

of the VPP that aggregates various energy resources including storage facilities with their 

corresponding constraints. Summing up, it can be advised that in order to make the realization 

of VPPs more convinced and reliable, the corresponding energy management strategies and 

policies should still mature strategically. This aim can be obtained by planning toward broader 

decentralization of control and optimization structures -as one of the insufficiently explored 

strategies for the VPP integration- which can beneficially change the role of the DN from a 

central controller to only a supervisor and coordinator of the different transactive actions among 

the involved stakeholders. By doing so, a more active, reliable and economically justifiable 

system design can be resulted. Moreover, in the realization of DSM for VPPs, handling the 

operational constraints of the DN and TN under VPP observation is of crucial importance, 

otherwise, the results may cause the network operational constraints to violate and may be 

practically infeasible. In addition, it is worth denoting that bidding of a VPP in the market is 

exposed to high risks because of potential imbalances in energy due to the high fluctuations in 

RES outputs, market prices and energy demands. Accordingly, the identification and 

assessment of potential risks should be further considered in network security management. 

Therefore, future research should broadly take these challenges into consideration. 
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Table 2. 3. Comparative summary of DSM approaches at distribution level investigated in this subsection 

DSM 

application 

Main objectives 

(n.o.p) 

System 

components 

(n.o.p) 

Main constraints 

(n.o.p) 

Solution 

methods 

(n.o.p) 

Math. 

type 

(n.o.p) 

EVs 

coordination 

and RES 

integration 

Energy cost min. (2) 

Power loss min. (1) 

Load factor max. (1) 

Voltage deviations min. (1) 

Voltage unbalance min. (1) 

Feeder loss min. (1) 

EVs simultaneous charging 

max. (1)  

PV power fluctuation min. (1) 

Costumers’ comfort max. (1) 

PEV (5) 

ESS (2) 

RES (2) 

CHP (1) 

Charging/discharging power 

limits of PEVs (4) 

Voltage/current limits (2) 

Technical power limits (2) 

SOC (2) 

RES production capacity (2) 

Power balance (1) 

Transformer capacity limits (1) 

Parking lot power limits (1) 

Charge facility rates (1) 

EVs simultaneous charging (1) 

Trading price ranges (1) 

Thermal constraints (1) 

SP (1) 

Multi-stage real-

time approach 

(1) 

Neural network 

(1) 

Cloud-based 

approach (1) 

Multiobjective 

PSO (1) 

QP (2) 

NLP (1) 

MILP (2) 

Optimal 

management of 

MGs 

MG operating cost min. (3) 

Emission min. (2) 

Reliability improvement (2) 

Privacy protection (1) 

PAR min. (1) 

MG payoff max. (1) 

Costumers’ comfort max. (1) 

Utility profit max. (1) 

Energy cost min. (1) 

Economic dispatch (1) 

Power quality improvement 

(1) 

Line congestion management 

(1) 

 

RES (5) 

ESS (5) 

PEV (3) 

DG (3) 

FC (1) 

ESS capacity limits (4) 

Technical power limits (4) 

Power balance (3) 

DG output limits (2) 

ESS Charging/discharging 

limits (2) 

SOC (2) 

Energy supply constraints (1) 

Demand fulfilment (1) 

Contracted load reduction 

limits (1) 

DG timing constraints (1) 

PSO (2) 

SP (1) 

Game theory (1) 

IPM (1) 

Robust control 

(1) 

MPC (1) 

Stochastic MPC 

(1) 

MINLP 

(3) 

QP (1) 

Multi-energy 

systems 

Electricity cost min. (2) 

Gas cost min. (1) 

Peak shaving (1) 

Demand/supply matching (1) 

DG startups/shutdowns cost 

min. (1) 

CHP (2) 

ESS (2) 

HP (1) 

RES (1) 

TES (1) 

DG (1) 

GF (1) 

ESS capacity limits (4) 

ESS Charging/discharging 

limits (2) 

Technical power limits (2) 

Participation factor limit (1) 

CHP ramp-up/down rates (1) 

Thermal limits (1) 

CHP capacity limit (1) 

Gas furnace capacity limit (1) 

SOC (1) 

Energy balance (1) 

Cooperative 

mechanism (1) 

Approximation 

approach (1) 

MIQP (1) 

MINLP 

(1) 

Building-to-

grid and 

multiple 

electrical loads 

Energy cost min. (3) 

Peak shaving (2) 

Load factor max. (1) 

Thermal comfort (1) 

Voltage/current regulation (1) 

Costumers’ comfort max. (1) 

HVAC (2) 

WH (2) 

DG (2) 

CB (1) 

CHP (1) 

ESS (1) 

RES (1) 

PEV (1) 

Boiler (1) 

FC (1) 

TCL (1) 

Temperature rates (4) 

Thermal capacity (3)  

Voltage limits (2) 

Technical power limits (2) 

Energy balance (2) 

Building power penetration 

limits (1) 

Capacitor bank limits (1) 

Transformer capacity limits (1) 

SOC (1) 

ESS Charging/discharging 

limits (1) 

ESS capacity limits (1) 

Energy transaction limits (1) 

HVAC capacity (1) 

Demand fulfilment (1) 

DG output limits (1) 

Hierarchical 

MPC (2) 

Bilevel 

programming 

(1) 

SP (1) 

Greedy 

algorithm (1) 

Binary search 

algorithm (1) 

Differential 

evolutionary 

algorithm (1) 

LP (3) 

HP (2) 

Virtual power 

plants 

VPP operator’s profit max. 

(3) 

Costumers’ comfort max. (1) 

RES penetration max. (1) 

Social welfare max. (1) 

Voltage regulation (1) 

RES (3) 

DG (2) 

ESS (1) 

HVAC (1) 

PEV (1) 

DG output limits (2) 

Temperature rates (1) 

Line capacity (1) 

HVAC capacity (1) 

Temperature rates (1) 

HVAC heat rate (1) 

Energy balance (1) 

SOC (1) 

ESS Charging/discharging 

limits (1) 

ESS capacity limits (1) 

DG ramp limits (1) 

FL (2) 

Data mining 

technique (1) 

NLP (1) 

MILP (1) 

MINLP 

(1) 

Note-The list of new acronyms used: AC (Air conditioner), CB (Capacitor bank), CHP (Combined heat and power), FC (Fuel 
cell), FL (Fuzzy logic), GF (Gas furnace), HP (Heat pump), HVAC (Heating, ventilation, and air conditioning), IPM (Interior-
point method), MA (Multi agent), PSO (Particle swarm optimization), SP (Stochastic programming), SOC (State of charge), 
SOH (State of heat), TCL (thermostatically controlled load), TES (Thermal energy storage), WH (Water heater). 
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2.9. Demand-side Management at Transmission Level 

In a transmission network (TN), bulk energy products are transferred from the location of 

production to distribution lines that carry the energy products to end users. In this section we 

analyze and discuss the decision-making and control strategies for utilizing the potential of 

DSM programs for the enhancement of the TN operation and support focused on the electric 

transmission planning, the power system economic operation including the integration of DSM 

into unit commitment (UC), economic dispatch (ED) and optimal power flow (OPF) problems, 

and flexibility service provision to the TSO, mainly ancillary services such as frequency control 

and voltage support in transmission level, congestion management, load following and 

shedding. 

2.9.1. Introduction 

Contrary to the well-recognized impacts of DSM resources on the DN and the end-use 

customers, the contribution of such resources, including the energy efficiency and the DR, still 

requires a wider technical investigation and long-term system assessment [270]. In general, 

identifying the impacts of DSM implementation at the TN are more challenging to quantify and 

are not possible to be characterized by simple metrics [271]. The most important question is 

whether DSM programs will have short- to long-term impacts on the TN operation, 

infrastructure and capacity expansion, and further how significant will these impacts be? As a 

quick answer, cancellations of several major upgrade projects for the TN due to the reduction 

in demand growth can inspire that there is a connection (e.g., two upgrade projects of PJM’s 

Mid-Atlantic Power Pathway and Potomac-Appalachian Transmission Highline were cancelled 

as analyses no longer demonstrate a need for the new capacities to maintain grid reliability 

[272]). Generally, building and expanding the TN infrastructures are very difficult and costly. 

Diverse transmission constraints may further result in suboptimal investments, such as inducing 

utilities to buy energy from geographically near generation sources without considering extra 

resulting costs and environmental impacts [273]. Accordingly, exploring alternatives for 

reducing, shifting or shedding demands is of greater priority to maximize the possibility of 

using the existing transmission capacity. This is where the DSM resources can play a crucial 

role. Whereas potentials of DSM resources can provide excellent values to TSOs as well as 

additional sources of revenue for other market players, it is still surprisingly underdeveloped in 

most research programs [274]. One of the most prominent topics for the TSO is regarding TN 

expansion planning. It refers to the location, the time, the capacity and the type of 

reinforcements, i.e., the new power transmission lines and the associated electrical facilities, 



 
 

69 

 

that need to be placed in the TN in order to meet the predicted demand and the security, 

reliability and quality criteria while minimizing the total investment and operational costs 

[275]. US Department of Energy (DOE) and the Edison Electric Institute identify four main 

drivers for building new transmission capacities, namely interconnection, reliability, economics 

and replacement [276]. According to that, Oak Ridge National Laboratory published an 

interesting report on the impacts of DSM resources on TN expansion planning where the role 

of DSM on these four drivers in addition to a further introduced driver, i.e., policy, is discussed 

[270]. This report argues that DSM resources can beneficially affect all these drivers. Firstly, a 

less interconnection of new loads or generations may be required due to the reduced demand 

or the increased local generation at the end-user locations. Secondly, a more reliable system 

can be achieved with the reduction of operational stresses on the TN while a less need for 

planning reserves is required as a result of the lower peak demand. Thirdly, deployment of 

distributed generations can substantially reduce the capital cost of transmission as well as the 

transmission line losses of distant plants. Fourthly, the reduced peak demand due to the 

implementation of DSM programs may delay or reduce the need to replace aged assets. Lastly, 

utilizing the environmentally friendly demand resources can reduce the emissions, land and 

water impacts and consequently, can affect the relevant policies such as renewable portfolio 

standards, reduced emissions, esthetics and grid resilience. Thus, seen from the perspective of 

the TN planning, DSM programs can be considered as an effective non-network solution 

providing supplementary options for transmission expansion. However, many issues may 

inevitably arise from inaccuracies in the DSM design and implementation [277],[278]. For 

instance, the work of [279] indicates that a significant RES capacity has been recently 

connected to the TN in Central Europe to achieve the unique brought by the clean generation. 

However, the intermittent nature of RES is posing emerging challenges to the network planners. 

Moreover, the involvement of DSM in both TNs and DNs (as DN is becoming actively engaged 

in TN operations) can pose additional constraints and considerations into the TN design and 

operation which necessitates the need for deep interactions between TSOs and DSOs (we refer 

to [279] for more detail about opportunities of TSO/DSO interaction). These interactions have 

been the scope of some technical literature for different targets such as network congestion 

management [281] and service provisions [282]. Hence, TN development planning has become 

a complex decision-making process which mostly requires further risk analyses. An interesting 

example of such analyses is provided in [283] where the authors propose a decision-making 

support tool to TN expansion planning considering a risk constraint and the uncertainty in the 

RES in order to obtain optimal planning schemes with a minimum probability of load 

curtailment within a threshold, and to establish a trade-off between the cost, the reliability and 

the risk. In [278] an incentive-based DSM supporting utilities is described, which manages a 

targeted negotiation with corresponding load aggregators for contributing to peak load 
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reduction. This feature can provide utilities with a flexible TN expansion planning so as to 

achieve an optimal trade-off between the transmission investment and the DSM expenses. 

Summing up, an optimal carefully designed DSM program at TN level can substantially 

contribute to maintaining the whole system balance, complying with the transmission limits 

and reaching the required reliability level. This also increases the bulk electric system flexibility 

by providing additional dispatchable resources, which can potentially mitigate the imbalances 

due to the RES generation. In the following subsections we review the decision-making and 

control strategies for DSM targets supporting the economic operation of a flexible and 

sustainable TN. 

2.9.2. Power System Operation  

In large power systems, the mismatch between loads and generation may cause various 

problems such as voltage instability, cascaded failures of transmission lines, and wide area 

blackouts [284]. The integration of DSM resources into the TN can be successfully realized to 

provide the power system a more efficient, secure, and economic operation [271]. A good 

example of this is the automatic optimal control of demand as a source of flexibility to enhance 

the system controllability. This cannot be easily achieved by conventional generators due to 

their various flexibility limits such as ramp rates and generation levels [285]. Flexible demand 

controlled through DR is a great candidate to remove these limitations, and to provide a fast 

ramping by quickly changing the demand to balance the grid [255]. However, such new DSM 

opportunities and potential benefits may be also accompanied by new challenges to the power 

system operation while enforcing additional constraints and modelling requirements to the 

system which must be carefully addressed. While the TSO pursues a reliable operation of the 

power grid by solving fundamental operational problems, including UC, ED and OPF, 

incorporating DSM into these problems may increases their complexities [286]. In this 

subsection, we review the integration of DSM into the classical power system economic 

operation problems. 

2.9.2.1. Unit Commitment 

The UC consists in selecting a set of available generation units for a predefined time period 

aiming to minimize the overall generation cost (including fuel cost, startup/shutdown cost and 

maintenance cost) while supplying the entire system load subject to some operational and 

technical constraints of each generation unit (e.g., ramp rate limits) [287]. UC is typically seen 

as a large-scale, non-convex and mixed-integer optimization problem which is hard to be solved 

(see [288] for more detail regarding conventional UC problem formulation and constraints). 
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Furthermore, despite beneficial contributions of DSM resources into the power system 

operation, the trend of incorporating DSM programs along with DERs related modelling and 

constraints in the grid makes UC problems even more complicated and computationally 

challenging [289]. The major reason contributing to this additional complication is the 

uncertain availability of DSM resources (e.g., inaccuracies in the forecast of RES generations) 

and imperfect controllability over DSM resources (e.g., unexpected behavior of the consumers 

and limited information on the state, constraints, and dynamics of the loads) [290]. Hence, 

additional analyses may be necessary to accommodate these issues in an optimal UC. The value 

and impact of integrating DSM resources on UC in the power grid has been assessed in several 

studies [126],[127],[291]-[296]. Reference [291] proposes a UC model which is robust to the 

uncertainty in the DR resource (i.e., in uncertain price elasticity of demand) intending to 

minimize the cost of generators, opportunity cost of reduced demand due to the DR program, 

startup cost of generators, and spinning reserve cost. The authors in [292] determine the value 

of residential DSM resources on operating cost savings under stochastic RES generation and 

limited controllability of the loads, stated as a UC problem with probabilistic reserve 

constraints, using a model inspired by the Belgian power system. Their results demonstrate that 

average operating cost savings amount to over 6% for short-term load shifting (arbitrage) and 

over 7% for combined arbitrage and regulation. Instead, a stochastic UC model with several 

flexibility resources is developed in [293] and tested on two large-scale case studies of the IEEE 

300-bus and IEEE 118-bus test systems to determine the minimum daily operation cost. To this 

aim, the authors combine DR, ESS and network reconfiguration by the transmission switching 

actions while considering the uncertainties in RESs and equipment failures. The detailed 

impacts of ESS unit with its energy shifting and fast-ramping capabilities on system operating 

cost saving are evaluated in [294]. The use of ESS in UC problems is a prominent option to 

satisfy the transmission constraints, but installation cost of high-capacity ESSs is very high. 

The case study in [295] shows that ESS capacity can be drastically reduced by incorporating 

DSM system. Rather, interesting work of [296] details the potential of energy efficiency and 

DR programs coordination in handling the UC problem through a two-stage scheme covering 

short term and midterm scheduling for cost-effective operation of power plants. While the 

midterm scheduling over a one-year horizon determines the level of the energy efficiency 

investment, its obtained results is adopted for the short-term scheduling over a one-day horizon 

to minimize operation cost and total incentive cost of consumers. Published results from the 

investigated relevant studies implies a properly managed incorporation of DSM resources 

distributed across different load buses into the UC problem not only can result in significant 

reduction of the startup/shutdown and fuel cost of the power plants, in alleviating the network 

congestion, and in reduction of electricity prices in electricity markets but also keeping 

robustness of the solution against various types of forecast uncertainty. For instance, reference 
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[285] reports that by involving DSM strategies in market clearing problem formulation, a 

notable reduction in market prices can be achieved. It further argues that due to the non-

convexity of the UC problem, some price spikes can be observed in the large-scale DSM 

implementation, which needs to be evaluated before incorporating DSM programs into UC in 

an electricity market environment. In addition, numerical and simulation results of the UC 

problem on several case studies with and without the integration of DSM programs are 

discussed in [297] which confirm considerable values of DSM programs as a cos-effective and 

energy-efficient tool in the UC problem. 

2.9.2.2. Economic Dispatch 

ED is a sub-problem of the UC and is a step that generally needs to be done after completing 

the UC process. It aims at optimally allocating demands and transmission losses to the power 

generation units to reliably supply the entire system load with the lowest cost whilst complying 

with the various technical constraints of the TN and the generation units [286]. Typically, 

technical constraints of the TN such as the transmission capacity limits are considered in ED 

problems [287]. 

Recent studies demonstrate that an effective ED model should address nonlinear and non-

smooth nature of input-output characteristics of modern generators which is due to some factors 

such as valve point effect (i.e., the ripples induced by the valve point loading to generating units 

causing ripples to the fuel-cost curve), discontinuous prohibited zones and ramp rate limits of 

generation units, as well as intermittency in both generations and consumptions [298]. Hence, 

conventional derivative-based ED approaches such as lambda iteration, dynamic programming 

and gradient method are mostly unreliable and computationally inefficient to solve ED 

problems as they often obtain a local optimum for the highly nonlinear and non-convex 

optimization problems [82],[159]. More recent studies have moved toward other sorts of 

priority techniques such as heuristic/metaheuristic algorithms [82],[159],[299], artificial 

intelligence approaches [300] or predictive-based approaches [126] to tackle these challenges. 

The authors of [301] use a genetic algorithm to address both DSM and ED problems through 

two complementary optimization stages. In [302] the optimal dispatch of DSM units alongside 

conventional generating units is presented, but without integrating RESs and with some 

simplifying assumptions neglecting the presence of any uncertainty in the system parameters. 

An interesting transmission level energy management for the balancing market ED is developed 

in [303] where the authors solve the problem in a decentralized fashion while considering 

flexible demand characteristics as well as network constraints (i.e., TN and DN constraints such 

as bus power balance, voltage magnitude constraints, and line capacity constraints), generation 

constraints (e.g., generation limits and ramp rate limits), demand constraints (including end-
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users’ devices, small-scale RES and EVs) as well as coupling constraints (related to 

concatenation of active power, reactive power and voltage constraints). A group of studies solve 

the ED problem as static ED (SED) when only looking at a single interval of time, e.g., half an 

hour. A SED simplistically assumes that the power output of the generation units can be 

adjusted instantaneously. However, this assumption cannot reflect the actual operating 

processes of the generating units due to their ramp rate limits. In addition, the uncertainties 

associated with the large intermittency of the customers’ demand RES generation cannot be 

efficiently handled through the SED [304]. Other group of research focus on the dynamic ED 

(DED) which provides a look-ahead capability to meet the predicted demand and the possible 

uncertainties while considering the dynamic constraints of the generation units 

[82],[299],[300],[305]. In [305] a dynamic coordination between ED and DSM is stated and 

solved through a distributed algorithm while taking advantage of an ESS unit to mitigate the 

effect of RES uncertainty. In general, as a DED problem consists of multiple objectives with 

several equality and inequality constraints, an increase in the system size can make it a 

complicated optimization problem. More recent studies cope with this issue by adopting other 

classes of algorithms such as heuristic/metaheuristic algorithms and AI-based algorithms. For 

instance, the authors in [299] propose a DSM approach which integrates a DED problem with 

a price-based DR program. They apply a metaheuristic algorithm to solve the problem aiming 

to minimize the generation costs and the customers’ costs while maximizing the network 

reliability. In [159] a multi-agent learning based solution for the ED of distributed energy hubs 

is developed, however, it ignores important energy network constraints. Rather, AI-based 

approach based on a dynamic online learning is proposed in [300] for optimal ED of networked 

MGs. The authors show that an optimal DSM program not only helps to reduce long-term 

operation cost of the system but also supports the stable operation of system components (in 

this case, ESS unit and flexible loads). 

2.9.2.3.   Optimal Power Flow 

The concept of OPF is introduced as a more general approach than ED for producing 

acceptable flows which simultaneously satisfies power flow balance and constraints related to 

the network operating limits such as nodal voltages, line flows and apparent power in feeders 

[306]. OPF problem is generally solved as a large-scale MINLP problem with a large number 

of mixed-integer variables. As for UC and ED problems, high penetration of uncertain RESs in 

transmission and distribution networks along with unpredictable behavior of energy demands 

make this problem more complex [284]. While ED usually ignores some network constraints 

and the topology of the power system, e.g., the location of the generating units and loads, OPF 

usually considers actual network location along with voltage, thermal, and fault level 
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constraints. This is important as the characteristics of the loads and their host networks may 

vary from one location to another and ignoring such aspect may lead to unacceptable flows or 

voltages into power networks [307] (see also [284] for more detail regarding the most common 

objectives and constraints in the OPF problem). Many scholars have studied the incorporation 

of DSM programs in the OPF problem. Reference [307] investigates an OPF approach to 

determine where the application of DSM resources would be of most benefit to the network 

operation regarding their ability to alleviate critical upstream network contingencies (e.g., 

relieving grid supply transformer overload and voltage instability). Stochastic optimizations are 

employed in [61] and [308] to model the uncertainty of RES generation into the OPF problem 

through generating a finite number of possible scenarios. However, in large OPF problems, 

stochastic OPF algorithms may result in very high computational burden while requiring 

probability distributions of uncertain variable which are not easily available in the power 

system. Instead, interval-based robust optimization approaches can tackle these limitations as 

proposed in [309] using non-probabilistic quantification of uncertainty in wind generation to 

manage network congestion. Cost-effective capability of DSM resources in OPF problems is 

assessed in [284] considering diverse system operational constraints such as bus voltage 

magnitude and angle bounds, active/reactive power generation constraints, active/reactive load-

generation balance constraint, transmission power flow calculation and limits, ramp rate limits. 

Differently, OPF techniques have also been applied to determine the optimal buses and times 

for implementing DSM programs. For instance, the authors in [310] develop an algorithm based 

on power transfer distribution factors, available transfer capability and dynamic OPF to 

alleviate the network congestion and enhance the system reliability. The works of [114] and 

[311] present a combination of a real-time OPF and a day ahead OPF. The real-time OPF aims 

to minimize the cost of all generation units and to supply the load demand while considering 

the voltage, reactive power limit and line flow constraints. On the other hand, the day-ahead 

OPF accounts for maximizing the social benefits, i.e., the customer benefits minus the 

generation costs, considering ramp rate limits while taking care of the RES generation and the 

demand uncertainties. 

2.9.3. Service provision  

Grid services are all support services for the reliable and high-quality generation, 

transmission, and distribution of electricity from the utility to the consumer [252]. In particular, 

ancillary services refer to a range of functions that system operators (TSOs) contract so as to 

guarantee the power system security [312]. They are vital support services to the operation of 

whole power system for ensuring a continuous flow of electricity to meet electricity demand 

uninterruptedly even during contingency events. Ancillary services at transmission level are 
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typically divided into frequency and non-frequency services. Frequency response service are 

used to maintain the system frequency to the nominal value with automatic and very fast 

responses. Non-frequency services include black start capability, i.e., the ability to restart a grid 

following from a blackout, reserve services to provide additional energy when needed and 

voltage support through the provision of reactive power [282]. 

Traditionally, ancillary services have been provided by generators, storage resources or 

reactive power control equipment. However, as an example of the exorbitant costs exerted by 

service provision on electricity suppliers, a total amount of £33.90 million have been spent by 

National Grid in Great Britain on ancillary services in January 2020 [313]. These significant 

costs justify the emerge of new plans for utilizing the potential of DSM resources for the service 

provision in the power system. DSM mechanisms in control services not only reduce such costs 

considerably, but also maintain the security and support of the system more efficiently. The 

integration of DERs such as DGs, RESs, ESSs, the wide-spread deployment of EVs, the 

development of SG and MG technologies, and applying DR programs have prompted the 

provision of ancillary services for future power systems. DSM systems can perform similar 

functions as a traditional ancillary service provider (e.g., a fossil fueled thermal power plants) 

with a very quick response less than a second or within minutes [220]. Many recent studies 

have focused on the potential of DSM for providing ancillary services at the transmission level. 

In particular, they focus on the role of DSM strategies on maintaining grid frequency 

[73],[75],[113],[178],[314]-[316] and transmission-level voltage [318] at desired levels, 

transmission congestion management [317], load following service [130],[321] and 

provisioning operating reserves [112],[319],[320] for any contingency event or disruption to 

the power supply. For instance, a distributed active DSM relying on a stochastic control 

algorithm is proposed in [314] for the provision of both primary and secondary load frequency 

regulation in power systems. Load participation in frequency control of SGs is assessed in [113] 

for restoring the frequency to its nominal value after a disturbance by dynamically adapting the 

loads. The interesting results of a field experiment from a demonstration project in [315] 

demonstrates that the use of demand side flexibility can provide a considerable frequency 

reserve in the power system. In addition, experimental tests of DSM resource participation on 

a 30000 𝑚2 commercial office building are provided in [316] to investigate the ability of a 

commercial HVAC system to provide frequency regulation services. Instead, relieving 

congestion in transmission lines using DSM programs and generation rescheduling is the focus 

of [317]. By establishing a multi-objective problem based on a heuristic approach, the authors 

minimize total operation costs, DR costs and emission while managing the power system 

transmission lines congestion. Other cluster of studies address load following services which is 

currently known as a major ancillary service for the grid to regulate frequency and voltage 

[130],[255]. According to that, the demand side should be able to follow the supply side. For 
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instance, the potential of the predictive B2G controller is studied in [255] for delivering load 

following services. The authors establish probabilistic analysis accounting for forecast 

uncertainty aiming at decreasing the maximum load ramp-rate of the power grid while ensuring 

maximum RES penetration. In [318] the participation of smart appliances in response to the 

network voltage and frequency drop is examined to effectively contribute to maintaining the 

power balance and preventing frequency or voltage collapse. The authors propose an under 

frequency load shedding combined with a under voltage load shedding to restore the system 

voltage to the normal range, i.e., between 0.945∼1.045p.u, and system frequency back to more 

than 49.9Hz after contingencies. As discussed before, ever-growing large-scale penetration of 

RESs can crucially increase regulation and load following needs with regard to capacity and 

ramping capability, and the conventional regulating generators hold serious limitations and 

drawbacks such as ramp-rate constraints, efficiency loss due to the ramping, inaccurate tracking 

of the area control error signal as well as operating and maintenance costs. Hence, DSM can 

play a further promising role in exploiting the flexible demand side resources to bear a more 

efficient and fast-response regulation reserve. For instance, in [319] the potential of flexible 

HVAC power in smart commercial buildings as regulating power is investigated. The strategy 

is based on storing excess RES generation as thermal energy in the buildings, so that the flexible 

central HVAC loads can be used to effectively compensate the variability of the RES. An 

interesting utilization of thermostatically controlled appliances such as aggregated electric 

water heaters is introduced in [320] to provide balancing reserves for the utility. The authors 

argue that this DR resource can provide desired balancing reserves in the presence of wind 

generation for a high percentage of the operating time. 

Currently, a potential sector which can actively participate as a DSM tool into service 

provisions such as spinning reserve, load following, and demand-side regulation is industrial 

plants which are often already equipped with control, measurement, and communication 

infrastructures. A good example of this participation is presented in [321] where a MPC-based 

coordination method enables industrial loads as DSM resources to provide regulation or load 

following with the support of an onsite ESS. This study shows that the cooperation of the 

industrial machines and the ESS can provide an accurate regulation or load following command 

in a very wide range.  

Although valuable efforts are being made to involve DSM resources into network service 

provisions, more accurate and comprehensive studies on the various aspects of this 

incorporation have remained insufficient which can be interesting directions for future 

investigations. A precise assessment of the interactions between TN, DN, DERs alongside 

DSM programs for providing services is possible only if accurate and realistic models of DERs 

and other flexibility resources (such as flexible loads and ESSs) connected to the network are 

incorporated. In addition, increased cost of serving DSM resources should be included into the 
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cost of providing regulation services as this cost can be significant. Moreover, while holistic 

and standardized solutions within this research area are still unavailable, the lack of a standard 

test platforms, diversity of protocols and performance metrics precludes a proper comparative 

analysis of different methodologies. A comparative summary of DSM approaches at 

transmission level investigated in this subsection is provided in Table 2.4.  
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Table 2. 4. Comparative summary of DSM approaches at transmission level investigated in this subsection 

DSM 

application 

Main objectives 

(n.o.p) 

Main constraints 

(n.o.p) 

Solution methods 

(n.o.p) 

Power 

transmission 

development 

planning 

Investment cost min (3) 

Reliability improvement (3) 

Planning risk management (2) 

System security improvement (1) 

Peak demand reduction (1) 

Operation cost min. (1) 

DG output limits (3) 

Power balance (3) 

Technical power limits (3) 

Risk constraint (2) 

Network flow (2) 

System reliability const. (1) 

Transmission capacity (1) 

Stability requirement (1) 

Decomposition approach (2) 

Differential evolution (1) 

Mont Carlo simulation (1) 

Power systems 

operations (ED/ 

UC/ OPF) 

Cost min. (13) 

Emission min. (4) 

Demand fulfillment (3) 

Reliability improvement (2) 

Congestion management (2) 

Power regulation (1) 

Peak demand reduction (1) 

Utility profit max. (1) 

Power balance (11) 

DG output limits (9) 

DG ramp rate limits (9) 

Technical power limits (5) 

Thermal limits (5) 

Network flow (4) 

Bus voltage/current limits (4) 

RES power const. (2) 

Spinning reserve constraints (2) 

SOC (1) 

SOH (1) 

User’s incentive limits (1) 

DG startup/shutdown const. (1) 

Cooperative mechanism (3) 

Imperialist competitive algorithm (1) 

Discrete compromise programming 

(1) 

Stochastic programming (1) 

Decomposition approach (1) 

Chance constrained programming (1) 

Robust approach (1) 

Closed loop hierarchical (1) 

Heuristic method (1) 

Two-point estimate method (1) 

Real-time approach (1) 

Ancillary 

services 

Voltage/frequency stability (8) 

Reliability improvement (4) 

Cost min. (5) 

Risk management (3) 
Profit/return max. (3) 

Investment/maintenance cost min. 
(2) 

Power quality improvement (2) 
RES utilization max. (1) 

Balancing reserve (1) 

Load following (1) 
DG generation cost (1) 

Primary/secondary frequency 
control (1) 

Power flow control (1) 
RES penetration max. (1) 
Load ramp-rate max. (1) 

Reliability improvement (1) 
Voltage unbalance min. (1) 

Frequency/voltage limits (6) 

Power balance (6) 

Temperature limits (5) 

Technical power limits (4) 

ESS capacity limits (4) 

Thermal limits (2) 
SOC (2) 

Voltage/current limits (2) 
Transformer capacity limits (2) 

DG output limits (1) 

DG ramp rate limits (1) 

Energy demand limits (1) 

Line capacity (1) 
Feeder capacity limits (1) 
DR timing constraints (1) 

Charging/discharging capacity (1) 
Load curtailment timing (1) 

Cooperative mechanism (6) 

Stochastic programming (4) 

Real-time approaches (3) 

MPC (2) 

PQ controller (1) 

Heuristic method (1) 

Bilevel programming (1) 

Voltage sensitivity method (1) 

 

2.10. Conclusions and Recommendations  

This chapter provided a multi-directional understanding of the recent advances in the area 

of DSM to several domains of the electric grid from smart end-users to distribution level and 

transmission level. Investigating a broad spectrum of related research theoretically showed a 

vast potential economic and technological benefits due to DSM programs. However, their real-

word implementation is still minimal owing to numerous barriers, in particular from the 

perspective of decision-making and control. Despite positive attempts, significant effort is still 

required to explore DSM potential regarding necessary consideration of the impact of DSM 

programs on the electric grid in long-term planning.  

Although DSM programs offer promising solutions to the increasing load level and can 

considerably improve the reliability and financial performances of electric grid, one of the main 

challenges is to effectively maintain a balance between demand and generation in a distributed 

energy supply system dominated by different forms of DERs, and in particular, in multi-energy 

systems with various types of energy sources and associated uncertainties. Another significant 

consideration is with respect to the interface between TN and DN operation. This can be 

addressed by continuously coordinating TN and DN stakeholders during all steps of planning 
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and road mapping process for development of DSM programs. Moreover, a number of technical 

challenges related to the infrastructure of communications, the metering infrastructure, 

integrated thermic/electric storage technologies and micro CHP installations needs to be 

resolved.  

Some important assumptions on the behavior of the electric grid in the case of, for example, 

ageing effect, partial outage of generation units, intermittent operating units and natural 

disasters is necessary for a sustainable deployment of DSM in SGs, which have not been 

considered in most of the surveyed research. Furthermore, forecast uncertainties such as the 

intermittency of RES generation, electricity price, failure rate and users’ behavior in the 

presence of DSM are poorly investigated. Future works should concern a more in-depth 

analysis of these issues for the implementation of DSM programs. 

Finally, the potential for considerable amount of electric power from local generation and 

storage fed back into the electric grid is evident and will require greater examination to 

understand the true impact to the grid.  

From the findings and contribution of the research in this chapter, the following paper is 

under submission: 

• S. M. Hosseini, A. Parisio, R. Carli and M. Dotoli, “Decision and Control 

Approaches for Demand-side Management in Smart Grids: A Survey,” in IEEE 

Transactions on Control Systems Technology – under submission. 
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3. Robust Centralized Approaches for Demand-side 

Management in Residential Microgrids 

3.1. Introduction 

In this section, we present several original centralized DSM approaches aiming to provide 

a cost-effective solution for energy management of residential MGs under different 

technical/operational/contractual constraints in presence of both generation and demand 

uncertainties. The features of the considered microgrid are defined according to residential 

microgrid architectures commonly used in the most recent studies. We define on this chapter a 

residential microgrid as a locally controlled system to promote the integration of distributed 

generation sources, energy storage systems, interconnected users with household loads, plug-

in electric vehicles along with smart meters and home energy consumption controllers, in which 

households’ energy demands can be supplied by local generations while their extra 

required/surplus energy can be bought/sold from/to the power grid. We define a relatively 

comprehensive architecture for the residential microgrid including household loads (i.e., elastic 

controllable and critical non-controllable appliances), micro generation resources (i. e., several 

photovoltaic systems and domestic wind turbines), an energy storage system, and plug-in 

electric vehicles. Firstly, we propose a day-ahead robust approach based on box uncertainty set 

model for optimal scheduling of a residential MG. Then, we explore a novel online approach 

based on MPC, and a robust online approach based on robust MPC (RMPC) regarding the 

cardinality-constrained uncertainty set model for the DSM of a residential MG. Finally, we 

present a comprehensive model and a systematic robust methodology to state and solve the 

optimal energy scheduling problem of a grid-connected residential MG with several electric 

components and various types of uncertainty. 
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3.2. A Robust Day-ahead Approach for Energy 

Management of Residential Microgrids 

3.2.1. Introduction  

In this section, we develop a robust optimization framework for the day-ahead energy 

scheduling of a grid-connected residential user. The system incorporates a RES, an ESS as well 

as elastic controllable and critical non-controllable electrical appliances. The proposed 

approach copes with the fluctuation and intermittence of the RES generation and non-

controllable load demand by a tractable robust optimization scheme requiring minimum 

information on the sources of uncertainty. The main objective is minimizing the total energy 

payment for the user considering operational/technical constraints and a contractual constraint 

penalizing the excessive use of energy. The presented framework allows the decision maker to 

define different robustness levels for uncertain variables, and to flexibly establish an 

equilibrium between user’s payment and price of robustness. To validate the effectiveness of 

the proposed framework under uncertainty, we simulate the dynamics of a residential user as a 

case study. A comparison between the proposed robust approach and the same method with 

deterministic RES and loads profiles is carried out and discussed. 

3.2.2. Related Works and Contributions 

Over the past decades, a wide spectrum of optimization techniques has been developed to 

minimize the energy payment and optimizing the system performance of residential MGs. 

However, most of the studies assume perfect knowledge of all coefficients, which is hardly 

realistic and not necessarily valid for many real-world cases due to the randomness involved 

with RESs and poor forecast accuracy [322],[323]. Thus, other researchers have proposed 

methods considering uncertainty to achieve a more practical, robust and efficient energy 

scheduling [324]-[330]. For example, [324] presents a two-stage framework to minimize the 

expected operation cost of a distribution company considering future load and real-time prices 

as two sources of uncertainty. In [325], the RES generation and the demand load are considered 

as the uncertain variables for the day-ahead energy scheduling of a smart MG. The proposed 

models in [324] and [325] both use two-stage scenario-based stochastic programming. In 

addition, a robust approach to schedule the operation of smart home appliances and ESS for 

obtaining a robust solution under load uncertainty is presented in [326], even though the 

uncertainty associated with the RES unit is ignored. A robust day-ahead scheduling of a smart 

residential user under uncertainty is also provided in [327] using an energy service decision-
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support tool. Although the presented approach effectively results in a lower expected cost than 

traditional deterministic approach, it suffers from computational complexity as the robust 

schedule is derived using a stochastic programming approach over a set of scenarios for 

modeling the range of uncertainty. Moreover, the probability of the occurrence of each scenario 

has to be known in advance. In [328], a robust optimization method is proposed addressing the 

uncertainty of the RES by setting up a collaborative scheduling of the ESS with direct load 

control (DLC). The robust day-ahead energy management of smart homes in the presence of 

uncertainty of the RES is also tackled in [329], but without pursuing uncertainty in loads, and 

without incorporating the ESS in the MG. A robust strategy for minimizing the total energy 

exchange cost and simultaneously maximizing social benefits is presented in [330]. Although 

both forecast uncertainties in RES and loads are considered in [330], the authors use 

probabilistic scenario-based uncertain sets imposing high computational complexity. 

Moreover, the method is based on optimization of the worst-case scenario without providing 

robustness flexibility and resulting in a too conservative formulation.  

To the best of the authors' knowledge, and as shown by previous literature review, there is 

no contribution in the related literature proposing a robust optimization approach under 

bounded uncertainty sets dealing with intermittency in both RESs and loads in residential smart 

users including ESS units. Thus, filling this gap, this section develops a robust optimization 

framework for the day-ahead scheduling of residential smart user under uncertainties of 

forecast parameters. Unlike stochastic scenario-based techniques, our proposed method takes 

advantage from a robust optimization scheme including minimum information on the sources 

of uncertainty - namely only the deterministic range of the uncertain variables and the resistance 

against any disturbance in the uncertainty set - and characterized by a lower computational 

burden than stochastic optimization that normally utilizes time consuming Monte Carlo 

sampling [331].  

3.2.3. Aims and Objectives 

The main objective of the energy scheduling is minimizing the total energy payment for the 

user considering a contractual constraint with penalized cost for excessive use of energy. We 

also deal with the conservatism of the robust control algorithm and flexibility of the method for 

application to different settings. Our approach allows the decision maker to establish a trade-

off between user’s payment and level of conservatism. We apply a contractual constraint with 

adjustable robustness factors to make the problem statement closely representative of the 

practical system and increase the flexibility of conservatism. We simulate the dynamics of a 

residential user as a case study to validate the effectiveness of the proposed framework under 

uncertainties both in the forecast of the RES and non-controllable loads. Finally, a comparison 
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between the proposed approach and the same method with deterministic forecast profiles is 

carried out and discussed. 

3.2.4. The Residential User Mathematical Model 

The scheme of the system under consideration is illustrated as Figure 3.1. The system is 

composed by a residential user with a controllable load, a non-controllable load, a local RES, 

and a ESS that may charge/discharge energy during each time slot. The leading actor is a 

HEMS. It oversees autonomously managing the interactive operation of home appliances, RES, 

ESS and distribution grid while considering operational/technical constraints as well as 

contractual grid regulations imposed by the main distribution grid [332]. We consider a time 

window 𝓗 ≜ {1,… , ℎ, … ,𝐻} including 𝐻 equally spaced time intervals. The modeling of 

system components is discussed as follows. 

3.2.4.1. Controllable and Non-controllable Loads 

In the present work, we assume the user is equipped with two types of electrical home 

appliances, called controllable and non-controllable loads. Indeed, the operation time of some 

appliances such as dishwasher, dryer, and washing machine can be controlled and deferred to 

other time slots of the time horizon based on user’s priority with neglectable effect on the user’s 

comfort. We denote the consumption profile of the controllable load by a vector 𝒙 =

[𝑥(1), … , 𝑥(ℎ), … , 𝑥(𝐻)] with 𝐻 non-negative decision variables. The required energy level 

for the operation of the controllable load at each time slot should be defined between a 

minimum and a maximum range. Therefore, we state two parameter vectors 𝒙𝒍𝒃 =

[𝑥𝑙𝑏(1),… , 𝑥𝑙𝑏(ℎ),… , 𝑥𝑙𝑏(𝐻)] and 𝒙𝒖𝒃 = [𝑥𝑢𝑏(1),… , 𝑥𝑢𝑏(ℎ),… , 𝑥𝑢𝑏(𝐻)] for minimum and 

maximum energy consumption level, respectively. Also, the cumulative consumption needs to 

reach a given threshold 𝑋𝑇 by the deadline to complete the task in the considered time horizon. 

Thus, the controllable load decision variables vector at each time instant is subject to the 

following constraints: 

𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏 (1) 

∑ 𝑥(ℎ)𝐻
ℎ=1 = 𝑋𝑇 , ∀ℎ ∈ ℋ. (2) 

Another type of home appliance is categorized as non-controllable load, whose action is 

critical, so that its standard operation time cannot be shifted. We denote the non-controllable 

load consumption profile for each time slot by a vector of 𝐻 input parameters 𝒃̃ =

[𝑏̃(1),… , 𝑏̃(ℎ),… , 𝑏̃(𝐻)]. We assume that this vector is computed by a forecast sub-module of 

the HEMS (see Figure 3.1), using a prediction algorithm based on historical data [333]. In next 
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section we show that only a minimum/maximum range for non-controllable load profile is 

enough for our robust framework: 

𝑏̃𝑙𝑏(ℎ) ≤ 𝑏̃(ℎ) ≤ 𝑏̃𝑢𝑏(ℎ), ∀ℎ ∈ ℋ. (3) 

 

 
Figure 3. 1. Scheme of the considered smart residential user 

 

3.2.4.2. Renewable Energy Source 

The RES generation profile within the prediction horizon for each time slot can be 

represented as a vector of 𝐻 input parameters 𝒓̃ = [𝑟̃(1),… , 𝑟̃(ℎ),… , 𝑟̃(𝐻)]. This vector is also 

assumed to be calculated by a forecast sub-module of the HEMS by a prediction algorithm 

based on weather data [334]. We later show that, to solve the scheduling problem, our approach 

only requires knowledge of the lower and upper bounds that are typically available based on 

historical data: 

𝑟̃𝑙𝑏(ℎ) ≤ 𝑟̃(ℎ) ≤ 𝑟̃𝑢𝑏(ℎ), ∀ℎ ∈ ℋ. (4) 

 

3.2.4.3. Energy Storage System 

The HEMS is also in charge of implementing the charging/discharging strategies of the ESS. 

The ESS has to optimally store the energy harvested from the distribution grid and/or the RES 

unit. Then, it can supply the MG loads in peak demand periods. We define vectors 𝒛 =

[𝑧(1), … , 𝑧(ℎ), … , 𝑧(𝐻)] with 𝐻 decision variables to model the charge/discharge energy 
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profiles of the ESS in the prediction horizon. The mentioned decision variables should be 

technically constrained as follows: 

i) the rate of charging/discharging of the stored energy is bounded between zero and a 

maximum charging/discharging rate 𝑍+
𝐵𝐸𝑆𝑆 /𝑍−

𝐵𝐸𝑆𝑆: 

𝑍−
𝐵𝐸𝑆𝑆 ≤  𝑧(ℎ) ≤  𝑍+

𝐵𝐸𝑆𝑆 , ∀ℎ ∈ ℋ (5) 

ii) a first order discrete time model is used to model the dynamics of the charge/discharge level 

of the small-scale ESS for ℎ 𝜖 ℋ: 

𝑠(ℎ) = 𝑠(ℎ − 1) + 𝑧(ℎ), ∀ℎ ∈ ℋ (6) 

where 𝑠(ℎ) denotes the charge level of the storage device in time slot ℎ ∈  ℋ. Note that in the 

present work we do not take the charging/discharging efficiencies. This is a simplified model 

for the dynamics of ESS. However, from the next subsection, we further take charging and 

discharging efficiencies into account. In the whole chapter, we assume that the battery 

degradation and leakage effects are negligible. 

iii) we assume that the charge level at the last time slot 𝑠(𝐻) and at the beginning of the 

prediction horizon 𝑠(0) are equal. Hence, the following constraint holds: 

𝑠(0) = 𝑠(𝐻) = ∑ 𝑧(ℎ)𝐻
ℎ=1 ;  (7) 

iv) the maximum charge level is limited by the maximum storage capacity 𝑍𝑚𝑎𝑥
𝐵𝐸𝑆𝑆 (that is non-

negative): 

− 𝑠(ℎ − 1)  ≤  𝑧(ℎ) ≤ 𝑍𝑚𝑎𝑥
𝐵𝐸𝑆𝑆 −  𝑠(ℎ − 1), ∀ℎ ∈

ℋ.  
(8) 

3.2.4.4. Grid Energy Flow with Corresponding 

Constraint and Cost 

The total purchased energy by the user is calculated on a time slot basis by a scalar 

aggregation of energy demand, required energy for charging the ESS, generated energy of RES 

and released energy of ESS. We denote the energy profile exchanged between user and the 

distribution grid within prediction horizon by a vector of  𝒆̃ = [𝑒̃(1),… , 𝑒̃(ℎ),… , 𝑒̃(𝐻)]. Hence, 

the following energy balance equation should be always satisfied: 

𝑒̃(ℎ) = 𝑥(ℎ) + 𝑏̃(ℎ) − 𝑟̃(ℎ) + 𝑧(ℎ), ∀ℎ ∈ ℋ. (9) 

A contractual obligation imposed by the distribution grid should also be considered as an 

additional constraint: the user’s energy consumption cannot exceed a maximum which is 

defined by the energy supplier. We assume that the total energy exchanged with the grid is 

always non-negative. If we denote by 𝑬𝒎𝒂𝒙 = [𝐸𝑚𝑎𝑥(1),… , 𝐸𝑚𝑎𝑥(ℎ),… , 𝐸𝑚𝑎𝑥(𝐻)] the vector 
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of maximum permissible energy consumptions at each time slot, the value of the exchanged 

energy should be subject to the contractual/technical constraints as follows: 

𝑥(ℎ) + 𝑏̃(ℎ) − 𝑟̃(ℎ) + 𝑧(ℎ) ≤ 𝐸𝑚𝑎𝑥(ℎ), ∀ℎ ∈ ℋ. (10) 

Furthermore, we consider a linear pricing function for the energy bought from the grid, so 

that the total cost for the user in the time window ℋ is simply computed as the summation of 

all costs in each time slot: 

𝒞(𝒆̃) = ∑ 𝑐(ℎ)𝑒̃(ℎ),   ∀ℎ ∈  ℋ,H
ℎ=1   (11) 

where 𝒄(ℎ) is the known cost coefficient at the time slot ℎ provided by the distribution grid 

operator to the end user. 

3.2.5. Problem Formulation 

3.2.5.1. The Optimization Problem 

The user energy scheduling is stated as an optimization problem where the objective 

function (to be minimized) is the cost of the total exchanged energy with the grid over the 

prediction horizon. We intend to find the optimal energy consumption profile of the 

controllable loads and the optimal charging/discharging strategy of the ESS, while satisfying 

the related constraints and considering the RES generation and demand uncertainties. Thus, the 

optimization problem is formulated by the following linear programming problem: 

𝐦𝐢𝐧
𝒙,𝒛

𝓒(𝒆̃) s.t. (1), (2), (5), (6), (7), (8), (10). (12) 

Note that (12) is an uncertain optimization problem due to the presence of 𝒃̃ and 𝒓̃, whose 

values are affected by uncertainties. Conversely, in case of absence of uncertainty in the 

parameters, the energy scheduling problem (12) turns into the so-called nominal optimization 

problem. 

3.2.5.2. Uncertainty Modeling  

We assume that the sources of uncertainties affecting the RES generation and the load 

consumption forecasts are known and the corresponding maximum/minimum data are 

available. Hence, we adopt the box uncertainty set model that relies on the approach proposed 

in [335], which is an effective approach to obtain robust solutions to uncertain optimization 

problems. However, differently from [335], in this work the conservatism of the approach can 

be selected by the decision maker. Following the box uncertainty set definition [336], vectors 

b ̃ and r  ̃indicating the actual values of the uncertain non-deferrable load and RES generation 
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are expressed as (13). We adopt the so-called set-based uncertainty model that is very practical 

in many applications with parameters’ uncertainty. Another motivation for using this model is 

its computational tractability [336]. The box uncertainty set is defined as follows: 

𝒰 = {𝒃̃ = 𝒃 + 0.5𝝃𝑏
𝑇𝑰𝐻∆𝒃,  𝒓̃ = 𝒓 + 0.5𝝃𝑏

𝑇𝑰𝐻∆𝒓 | 

 ‖𝝃𝒃‖∞ ≤ 𝜞𝒃, ‖𝝃𝒓‖∞ ≤ 𝜞𝒓} 
(13) 

where 𝒃 = [𝑏(1), … , 𝑏(ℎ), … , 𝑏(𝐻)] and 𝒓 = [𝑟(1), … , 𝑟(ℎ),… , 𝑟(𝐻)] are the vectors of 

the nominal predicted values of uncertain parameters, ∆𝒃 = [∆𝑏(1), … , ∆𝑏(ℎ), … , ∆𝑏(𝐻)] and 

∆𝒓 = [∆𝑟(1),… , ∆𝑟(ℎ), … , ∆𝑟(𝐻)] are the vectors of the difference values between lower and 

upper bounds of the uncertain parameters, 𝝃𝑏 = [𝜉𝑏(1),… , 𝜉𝑏(ℎ),… , 𝜉𝑏(𝐻)] and 𝝃𝑟 =

[𝜉𝑟(1), … , 𝜉𝑟(ℎ), … , 𝜉𝑟(𝐻)] are the vectors of random and independent coefficients which are 

subject to uncertainty, and 𝑰𝐻 is the 𝐻-dimensional identity matrix. In (13) the absolute values 

of 𝜉𝑏(ℎ) and 𝜉𝑟(ℎ) in each time slot are respectively bounded by 𝛤𝑏 and 𝛤𝑟, which are called 

robustness factors. In our model, the level of conservatism is adjusted to make a trade-off 

between user’s payment and the so-called price of robustness (PoR). Note that PoR is defined 

as the percentage of relative difference between the costs achieved by a robust solution and a 

nominal solution [337]. Finally, we recall that a solution of the optimization model under 

uncertainty set 𝒰 is robust if the value of all uncertain variables 𝒃̃ and 𝒓̃ perturbs not more than 

𝛤𝑏 and 𝛤𝑟, respectively. 

3.2.5.3. The Robust Counterpart  

Having defined uncertainty on non-deferrable loads and RES generation through the 

introduction of 𝓤, we now provide the robust counterpart of the nominal energy scheduling 

problem (12). Hence, we implement the uncertain linear optimization problem based on box 

uncertainty set based on the following robust counterpart formulation: 

min
𝒙,𝒛

{ 𝒞(𝒆̃) s.t. (1), (2), (5), (6), (7), (8), (10) }(𝒃̃,𝒓̃)∈𝒰. 
(14) 

By setting the values of the robustness factors (𝛤𝑏 , 𝛤𝑟), the decision maker can adjust the 

diameter of the uncertainty set. Therefore, the constraint (10) can be modified as follows: 

𝑥(ℎ) + 𝑏(ℎ) + 0.5𝛤𝑏∆𝑏(ℎ) − 𝑟(ℎ) + 0.5𝛤𝑏∆𝑟(ℎ) 

+𝑧(ℎ) ≤ 𝐸𝑚𝑎𝑥(ℎ), ∀ℎ ∈ ℋ. 
(15) 

Equation (15) has the effect of “robustifying” the solutions to the linear problem (12). 

Moreover, replacing in objective function (11) the definition of vectors 𝒃̃ and 𝒓̃ provided in 

(13), it may be demonstrated that the robust counterpart (14) can be re-written as follows [336]: 
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min
𝒙,𝒛

{∑ 𝑐(ℎ)(𝑥(ℎ) + 𝑧(ℎ) + 𝑏(ℎ) − 𝑟(ℎ))H
ℎ=1 }

 
  (16) 

s.t. (1), (2), (5), (6), (7), (8), (15). 

The resulting optimization problem (16) consists of 2𝐻 decision variables in 𝒙, 𝒛 that 

minimize the objective function regarding 5𝐻 bounding constraints, 3𝐻 inequality constraints, 

and 2 equality constraints. 

By solving the robust optimization problem (16) and the corresponding constraints, the load 

scheduling with different predefined robustness factors can be obtained. For 𝛤𝑟 = 𝛤𝑏 = 0, the 

problem is solved in the nominal case without considering forecast uncertainties. In this case, 

the results are obtained in the most optimistic case. Instead, for 𝛤𝑟 = 𝛤𝑏 = 1, the greatest 

amount of uncertainty is considered. Thus, uncertainties are fully addressed during the 

operation, but the problem goes into the most conservative case (i.e., worst case over all the 

possible realization of uncertain variables). To reduce the level of conservatism in the solution, 

the decision maker can set the value of these two parameters between 0 and 1 based on the 

user's preference. The decision maker is able to run various simulations and observe the 

optimization results over different robustness factors to choose the best solution in terms of an 

acceptable trade-off between cost and conservatism. In all simulations we assume that the 

feasible set of problem (16) is not empty. 

3.2.6. Simulation Results and Discussion 

3.2.6.1. The Simulation Setup  

We refer to a residential user composed of a local controllable and a non-controllable load, 

a RES and an ESS. All the computations in this work are performed by Matlab R2016a 

equipped with the Optimization Toolbox on a desktop PC with an Intel i7-7500U core processor 

with 2.70 GHz (4 CPUs) and 12 GB RAM memory. The run time for all the algorithm 

simulations is less than 10ms. For our simulations, we consider a prediction horizon of 𝐻 = 24 

hours and a sampling time of 1 hour. Moreover, other parameters related to the controllable 

load, ESS, and hourly cost coefficients of purchased energy from the distribution grid are 

presented in Table 3.1. The forecast RES and non-controllable load profiles are illustrated in 

Figure 3.2. 

 
Table 3. 1. Simulation Parameters 

Quantity Value Unit 

Controllable load range per slot [0, 3] kWh 

Controllable load daily cumulative threshold 25 kWh 

Length of prediction horizon (H) 24 hours 

Length of each time slot 1 hour 
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Quantity Value Unit 

Charging/discharging rate of ESS per slot 1 kWh 

Maximum storage capacity of ESS 30 kWh 

Charging/discharging efficiency of the ESS 1 - 

Initial storage charge level of the ESS 0 kWh 

Peak demand hours [9, 11], [16, 21] hours 

Off-Peak demand hours 
[1, 8],[12, 15], 

[22, 24] 
hours 

Peak demand hours payment coefficient 0.07 €/kWh 

Off-Peak hours payment coefficient 0.04 €/kWh 

Penalty cost coefficient 0.21 €/kWh 

Robustness parameters (𝛤𝑏, 𝛤𝑟) [0, 1] - 

Maximum permissible energy consumption 

per time slot (𝐸𝑚𝑎𝑥(ℎ)) 
2.4 kWh 

 

 
(a) 

 
(b) 

Figure 3. 2. Forecast energy profiles in terms of nominal, minimum, and maximum values for: (a) controllable 

load consumption, (b) RES generation. 

 

3.2.6.2. Results Analysis and Discussion  

Figures 3.3 and 3.4 depict the results of the energy scheduling of  the controllable load 𝑥 

and storage charging/discharging activities 𝑧 obtained by applying the method for 𝛤𝑟 = 𝛤𝑏 = 0 

(i.e., the so-called nominal solution) and for 𝛤𝑟 = 𝛤𝑏 = 1  considering exact forecast profiles of 

RES and load without uncertainties (i.e., the most conservative case). From the results, it can 

be found that the scheduling moves the operation time of controllable appliances to off-peak 

time slots for minimizing the energy payment. Also, the maximum utilization of the RES should 

be ensured by energy optimization. The presence of the ESS provides the possibility to store 

the surplus energy when the available RES is greater than the demand. It can supply the load 

when the required aggregate demand is larger than the available renewable energy. The method 
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adopts the best strategies of the ESS based on a trade-off between the forecasted RES over the 

prediction horizon and energy’s tariffs at different time slots.  

To examine the quality of the robust solution, we run a Monte Carlo simulation over 5000 

experiments with different patterns for the uncertain variables, and compare the robust solutions 

generated by changing the robustness factors. For both uncertain variables, the actual profile at 

each Monte Carlo iteration is obtained by adding a normally distributed random sequence with 

zero mean and standard deviation equal to 0.2 [kWh] to the nominal predicted value. The 

scheduled energy profiles exchanged with the distribution grid compared to the maximum 

permissible energy per slots (𝐸𝑚𝑎𝑥) are reported in Fig. 5 for a single Mont Carlo iteration. It 

is obvious that the energy consumption profile by the nominal approach (𝛤𝑟 = 𝛤𝑏 = 0) exceeds 

this limit (Figure 3.5a); conversely, the robust approach for 𝛤𝑟 = 𝛤𝑏 = 1 can fully satisfy this 

limitation (Fig. 3.5b). 

We then present the average results to assess the performance of our approach. We compare 

the performance of the method from the worst-case to the nominal-case to get some insight on 

the conservatism of the approach. To this aim, we define a merit function – that we denote as 

scheduling cost – as follows: 

𝒞′(𝑒̃) = ∑ 𝑐′(ℎ)𝑒̃(ℎ) H
ℎ=1   (17) 

where we introduce a higher cost coefficient (𝑐𝑝(ℎ) > > 𝑐(ℎ), ∀ℎ ∈  ℋ) for the energy 

consumption beyond the limit to achieve a trade-off between cost and conservatism: 

𝑐′(ℎ) = {
𝑐(ℎ), 𝑖𝑓𝑒̃(ℎ) ≤ 𝐸𝑚𝑎𝑥(ℎ)

𝑐𝑝(ℎ), 𝑖𝑓𝑒̃(ℎ) > 𝐸𝑚𝑎𝑥(ℎ)
 , ∀ℎ ∈ ℋ. (18) 

 
(a) 

 
(b) 

Figure 3. 3. Energy profiles of controllable loads achieved by: (a) nominal approach (𝛤𝑟 = 𝛤𝑏 = 0), (b) robust 

approach for 𝛤𝑟 = 𝛤𝑏 = 1. 
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(a) 

 
(b) 

Figure 3. 4. Energy charging/discharging strategies of the ESS achieved by: (a) nominal approach (𝛤𝑟 = 𝛤𝑏 = 0), 

(b) robust approach for 𝛤𝑟 = 𝛤𝑏 = 1. 
 

 
(a) 

 
(b) 

Figure 3. 5. Profiles of energy exchanged with the grid versus maximum permissible energy consumption (red 

line) for a specific Monte Carlo run: (a)  nominal approach (𝛤𝑟 = 𝛤𝑏 = 0), (b) robust approach for 𝛤𝑟 = 𝛤𝑏 = 1. 

 
Figure 3.6 indicates the variation trend of the scheduling cost while varying the parameters’ 

values (for 𝛤𝑟 = 𝛤𝑏  ∈ [0, 1]). It can be observed that, by increasing the values of robustness 

factors, the scheduling cost firstly decreases, but then it increases again continuously for 

parameters’ values higher than 0.4, since the system goes into over-conservative state which 

tends to deviate the scheduling from the optimal solution. The results show that, although 

setting the values of robustness factors in the maximum levels (𝛤𝑟 = 𝛤𝑏 = 1) allows the highest 

protection, it also leads to the most conservative results in practice, since the cost value in this 

case is even 1.15% worse than the nominal optimization solution. For 𝛤𝑟 = 𝛤𝑏 = 0, we obtain 

the nominal optimal value equal to 1.1932 €. The contour plot of the scheduling cost for 

variations of robustness factors in the permissible range [0,1] is presented in Figure 3.7 for a 

better evaluation of the results. For our case study with a discrete optimization problem, the 

minimum cost is achieved in the point (𝛤𝑟 =0.2, 𝛤𝑏 =0.6); however, the maximum protection 

against uncertainties occurs in (𝛤𝑟 =1, 𝛤𝑏 =1) as expected. The maximum protection point 

provides a solution ensuring deterministic guarantees that constraints will be satisfied as data 

changes. The contour plot in Figure 3.8 shows the PoR versus the robustness factors. We note 

that PoR has the minimum (maximum) value equal to 2.14% (3.98%) at point  𝛤𝑟 =0.2, 𝛤𝑏 =0.6 
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(𝛤𝑟 =1, 𝛤𝑏 =1) where the scheduling cost has its minimum (maximum) value equal to 1.2194 

€ (1.2427 €). Hence, our system will suffer from a 3.65% increase in the scheduling cost with 

actual data if we stick to the nominal optimal solution without taking uncertainty into account. 

However, this value decreases to 2.12% with our proposed robust strategy at point 𝛤𝑟 =0.2, 

𝛤𝑏 =0.6. Summing up, the simulation results show that the method allows the decision maker 

to make a trade-off between PoR and constraints’ violation by adjusting the values of robustness 

factors regarding uncertain variables. 

 
Figure 3. 6. Scheduling cost as a function of equal robustness factors (i.e., 𝛤𝑟 = 𝛤𝑏). 

 
Figure 3. 7. Contour plot of the scheduling cost as a function of robustness factors. 

 
Figure 3. 8. Contour plot of the price of robustness as a function of robustness factors. 

 

3.2.7. Conclusions 

We present a robust optimization framework for day-ahead energy scheduling of a grid-

connected residential user incorporating RES and ESS units. We also deal with the level of 
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conservatism of the robust control algorithm by defining two independent robustness factors 

for uncertain data. Our approach flexibly allows the system operator to establish a trade-off 

between user’s costs and level of conservatism. Simulation results show that the method allows 

the decision maker to make a satisfactory trade-off between constraint violation and PoR by 

selecting appropriate values for the robustness factors. Future work includes the following 

aspects:1) improving the uncertainty modeling of parameters by the definition of different 

uncertainty sets; 2) considering a quadratic pricing function for the energy bought from the grid 

which yields more realistic results and converts the problem into a non-linear optimization 

problem; 3) extending the proposed approach to a robust Model Predictive Control based 

strategy to achieve an online robust energy scheduling under forecast uncertainty. 

From the findings and contribution of the research in this chapter, the following paper has 

been presented: 

• S.M. Hosseini, R. Carli, M. Dotoli, “Robust Day-ahead Energy Scheduling of a 

Smart Residential User under Uncertainty,” IEEE European Control Conference 

(ECC), Naples, Italy, June 25-28, 2019. 

3.3. An Online Approach for Energy Management of 

Residential Microgrids by Model Predictive 

Control (MPC) 

3.3.1. Introduction  

In this subsection, we propose an online strategy based on Model Predictive Control (MPC) 

for the energy scheduling of a grid-connected smart residential user equipped with deferrable 

and non-deferrable electrical appliances, a RES, and an ESS. The core of the proposed control 

scheme relies on an iterative finite horizon online optimization, implementing a quadratic cost 

function to minimize the electricity bill of the user’s load demand and to limit the peak-to-

average ratio (PAR) of the energy consumption profile whilst considering operational 

constraints. At each time step, the optimization problem is solved providing the cost-optimal 

energy consumption profile for the user’s deferrable loads and the optimal charging/discharging 

profile for the ESS, taking into account forecast uncertainties by using the most updated 

predicted values of the local RES generation and the non-deferrable loads consumption. The 

performance and effectiveness of the proposed framework are evaluated for a case study where 

the dynamics of the considered residential energy system is simulated under uncertainties both 

in the forecast of the RES generation and the non-deferrable loads energy consumption. In 
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particular, the proposed method is compared with an offline scheduling method presented in 

[338]. 

3.3.2. Aims and Objectives 

The proposed control scheme relies on an iterative finite horizon on-line optimization, 

implementing a quadratic cost function to minimize the electricity bill of the user’s load demand 

and to limit the peak-to-average ratio (PAR) of the energy consumption profile whilst 

considering operational constraints. At each time step, the optimization problem is solved 

providing the cost-optimal energy consumption profile for the user’s deferrable loads and the 

optimal charging/discharging profile for the ESS, taking into account forecast uncertainties by 

using the most updated predicted values of local RES generation and non-deferrable loads 

consumption. 

3.3.3. Related Works and Contributions 

Energy scheduling systems can be designed to optimize the operating plan of users in real 

time or over a future (typically the next day, i.e., day- ahead). Independently from the planning 

time scale, these approaches allow full exploitation of the potential of both local energy 

generation and storage to reduce the energy consumption costs, while limiting the peak-to-

average ratio of the energy profiles and complying with customers’ needs. The reader is referred 

to surveys [339] and [340] for further details about the key features of different approaches. 

Among the more recent contributions on day-ahead energy scheduling, The strategy of day-

ahead energy scheduling methods mainly relies on the offline scheduling of users’ energy 

consumption in which the optimization problem is solved once for the whole period of the 

prediction horizon. As a result, the assessment of the forecast uncertainties in the problem 

parameters is not possible. In fact, despite the apparent dynamical nature of the local electrical 

energy generation and demand in a smart MG and the obvious forecast uncertainty, these issues 

have not been addressed in any of the cited literature contributions. 

Despite RESs are useful in residential MGs since they provide environmentally friendly and 

low-cost energy, their associated challenges on the stability of SGs are significant, due to the 

inherent uncertain and random nature of RESs.  The accuracy of energy forecast of RESs is still 

an issue under discussion in literature. For instance, [341] reports that the mean absolute error 

(MAE) of wind energy generation for short-term hourly forecast, in which the prediction 

horizon is larger than 6 hours and less than 2 days, ranges between 13% to 21%. Thus, in order 

to maintain the stability of smart MGs, a real-time control regarding forecast uncertainty is 

necessary [342]. On the other hand, the profile of energy demanded by the non-deferrable 
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appliances can be obviously consider as another uncertain parameter since it may change from 

the estimated profile based on changing user’s preferences [343]. 

MPC is known as one of the most promising methods for dealing with forecast uncertainties 

in the real time control of dynamical systems. As regards the previously published contributions 

on the application of MPC to the real time scheduling of residential MGs, in [343] and [344] 

the optimal scheduling of deferrable appliances and distributed energy resources in smart 

residential MGs is studied by using single-time and multi-time scale stochastic MPC 

approaches, respectively. These two papers take the inherent dynamical feature of RESs into 

consideration. Nevertheless, uncertainty of non-deferrable appliances profile is disregarded in 

both contributions. Further, both the electrical and thermal energies management for multiple 

residential MG is addressed by an MPC approach in [345]. It models an individually-owned 

PV source and ESS for each MG and a shared combined heat and power (CHP) unit for all 

MGs. User preference and comfort are also included in the design, but the dynamical analysis 

of the RES and the load profile have been neglected. In [346], a real-time optimization 

algorithm for residential load management in a MG considering uncertainties in the future load 

and user’s energy consumption needs is proposed. Although [346] addresses the uncertainty of 

estimated base loads using a receding horizon approach, it neither takes into account the effects 

of RESs and ESSs -two important components of MGs- nor the uncertainty of RESs.  

Moreover, we remark that most of the previous studies adopt a linear function to model the 

energy bought from the network. Instead, in order to achieve a more realistic result, the actual 

cost function should be considered as non-linear, for instance in a quadratic form [338],[347]. 

Summing up, to the best of the authors' knowledge, the real-time energy scheduling of a 

MG with the possibility of concurrent occurrence of uncertainties in the estimated load demand 

and RES unit and considering a non-linear objective function is still an unsolved problem in 

residential energy management. In this work, a new energy scheduling approach for residential 

applications is developed in a retail electricity market considering uncertainties in the 

estimation of load demand and RES production. Note that the majority of the previous related 

works assume an accurate and perfect profile for load demand estimation, weather forecast and 

storage device strategy, which does not correspond to reality. In our MPC-based method, 

instead, the concept of receding horizon control makes is possible to compute corrective actions 

with regard to any disturbance in the parameters estimation. Also, we consider a quadratic 

pricing function for the energy bought from the grid, which yields more realistic results than 

the recalled approaches. The main goals of our research are the full use of the RES in variable 

weather conditions, the optimal planning of the usage of electrical devices and determining an 

optimal strategy of storage charging/discharging, whilst minimizing the cost of energy acquired 

from the grid and limiting the PAR in the aggregate load demand. 
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3.3.4. System Model 

In this section we describe the architecture of a residential MG comprising a stand-alone 

user connected to the distribution network and equipped with deferrable and non-deferrable 

loads, a local RES and an ESS unit. For the ease of implementation, we assume that the user 

possesses one deferrable and one non-deferrable load only. However, note that the presented 

optimization algorithm can be straightforwardly expanded to scenarios with multiple users and 

loads. A Home Energy Management System (HEMS) is employed to control the demand 

response of the end-user and provide an opportunity for interaction between smart appliances, 

RES, ESS and distribution network autonomously. Figure 3.9 depicts the generic architecture 

of the system. 

The detailed models of the system components with the energy scheduling optimization 

problem are presented in the sequel. An intelligent energy scheduler (IES) as a subsystem of 

HEMS is in charge of energy distribution of the user for all time slots according to Fig. 11. This 

unit is capable to optimally manage the user’s energy demand of the deferrable load by 

receiving electrical energy from the distribution network, transferring energy with the storage 

device, and harvesting the renewable energy from the RES source. The control outputs are the 

energy profile of the deferrable load and the charging/discharging strategy of the ESS. The 

MPC scheme allows selecting these variables optimally upon the prediction horizon iteratively 

considering the dynamics of forecast profiles of the RES and user’s estimated energy demands. 

3.3.4.1. Basics on Model Predictive Control 

Nowadays, MPC is known as an established technique for dealing with different complex 

control problems under uncertainty. In this section, MPC is used to solve an online energy 

scheduling problem that provides the optimal decisions about the turn on/off intervals of 

deferrable loads and the optimal periods for charging/discharging of the ESS, whilst 

minimizing the total cost of energy bought from the distribution network in the given receding 

horizon. At time 𝑡 the cost minimizing control strategy is computed for a relatively short future 

time horizon ℋ(𝑡) = [𝑡 + 1, 𝑡 + 𝐻]. The value of the forward-looking objective function is 

repetitively minimized at subsequent time slots 𝑡 + 1, 𝑡 + 2,… ∈ 𝒯, and every time the 

variables of the first time step only (i.e., 𝑡 + 1) are implemented as the optimal decision 

variables in accordance with the receding horizon concept.  

In particular, the formulation process of the proposed MPC-based energy management can be 

decomposed into three steps as follows: 
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Step 1. This step consists in modeling subsystems that are not affected by uncertainty (i.e., 

the ESS and deferrable loads) through the definition of discrete-time difference equations 

corresponding constraints. 

Step 2. This step consists in the definition of the objective function: the electricity cost for 

energy acquired by the distribution network in the given finite receding horizon considering a 

time-varying cost coefficient for each time slot (here, a dual-rate tariff) and a mixed integer 

quadratic cost function.  

 
Figure 3. 9. Architecture of residential energy system components, energy flows and connection with distribution 

network. 

 
Step 3. This step consists in modeling subsystems that are affected by uncertainty (i.e., the 

RES and non-deferrable loads). In particular, the non-deferrable load consumption profile and 

the RES production profile are assumed to be discrete-time Gaussian stochastic processes. 

3.3.4.2. Deferrable Load 

Deferrable loads (DLs) are electrical equipment whose operations can be controlled and 

programmed in advance. Indeed, in some appliances such as washing machines, ovens and 

hairdryers, the time of operation is flexible, so that their starting time can be delayed and shifted 

to other time-slots based on user options within a specific deadline (e.g., at the end of every 

day). This feature offers an opportunity for IESs to optimally manage in advance the energy 

activities in a residential energy system and take advantage of time-varying prices. The energy 

consumption profile of the deferrable load in the receding horizon is denoted for each 𝑡 𝜖 𝒯 by 
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a vector of 𝐻 decision variables: 𝒙(𝑡) = [𝑥(𝑡 + 1),… , 𝑥(𝑡 + ℎ),… , 𝑥(𝑡 + 𝐻)], where the 

scalar 𝑥(𝑡 + ℎ)𝜖 ℝ+ denotes the amount of energy needed by the deferrable load at time 𝑡 + ℎ.   

The deferrable load decision variables for each time 𝑡 𝜖 𝒯 is subject to the following 

constraints: 

 𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑡 + ℎ) ≤ 𝑥𝑚𝑎𝑥 , 𝜏 ∈  𝒯   (19) 

  
∑ 𝑥(𝜏)

𝑡𝑗
2

𝜏=𝑡𝑗
1 = 𝐸𝑗 , 𝑗 ∈ 𝒥. (20) 

Constraint (19) means that the operation of the deferrable load requires a minimum 𝑥𝑚𝑖𝑛 

and a maximum 𝑥𝑚𝑎𝑥 energy level. Equation (20) means that the deferrable load requires that 

the cumulative consumption in the 𝑗th interval [𝑡𝑗
1, 𝑡𝑗

2] reaches a given threshold 𝐸𝑗 to complete 

the needed task. We assume that the 𝐽 = |𝒥| intervals are defined by the user such that they do 

not overlap with each other (i.e., 𝑡𝑗
1 ≥ 𝑡𝑗−1

2 , 𝑗 ∈ 𝒥\{1}) and are not larger than the receding 

horizon length (i.e., 𝑡𝑗
2 − 𝑡𝑗−1

1 ≤ 𝐻, 𝑗 ∈ 𝒥). Note that (20) corresponds to 𝐽 = |𝒥| constraints. 

For instance, 𝒥 could represent the set of 𝐽 consecutive days, and 𝐸𝑗 the daily energy amount 

required by the deferrable load in the 𝑗th day. Focusing on the receding horizon related to time 

𝑡, constraints (19)-(20) can be rewritten as follows: 

 𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑡 + ℎ) ≤ 𝑥𝑚𝑎𝑥 , ℎ ∈  ℋ  (21) 

 
∑ 𝑥(𝑡 + ℎ)

min{𝑡𝑘
2−𝑡,𝐻}

ℎ=max{𝑡𝑘
1−𝑡,0}

= 𝑋𝑘(𝑡), 𝑘 ∈ 𝒦(𝑡), (22) 

where 𝑋𝑘(𝑡) is the residual threshold related to the 𝑘h interval: 

 
𝑋𝑘(𝑡) = {

𝐸𝑘  if 𝑡 < 𝑡𝑘
1 

𝐸𝑘 − ∑ 𝑥(𝜏)𝑡
𝜏=𝑡𝑘

1  otherwise
, 𝑘 ∈

𝒦(𝑡). 

(23) 

Note that we consider the subset 𝒦(𝑡) ⊆ 𝒥 of constraints that affects the given receding 

horizon [𝑡 + 1, 𝑡 + 𝐻]. Hence, in (22) we assume that 𝑡𝑘
2 > 𝑡 ˄ |𝑡1

2 − 𝑡| < 𝐻.  

3.3.4.3. Non-deferrable Load 

Non-deferrable loads (NDLs) are electrical equipment whose standard operation time 

cannot be changed. We represent the non-deferrable load consumption profile in the receding 

horizon for each 𝑡 𝜖 𝒯 by a vector of 𝐻 input parameters 𝒃(𝑡) = (𝑏(𝑡 + 1),… , 𝑏(𝑡 +

ℎ),… , 𝑏(𝑡 + 𝐻))
𝑇

. This vector is assumed to be computed by a forecast sub-module of the 

HEMS (see Fig. 1), using a prediction algorithm based on historical data.  
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3.3.4.4. Renewable Energy Source 

We represent the RES production profile in the receding horizon for each 𝑡 𝜖 𝒯 as a vector 

of 𝐻 input parameters 𝒓(𝑡) = (𝑟(𝑡 + 1),… , 𝑟(𝑡 + ℎ),… , 𝑟(𝑡 + 𝐻))
𝑇

. This vector is assumed 

to be updated at each 𝑡 𝜖 𝒯 by a forecast sub-module of the HEMS (see Fig. 1), using a 

prediction algorithm based on weather data. 

3.3.4.5. Energy Storage System 

The ESS unit receives and stores energy from the distribution network and/or the RES, and 

releases energy to supply the loads. Two vectors of 𝐻 decision variables 𝒔+(𝑡) =

(𝑠+(𝑡 + 1),… , 𝑠+(𝑡 + ℎ),… , 𝑠+(𝑡 + 𝐻))
𝑇

 and 𝒔−(𝑡) = (𝑠−(𝑡 + 1),… , 𝑠−(𝑡 + ℎ),… , 𝑠−(𝑡 +

𝐻))
𝑇
 respectively model the device charge and discharge energy profiles in the receding 

horizon for each 𝑡 ∈  𝒯. The rate of charging (discharging) of the stored energy has to be 

bounded by a maximum charging (discharging) rate 𝑞+ (𝑞−): 

 0 ≤  𝑠+(𝑡 + ℎ) ≤  𝑞+ , ℎ ∈  ℋ   

0 ≤  𝑠−(𝑡 + ℎ) ≤  𝑞−, ℎ ∈  ℋ. 
(24) 

The dynamics of the ESS for ℎ 𝜖 ℋ ≜ {1,… , ℎ, … ,𝐻} and 𝑡 𝜖 𝒯 can be expressed as a first 

order discrete time model: 

 𝑠(𝑡 + ℎ) = 𝑠(𝑡 + ℎ − 1) + 𝜂+𝑠+(𝑡 + ℎ) +

1

𝜂−
𝑠−(𝑡 + ℎ), ∀ℎ ∈  ℋ, 

(25) 

where 𝑠(𝑡 + ℎ) denotes the charge level of the storage device and 𝜂+ and 𝜂− are the charging 

and discharging efficiencies, both in the [0,1] range. We assume that the storage energy 

degradation and leakage effects are negligible. 

Moreover, the charge level is upper bounded by the maximum storage capacity 𝑞𝑡𝑜𝑡 and is 

imposed to be non-negative: 

− 𝑠(𝑡)  ≤  ∑ (𝜂+𝑠+(𝑡 + ℎ) +
1

𝜂−
𝑠−(𝑡 + ℎ))

ℎ

𝑗=1
 

≤ 𝑞𝑡𝑜𝑡 −  𝑠(𝑡), ℎ ∈ ℋ 

(26) 

where 𝑠(𝑡) denotes the charge at the beginning of the receding horizon. 

3.3.4.6. Grid Energy Flow 
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The total energy that the user needs to buy from the grid in the h-th time slot can be simply 

calculated by scalar aggregation of deferrable and non-deferrable energy demands and energy 

for charging the ESS minus the energy produced and injected by RES (in the presence of solar 

irradiance) and ESS (during energy discharging) to the MG. This relation can be stated as 

follows: 

𝑒(𝑡 + ℎ) = 𝑥(𝑡 + ℎ) + 𝑏(𝑡 + ℎ) − 𝑟(𝑡 + ℎ) 

+𝑠+(𝑡 + ℎ) − 𝑠−(𝑡 + ℎ), ∀ℎ ∈  ℋ. 
(27) 

For all the discrete time instances within the simulation period, the exchanged energy per 

slots is constrained by contract and has to be non-negative: 

0 ≤ 𝑒(𝑡 + ℎ) ≤ 𝐸𝑚𝑎𝑥 , ℎ 𝜖 ℋ,  (28) 

where 𝐸𝑚𝑎𝑥 is the maximum allowable energy consumption per time slot. 

The cost of energy transferred within the network over the receding horizon for 𝑡 ∈  𝒯 can 

be represented as follows: 

𝐶(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡)) = ∑ 𝑘(𝑡 + ℎ)𝐻
ℎ=1 . (𝑒(𝑡 + ℎ))

2
  (29) 

where 𝑘(𝑡 + ℎ) is the known cost coefficients at the time slot 𝑡. For the sake of realizing a 

realistic result, we consider the cost function as a non-linear quadratic. 

3.3.5. Problem Formulation 

This section presents the mathematical formulation of the proposed receding horizon 

scheme. A quadratic programming problem is formulated as a finite horizon open-loop 

optimization problem for the optimal energy management under operational constraints and 

system dynamics 

3.3.5.1. Online Optimization Problem 

Having modeled all the energy flows and costs in the considered time window, we now 

define the control strategy that permits the user to compute the optimal energy scheduling of 

deferrable loads and the optimal operations of the ESS.  

min
𝒙, 𝒔+, 𝒔−

∑ 𝑘(𝑡 + ℎ)(𝑥(𝑡 + ℎ) + 𝑏(𝑡 + ℎ) −H
ℎ=1

𝑟(𝑡 + ℎ) + 𝑠+(𝑡 + ℎ) − 𝑠−(𝑡 + ℎ))
2
    

s.t. (21), (22), (24), (25). 

(30) 
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Problem (30) is a quadratic optimization problem that consists in determining the 3𝐻 

decision variables in 𝒙,  𝒔+,  𝒔− that minimize the objective function in (30) and meet the 

recalled 6𝐻  bounding constraints, 2𝐻  inequality constraints, and 𝐾(𝑡) equality constraints. 

3.3.5.2. MPC Algorithm 

The total cost payable by the user at each time slot is minimized iteratively. According to 

the MPC strategy, this function is updated and recomputed at each time slot until the simulation 

end time. The MPC law is described by Algorithm 3.1. At each time instant, the IES unit 

receives the updated forecast vectors of the NDL consumption (i.e., 𝒃(𝑡)) and RES production 

(i.e., 𝒓(𝑡)) (line 3). Then, the values of the residual threshold related to the 𝑘h interval are 

updated by (24) using the given inputs of 𝐸𝑘 and 𝑠(0) (line 4). Hence, the online optimization 

problem (29) is executed (line 5).  

 

Algorithm 3.1 – MPC algorithm  

Inputs: 𝒃(𝑡), 𝒓(𝑡), {𝐸𝑘}, 𝑠(0) 
Procedure: 

1 Set t ←  0  

2 iterate 

3 Get forecast data 𝒃(𝑡) and 𝒓(𝑡) 

4 Update user constraints parameters through (23)  

5 Solve the optimization problem (11)  

6 Apply only 𝑥(𝑡 + 1), 𝑠+(𝑡 + 1), and 𝑠−(𝑡 + 1) 

7 Set 𝑡 ←  𝑡 + 1 

Outputs: 𝑥(𝑡 + 1), 𝑠+(𝑡 + 1), and 𝑠−(𝑡 + 1) 

 
The optimal decision variables of the first time step are extracted from the optimization 

results and implemented as the control outputs in accordance with the receding horizon concept 

(line 6). This process is repeated with updated inputs as time goes on (line 2 and 7). We assume 

that (29) is always feasible through all the MPC algorithm iterations. 

3.3.6. Simulation Results and Comparison 

This section assesses the performance of the proposed MPC algorithm implemented in the 

Matlab environment using the Optimization toolbox. Simulations refer to a sampling time of 1 

hour, a period of analysis equal to two days (i.e., 𝒯 = [0,48]), and a receding horizon of 24 

hours (i.e., ℋ = [t + 1, t + 24]). The obtained results are reported in the sequel and are 

analyzed and compared with the previously published offline method (here, “offline” means 

that the scheduling problem is solved only once fahead of the whole simulation period). In 

particular, four different cases are analyzed: the proposed MPC-based method with/without 

uncertainties (case 1 and 3) and the offline method in with/without uncertainties (case 2 and 4). 
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3.3.6.1. Scenario Setup and Uncertainty Modeling  

Simulations are carried out on a smart home with the following electrical components: non-

deferrable loads, one deferrable load, one ESS and one photovoltaic panel. Table 3.2 reports 

the parameters related to the deferrable load and ESS as well as the dual-rate cost coefficients 

for the energy bought from the distribution network.  

As mentioned before, for the RES production and non-deferrable load consumption we 

consider forecast profiles affected by uncertainties. Different methods can be found in the 

literature for modeling uncertainties associated with MGs.  

Table 3. 2. Simulation Parameters 

Quantity Symbol Value 

Maximum deferrable load consumption per slots 

(kWh) 
𝑥𝑚𝑎𝑥 3 

Minimum deferrable load consumption per slots 

(kWh) 
𝑥𝑚𝑖𝑛 0 

Cumulative deferrable load consumption threshold for 

1st day (kWh) 
𝐸1 25 

Cumulative deferrable load consumption for 2nd day 
(kWh) 

𝐸2 32 

1st interval for cumulative consumption of deferrable 

load (hour) 
[𝑡1

1, 𝑡1
2] [1, 24] 

2nd interval for cumulative consumption of deferrable 
load (hour) 

[𝑡2
1, 𝑡2

2] [25, 48] 

Maximum charging rate of ESS per slot (kWh) 𝑞+ 1 

Minimum charging rate of ESS per slot (kWh) 𝑞− 1 

Maximum storage capacity (kWh) 𝑞𝑡𝑜𝑡 30 

Charging and ischarging efficiencies 
𝜂+,
𝜂− 

1 

Initial storage charge level (kWh) 𝑠(0) 0 

Peak hours (from 8am to 7 pm) payment coefficient 

(€/kWh2) 
- 0.070 

Off-Peak hours payment coefficient (€/kWh2) - 0.045 

 
A widespread method for uncertainty modeling is Gaussian normal distribution. Studying 

the effect of the type of uncertainty distribution function is beyond the scope of this work. Thus, 

we adopt discrete Gaussian distributed random variables for modeling uncertainties in both the 

RES and NDL profiles. 

Figure 3.10 reports the actual renewable energy profile produced by the RES (red bars) and 

the actual non-deferrable load energy profile consumed by the user (green bar). 

At each iteration, the forecast is simulated by adding to the actual profile a normally 

distributed random sequence with zero mean and a standard deviation equal to 0.2 [kWh] for 

both the RES production and NDL consumption. 

3.3.6.2. Scenario Setup and Uncertainty Modeling  
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Simulations of energy scheduling in presence of uncertainties are repeated over 1,000 

experiments. the first row of Table 3.3 reports the mean values of energy cost and PAR over 

all the experiments. Referring to a specific realization of the forecast estimation, the scheduling 

results are shown in Figure 3.11. In particular, Figures 3.11a and 3.11b illustrate the results of 

Algorithm 3.1 in terms of schedule of deferrable loads (i.e., 𝑥(𝑡)) and storage 

charging/discharging profiles (i.e., 𝑠+(𝑡), 𝑠−(𝑡)). Moreover, Figure 3.11c reports the scheduled 

energy exchanges with the grid. Primarily, it is evident that the scheduling arranges the 

deferrable appliances operation during low peak time slots to minimize cost. Furthermore, it is 

apparent that the scheduling makes sure that the user exploits the energy from the renewable 

source and leverages the storage device. Hence, when the required aggregate load is larger than 
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the available renewable energy, the difference is supplied by discharging the battery. If the 

Table 3. 3. Energy Cost and PAR Comparison  

Case Method Uncertainties 
Energy Cost 

(€/𝒌𝑾𝒉𝟐) 
PAR 

1 
Proposed MPC-

based scheduling 
Yes 8.1848* 1.6169* 

2 
Offline scheduling 

[338] 
Yes 9.2187* 1.7223* 

3 
Proposed MPC-
based scheduling 

No 7.7436 1.3466 

4 
Offline scheduling 

[338] 
No 7.7436 1.3466 

* mean value over 1,000 experiments 

 
Figure 3. 10. Actual profile of RES production and NDL consumption. 

 

 
(a) 

 
(b) 

 
(b) 

Figure 3. 11. Optimal scheduling of energy activities under uncertainties in forecast profiles of RES and NDL 

by the proposed MPC-based method (case 1). 
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storage charge is not sufficient, the remaining needed energy is imported from the grid. On the 

other hand, if the available renewable energy is greater than the demand, the scheduling uses 

the surplus to charge the battery. 

3.3.6.3. Results Discussion and Comparison 

A comparison between the considered four cases including offline and proposed MPC-based 

methods with/without uncertainties is provided in Table 3.2. Indeed, understanding the effect 

of the uncertainties on cost and PAR of energy scheduling in offline and online MPC methods 

is critical for optimal user’s consumption management. Referring to a specific realization of 

the forecast estimation, Figure 3.13 reports the scheduled energy exchanges with the grid 

computed by the offline method. It is evident that results in Figure 3.13 present higher peaks 

than results in Figure 3.12. Not surprisingly, by our online approach an effective tracking on 

the uncertain states can be accomplished by updating all data in each time slots. Moreover, as 

can be seen in Table 3.2 (first and second rows), the mean values of energy cost and PAR in 

the presented method (case 1) are lower than those achieved by the offline method (case 2). 

These results demonstrate the effectiveness of the MPC-based approach compared to the offline 

scheduling scheme. The optimal energy scheduling is achieved not only by shifting the 

operation time of user’s deferrable appliance to the non-peak intervals, but also by selecting the 

best strategies for charging/discharging the ESS decided on the basis of an equilibrium between 

the estimated renewable energy over the forecast horizon and energy’s tariffs at different time 

slots. 

Finally, results related to case 3 and 4 (third and fourth rows of Table 3.2) show that in case 

of no uncertainty (i.e., the forecast of RES production and NDL consumption does not change 

over time), the proposed MPC algorithm and the offline scheduling method achieve the same 

results, as expected: Figure 3.14 reports the scheduled energy exchanges with the grid in case 

of no uncertainty, showing that a flatter profile is achieved with respect to the presence of 

uncertainties.
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Figure 3. 12. Optimal scheduling of energy activities under uncertainties in forecast profiles of RES and NDL by 

the proposed MPC-based method (case 1). 

 

 

 
Figure 3. 13. Scheduled energy exchanges with the grid by the offline method in [338] (case 2). 

 
Figure 3. 14. Scheduled energy exchanges with the grid by the proposed MPC-based method (case 3) and by the 

offline method (case 4). 

 

3.3.7. Conclusions  

In this section, we propose an MPC-based energy scheduling method for a grid-connected 

smart residential user equipped with deferrable and non-deferrable loads, a RES, and an ESS 

under dynamics of deferrable load and RES profiles. Aiming at a realistic result, we employ a 

quadratic function for supply-demand cost. The optimal planning of deferrable load 

consumption and the ESS charging/discharging strategies are computed solving an online 

optimization problem at each time slot over a receding horizon. The method is applied to a 

simulated case study. A comparison is made between the MPC-based and an existing offline 

scheduling method, enlightening the performance and effectiveness of the proposed framework 

to tackle uncertainties in the forecast data efficiently. The proposed scheme shows the 

capability to reduce the total user’s energy cost, lower the PAR level, and ensure the 

sustainability of the energy scheduling under uncertain conditions. 
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Residential Energy Scheduling under Uncertainties,” IEEE International 

Conference on Systems, Man, and Cybernetics (SMC), Miazaki, Japan, October 7-

10, 2018 

 

3.4. An Online Approach for Energy Management of 

Residential Microgrids by Robust Model 

Predictive Control (RMPC) 

3.4.1. Introduction  

In order to address the concerns of data uncertainty in residential energy scheduling, in this 

subsection we present an online DSM framework based on RMPC for residential SGs. The 

considered system incorporates a grid-connected residential SG including multiple smart 

homes equipped with controllable loads (CLs) with programmable and interruptible operation, 

and critical non-controllable loads (NCLs) with inflexible and fixed power curve. A shared ESS 

unit is also implemented to increase the flexibility of the energy scheduling. The work aims at 

minimizing the users’ energy payment and limiting the peak-to-average ratio (PAR) of the SG’s 

energy consumption while taking into account all device/comfort/contractual constraints of the 

system as well as the feasibility constraints on cumulative energy transferred between all users 

and the power grid under load demand uncertainty. We present a RMPC-based optimization 

method to solve the residential energy scheduling problem taking a quadratic cost function. The 

proposed approach provides an online optimal scheduling of the CLs for all users and the 

charging/discharging activities of the shared ESS at each time slot. Firstly, the energy price and 

all corresponding constraints of the system are modeled. Then, a min-max robust problem is 

established regarding an interval-based uncertainty set. Then, some mathematical 

transformations are adopted to convert the min-max problem to an equivalent quadratically 

constrained linear programming problem (QCLPP). Finally, we implement an MPC approach 

to solve the resulting equivalent QCLPP iteratively over a finite-horizon time window based 

on the receding horizon concept. The robustness of the proposed online approach against the 

level of conservativeness of the solution is investigated. 
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3.4.2. Related Works and Contributions  

The literature reports several online methods for residential energy scheduling under 

forecast uncertainty. References [348] and [349] introduce an RMPC-based framework for the 

optimal scheduling of a residential MG for addressing forecast uncertainties, minimizing the 

total energy cost and reducing the conservativeness of the solution. The most of existing real-

time studies as well as the MPC-based approach presented in subsection 3.3 assume a non-

realistic linear cost function for the energy bought from the grid and do not address the effect 

of uncertainty in the feasibility of energy transferred between users and the power grid. 

Moreover, the impact of methods on PAR has not been investigated. Also, the approaches 

presented in [348] and [349] are only focused on isolated residential MGs. Hence, further 

research is still required to address the issue of data uncertainty in grid-connected smart homes. 

In this subsection we present a new RMPC-based optimization framework for residential 

energy scheduling. The main contributions of this work are summarized as follows: 

1) An online energy scheduling framework based on RMPC is introduced to state and solve 

the household energy scheduling problem with a shared ESS under quadratic cost function. 

2) Forecast load uncertainty in both the objective function and corresponding contractual 

constraints is tackled. The problem includes uncertain terms in both the left-hand side (LHS) 

and the right-hand side (RHS) of the inequality constraints. 

3) All technical constraints and a contractual obligation imposed by the power grid, limiting 

the total energy consumption per time slot to a maximum are formulated. 

4) The conservativeness of the proposed scheme and its flexibility for applying to different 

applications are analyzed. 

5) A detailed simulated case study on a sample SG with load uncertainty is presented. A 

comprehensive comparison of our proposed online method with an offline robust scheduling 

method is provided to validate the effectiveness of the proposed approach in making a trade-

off between the expected energy payment and the constraints’ violation rate. 

3.4.3. Aims and Objectives 

In this subsection we present an online demand side management framework based on 

robust model predictive control (RMPC) for residential SGs. We aim at minimizing the users’ 

energy payment and limiting the peak-to-average ratio (PAR) of the energy consumption while 

taking into account all device/comfort/contractual constraints, specifically the feasibility 

constraints on energy transferred between users and the power grid in presence of load demand 

uncertainty. We consider a quadratic cost function for the energy bought from the electric grid. 
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3.4.4. System Model  

The architecture of the system under study is shown in Figure 3.15. A residential area of 𝑁 

smart users, each comprising both CL and NCL is considered. These loads are monitored in an 

online manner by a smart meter including an energy consumption controller (ECC). The ECC 

unit monitors and controls the energy consumption of users to enable the collaboration between 

the power grid and each user. A digital communication infrastructure, e.g., a local area network 

(LAN) is implemented to connect all ECC units to the power grid. Home energy management 

system (HEMS) units are in charge of energy distribution of each user for all time slots. Each 

HEMS should optimally manage the users’ energy demand of the CL and NCL by receiving 

electrical energy from the power grid and transferring energy with the ESS. The control outputs 

are the energy profile of the CLs and the charging/discharging strategy of the ESS. Let 𝒩 ≜

{1,… , 𝑛, … ,𝑁} denote the set of users. At time 𝑡 ∈ 𝒯 (|𝒯| = 𝑇), we consider a time window 

ℋ(𝑡) ≜ {𝑡 + 1,… , 𝑡 + ℎ,… , 𝑡 + 𝐻} including 𝐻 discrete time slots with equal length. The 

value of the forward-looking objective function related to the time horizon is repetitively 

optimized at subsequent time slot 𝑡 ∈ 𝒯, but only the decision variable values of the first-time 

step is applied according to receding horizon concept. In the following, vectors are marked by 

bold letters. 

 
Figure 3. 15. The architecture of the smart system. 

 
 

3.4.4.1. Model of Subsystem Components 
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We refer to the energy consumption profile of the user’s CL by vector 𝒙𝑛(𝑡) ≜

[𝑥𝑛(𝑡 + 1),… , 𝑥𝑛(𝑡 + ℎ),… , 𝑥𝑛(𝑡 + 𝐻)] for each user 𝑛 ∈ 𝒩 with 𝐻 decision variables, where 

the energy demand profile of the CL at time slot 𝑡 + ℎ for user 𝑛 is stated by the scalar 

𝑥𝑛(𝑡 + ℎ) ∈ ℝ+. The users’ CLs are limited by a bounding operating power. We introduce 

parameter vectors 𝒙𝑛(𝑡) ≜ [𝑥𝑛(𝑡 + 1),… , 𝑥𝑛(𝑡 + ℎ),… , 𝑥𝑛(𝑡 + 𝐻)] and 𝒙𝑛(𝑡) ≜ [𝑥𝑛(𝑡 +

1),… , 𝑥𝑛(𝑡 + ℎ),… , 𝑥𝑛(𝑡 + 𝐻)] to denote the bounding power range for each user 𝑛, 

respectively.  

       𝒙𝑛(𝑡) ≤ 𝒙𝑛(𝑡) ≤ 𝒙𝑛(𝑡)  ∀𝑛 ∈ 𝒩 (31) 

Moreover, a constraint on the cumulative energy should be considered for each user to fulfill 

the total energy requirement and completing the task at the end of given time windows: 

∑ 𝑥𝑛(𝜏)
𝑡𝑛,𝑗
2

𝜏=𝑡𝑛,𝑗
1 = 𝐸̅𝑛,𝑗 ∀𝑛 ∈ 𝒩,∀ 𝑗 ∈ 𝒥. (32) 

Equation (32) corresponds to 𝐽 = |𝒥| constraints meaning that the cumulative consumption 

of the CL for each user in the 𝑗th interval [𝑡𝑛,𝑗
1 , 𝑡𝑛,𝑗

2 ] needs to reach a specific threshold 𝐸̅𝑛,𝑗. 

The set 𝒥 of intervals are supposed to be defined by users (e.g., theuy could represent successive 

days). The intervals are not overlapped with each other (i.e., 𝑡𝑛,𝑗
1 ≥ 𝑡𝑛,𝑗−1

2 , 𝑗 ∈ 𝒥\{1}) and are 

not larger than the time horizon (i.e., 𝑡𝑛,𝑗
2 − 𝑡𝑛,𝑗−1

1 ≤ 𝐻, 𝑗 ∈ 𝒥). This constraint can be rewritten 

as: 

∑ 𝑥𝑛(𝑡 + ℎ)
min{𝑡𝑛,𝑘

2 −𝑡,𝐻}

ℎ=max{𝑡𝑛,𝑘
1 −𝑡,0}

= 𝑋𝑛,𝑘(𝑡), 𝑘 ∈ 𝒦(𝑡). (33) 

where 𝑋𝑛,𝑘(𝑡) is the threshold power for each user at time step 𝑡, defined as follows: 

𝑋𝑛,𝑘(𝑡) = {
𝐸̅𝑛,𝑘                                    𝑡 < 𝑡𝑛,𝑘

1

𝐸̅𝑛,𝑘 − ∑ 𝑥𝑛(𝜏)  otherwise𝑡
𝜏=𝑡𝑛,𝑘

1
 

 , 𝑘 ∈ 𝒦(𝑡). 

(34) 

where the subset 𝒦(𝑡) ⊆ 𝒥 of constraints is assumed to affect the time horizon [𝑡 + 1, 𝑡 + 𝐻]. 

Thus, we assume that 𝑡𝑘
2 > 𝑡 ˄ |𝑡1

2 − 𝑡| < 𝐻.  

We also introduce the parameter vector 𝒃𝑛(𝑡) ≜ [𝑏𝑛(𝑡 + 1),… , 𝑏𝑛(𝑡 + ℎ),… , 𝑏𝑛(𝑡 + 𝐻)] 

for each user 𝑛 to denote the forecasted NCLs’ profile. We assume that this vector is computed 

based on historical data by a forecast sub-module (see Fig. 1). Note that all the users’ CL 

profiles are collected in a column vector 𝒙 = [𝒙1; … ; 𝒙𝑁] whose length is 𝑁𝐻. 

The shared household ESS unit, mainly batteries such as lead-acid and Li-ion, provides 

flexibility to users in the scheduling energy consumption. The shared ESS should optimally 

store energy from the grid and release it to supply the load demand. To model the 

charging/discharging activities of the ESS during the time windows ahead of time, we introduce 

two vectors 𝒔+(𝑡) ≜ [𝑠+(𝑡 + 1),… , 𝑠+(𝑡 + ℎ),… , 𝑠+(𝑡 + 𝐻)] and 𝒔−(𝑡) ≜ [𝑠−(𝑡 +

1),… , 𝑠−(𝑡 + ℎ),… , 𝑠−(𝑡 + 𝐻)], each with 𝐻 decision variables, where 𝑠+(𝑡 + ℎ)/𝑠−(𝑡 + ℎ) 
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is the energy stored/released in/from the ESS at any time slot 𝑡 + ℎ. Also, we define two 

parameters 𝜂+ and 𝜂− as the charging and discharging efficiencies of the ESS, respectively, 

fulfilling the ranges 0 < 𝜂+ ≤ 1  and 𝜂− ≥ 1. Obviously, the rate of charging (discharging) of 

the stored energy has to be bounded by a maximum charging (discharging) rate: 

0 ≤ 𝑠+(𝑡 + ℎ) ≤ 𝑆
+

,    ∀ℎ ∈ ℋ (35) 

0 ≤ 𝑠−(𝑡 + ℎ) ≤ 𝑆− ,  ∀ℎ ∈ ℋ (36) 

where 𝑆
+

 and 𝑆− are the maximum charging and discharging levels. The ESS energy inventory 

balance for ℎ ∈ ℋ is presented as a first-order discrete time model as follows: 

𝑧(𝑡 + ℎ) = 𝑧(𝑡 + ℎ − 1) + 𝜂+𝑠+(𝑡 + ℎ) −

𝑠−(𝑡 + ℎ) 𝜂−⁄ ,   ∀ℎ ∈ ℋ 
(37) 

where 𝑧(𝑡 + ℎ) is the charge rate of the ESS at time slot 𝑡 + ℎ. The battery degradation and 

leakage effects are assumed to be negligible. Moreover, we consider a constraint to assume that 

the charge level at the beginning of the time window 𝑧(0) and at the last time slot of simulation 

𝑧(𝑇) are equal: 

𝑧(0) = 𝑧(𝑇) = ∑ 𝜂+𝑠+(𝑡)
𝑇

𝑡=0
+ ∑ 𝑠−(𝑡) 𝜂−⁄

𝑇

𝑡=0
 (38) 

Finally, a constraint is considered to enforce that the maximum charge/discharge level is 

bounded by the maximum storage’s capacity 𝑄 and to impose it is non-negative, as follows: 

−𝑧(𝑡 − 1) ≤ 𝜂+𝑠+(𝑡) + 𝑠−(𝑡) 𝜂−⁄ ≤ 𝑄 − 𝑧(𝑡),  

∀𝑡 ∈ 𝒯. 
(39) 

3.4.4.2. Power Balance and Energy Pricing Models 

In each time slot, the total amount of energy required for supplying the users’ energy 

demand can be simply calculated by scalar aggregation of CLs and NCLs consumptions as well 

as the amount of energy which is accumulated or released by the ESS. The energy profile of 

expected power consumption (EPC) in the time horizon is a vector is denoted by 𝑬𝑷𝑪(𝑡) ≜

[𝐸𝑃𝐶(𝑡 + 1),… , 𝐸𝑃𝐶(𝑡 + ℎ),… , 𝐸𝑃𝐶(𝑡 + 𝐻)] which must meet the following equilibrium 

condition: 

𝐸𝑃𝐶(𝑡 + ℎ) = ∑ 𝑥𝑛(𝑡 + ℎ)𝑁
𝑛=1 + ∑ 𝑏𝑛(𝑡 +𝑁

𝑛=1

ℎ) + 𝑠+(𝑡 + ℎ) − 𝑠−(𝑡 + ℎ),  ∀ℎ ∈ ℋ. 
(40) 

A contractual constraint forced by the power grid is applied, limiting the users’ energy 

consumption to a maximum level at each time slot. We define the vector 𝑬𝑷𝑪(𝑡) ≜

[𝐸𝑃𝐶(𝑡 + 1),… , 𝐸𝑃𝐶(𝑡 + ℎ),… , 𝐸𝑃𝐶(𝑡 + 𝐻)], defined by the energy provider,  as the 

maximum permissible exchanged energy with the power grid. The total energy bought from 
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the power grid is assumed to be non-negative. Thus, the constraints on the exchanged energy 

can be defined as: 

𝑬𝑷𝑪(𝑡) ≤ 𝑬𝑷𝑪(𝑡)   ∀ℎ ∈ ℋ. (41) 

Substituting (40) in (41) yields: 

∑ 𝑥𝑛(𝑡 + ℎ)𝑁
𝑛=1 + ∑ 𝑏𝑛(𝑡 + ℎ)𝑁

𝑛=1 + 𝑠+(𝑡 + ℎ) −

𝑠−(𝑡 + ℎ) ≤ 𝐸𝑃𝐶(𝑡 + ℎ), ∀ℎ ∈ ℋ,∀𝑡 ∈ 𝒯. 
(42) 

The required energy of CLs and NCLs as well as the charging energy of the ESS can be 

bought from the power grid. We take a time-varying electricity pricing based on peak and off-

peak times with known cost coefficients 𝒄(𝑡) ≜ [𝑐(𝑡 + 1),… , 𝑐(𝑡 + ℎ),… , 𝑐(𝑡 + 𝐻)], provided 

by the power system operator to end users. Here, the power generation cost is assumed to be a 

quadratic function of the energy consumption. For the sake of realizing a realistic result, we 

model the cost function 𝒞 as a quadratic function of the total exchanged energy with the power 

grid. Therefore, the cost function (CF) of energy purchased from the grid over the receding 

horizon for 𝑡 ∈ 𝒯 can be represented as follows: 

𝐶𝐹(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡)) = 𝐶𝐹(𝑬𝑷𝑪(𝑡)) = 

∑ 𝑐(𝑡 + ℎ)
𝐻

ℎ=1
(𝐸𝑃𝐶(𝑡 + ℎ))

2
 

(43) 

Hence, the cost function 𝒞 is increasing with respect to the total exchanged energy and 

strictly convex. 

3.4.5. Problem Formulation and Algorithm 

Development 

In this subsection, we develop our control framework for optimal energy scheduling of 

residential SGs. At the first step, we define the data uncertainty set of the users’ behavior, then 

formulate the robust scheduling problem aimed at determining the cost-optimal energy 

scheduling of the users’ CLs and the ESS charging/discharging strategies. To obtain a tractable 

problem, the strong duality theorem is employed. Finally, at the second step, MPC is adopted 

to solve the problem at each time slot iteratively until the end of simulation. 

3.4.5.1. Uncertainty Set 

In order to model uncertainty set, we use cardinality constrained uncertainty. We define the 

budget of uncertainty 𝛤, taking values in [0, 𝐻], which is the number of time slots protected 

against uncertainties. The problem solution is guaranteed to be feasible if no more than 𝛤 of 

the parameters are subject to uncertainty. By changing the value of 𝛤, we can adjust the 
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conservatism of the method against disturbance in parameters. We assume a symmetric 

distribution, i.e. [𝒃𝑛(𝑡), 𝒃𝑛(𝑡)] ≜ [𝒃𝑛(𝑡) − 𝒃̂𝑛(𝑡), 𝒃𝑛(𝑡) + 𝒃̂𝑛(𝑡)], in which 𝒃𝑛(𝑡) ≜ [𝑏𝑛(𝑡 +

1),… , 𝑏𝑛(𝑡 + ℎ),… , 𝑏𝑛(𝑡 + 𝐻)] and 𝒃𝑛(𝑡) ≜ [𝑏𝑛(𝑡 + 1),… , 𝑏𝑛(𝑡 + ℎ), … , 𝑏𝑛(𝑡 + 𝐻)] are the 

vectors of semi-amplitude of maximum/minimum variations (computed by historical data). 

Detailed forecast algorithms will not be discussed here since they are beyond the scope of this 

work. 

3.4.5.2. Robust Formulation of the Scheduling 

Problem 

The robust formulation of the energy scheduling problem with a quadratic objective function 

and linear equality and inequality constraints is presented in this section. The objective is to 

formulate an optimization problem aiming at minimizing the users’ payment and optimizing 

the ESS charging/discharging activities. The problem remains feasible for any realization of 

the uncertainty in load demand within the defined uncertainty set. The optimization problem at 

instant 𝑡 is stated as: 

min
𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡)

𝐶𝐹(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡)) +

𝐶𝐹𝑝𝑟(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡), 𝛤)  
(44) 

s.t. (31),(33)-(39), and 

∑ (𝑥𝑛(𝑡 + ℎ) + 𝑏𝑛(𝑡 + ℎ))𝑁
𝑛=1 + 𝑠+(𝑡 + ℎ) −

𝑠−(𝑡 + ℎ) + 𝐸𝑃𝐶𝑝𝑟(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡), 𝛤) ≤

𝐸𝑃𝐶(𝑡 + ℎ), ∀ℎ ∈ ℋ  

(45) 

where 𝐶𝐹𝑝𝑟(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡), 𝛤) is the protection function of the objective, and 

𝐸𝑃𝐶(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡), 𝛤) (∀ℎ ∈ ℋ) is the protection function of the contractual constraints 

at each time t. The protection functions include all sub-terms containing maximum variation of 

the uncertain parameter (i.e. 𝑏̂𝑛(ℎ), ∀ℎ ∈ ℋ). As can be seen, in our problem uncertainty 

affects both the objective function and contractual constraints. To assume that the objective 

function is not subject to uncertainty, and data uncertainty only affects the elements in the 

matrix of constraints, following [337] without loss of generality we can transform (44) as: 

 

min
𝐾(𝑡),𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡)

𝐾(𝑡) (46) 

s.t. (31),(33)-(39), (45) and 

𝐶𝐹(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡)) + 

𝐶𝐹𝑝𝑟(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡), 𝛤) − 𝐾(𝑡) ≤ 0 

(47) 
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where 𝐾(𝑡) is a scalar auxiliary variable. The corresponding protection functions are defined 

as follows: 

𝐶𝐹𝑝𝑟(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡), 𝛤) =  

max
ℱ1(𝑡)∪{𝑚1(𝑡)}

( ∑ 2𝑐(𝑡 + ℎ)ℎ∈𝓕1(𝑡)   

∑ 𝑏̂𝑛(𝑡 + ℎ)𝑁
𝑛=1 ∑ |𝑥𝑛(𝑡 + ℎ)|𝑁

𝑛=1   

+(𝛤 − ⌊𝛤⌋)2𝑐(𝑡 + 𝑚1(𝑡))  

∑ 𝑏̂𝑛(𝑡 + 𝑚1(𝑡))
𝑁
𝑛=1 ∑ |𝑥𝑛(𝑡 + 𝑚1(𝑡))|

𝑁
𝑛=1  ) +  

max
ℱ2(𝑡)∪{𝑚2(𝑡)}

(∑ 2𝑐(𝑡 + ℎ)∑ 𝑏̂𝑛(𝑡 + ℎ)𝑁
𝑛=1 |𝑠+(𝑡 +ℎ∈𝓕2(𝑡)

ℎ)|  

+(𝛤 − ⌊𝛤⌋)2𝑐(𝑡 + 𝑚2(𝑡))  

∑ 𝑏̂𝑛(𝑡 + 𝑚2(𝑡))
𝑁
𝑛=1 |𝑠+(𝑡 + 𝑚2(𝑡))| ) +  

max
ℱ3(𝑡)∪{𝑚3(𝑡)}

(∑ 2𝑐(𝑡 + ℎ)∑ 𝑏̂𝑛(𝑡 + ℎ)𝑁
𝑛=1 |𝑠−(𝑡 +ℎ∈𝓕3(𝑡)

ℎ)|  

+(𝛤 − ⌊𝛤⌋)2𝑐(𝑡 + 𝑚3(𝑡))  

∑ 𝑏̂𝑛(𝑡 + 𝑚3(𝑡))
𝑁
𝑛=1 |𝑠−(𝑡 + 𝑚3(𝑡))| ) +  

max
𝑦,ℱ4(𝑡)∪{𝑚4(𝑡)}

(∑ 𝑐(𝑡 + ℎ)(∑ 𝑏̂𝑛(𝑡 + ℎ)𝑁
𝑛=1 )

2
𝑦ℎ∈𝓕4(𝑡)   

+(𝛤 − ⌊𝛤⌋)𝑐(𝑡 + 𝑚4(𝑡))(∑ 𝑏̂𝑛(𝑡 + 𝑚4(𝑡))
𝑁
𝑛=1 )

2
𝑦 )  (48) 

s.t. ℱ𝑘(𝑡) ⊆ ℋ, |ℱ𝑘(𝑡)| = ⌊𝛤⌋,𝑚𝑘(𝑡) ∈ ℋ\ℱ𝑘(𝑡), 

∀𝑘 ∈ {1, 2, 3, 4} , 
(49) 

𝑦 ≜ 1. (50) 

Note that in our problem uncertainty not only affects the LHS of inequality constraints, but 

also their RHS. In (47), three first maximization terms are related to the uncertainty associated 

with the decision variables. The last maximization term is related to the uncertainty in the RHS. 

Our aim is to protect each term against all cases that up to ⌊Γ⌋ of uncertain parameters (i.e. 

∑ 𝑏̂𝑛(𝑡 + ℎ)𝑁
𝑛=1 , ℎ ∈ ℱ𝑘(𝑡)) are allowed to vary, and one uncertain parameter (i.e. 

∑ 𝑏̂𝑛(𝑚3(𝑡))
𝑁
𝑛=1 ) changes by coefficient (𝛤 − ⌊𝛤⌋). We adopt auxiliary variable y and a 

constraint y ≜ 1 to address the uncertainty in the RHS. Moreover, the protection function of 

the H contractual constraints for each time slot can be expressed as: 
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𝐸𝑃𝐶𝑝𝑟(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡), 𝛤) = 

max
𝑦,ℱ𝑐(𝑡)∪{𝑚𝑐(𝑡)}

( ∑ 𝑏̂𝑛(𝑡 + ℎ)𝑛∈𝓕𝑐(𝑡) 𝑦  

+(𝛤 − ⌊𝛤⌋)𝑏̂𝑚𝑐
(𝑡 + ℎ)𝑦 )  

s.t. (50) and 

(51) 

ℱ𝑐(𝑡) ⊆ 𝒩, |ℱ𝑐(𝑡)| = ⌊𝛤⌋,𝑚𝑐(𝑡) ∈ 𝒩\ℱ𝑐(𝑡), ∀ℎ ∈ ℋ. (52) 

Since the robust formulation of scheduling problem includes strong nonlinearities and 

cardinality calculations, we take advantage of the strong duality theorem by defining new 

auxiliary variables to transform it to linear equivalent from [337]. Hence, the constraint (47) 

can be rewritten as: 

−𝐾(𝑡) + 𝐶𝐹(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡)) + (𝓏1(𝑡) + 𝓏2(𝑡) +

𝓏3(𝑡) + 𝓏4(𝑡))𝛤 + ∑ 𝓆1(𝑡 + ℎ)ℎ∈ℋ   

+∑ 𝓆2(𝑡 + ℎ)ℎ∈ℋ + ∑ 𝓆3(𝑡 + ℎ)ℎ∈ℋ + 𝓆4(𝑡) ≤ 0  

(53) 

∑ 𝓏𝑘
𝐻
ℎ=1 (𝑡) ≤ 𝛤  (54) 

0 ≤ 𝓏𝑘(𝑡) ≤ 1,      ∀𝑘 ∈ {1, 2, 3, 4} (55) 

𝓏1(𝑡) + 𝓆1(𝑡 + ℎ) ≥

2𝑐(𝑡 + ℎ)(∑ 𝑏̂𝑛(𝑡 + ℎ)𝑁
𝑛=1 )ℓ1(𝑡 + ℎ),

−ℓ1(𝑡 + ℎ) ≤ ∑ 𝑥𝑛(𝑡 + ℎ)𝑁
𝑛=1 ≤ ℓ1(𝑡 + ℎ)    ∀ℎ ∈ ℋ,

  (56) 

𝓏2(𝑡) + 𝓆2(𝑡 + ℎ) ≥

2𝑐(𝑡 + ℎ)(∑ 𝑏̂𝑛(𝑡 + ℎ)𝑁
𝑛=1 )ℓ2(𝑡 + ℎ),

−ℓ2(𝑡 + ℎ) ≤ ∑ 𝑥𝑛(𝑡 + ℎ)𝑁
𝑛=1 ≤ ℓ2(𝑡 + ℎ)  ∀ℎ ∈ ℋ,

  (57) 

𝓏3(𝑡) + 𝓆3(𝑡 + ℎ) ≥

2𝑐(𝑡 + ℎ)(∑ 𝑏̂𝑛(𝑡 + ℎ)𝑁
𝑛=1 )ℓ3(𝑡 + ℎ),

−ℓ3(𝑡 + ℎ) ≤ ∑ 𝑥𝑛(𝑡 + ℎ)𝑁
𝑛=1 ≤ ℓ3(𝑡 + ℎ)  ∀ℎ ∈ ℋ,

  (58) 

𝓏4(𝑡) + 𝓆4(𝑡) ≥

∑ 𝑐(𝑡 + ℎ)𝑗∈ℐ (∑ 𝑏̂𝑛(𝑡 + ℎ)𝑁
𝑛=1 )

2
ℓ4(𝑡)

−ℓ4(𝑡) ≤ 𝓎 ≤ ℓ4(𝑡),

  (59) 

𝓆𝑚(𝑡 + ℎ) ≥ 0∀𝑚(𝑡) ∈ {1, 2, 3}, ∀ℎ ∈ ℋ,

ℓ𝑚(𝑡 + ℎ) ≥ 0∀𝑚(𝑡) ∈ {1, 2, 3}, ∀ℎ ∈ ℋ,

𝓆4(𝑡), ℓ4(𝑡) ≥ 0,

  (60) 

 

where 𝑧𝑘(𝑡) and 𝓆𝑘(𝑡) (∀𝑘 ∈ {1, 2, 3, 4}), 𝑦, 𝑞𝑚(𝑡 + ℎ), ℓ𝑚(𝑡 + ℎ) (∀𝑚(𝑡) ∈ {1, 2, 3}, ∀ℎ ∈

ℋ), 𝓆4(𝑡) and ℓ4(𝑡) are auxiliary variables for the dual problem. The dual of the contractual 

constraints (45) can be formed in the same fashion as follows: 

𝐸𝑃𝐶(𝑡 + ℎ) + 𝓏𝑐(𝑡)𝛤 + ∑ 𝓆𝑐(𝑡 + ℎ)ℎ∈ℋ ≤  (61) 
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𝐸𝑃𝐶(𝑡 + ℎ),   ∀ℎ ∈ ℋ, 

𝓏𝑐(𝑡) + 𝓆𝑐(𝑡 + ℎ) ≥

(∑ 𝑏̂𝑛(𝑡 + ℎ)𝑁
𝑛=1 )ℓ𝑐(𝑡 + ℎ), ∀ℎ ∈ ℋ,

−ℓ𝑐(𝑡 + ℎ) ≤ 𝑦 ≤ ℓ𝑐(𝑡 + ℎ), ∀ℎ ∈ ℋ,

𝓏𝑐(𝑡), 𝓆𝑐(𝑡 + ℎ), ℓ𝑐(𝑡 + ℎ) ≥ 0, ∀ℎ ∈ ℋ.

  (62) 

 

where 𝓆𝑐(𝑡) and ℓ𝑐(𝑡) are auxiliary variables for the dual problem. Our robust scheduling 

problem is a quadratically constrained linear programming problem (QCLP) with ((𝑁 + 10) +

9) decision variables, (𝑁 + 2) equality constraints, one quadratic and (11𝐻 + 29 linear 

inequality constraints as well as ((𝑁 + 8)𝐻 + 8) bounding constraints at each iteration: 

min
𝐾(𝑡),𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡),𝑦,

𝓏1(𝑡),𝓏2(𝑡),𝓏3(𝑡),𝓏4(𝑡),𝓏𝑐(𝑡),

𝓺𝟏(𝑡),𝓺2(𝑡),𝓺3(𝑡),𝓺4(𝑡),𝓆𝑐(𝑡)

𝓵1(𝑡),𝓵2(𝑡),𝓵3(𝑡),𝓵4(𝑡),ℓ𝑐(𝑡)

𝐾(𝑡)  

s.t. (31)-(39), (53)-(62) 

(63) 

3.4.5.3. MPC Implementation 

 

Here, at the second step of the control framework, the MPC strategy is applied to solve the 

robust optimization problem of (63) iteratively over a finite-horizon time window based on 

receding horizon concept. The objective function and constraints are updated and recomputed 

at each time slot until the simulation end time. At each time step, the control unit receives the 

updated forecast data of the NCL and create related uncertainty sets. The actual value of 

residual energy threshold is updated. Based on updated data, the online optimization problem 

(63) is executed. Then, the optimal decision variables (ie., 𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡) ) of the first time 

step are extracted and applied as the control outputs. This process is repeatedly carried out 

ahead of time until the end time of simulation. The proposed online control algorithm is shown 

in Figure 3.16. 
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Figure 3. 16. The proposed RMPC-based algorithm. 

 

3.4.5.4. Sensitivity Analysis of Budget of Uncertainty 

in the RMPC Algorithm 

The budget of uncertainty (𝛤) can be adjusted in the robust scheduling problem of (63) to 

give the different robustness levels. Accordingly, the conservatism of the solution against 

uncertainty can be controlled. In the case that 𝛤 = 0, the values of the protection functions 

𝐶𝐹𝑝𝑟(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡), 𝛤) and 𝐸𝑃𝐶𝑝𝑟(𝒙(𝑡), 𝒔+(𝑡), 𝒔−(𝑡), 𝛤) (∀ℎ ∈ ℋ) are equal to zero, 

which means that the uncertainty is not considered and the optimization problem is solved based 

on nominal forecasted values (here we call it nominal scheduling). In this case, the results 

present minimum payment for users, but the obtained solution is over-optimistic. On the other 

hand, when 𝛤 = |𝐻| which denotes the maximum protection level, the uncertainty in 

parameters is fully addressed, but the obtained solution is in the most conservative case. For 

obtaining a medium protection level, the decision maker can flexibly change 𝛤 ∈ [0, |𝐻|] to 

adjust a trade-off between user’s payment and constraint violation rate. 
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3.4.6. Case Study 

To evaluate the performance of the proposed method, a simulated case study is conducted. 

The grid-connected system of Figure 3.15 consists of three residential smart users (𝑁 = 3), 

each equipped with a CL and an NCL. However, the model can be simply applied to scenarios 

with multiple loads for each user. A shared ESS unit is implemented for all users. The problem 

is solved by CPLEX 12.8 in MATLAB R2017a on a PC with an Intel Core i7-7500 (4 CPUs), 

2.70 GHz and 12 GB RAM memory. The length of each time slot is assumed to be one hour 

(ℎ = 1) and the prediction horizon is 24 hours (ℋ = [𝑡 + 1, 𝑡 + 24]). Also, the simulation is 

assumed to perform the scheduling for one day (𝒯 = 24). For the energy bought from the power 

grid, we consider the dual-rate cost coefficients. The features of the supply side, demand side 

components and the ESS unit are listed in Table 3.4. To model NCL’s uncertainties, we assume 

discrete Gaussian distributed random variables in each iteration. Figure 3.17 shows the actual 

aggregated NCL profile for all the users.  

We intend to analyze the effects of our proposed RMPC-based method on the total energy 

cost, feasibility constraints violation rate, and PAR. To obtain some insight on the robustness 

of the method, we provide the simulation results of the energy scheduling for three different 

values of the budget of uncertainty. 

 

Table 3. 4. Simulation Parameters 

Quantity Symbol Value Unit 

Total CL threshold (user 1) E̅1(𝑡) 20 kWh 

Total CL threshold (user 2) E̅2(𝑡) 16 kWh 

Total CL threshold (user 3) E̅3(𝑡) 20 kWh 

CL range per slot  [𝑥𝑛, 𝑥𝑛] [0,6] kWh 

EPC range per slot 𝐸𝑃𝐶(𝑡 + ℎ) [0,8.3] kWh 

Budget of uncertainty range 𝛤 [0,24] - 

Simulation time 𝒯 24 hours 

Peak demand slots 𝑐𝑝 {[9, 11]⋃[16,21]}  hours 

Off-Peak demand slots 𝑐𝑜𝑝 {
[1, 8]⋃[12, 15],

⋃[22,24]
}  hours 

Rate of peak demand slots 

(∀ℎ ∈ 𝑐𝑝) 
𝑐(𝑡 + ℎ) 0. 1875 

₵
/kWh2 

Rate of off-peak demand slots  

(∀ℎ ∈ 𝑐𝑜𝑝) 
𝑐(𝑡 + ℎ) 0.0937 

₵
/kWh2 

Initial charge of ESS 𝑧(0) 0 kWh 

Maximum 

charging/discharging energy 

per slot 
𝑆

+
/𝑆− 2 kWh 

Maximum capacity of ESS 𝑄 45 kWh 

Charging/discharging 

efficiencies 
𝜂+/𝜂− 0.95 - 
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Figure 3. 17. Actual aggregated NCL profile for all the users. 

 

Figure 3.18 demonstrates the aggregated energy profiles of CLs and the 

charging/discharging activities of the shared ESS unit for 𝛤 = 0 (nominal scheduling without 

protection), 𝛤 = 12 (medium protection level) and 𝛤 = 𝐻 = 24 (full-protection level). As can 

be observed, the energy scheduling shifts the CLs’ operation time to the time slots with lower 

cost coefficients.  

The shared ESS unit takes part in the minimization of the total energy cost by optimal 

charging and discharging activities during the time horizon. When 𝛤 = 0,  the total cost is 

obviously minimum (1.6475 €/day). However, this case assumes a perfect forecast data and 

optimistically ignores the effect of data uncertainty on results. It can cause too much change in 

the obtained results from the optimal target and a high violation rate in contractual constraints 

in presence of parameters’ uncertainty. Conversely, by choosing 𝛤 = 24, the maximum 

protection (the worst-case mode) is achieved. However, the total cost is maximum 

(1.6810€/day) which is 2.03% more than the nominal scheduling case. By varying this 

parameter within the possible range (𝛤 ∈ [0,24]), the robustness level can be controlled. 

Here, we adopt the middle value in the range, 𝛤 = 12, to avoid conservative solutions and 

high constraint violation rate. In this case, the total cost is 1.6653 €/day which is 0.93% lower 

than the full-protection mode. Moreover, the results in Figure 3.18 depict that a lower PAR is 

obtained by increasing the budget of uncertainty. We further present and compare the results 

achieved for different realizations of uncertain variables to evaluate the performance of the 

RMPC-based method in real conditions. With this aim, Monte Carlo (MC) simulations are 

implemented to create 10000 scenarios for the uncertainty associated with NCLs. At each MC 

iteration, we add a normal distributed random sequence with zero mean and standard deviation 

of 0.2 [kWh] to the nominal forecast values of NCLs to generate the actual profile. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 3. 18. Aggregated energy profiles of CLs versus energy profiles of shared ESS: (a) nominal scheduling 

(𝛤 = 0); (b) medium protection level (𝛤 = 12); (c) full protection level (𝛤 = 24). 

 

To investigate the conservatism of the method, we present the results for the average profile 

of the MC simulations for all iterations. The average profiles of total energy bought from the 

power grid versus maximum EPC for nominal scheduling, medium-protection level and full-

protection level are presented in Figures 3.19a to 3.19c respectively. The results show that, 

under certain scenarios, the total energy profile in the nominal scheduling (𝛤 = 0) violates the 

contractual constraints in some time slots, which is undesirable (Figure 3.19a). By adopting 

medium-level protection 𝛤 = 12, instead, the constraints are satisfied with very high 
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probability (Figure 3.19b). The constraints can be completely met with taking the worst-case 

mode 𝛤 = 24, confirming the full-protection against uncertainty (Figure 3.19c).  

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. 19. Average profiles of total energy bought from the grid versus maximum EPC (blue fixed line): (a) 

nominal scheduling (𝛤 = 0); (b) medium protection level (𝛤 = 12); (c) full-protection level (𝛤 = 24). 

 

Finally, Figure 3.20 provides a comparison between the proposed online RMPC-based 

method, the offline robust control method which simulates the problem once at the beginning 

of the simulation for the whole day, as well as the nominal control method which ignores the 

effect of uncertainty. The figure shows the trend of constraints violation rate, the total cost 

values and the PAR values by varying the budget of uncertainty from 0 to 24. In particular, 

based on Figure 3.20a, it can be observed that the number of violations in our proposed RMPC-

based approach is always lower than in offline robust control approach, confirming the RMPC-

based scheduling is more robust.   Moreover, according to Figure 3.20b, the RMPC provides a 

better tracking on the NCLs’ uncertainty than the offline robust control, leading a less 

conservative solution. The comparison of the three methods based on the PAR demonstrates 

that the RMPC-based method provides a lower PAR over all values of the budget of uncertainty. 

Summing up, the simulation results validate the effectiveness of the proposed method, enabling 

the decision maker to make a trade-off between the total payable cost by users and constraints 

violation rate by changing the value of the budget of uncertainty. 
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(a) 

 
(b) 

 
(c) 

 

Figure 3. 20. Comparison between proposed RMPC-based method, robust control and nominal control methods: 

(a) constraint violation rate; (b) total cost value; (c) peak-to-average ratio (PAR) versus budget of uncertainty 

3.4.7. Conclusions  

A RMPC-based DSM framework for residential SGs with multiple users and a shared ESS 

is proposed in this section. The objective is to minimize the total energy cost and the PAR of 

the energy consumption, as well as to satisfy the constraints violation rate of the total energy 

purchased from the grid at each time slot when taking the forecast uncertainty of load demands 

into account. A QCLPP programming is established to optimally schedule CLs and the energy 

activities of the shared ESS unit in an online fashion. We then apply the proposed scheme to a 

sample simulated system to validate the effectiveness of our method in comparison to the 

offline robust scheduling and the nominal scheduling. The robustness of the proposed online 

approach against the level of conservatism of the solution is also investigated. The focus of 

future work is on expanding the system model to involve other subsystems such as non-
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interruptible loads, distributed generators, and renewable energy sources. Moreover, in the 

future we apply the approach to distributed multi-agent architecture of large-scale residential 

SGs.  

From the findings and contribution of the research in this chapter, the following paper has 

been presented: 

• S.M. Hosseini, R. Carli, M. Dotoli, “A Residential Demand-Side Management 

Strategy under Nonlinear Pricing Based on Robust Model Predictive Control,” 

IEEE International Conference on Systems, Man, and Cybernetics (SMC), Bari, 

Italy, October 6-9, 2019. 

 

3.5. A Novel Robust Approach for Comprehensive 

Energy Management of Large-scale Residential 

Microgrids with RESs, PEVs and Heat Pumps 

3.5.1. Introduction  

In this subsection we present a comprehensive robust framework for day-ahead energy 

scheduling of large-scale interconnected smart homes with both individual and shared RESs 

and ESSs, as well as various electrical components under uncertainties on RES generation and 

users’ behavior. In our framework, we assume that each user incorporates NCLs, an energy-

based CL, a comfort-based CL such as a heat pump (HP), an individually-owned RES, and a 

PEV with vehicle-to-home (V2H) and home-to-vehicle (H2V) operating modes [350]. 

Moreover, all users share an ESS, and a number of PVSs and DWTs as well. The propose 

approach is motivated by the emerging need for intelligent demand-side management (DSM) 

approaches in smart MGs in presence of both power generation and demand uncertainties. The 

proposed robust energy scheduling strategy allows the decision maker (i.e., the energy manager 

of the MG) to make a satisfactory trade-off between the users’ payment and constraints’ 

violation rate considering the energy cost saving, the system technical limitations and the users’ 

comfort by adjusting the values of the budget of uncertainty. The proposed framework is 

generic and flexible as it can be applied to different structures of MGs considering various types 

of uncertainties in energy generation or demand. 
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3.5.2. Aims and Objectives  

Our main objective is minimizing the total energy payment for the MG while satisfying the 

related constraints in presence of forecast uncertainty in RES generation and users’ demand. 

We aim at obtaining a robust solution, including the optimal scheduling of the CLs for each 

user and the charging/discharging strategies of the shared ESS and individual PEVs at each 

time slot. Hence, we present a tractable robust optimization scheme to solve the energy 

scheduling problem with a quadratic cost function, which realistically models the cost of energy 

bought from the grid. Also, the MG is able to sell the energy back to the grid by a linear cost 

function. All the related device/comfort/contractual constraints, including specifically a 

contractual obligation imposed by the power grid restricting the users’ exchanged energy over 

time slots, are modeled. First, a deterministic model of the scheduling problem is formulated. 

Hence, a min-max robust counterpart considering uncertain parameters is established regarding 

the cardinality-constrained uncertainty set. We finally apply some mathematical 

transformations to solve the equivalent problem effectively. We also investigate the effect of 

the proposed approach on the peak-to-average ratio (PAR) of the total exchanged energy. We 

deal with the robustness of the proposed approach against the level of conservativeness of the 

solution. 

3.5.3. Related Works and Contributions 

Utility companies mainly use generators burning fossil fuels to provide energy in a reliable 

way. Accordingly, in numerous research works the power generation cost is assumed to be a 

quadratic function of the energy consumption [351]-[356]. For instance, [347] and [352] 

propose incentive-based energy scheduling mechanisms for smart homes considering tractable 

quadratic cost functions. A distributed bi-level residential energy management is presented in 

[353] by formulating a multi-objective constrained non-linear problem to optimize electricity 

cost, discomfort, and appliance interruptions. In the context of energy scheduling under 

uncertainty, one of the widely used strategies for DSM is known as stochastic optimization 

based on statistical data [357]-[361]. In this context, for example, Kim et al. [357] present a 

stochastic dynamic programming for energy scheduling based on statistical knowledge about 

future prices to find decision thresholds for both noninterruptible and interruptible loads. In 

[358], a stochastic optimization framework for energy management of a smart home is 

proposed coping with the uncertainty associated with RES generation and PEV’s plug-state as 

a Markov decision process. A probability distribution model combining household power 

consumption, PEV home-charging and RES generation is developed by Munkhammara et al. 
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[359] through a convolution approach to merge three separate existing probability distribution 

models. In [361], an energy scheduling scheme for the optimal energy management of a MG 

utilizing the probabilistic forecasts of wind power and users’ energy demand is presented. First, 

they formulate the energy scheduling problem as a stochastic model predictive control problem, 

and then convert it to a standard convex quadratic programming using machine-learning 

techniques. 

Although stochastic DSM methods show effective performance facing uncertainty in 

resources availability or demand, they suffer from some serious limitations: for example, large 

presence of uncertain data which need to be modeled, dependency between some uncertain 

parameters, insufficient historical data for new houses, and high computational effort due to 

significant number of scenarios impose additional difficulty and cost to such models [350], 

[362]. Hence, dealing with the mentioned issues of stochastic-based approaches, robust 

optimization was proposed as an alternative promising solution [362]-[369]. A comparison 

between robust optimization and stochastic optimization approaches for energy scheduling of 

residential appliances under uncertainties in real-time electricity prices is provided in [362]. 

The authors prove that robust optimization has a significantly better computational 

performance. Moreover, modeling uncertainty through robust optimization using data intervals 

is simpler than modeling uncertainty by stochastic optimization, which requires random 

variables with detailed statistical information [362]. Among the research efforts towards energy 

scheduling utilizing robust optimization, [363] discusses the robust optimal scheduling of a 

residential SG incorporating an ESS under uncertainty in energy price. The authors assume that 

the uncertain energy prices are randomly distributed with a known probability distribution 

around the predicted values. In [370][364], a robust optimization approach is proposed 

considering the uncertain output variation of RESs. A two-stage complementary framework is 

adopted to plan the collaborative scheduling of the ESS with an incentive-based demand 

response program called Direct Load Control (DLC) which directly shuts down the remote CLs 

to maintain the power balance in a MG. A multi-objective robust scheduling model is 

established in [365], where both supply and demand sides are affected by uncertainty. The aim 

is to obtain the lowest operating cost and the highest renewable energy utilization rate. The 

uncertain problem is transformed into a deterministic problem and a genetic algorithm is used 

to solve the deterministic problem. Wang et al. [366] develop a robust optimization approach 

with adjustable robustness level for household load scheduling considering power uncertainty 

of household photovoltaic system. The authors formulate the day-ahead load scheduling 

problem as a min-max uncertain problem considering interval-based uncertain parameters, and 

then transform it into the robust counterpart. However, they adopt a linear cost function for the 

energy exchanged with the grid, and they do not address the uncertainty associated with users’ 

behavior. Paul and Padhy [367] adopt robust conditional value at risk optimization as a linear 
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risk measure approach to protect the day-ahead residential energy scheduling against 

uncertainties associated with RES generation and energy price volatility. In [368], the robust 

optimal energy scheduling of a SG affected by uncertainty is investigated. The authors establish 

a mixed-integer linear programming (MILP) formulation to minimize the overall energy cost. 

However, the focus of this work is on the uncertainty associated with price signals, and on 

analyzing the effect of price uncertainty on the operation of the SG’s components, which is 

different than our focus that is on uncertainty related to users’ behavior and RES energy 

generation. In a related work, Paridari et al. [369] deal with the robust energy scheduling of 

smart home appliances comprising the ESS unit, taking the uncertain behavior of users into 

account. Although it deals with uncertainty in load demand, such a work focuses on uncertainty 

associated with CLs as decision variables, that is different than our focus on uncertainty 

involved with NCLs. The authors map the load uncertainty to the cost function coefficients and 

formulate the problem as a MILP. In addition, the uncertainty associated with RES energy 

generation is not considered in that work. Moreover, unlike our work, all the aforementioned 

studies [362] to [369] adopt a linear cost function for energy bought from the power grid, and 

do not take the effect of uncertainty in the feasibility of energy exchange between users and 

power grid into account. Additionally, the effects of the energy scheduling method on the PAR 

of the total energy demand are not quantified in the mentioned works. 

Regarding other robust optimization methods addressing uncertainty in parameters, we can 

refer to two-stage robust methods, including affine adjustable robust counterpart approaches 

[370], [371]. There can be found different types of multi-stage robust optimization methods in 

the literature, mainly solved by two classes of algorithms, namely Benders and column-and-

constraint generation algorithms. The former approach is based on applying decomposition 

techniques to transform the original two-stage problem into a single-stage problem, and then 

utilizing the Benders algorithm to solve the reformulated problem [370]. On the contrary, the 

latter approach is based on the column-and-constraint generation, which leads to critical 

uncertain scenarios, requiring recourse decision variables and second-stage constraints to solve 

the reformulated problem [372]. 

However, as our energy scheduling problem has a quadratic objective function with several 

binary variables, applying these two-stage robust approaches, where the optimization problem 

is set as a min-max-min problem which is needed to be dualized by adding extra bilinear terms 

in the objective function, can result in an extremely large-scale mixed-integer quadratic 

programming (MIQP) model, which is more computationally expensive and more complicated 

than our proposed single-stage robust technique. Therefore, the scheduling is most likely to be 

intractable with the increase of the problem size for large-scale MG where the number of 

components (in particular, energy storage systems or plug-in electric vehicles) in the MG 

increases [370], [373]. Another robust method to address uncertainty in optimization problems 
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is based on the affine adjustable robust counterpart assuming affine functions of uncertain 

parameters for resource decisions [374], [336]. However, in contrast with our case, such a class 

of robust approaches is generally unable to handle problems with integer resource decisions 

[370], [373], [375]. Moreover, this method typically needs full knowledge about the past data 

on the uncertain demand to derive a decision by inserting them in a linear decision rule, which 

is mostly unavailable [337]. The advantage of our robust optimization framework is that it is 

more general and applicable to a wide spectrum of demand-side management problems. In 

addition, the final problem is tractable and can be easily implemented by using commercial 

optimization tools. We better highlight these advantages of our method in the case study 

section. 

Hence, although some studies have made positive attempts for optimizing the energy 

scheduling of residential MGs in presence of forecast uncertainties, due to their respective 

limitations, further research is still required to cope with the challenge of RES energy 

generation and users’ behavior uncertainty in residential load scheduling. Summing up, the 

specific contributions of this work lie in the following aspects. 

1) We present a comprehensive model and a systematic robust methodology to state and 

solve the optimal energy scheduling problem of a grid-connected residential MG with several 

users incorporating individually owned RESs, NCLs, energy-based and comfort-based CLs, 

and PEVs. Moreover, the smart users share a given number of RESs and an ESS under a 

dynamic quadratic pricing. However, the MG is also able to sell its extra energy back to the 

grid by a dynamic linear pricing. We take the forecast uncertainty caused by the RESs energy 

profiles, as well as the users’ energy demand, into account. 

2) We establish a quadratic min-max robust problem under the cardinality-constrained 

uncertainty set inspired by the method proposed by Bertsimas and Sim [337] and convert it to 

a MIQP model to solve the equivalent robust counterpart of the scheduling problem. Forecast 

uncertainty in both the objective function and corresponding contractual constraints is 

addressed. The problem includes uncertain terms both in the objective function and in the left-

hand side (LHS) and the right-hand side (RHS) of the inequality constraints. To the best of the 

authors’ knowledge, no robust quadratic programming approach for the energy scheduling of 

the residential MG has ever been proposed to tackle the uncertainties associated with RES 

energy generation and users’ energy demand under quadratic pricing. 

3) Our proposed framework is generic and flexible as it can be applied to different structures 

of MGs considering various types of uncertainties in energy generation or demand. 

4) We deal with the conservativeness of the proposed scheme for different scenarios and 

quantify the effects of the budget of uncertainty on the cost saving, the PAR and constraints’ 

violation rate. Our robust approach enables the decision maker (i.e., the energy manager of the 



 
 

128 

 

MG) to make a trade-off between the users’ payment and constraints’ violation rate by adjusting 

the values of the budget of uncertainty. 

We validate the effectiveness of the proposed approach on a sample residential MG with 

several users under forecast uncertainty. We also provide a comprehensive comparison between 

our proposed robust energy scheduling and energy scheduling with an exact forecast profile 

without protection against data uncertainty. To better show the advancement of our approach 

with respect to the related literature, we also compare the results of our proposed approach with 

a related robust method, confirming the performance of the proposed framework. 

3.5.4. System Model 

In this section, we present a mathematical model of the day-ahead energy scheduling 

problem for the users’ appliances and PEVs, the individual and shared resources (i.e., the RESs 

and the ESS), as well as the demand-supply balance and constraints. 

The features of the considered MG are defined according to residential MG architectures 

commonly used in the most recent studies. For instance, based on the well-known definitions 

and system structures provided in [376]-[379], a residential MG can be considered as a locally 

controlled system to promote the integration of distributed generation sources, energy storage 

systems, interconnected users with household loads, plug-in electric vehicles along with smart 

meters and home energy consumption controllers, in which households’ energy demands can 

be supplied by local generations while their extra required/surplus energy can be bought/sold 

from/to the power grid. The architecture of the considered system is shown in Figure 3.21. We 

assume that each user owns a smart meter comprising an energy consumption controller (ECC). 

The ECC is in charge of controlling the user’s energy consumption and enforcing the 

collaboration in the MG. The activities of all the smart users are controlled by the energy 

management system (EMS) that is also in charge of acquiring pricing signals from the power 

grid and managing the operations of shared resources. A digital communication infrastructure 

(e.g., a local area network (LAN)) is implemented to connect all the MG components to the 

energy management system [376]. For the ease of implementation, we assume that each user 

comprises one RES, one NCL, one CL, one Heat Pump (HP), and one PEV only, but the model 

can be straightforwardly expanded to scenarios with several loads and PEVs for each user. Let 

𝒩 ≜ {1,… , 𝑛, … ,𝑁} denotes the set of users. We consider a time window ℋ ≜ {1,… , ℎ, … ,𝐻} 

including 𝐻 discrete time slots with equal length ∆ℎ. In the following, vectors are denoted by 

bold letters. The MG model is detailed in the sequel. 
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Figure 3. 21. Scheme of energy flows and connections between distribution network, users’ energy system 

components, and shared devices. 

 

3.5.4.1. Renewable Energy Sources 

We assume that the MG incorporates a number 𝑀 of RESs, (e.g., photovoltaic systems or 

domestic wind turbines) denoted as ℳ ≜ {1,… ,𝑚,… ,𝑀} including both the RESs that are 

shared and those that are individually owned by users (𝑀 > 𝑁). We define 𝑀 column vectors 

of 𝐻 input parameters 𝒓𝑚 ≜ [𝑟𝑚(1);… ; 𝑟𝑚(ℎ);… ; 𝑟𝑚(𝐻)] (𝑚 ∈ ℳ) collecting the energy 

profiles produced by the RESs. These vectors are assumed to be calculated by a forecast sub-

module of the EMS using a prediction algorithm based on weather data [380]. 

3.5.4.2. Users’ Energy Loads 

First of all, we assume that users are equipped with NCLs, which are inflexible loads, whose 

operation time cannot be shifted and whose profile cannot be modulated (i.e., with fixed power 

profile). We introduce 𝑁 column vectors of 𝐻 input parameters 𝒃𝑛 ≜

[𝑏𝑛(1);… ; 𝑏𝑛(ℎ);… ; 𝑏𝑛(𝐻)] (𝑛 ∈ 𝒩) to denote the users’ NCL profiles. We assume that these 

vectors are computed by forecast sub-modules of the ECCs using a prediction algorithm [381]. 

We show in subsection 3.5.6.2 that, in order to solve the scheduling problem, our approach 

only requires knowledge of the lower and upper bounds of the NCLs profiles as well as RESs 

production curves, which are typically available based on historical data. 

Second, we assume that users are also equipped with CLs, which are loads with flexible and 

programmable operations. Such controllable loads can be operated on a favorable schedule. 
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CLs can be commonly categorized into two different classes [382]: 1) energy-based CLs: these 

appliances are characterized by a prescribed energy requirement (e.g., pumps of waters supply 

networks, PEVs), i.e., a certain amount of energy has to be consumed over a set of time slots 

delimited by a minimum starting-time slot and a maximum ending-time slot; 2) comfort-based 

CLs: these devices consume energy to control a physical variable influencing the user’s comfort 

(e.g., heating, ventilation and air conditioning (HVAC) systems, refrigerators). Without loss of 

generality, we assume that for each user one CL for each class is identified. 

As for the energy-based CLs, we introduce a column vector 𝒙𝑛
𝑙 ≜

[𝑥𝑛
𝑙 (1);… , 𝑥𝑛

𝑙 (ℎ);… , 𝑥𝑛
𝑙 (𝐻)] for each user 𝑛 ∈ 𝒩 with 𝐻 decision variables referring to the 

consumption profile of the CL. We collect all the users’ CL profiles in a column vector 𝒙𝑙 ≜

[𝒙1
𝑙 ;… ; 𝒙𝑁

𝑙 ] whose length is 𝑁𝐻. Due to operational requirements, users’ loads are restricted 

by minimum and maximum operating levels. We use two column vectors of 𝐻 input parameters 

𝒍𝑛 ≜ [𝑙𝑛(1);… , 𝑙𝑛(ℎ);… , 𝑙𝑛(𝐻)] and 𝒍𝑛 ≜ [𝑙𝑛(1);… ; 𝑙𝑛(ℎ);… ; 𝑙𝑛(𝐻)] to indicate the 

maximum and minimum energy level for each user 𝑛, respectively. Furthermore, a constraint 

should be enforced for each user to make sure that the cumulative energy fulfills the total energy 

requirement, denoted as 𝐿𝑛 (𝑛 ∈ 𝒩), by the deadline to complete the task at the end of the time 

window: 

𝒍𝑛 ≤ 𝒙𝑛
𝑙 ≤ 𝒍𝑛, 𝑛 ∈ 𝒩 (64) 

∑ 𝑥𝑛
𝑙 (ℎ)𝐻

ℎ=1 = 𝐿𝑛, 𝑛 ∈ 𝒩. (65) 

As for the comfort-based CLs, just to fix ideas, we refer to the HVAC heat pumps (HPs) 

serving the users’ household indoor environment.  The following discrete time model can be 

used to represent the 𝑛th user’s indoor temperature [383]: 

𝑇𝑛(ℎ) = 𝑒−∆ℎ
𝜏𝑛

⁄  𝑇𝑛(ℎ − 1)  

+(1 − 𝑒−∆ℎ
𝜏𝑛

⁄ ) (𝑇𝑒𝑥𝑡(ℎ) + 𝜋𝑛𝑥𝑛
𝑝(ℎ)) , ℎ ∈

ℋ, 𝑛 ∈ 𝒩  

(66) 

where 𝑇𝑛(ℎ) and 𝑇𝑒𝑥𝑡(ℎ)  are the household indoor and outdoor temperatures at time slot ℎ, 

respectively, 𝜏𝑛 is the time constant of the first order dynamics of the household indoor 

temperature, 𝜋𝑛 is the total heating/cooling gain in the considered environment (𝜋𝑛 > 0 if the 

HVAC system is in heating mode and 𝜋𝑛 < 0 if the HVAC system is in cooling mode),  and 

𝑥𝑛
𝑝(ℎ) is the heat pump consumption at time slot ℎ. Note that vector 𝑻𝑒𝑥𝑡(𝑡) ≜

[𝑇𝑒𝑥𝑡(1);… ; 𝑇𝑒𝑥𝑡(ℎ);… ; 𝑇𝑒𝑥𝑡(𝐻)] collecting the outdoor temperature profiles in the time 

window ℋ is an input parameter, computed using weather prediction data. Conversely, vector 

𝑻𝑛 ≜ [𝑇𝑛(1);… ; 𝑇𝑛(ℎ);… ; 𝑇𝑛(𝐻)] collecting for each user 𝑛 ∈ 𝒩 the household indoor 

temperature profile is a variable of the problem. Vector 𝑻𝑛 has to be computed in accordance 

with the following constraint: 



 
 

131 

 

𝑇𝑛
𝑚𝑖𝑛(ℎ) ≤ 𝑇𝑛(ℎ) ≤ 𝑇𝑛

𝑚𝑎𝑥(ℎ),    ℎ ∈ ℋ, 𝑛 ∈ 𝒩 (67) 

where 𝑻𝑛
𝑚𝑖𝑛 ≜ [𝑇𝑛

𝑚𝑖𝑛(1);… ; 𝑇𝑛
𝑚𝑖𝑛(ℎ);… ; 𝑇𝑛

𝑚𝑖𝑛(𝐻)] and 𝑻𝑛
𝑚𝑎𝑥 ≜

[𝑇𝑛
𝑚𝑎𝑥(1);… ; 𝑇𝑛

𝑚𝑎𝑥(ℎ);… ; 𝑇𝑛
𝑚𝑎𝑥(𝐻)] denote the vectors of lower and upper bounding of the 

𝑛th user’s household indoor temperature, respectively. Range [𝑇𝑛
𝑚𝑖𝑛(ℎ), 𝑇𝑛

𝑚𝑎𝑥(ℎ)] (ℎ ∈ ℋ) is 

a time-varying parameter that allows users to represent thermal comfort preferences within the 

occupancy period. Similarly, vector 𝒙𝑛
𝑝

≜ [𝑥𝑛
𝑝(1);… ; 𝑥𝑛

𝑝(ℎ);… ; 𝑥𝑛
𝑝(𝐻)] collecting for each 

user 𝑛 ∈ 𝒩 the heat pump consumption profile is a variable of the problem. Vector 𝒙𝑛
𝑝

 has to 

be computed in accordance with the following constraint: 

0 ≤ 𝑥𝑛
𝑝(ℎ) ≤ 𝐸𝑛,    ℎ ∈ ℋ, 𝑛 ∈ 𝒩 (68) 

where 𝐸𝑛 is the maximum energy that the pump can consume in one time slot with duration 

∆ℎ. 

Third, we assume that users are also equipped with PEVs, which act as versatile active 

elements that are able to consume, store, and supply energy [384]. This means that the PEVs’ 

battery charging is bidirectional, in accordance with the following modes of operation: H2V 

(home to vehicle, i.e., the charging of the PEV is a function of the total demand in the home, 

aiming at preventing overloads) and V2H (vehicle to home, i.e., the PEV is used to operate as 

an offline uninterruptible power supply) [384]. To model the charging/discharging activities of 

the PEV of user 𝑛 within the time windows, we define a column vector 𝒙𝑛
𝑣 ≜

[𝑥𝑛
𝑣(1);… ; 𝑥𝑛

𝑣(ℎ);… ; 𝑥𝑛
𝑣(𝐻)], with 𝐻 decision variables, where 𝑥𝑛

𝑣(ℎ) is the energy 

stored/released in/by the PEV of user 𝑛 at time slot ℎ. Due to the conversion losses of the PEV, 

we define 𝜁𝑛
+ and 𝜁𝑛

− as the charging and discharging efficiencies for the PEV of user 𝑛, 

respectively.  

Since PEVs may not be connected to the grid throughout the whole time window for various 

reasons (e.g., driving on the road), we assume that the PEV of each user 𝑛 ∈ 𝒩 is connected to 

the power system within a given plugged-in interval [𝑘𝑛
𝑠 , 𝑘𝑛

𝑓
]. This interval is defined by users 

at the beginning of the scheduling horizon, e.g. on a daily basis, according to their preferences 

and PEVs’ availability. During this interval, the PEV is plugged to the MG, and thus can be 

either charged or discharged: 

𝑥𝑛
𝑣(ℎ) = 0, ℎ ∈ ℋ\[𝑘𝑛

𝑠 , 𝑘𝑛
𝑓
], 𝑛 ∈ 𝒩 (69) 

𝑣𝑛 ≤ 𝑥𝑛
𝑣(ℎ) ≤ 𝑣𝑛 , ℎ ∈ [𝑘𝑛

𝑠 , 𝑘𝑛
𝑓
], ∈ 𝒩 (70) 

where we denote as 𝑣𝑛 and 𝑣𝑛 the maximum charging and discharging rates, respectively. 

To avoid simultaneous charging and discharging of the PEV battery, the dynamics of the 

charge level of the PEV of user 𝑛 can be written as a first order discrete time model as follows: 

𝑣𝑛(ℎ) = {
𝑣𝑛(ℎ − 1) + 𝜁𝑛

+𝑥𝑛
𝑣(ℎ)if𝑥𝑛

𝑣(ℎ) ≥ 0

𝑣𝑛(ℎ − 1) + 𝑥𝑛
𝑣(ℎ) 𝜁𝑛

−⁄ if𝑥𝑛
𝑣(ℎ) < 0

, (71) 
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ℎ ∈ [𝑘𝑛
𝑠 , 𝑘𝑛

𝑓
], 𝑛 ∈ 𝒩 

where 𝑣𝑛(ℎ) and 𝑣𝑛(𝑘𝑛
𝑠 − 1) ≜ 𝑣𝑛

0 denote the charge level of the PEV of user 𝑛 at time slot ℎ 

and the initial battery charge level at the beginning of plugged-in interval, respectively. In this 

work, we assume that the battery degradation and leakage effects are negligible. Moreover, we 

assume that the charge level of the PEV of user 𝑛 at the end of plugged-in interval (i.e., 𝑣𝑛(𝑘𝑛
𝑓
)) 

has to be equal to a given desired level 𝑉𝑛: 

𝑉𝑛 = 𝑣𝑛(𝑘𝑛
𝑓
). (72) 

The charge level is bounded by the minimum and maximum battery capacity 𝑉𝑛 and 𝑉𝑛 as 

follows: 

𝑉𝑛 ≤ 𝑣𝑛(ℎ) ≤ 𝑉𝑛 , ℎ ∈ [𝑘𝑛
𝑠 , 𝑘𝑛

𝑓
], 𝑛 ∈ 𝒩. (73) 

Through the use of logical and supporting variables, we now transform (71) into a linear 

form. First, we introduce a column vector of 𝐻 logical variables 𝜹𝑛
𝑣 ≜

[𝛿𝑛
𝑣(1);… ; 𝛿𝑛

𝑣(ℎ);… ; 𝛿𝑛
𝑣(𝐻)], where each component 𝛿𝑛

𝑣(ℎ) takes value 0 or 1 if the PEV 

stores (i.e., 𝑥𝑛
𝑣(ℎ) ≥ 0) or releases (i.e.,𝑥𝑛

𝑣(ℎ) < 0) energy, respectively: 

𝛿𝑛
𝑣(ℎ) ∈ {0,1}, ℎ ∈ ℋ, 𝑛 ∈ 𝒩 (74) 

𝒙𝑛
𝑣 ≥ 𝟎𝐻,1  ⇔ 𝜹𝑛

𝑣 = 𝟎𝐻,1, 𝑛 ∈ 𝒩 (75) 

where we denote as 𝟎𝑛,1 the 𝑛-dimensional column vector with all elements equal to zero. 

Second, we introduce a supporting vector 𝒙𝑛
𝑣𝛿 ≜ [𝑥𝑛

𝑣𝛿(1);… ; 𝑥𝑛
𝑣𝛿(ℎ);… ; 𝑥𝑛

𝑣𝛿(𝐻)] defined as 

follows: 

𝒙𝑛
𝑣𝛿 = 𝜹𝑛

𝑣 ∘ 𝒙𝑛
𝑣 , 𝑛 ∈ 𝒩 (76) 

where the symbol ∘ denotes the entrywise product. Note that logical equations (75)-(76) can be 

replaced with:   

𝒙𝑛
𝑣 ≤ 𝑣𝑛(𝟏𝐻,1 − 𝜹𝑛

𝑣), 𝑛 ∈ 𝒩 (77) 

𝒙𝑛
𝑣 ≥ 𝑣𝑛𝜹𝑛

𝑣 , 𝑛 ∈ 𝒩 (78) 

𝒙𝑛
𝑣𝛿 ≤ 𝒙𝑛

𝑣 − 𝑣𝑛(𝟏𝐻,1 − 𝜹𝑛
𝑣), 𝑛 ∈ 𝒩 (79) 

𝒙𝑛
𝑣𝛿 ≥ 𝒙𝑛

𝑣 − 𝑣𝑛(𝟏𝐻,1 − 𝜹𝑛
𝑣), 𝑛 ∈ 𝒩 (80) 

𝒙𝑛
𝑣𝛿 ≤ 𝑣𝑛𝜹𝑣 , 𝑛 ∈ 𝒩 (81) 

𝒙𝑛
𝑣𝛿 ≥ 𝑣𝑛𝜹𝑛

𝑣 , 𝑛 ∈ 𝒩 (82) 

where we denote as 𝟏𝑛,1 the 𝑛-dimensional column vector with all elements equal to one. 

Using the above defined supporting vectors 𝜹𝑛
𝑣  and 𝒙𝑛

𝑣 , is thus transformed into a linear 

form: 

𝑣𝑛(ℎ) = 𝑣𝑛(ℎ − 1) + 𝜁𝑛
+ (𝑥𝑛

𝑣(ℎ) − 𝑥𝑛
𝑣𝛿(ℎ)) +

𝑥𝑛
𝑣𝛿(ℎ) 𝜁𝑛

−⁄ ,  
(83) 
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ℎ ∈ [𝑘𝑛
𝑠 , 𝑘𝑛

𝑓
], 𝑛 ∈ 𝒩. 

Finally, we collect all the users’ PEV decision variables vectors in column vectors𝒙𝑣 ≜

[𝒙1
𝑣; … ; 𝒙𝑁

𝑣 ], 𝒙𝑣𝛿 ≜ [𝒙1
𝑣𝛿; … ; 𝒙𝑁

𝑣𝛿], and 𝛅v ≜ [𝛅1
v; … ; 𝛅N

v ], whose lengths are 𝑁𝐻. 

3.5.4.3. Shared Energy Storage System 

The shared ESS unit provides flexibility to users in the scheduling energy consumption. 

Household energy storage devices are mainly batteries such as lead-acid and Li-ion. Here the 

shared ESS is modeled. The shared ESS should optimally store energy from the grid ahead of 

time and consume it during peak hours when the grid load demand is high. To model the 

charging/discharging activities of the ESS within the time windows, we define a column vector 

𝒙𝑠 ≜ [𝑥𝑠(1); … ; 𝑥𝑠(ℎ);… ; 𝑥𝑠(𝐻)], with 𝐻 decision variables, where 𝑥𝑠(ℎ)/𝑥𝑠(ℎ) is the 

energy stored/released in/by the battery at time slot ℎ. Due to the conversion losses of the ESS, 

we define 𝜂+ and 𝜂− as the charging and discharging efficiencies, respectively. 

Similar to the PEVs’ model, the dynamics of the charge level of the ESS for ℎ ∈ ℋ can be 

written as a first order discrete time model as follows: 

𝑠(ℎ) = {
𝑠(ℎ − 1) + 𝜂+𝑥𝑠(ℎ)if𝑥𝑠(ℎ) ≥ 0

𝑠(ℎ − 1) + 𝑥𝑠(ℎ) 𝜂−⁄ if𝑥𝑠(ℎ) < 0
, 

ℎ ∈ ℋ 

(84) 

where 𝑠(ℎ) and 𝑠(0) ≜ 𝑠0 denote the charge level of the ESS at time slot ℎ and at the beginning 

of time horizon, respectively. In this work, we assume that the battery degradation and leakage 

effects are negligible. Moreover, we assume that the charge level at the last time slot 𝑠(𝐻) and 

at the beginning of the time window 𝑠0 are equal since the final energy level is also the initial 

condition for the next time window of the scheduling: 

𝑠0 = 𝑠(𝐻). (85) 

The maximum charge level is bounded by the minimum and maximum battery capacity 𝑆 

and 𝑆 as follows: 

𝑆 ≤  𝑠(ℎ) ≤ 𝑆, ℎ ∈ ℋ. (86) 

Similar to the PEVs’ model, through the use of logical and supporting variables, we now 

transform (84) into a linear form. Firstly, we introduce a column vector of 𝐻 logical variables 

𝜹𝑠 ≜ [𝛿𝑠(1); … ; 𝛿𝑠(ℎ);… ; 𝛿𝑠(𝐻)], where each component 𝛿𝑠(ℎ) takes value 0 or 1 if the ESS 

stores (i.e., 𝑥𝑠(ℎ) ≥ 0) or releases (i.e.,𝑥𝑠(ℎ) < 0) energy, respectively: 

𝛿𝑠(ℎ) ∈ {0,1}, ℎ ∈ ℋ (87) 

𝒙𝑠 ≥ 𝟎𝐻,1  ⇔ 𝜹𝑠 = 𝟎𝐻,1 (88) 
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Secondly, we introduce a supporting vector 𝒙𝑠𝛿 ≜ [𝑥𝑠𝛿(1);… ; 𝑥𝑠𝛿(ℎ);… ; 𝑥𝑠𝛿(𝐻)] defined 

as follows: 

𝒙𝑠𝛿 = 𝜹𝑠 ∘ 𝒙𝑠, 𝑛 ∈ 𝒩. (89) 

Note that logical equations (88)- (89) can be replaced with:   

𝒙𝑠 ≤ 𝑠(𝟏𝐻,1 − 𝜹𝑠) (90) 

𝒙𝑠 ≥ 𝑠𝜹𝑠 (91) 

𝒙𝑠𝛿 ≤ 𝒙𝑠 − 𝑠(𝟏𝐻,1 − 𝜹𝑠) (92) 

𝒙𝑠𝛿 ≥ 𝒙𝑠 − 𝑠(𝟏𝐻,1 − 𝜹𝑠) (93) 

𝒙𝑠𝛿 ≤ 𝑠𝜹𝑠 (94) 

𝒙𝑠𝛿 ≥ 𝑠𝜹𝑠 (95) 

where 𝑠 and 𝑠 are the maximum charging and discharging rates. 

Using the above defined supporting vectors 𝜹𝑠 and 𝒙𝑠𝛿, (84) is thus transformed into a linear 

form: 

𝑠(ℎ) = 𝑠(ℎ − 1) + 𝜂+ (𝑥𝑠(ℎ) − 𝑥𝑠𝛿(ℎ)) +

𝑥𝑠𝛿(ℎ) 𝜂−⁄ ,  

ℎ ∈ ℋ. 

(96) 

3.5.4.4. Demand-Supply Balance  

To satisfy the power balance in the system, a demand-supply balance constraint should be 

fulfilled at each time slot ℎ. We introduce 𝒙𝑔 ≜ [𝑥𝑔(1),… , 𝑥𝑔(ℎ),… , 𝑥𝑔(𝐻)] as a column  

vector of 𝐻 decision variables modeling the energy profile exchanged between users and the 

power grid within the time window. The following balance equation must be thus satisfied: 

∑ (𝒙𝑛
𝑙𝑁

𝑛=1 + 𝒙𝑛
𝑣 + 𝒙𝑛

𝑝
+ 𝒃𝑛 − 𝒓𝑛) + 𝒙𝑠 −

∑ 𝒓𝑚
𝑀
𝑚=𝑁+1 = 𝒙𝑔. 

(97) 

Finally, for the sake of keeping notations lightened, we rename the 𝑃 ≜ 𝑁 + 𝑀 vectors of 

optimization input parameters with 𝒅𝑝 ∈ ℝ𝐻 (𝑝 ∈ 𝒫 ≜ {1,… , 𝑃}), as follows:  

𝒅𝑝 = {
𝒃𝑝 if 𝑝 ∈ [1, 𝑁]

−𝒓𝑝−𝑁  if 𝑝 ∈ [𝑁 + 1,𝑁 + 𝑀]
, 𝑝 ∈ 𝒫. (98) 

In addition, we introduce a column vector 𝒙𝑎 ≜ [𝑥𝑎(1);… ; 𝑥𝑎(ℎ);… ; 𝑥𝑎(𝐻)] of 𝐻 

supporting variables: 

𝒙𝑎 = ∑ (𝒙𝑛
𝑙𝑁

𝑛=1 + 𝒙𝑛
𝑣 + 𝒙𝑛

𝑝
) + 𝒙𝑠  (99) 

Hence, the energy balance equation can be compactly rewritten as follows: 

𝒙𝑎 + ∑ 𝒅𝑝
𝑃
𝑝=1 = 𝒙𝑔. (100) 
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3.5.4.5. Power Grid Energy Pricing and Constraints 

 
A contractual obligation is enforced by the energy provider as an additional constraint, 

restricting the residual MG energy that could be bought/sold from/to the power grid to a 

maximum level at each time slot. We denote the maximum purchasable and salable energy 

profile imposed by the energy provider as a column vector 𝒈 ≜ [𝑔(1);… ; 𝑔(ℎ);… ; 𝑔(𝐻)] and 

𝒈 ≜ [𝑔(1);… ; 𝑔(ℎ);… ; 𝑔(𝐻)], respectively. Thus, the values of the exchanged energy per 

time slot 𝑥𝑔(ℎ) (ℎ ∈ ℋ) must be subject to the following constraints: 

                          𝑔(ℎ) ≤ 𝑥𝑔(ℎ) ≤ 𝑔(ℎ), ℎ ∈ ℋ. (101) 

Furthermore, we assume that the residential MG cannot simultaneously buy and sell energy 

from an imbalance in the energy prices of energy bought/sold from/to the power grid. We 

consider two different sets of pricing functions for the energy bought/sold from/to the grid. In 

particular, we assume that the pricing function for the energy bought from the main grid is a 

quadratic function. On the other hand, we assume that the pricing function for the energy sold 

to the main grid is linear. Consequently, the cost function incurred by the MG at the ℎth time 

slot is defined as follows: 

𝐶ℎ(𝑥𝑔(ℎ)) =

{
𝑘+(ℎ)(𝑥𝑔(ℎ))

2
if𝑥𝑔(ℎ) ≥ 0

𝑘−(ℎ)𝑥𝑔(ℎ) if 𝑥𝑔(ℎ) < 0 
, ℎ ∈ ℋ  

(102) 

where 𝒌+ ≜ [𝑘+(1);… ; 𝑘+(ℎ);… ; 𝑘+(𝐻)] and 𝒌− ≜ [𝑘−(1);… ; 𝑘−(ℎ);… ; 𝑘−(𝐻)] are 

column vectors collecting the known time-varying cost coefficients of buying/selling energy 

from/to the power grid, respectively. 

Through the use of logical and supporting variables, we now transform (102) into a quadratic 

form. First, we introduce a column vector of 𝐻 logical variables 𝜹𝑔 ≜

[𝛿𝑔(1);… ; 𝛿𝑔(ℎ);… ; 𝛿𝑔(𝐻)], where each component 𝛿𝑔(ℎ) takes value 0 or 1 if the MG has 

an amount of energy to buy (i.e., 𝑥𝑔(ℎ) ≥ 0) or to sell (i.e., 𝑥𝑔(ℎ) < 0), respectively: 

𝛿𝑔(ℎ) ∈ {0,1}, ℎ ∈ ℋ (103) 

𝒙𝑔 ≥ 𝟎𝐻,1  ⇔ 𝜹𝑔 = 𝟎𝐻,1. (104) 

Second, we introduce a supporting vector 𝒙𝑔𝛿 ≜ [𝑥𝑔𝛿(1);… ; 𝑥𝑔𝛿(ℎ);… ; 𝑥𝑔𝛿(𝐻)] defined 

as follows: 

𝒙𝑔𝛿 = 𝜹𝑔 ∘ 𝒙𝑔. (105) 

Note that, following [387], logical equations (104)-(105) can be replaced with:   

𝒙𝑔 ≤ 𝒈 ∘ (𝟏𝐻,1 − 𝜹𝑔) (106) 
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𝒙𝑔 ≥ 𝒈 ∘ 𝜹𝑔 (107) 

𝒙𝑔𝛿 ≤ 𝒙𝑔 − 𝒈 ∘ (𝟏𝐻,1 − 𝜹𝑔) (108) 

𝒙𝑔𝛿 ≥ 𝒙𝑔 − 𝒈 ∘ (𝟏𝐻,1 − 𝜹𝑔) (109) 

𝒙𝑔𝛿 ≤ 𝒈 ∘ 𝜹𝑔 (110) 

𝒙𝑔𝛿 ≥ 𝒈 ∘ 𝜹𝑔. (111) 

Furthermore, using the above defined supporting vector 𝒙𝑔𝛿, the non-linear formulation of 

the energy cost at the ℎth time slot in (102) is thus transformed into a quadratic form: 

𝐶ℎ (𝑥𝑔(ℎ), 𝑥𝑔𝛿(ℎ)) = 𝑘+(ℎ)(𝑥𝑔(ℎ))
2
 

−𝑘+(ℎ) (𝑥𝑔𝛿(ℎ))
2
+ 𝑘−(ℎ)𝑥𝑔𝛿(ℎ), ℎ ∈ ℋ.  

(112) 

The cost incurred by the residential MG to exchange the energy profile 𝒙𝑔 with the power 

grid over the whole time window is the summation of costs over all the time slots, which is 

compactly written based on (112) as: 

𝐶(𝒙𝑔, 𝒙𝑔𝛿) = ∑ 𝐶ℎ (𝑥𝑔(ℎ), 𝑥𝑔𝛿(ℎ))𝐻
ℎ=1 =

(𝒙𝑔)𝑇𝑲+𝒙𝑔 − (𝒙𝑔𝛿)
𝑇
𝑲+𝒙𝑔𝛿 + (𝒌−)𝑇𝒙𝑔𝛿  

(113) 

where 𝑲+ = 𝑑𝑖𝑎𝑔(𝒌+). Finally, replacing (100) in (113), we get that the cost incurred by 

the residential MG over the whole-time window is equivalent to: 

𝐶(𝒙𝑔𝛿 , 𝒙𝑎) = (𝒙𝑎 + ∑ 𝒅𝑝
𝑃
𝑝=1 )

𝑇
𝑲+(𝒙𝑎 +

∑ 𝒅𝑝
𝑃
𝑝=1 )  

−(𝒙𝑔𝛿)
𝑇
𝑲+𝒙𝑔𝛿 + (𝒌−)𝑇𝒙𝑔𝛿. 

 

(114) 

 

3.5.5. Deterministic Formulation of the Scheduling 

Problem 

In the preliminary deterministic model, uncertainty is disregarded, and the scheduling 

problem is solved based on nominal forecasted values. We first formulate the problem aiming 

at determining the cost-optimal energy scheduling of the users’ CLs, HPs, and PEVs, ESS 

charging/discharging profile, and buying/selling strategies: 

min
𝒙𝑙,𝒙𝑝,𝒙𝑣,𝒙𝑣𝛿,𝒙𝑠,𝒙𝑠𝛿,𝒙𝑔,𝒙𝑔𝛿,

𝒙𝑎,𝜹𝑣,𝜹𝑠,𝜹𝑔 

𝐶(𝒙𝑔𝛿 , 𝒙𝑎) 
(115) 

s.t. (64)-(70), (72)-(74), (77)-(83), (85)-(87), 

(90)-(96), (99)-(101), (103), (106)-(108). 
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Problem (115) is called nominal scheduling. It is convenient rewriting (115) into a reduced 

form omitting superfluous terms as follows. First, we note that the objective function (114) 

contains terms not depending on decision variables, which can be thus neglected. To this aim 

we transform (114) as follows:  

𝐶(𝒙𝑔𝛿 , 𝒙𝑎) = 𝒙𝑎𝑇
𝑲+𝒙𝑎 +

2(∑ 𝒅𝑝
𝑃
𝑝=1 )

𝑇
𝑲+𝒙𝑎 − 

(𝒙𝑔𝛿)
𝑇
𝑲+𝒙𝑔𝛿 + (𝒌−)𝑇𝒙𝑔𝛿 +

(∑ 𝒅𝑝
𝑃
𝑝=1 )

𝑇
𝑲+(∑ 𝒅𝑝

𝑃
𝑝=1 )  

= 𝑐(𝒙𝑔𝛿 , 𝒙𝑎) + (∑ 𝒅𝑝
𝑃
𝑝=1 )

𝑇
𝑲+(∑ 𝒅𝑝

𝑃
𝑝=1 )  

(116) 

 

where in the last member of (116) we incorporate all the terms depending only on decision 

variables in 𝑐(𝒙𝑔𝛿 , 𝒙𝑎) ≜ 𝒙𝑎𝑇
𝑲+𝒙𝑎 + 2(∑ 𝒅𝑝

𝑃
𝑝=1 )

𝑇
𝑲+𝒙𝑎 − (𝒙𝑔𝛿)

𝑇
𝑲+𝒙𝑔𝛿 + (𝒌−)𝑇𝒙𝑔𝛿  

and we leave out all the terms depending on optimization input parameters.  

Second, we note that equality constraints (100) can be removed. Indeed, replacing (100) in 

(101) and (106)-(111), variables vector 𝒙𝑔 can be omitted.  

Summing up, the deterministic energy scheduling problem is reformulated as follows: 

min
𝒙𝑙,𝒙𝑝,𝒙𝑣,𝒙𝑣𝛿,𝒙𝑠,𝒙𝑠𝛿,𝒙𝑔𝛿,

𝒙𝑎,𝜹𝑣,𝜹𝑠,𝜹𝑔 

𝑐(𝒙𝑔𝛿 , 𝒙𝑎)  
(117) 

s.t. (64)-(70), (72)-(74), (77)-(83), (85)-(87), 

(90)-(96), (99)-(101), (103), (106)-(108), and 
 

𝒙𝑎 + ∑ 𝒅𝑝
𝑃
𝑝=1 ≤ 𝒈  (118) 

𝒙𝑎 + ∑ 𝒅𝑝
𝑃
𝑝=1 ≥ 𝒈 (119) 

𝒙𝑎 + 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1 ≤ 𝒈  (120) 

𝒙𝑎 − 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1 ≥ 𝟎𝐻,1  (121) 

𝒙𝑎 − 𝒙𝑔𝛿 + 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1  ≥ 𝒈 (122) 

𝒙𝑎 − 𝒙𝑔𝛿 + 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1 ≤ 𝒈  (123) 

Note that in the argument of (117) we disregard all the constant terms of the energy cost 

(116)  depending on optimization input parameters, and we replace (101) and (106)- (109) with 

(118)- (119) and (120)- (123), respectively.  
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3.5.6. Robust Formulation of the Scheduling 

Problem 

The previously defined deterministic scheduling problem unrealistically assumes perfect 

knowledge of users' energy demand and RES generation (i.e., 𝒅𝑝, 𝑝 ∈ 𝒫). However, the 

variation in the forecast profile of the NCLs’ consumption and RESs generation may cause too 

much deviation from the optimum in the obtained results, leading to an ineffective scheduling. 

Here, in order to tackle the users’ behavior uncertainty, we firstly define the uncertainty set, 

then reformulate the problem into its robust counterpart. 

3.5.6.1. Data Uncertainty Set of Users’ Behavior 

Denoting the column vector of parameters related to the 𝑝th source of uncertainty (i.e., the 

NCL consumption profile of each user 𝑛 ∈ 𝒩 or the produced energy profile of each individual 

and shared RES 𝑚 ∈ ℳ) as 𝒅̃𝑝 ≜ [𝑑̃𝑝(1);… ; 𝑑̃𝑝(ℎ);… ; 𝑑̃𝑝(𝐻)], we assume a symmetric 

distribution for all the uncertain parameters 𝑑̃𝑝(ℎ) (ℎ ∈ ℋ, 𝑝 ∈ 𝒫):  

𝒅𝑝 − 𝒅̂𝑝 ≤ 𝒅̃𝑝 ≤ 𝒅𝑝 + 𝒅̂𝑝, 𝑝 ∈ 𝒫  (124) 

where 𝒅𝑝 is the previously defined vector of nominal values and 𝒅̂𝑝 ≜

[𝑑̂𝑝(1),… , 𝑑̂𝑝(ℎ),… , 𝑑̂𝑝(𝐻)] (𝑝 ∈ 𝒫) is the vector collecting the semi-amplitude of maximum 

variations related to the profile of the 𝑝th source of uncertainty. We get that: 

𝒅̂𝑝 = {
𝒃̂𝑝 if 𝑝 ∈ [1, 𝑁]

𝒓̂𝑝−𝑁  if 𝑝 ∈ [𝑁 + 1, 𝑃]
, 𝑝 ∈ 𝒫  (125) 

where 𝒃̂𝑛 and 𝒓̂𝑚 is the vector of semi-amplitudes related to the energy profile of the 𝑛th user’s 

NCL and the 𝑚th RES, respectively. We assume that these semi-amplitudes are available based 

on historical data. Detailed forecast algorithms will not be discussed here since they are beyond 

the scope of this work.  

Rather than protecting the MG against the worst-case deviation of all the parameters, we 

adopt the cardinality-constrained uncertainty method in [337] that allows to decide the level of 

conservativeness and is able to withstand parameters’ uncertainty without excessively affecting 

the objective function and constraints. We define a non-negative parameter 𝛤0 (not necessarily 

integer) as the budget of uncertainty. This is a robustness factor that denotes the number of 

parameters (i.e., 𝑑𝑝(ℎ), 𝑛 ∈ 𝒫, ℎ ∈ ℋ) protected against disturbances, taking values in [0,

𝑃𝐻]. The problem solution is guaranteed to be feasible if no more than ⌊𝛤0⌋ of the parameters 

𝑑̃𝑝(ℎ) are subject to uncertainty, and one 𝑑̃𝑝(ℎ) changes no more than (⌊𝛤0⌋ − 𝛤0)𝑑̂𝑝(ℎ). Note 
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that ⌊∙⌋ denotes the ceiling operator: given the real number 𝑎, ⌊𝑎⌋ is the greatest integer less than 

or equal to 𝑎. 

3.5.6.2. Robust Counterpart of the Scheduling 

Problem 

The robust counterpart of the scheduling problem is aimed at achieving a problem 

formulation that is feasible for any realization of the uncertainty within the defined uncertainty 

set. Here, uncertainty affects both the objective function in (117) and the inequality constraints 

in (118)-(123) of the energy scheduling formulated in the previous section. Moreover, we 

remark that uncertainty not only affects the LHS of inequality constraints, but also their RHS.  

Getting inspiration from the cardinality-constrained approach in [337], the robust counterpart 

of the deterministic scheduling formulation (117)-(123) is given by the following non-linear 

optimization problem: 

min
𝒙𝑙,𝒙𝑝,𝒙𝑣,𝒙𝑣𝛿,𝒙𝑠,𝒙𝑠𝛿,𝒙𝑔𝛿,

𝒙𝑎,𝜹𝑣,𝜹𝑠,𝜹𝑔 

𝑐(𝒙𝑔𝛿 , 𝒙𝑎) + 𝛽(𝒙𝑎 , 𝛤0)  
(126) 

s.t. (64)-(70), (72)-(74), (77)-(83), (85)-(87), 

(90)-(96), (99)-(101), (103), (106)-(108), and 
 

𝑥𝑎(ℎ) + ∑ 𝑑𝑝(ℎ) 𝑝∈𝒫 + 𝛾ℎ(𝛤0) ≤ 𝑔(ℎ), ℎ ∈ ℋ (127) 

𝑥𝑎(ℎ) + ∑ 𝑑𝑝(ℎ)𝑝∈𝒫 − 𝛾ℎ(𝛤0) ≥ 𝑔(ℎ), ℎ ∈ ℋ (128) 

𝑥𝑎(ℎ) + 𝑔(ℎ)𝛿𝑔(ℎ) + ∑ 𝑑𝑝(ℎ)𝑃
𝑝=1 + 𝛾ℎ(𝛤0) ≤ 𝑔(ℎ),   

ℎ ∈ ℋ (129) 

𝑥𝑎(ℎ) − 𝑔(ℎ)𝛿𝑔(ℎ) + ∑ 𝑑𝑝
𝑃
𝑝=1 (ℎ) − 𝛾ℎ(𝛤0) ≥ 0,  

 

ℎ ∈ ℋ (130) 

𝑥𝑎(ℎ) − 𝑥𝑔𝛿(ℎ) + 𝑔(ℎ)𝛿𝑔(ℎ) + ∑ 𝑑𝑝
𝑃
𝑝=1 (ℎ) − 𝛾ℎ(𝛤0) ≥ 𝑔(ℎ),  

ℎ ∈ ℋ (131) 

𝑥𝑎(ℎ) − 𝑥𝑔𝛿(ℎ) + 𝑔(ℎ)𝛿𝑔(ℎ) + ∑ 𝑑𝑝
𝑃
𝑝=1 (ℎ) + 𝛾ℎ(𝛤0) ≤ 𝑔(ℎ),  

ℎ ∈ ℋ (132) 

where 𝛽(𝒙𝑎 , 𝛤0) is the protection function of the objective function, and 𝛾ℎ(𝛤0) (ℎ ∈ ℋ) are 

the protection functions of the inequality constraints. For a given solution of (126)-(132), the 

above introduced (𝐻 + 1) protection functions are defined as follows: 
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𝛽(𝒙𝑎∗, 𝛤0) = max
𝒬1∪{𝑞1},…,

𝒬𝐻∪{𝑞𝐻},
𝛤1,…,𝛤𝐻 

 

2∑ ( 𝑘+(ℎ)|𝑥𝑎∗(ℎ)|∑ 𝑑̂𝑝(ℎ)𝑝∈𝒬ℎ
+ℎ∈ℋ   

+(𝛤ℎ − ⌊𝛤ℎ⌋)𝑘+(ℎ)|𝑥𝑎∗(ℎ)|𝑑̂𝑞ℎ
(ℎ)) (133) 

𝜸(𝛤0) ≜ [
𝛾1(𝛤0)

⋮
𝛾𝐻(𝛤0)

] =

max
𝒬1∪{𝑞1},

…,
𝒬𝐻∪{𝑞𝐻},
𝛤1,…,𝛤𝐻 

 

 

[

∑ 𝑑̂𝑝(1) + (𝛤1 − ⌊𝛤1⌋)𝑑̂𝑞1
(1)𝑝∈𝒬1

⋮
∑ 𝑑̂𝑝(𝐻) + (𝛤𝐻 − ⌊𝛤𝐻⌋)𝑑̂𝑞𝐻

(𝐻)𝑝∈𝒬𝐻

]  

(134) 

s.t. 𝒬ℎ ⊆ 𝒫, |𝒬ℎ| = ⌊𝛤ℎ⌋, 𝑞ℎ ∈ 𝒫\𝒬ℎ, ℎ ∈ ℋ (135) 

0 ≤ 𝛤ℎ ≤ 𝑃, ℎ ∈ ℋ,∑ 𝛤ℎℎ∈ℋ = 𝛤0. (136) 

where we introduce 𝐻 supporting variables 𝛤1, … , 𝛤ℎ , … , 𝛤𝐻 to quantify the portions (not 

necessarily integer) of the total uncertainty budget 𝛤0 over all the time slots (see Figure 3.22). 

In (133)-(136) we also introduce 𝐻 subsets 𝒬1, … , 𝒬ℎ, … , 𝒬𝐻 and 𝐻 indices 𝑞1, … , 𝑞ℎ , … , 𝑞𝐻 to 

deal with uncertainty. In particular,  𝒬ℎ ⊆ 𝒫 (with ℎ ∈ ℋ) is the subset of uncertainty sources 

𝑝 defined by (125), whose value in time slot ℎ gets the maximum variation (i.e., 𝑑𝑝(ℎ) +

𝑑̂𝑝(ℎ)). At most  ⌊𝛤ℎ⌋ uncertainty sources are assumed to belong to this subset. Further, in case 

𝛤ℎ is not integer, an uncertainty source 𝑞ℎ is selected at each time slot ℎ, whose value is affected 

by a variation lower than the maximum deviation (i.e., the value is between 𝑑𝑞ℎ
(ℎ) and 

𝑑𝑞ℎ
(ℎ) + 𝑑̂𝑞ℎ

(ℎ)). For a given time slot ℎ, all the remaining uncertainty sources 𝑝 not 

belonging to 𝒬ℎ and different from 𝑞ℎ get the nominal values (i.e., 𝑑𝑝(ℎ)). As a result, in (126)-

(132) robustness is taken into account considering the maximum variation for each uncertainty 

parameters over the whole time horizon, given the allocation 𝛤1, … , 𝛤ℎ , … , 𝛤𝐻 of the total 

uncertainty budget 𝛤0 over all the time slots.  

Further details on the above-defined robust counterpart (126)-(132) and the differences with 

the approach proposed in [337] are provided in Appendix A. 



 
 

141 

 

 
Figure 3. 22. Illustration of the allocation of the total uncertainty budget over time slots. 

 

3.5.6.3. Reformulation of the Robust Counterpart 

Observing (126) to (132), it can be found that the robust counterpart of the scheduling 

problem includes strong non-linearities and cardinality calculations due to the inner 

maximization defined by (133)-(136) and placed in (126)-(132). Thus, it is still difficult to solve 

the problem in its current min-max form. This can be resolved by transforming the robust 

counterpart into an easier form. By introducing further supporting  variables 𝒚,𝛬, 𝜆, 𝛩𝑝ℎ, 𝜽𝑝ℎ 

(with 𝑝 ∈ 𝒫, ℎ ∈ ℋ) and taking advantage of the strong duality theorem [388], we transform 

(126)-(132) into an equivalent MIQP formulation as follows: 

min
𝒙𝑙,𝒙𝑝,𝒙𝑣,𝒙𝑣𝛿,𝒙𝑠,𝒙𝑠𝛿,𝒙𝑔𝛿,

𝒙𝑎,𝜹𝑣,𝜹𝑠,𝜹𝑔,
𝒚,𝛬,𝝀,

𝛩11,…,𝛩1𝐻,…,𝛩𝑃1,…,𝛩𝑃𝐻,
𝜽11,…,𝜽1𝐻,…,𝜽𝑃1,…,𝜽𝑃𝐻 

𝑐(𝒙𝑔𝑢, 𝒙𝑎) + 𝛤0𝛬 + ∑ ∑ 𝛩𝑝ℎℎ∈ℋ𝑝∈𝒫   

(137) 

s.t. (64)-(70), (72)-(74), (77)-(83), (85)-(87), 

(90)-(96), (99)-(101), (103), (106)-(108), and 
 

𝒙𝑎 + ∑ 𝒅𝑝
𝑃
𝑝=1 + 𝛤0𝝀 + ∑ ∑ 𝜽𝑝ℎℎ∈ℋ𝑝∈𝒫 ≤ 𝒈  (138) 

𝒙𝑎 + ∑ 𝒅𝑝
𝑃
𝑝=1 − 𝛤0𝝀 − ∑ ∑ 𝜽𝑝ℎℎ∈ℋ𝑝∈𝒫 ≥ 𝒈 (139) 

𝒙𝑎 + 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1 + 𝛤0𝝀 + ∑ ∑ 𝜽𝑝ℎℎ∈ℋ𝑝∈𝒫 ≤ 𝒈  

(140) 

𝒙𝑎 − 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1 − 𝛤0𝝀 − ∑ ∑ 𝜽𝑝ℎℎ∈ℋ𝑝∈𝒫 ≥ 𝟎𝐻,1  

(141) 

𝒙𝑎 − 𝒙𝑔𝛿 + 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1  − 𝛤0𝝀 − ∑ ∑ 𝜽𝑝ℎℎ∈ℋ𝑝∈𝒫 ≥ 𝒈 

(142) 
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𝒙𝑎 − 𝒙𝑔𝛿 + 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1 + 𝛤0𝝀 + ∑ ∑ 𝜽𝑝ℎℎ∈ℋ𝑝∈𝒫 ≤ 𝒈  

(143) 

𝑤0𝛬 + 𝒘𝑇𝝀 ≥ 0  (144) 

𝑤0𝛩𝑝ℎ + 𝒘𝑇𝜽𝑝ℎ ≥ 0, 𝑝 ∈ 𝒫, ℎ ∈ ℋ  (145) 

𝑤0(𝛬 + 𝛩𝑝ℎ) + 𝒘𝑇(𝝀 + 𝜽𝑝ℎ) ≥ 𝑤02𝑘+(ℎ)𝑑̂𝑝(ℎ)𝑦(ℎ) + 𝒘𝑇𝒅̂𝑝,  

𝑝 ∈ 𝒫, ℎ ∈ ℋ  (146) 

−𝒚 ≤ 𝒙𝑎 ≤ 𝒚. (147) 

where 𝑤0 is the non-negative weight associated to the protection function of the objective and 

𝒘 ≜ [𝑤1;… ; 𝑤𝐻] is a column vector collecting the non-negative weights associated to the 

protection function of the inequality constraints. 

A detailed description of the introduced supporting variables and a comprehensive proof of 

the robust counterpart reformulation are provided in Appendix B. 

We finally remark that (137)-(147) is a MIQP problem that consists in determining the 

(𝐻(𝑃(𝐻 + 1) + 4𝑁 + 6) + 1) real and𝐻(𝑁 + 2) binary decision variables, which minimize 

the objective function in (137) and meet the 12𝐻𝑁 bounding constraints (64), (68), and (70), 

the (3𝐻𝑁 + 2𝑁 + 2𝐻 + 1) equality constraints (65)-(66), (69), (72), (83), (85), (96), and (99), 

the 2𝐻(5𝑁 + 16) inequality constraints (67), (77)-(82), (86), (90)-(95), (101), (110)-(111), and 

(140)-(147), and the 𝐻(𝑁 + 2) integrality constraints (74), (87), and (103). 

3.5.6.4. The Robust Control Solution Based on 

Budget of Uncertainty 

Solving the transformed robust counterpart (137)-(147), the energy scheduling can be 

obtained with different robustness levels. Indeed, the robustness of the energy scheduling varies 

with the total budget of uncertainty (𝛤0). Here, the role of 𝛤0 is to adjust the robustness of the 

proposed scheduling method against the level of conservativeness of the solution. Accordingly, 

the conservativeness of the solution can be controlled. Note that for 𝛤0 = 0, 𝛽(𝒙𝑎 , 𝛤0) = 0 and 

𝛾ℎ(𝛤0) = 0 (ℎ ∈ ℋ), the constraints are equivalent to those of the deterministic problem. In 

this case, the total cost is minimum, but the results are too optimistic. Likewise, for 𝛤0 = 𝑃𝐻, 

the uncertainty is fully addressed during the operation, but the solution is obtained in the most 

conservative case (i.e., the worst case over all the possible realization of uncertain parameters). 

Thus, by varying 𝛤0 ∈ [0, 𝑃𝐻], a flexibility is provided for the decision maker to adjust the 

robustness of the method against the level of conservativeness and a trade-off between users’ 

energy payment and constraint violation rate is found. In the subsequent case study, we show 
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that even in the case of higher number of changes than 𝛤0, the robust solution is feasible with 

very high probability. The conservativeness of the solution and the maximum probability of 

constraint violation under the given uncertainty bounds can be controlled by adjusting the value 

of the budget of uncertainty [337]. 

3.5.7. Simulation Results and Analysis 

In this section, we provide a day-ahead energy scheduling on a weekday for a residential 

MG to evaluate the performance of the proposed robust framework. We investigate the effects 

of the proposed method on: 1) the users’ energy payment, 2) the constraint violation rate, and 

3) the PAR in exchanged energy. Note that the PAR in exchanged energy can be defined as in 

[347]: 

𝑃𝐴𝑅 =
max
ℎ∈ℋ

|𝑥𝑔(ℎ)|
1

𝐻
∑ 𝑥𝑔(ℎ)𝐻

ℎ=1

⁄ .  (148) 

The problem is solved by CPLEX 12.8 in MATLAB R2017a on a desktop PC with an Intel 

i7-7500U core processor with 2.70 GHz (4 CPUs) and 12 GB RAM memory. 

3.5.7.1. Parameters and Settings 

The sample power system (see Figure 3.21) has 𝑁 = 10 smart users subscribing to the EMS. 

For simplicity, we assume that each user consists of a CL, a NCL, and a PEV, while all users 

share an ESS, a PVS and a DWT. We consider the time window for simulation of one day from 

0:00 to 23:59. Each time slot is set equal to one hour, meaning that the decision is made by 

solving the optimization problem for the next 𝐻 = 24 hours. As mentioned, we assume that, in 

the cost function, the term corresponding to the electricity bought from the power grid is 

quadratic, while the related term to the electricity sold back to the power grid is linear. The 

price signals for bought and sold electrical energy throughout the day are taken from [347], 

[389][390]. Accordingly, the daily cost coefficients for the energy bought from the power grid 

during peak-demand time slots (i.e., [9:00 to 11:00] and [16:00 to 21:00]) and off-peak-demand 

time slots (i.e., [0:00 to 8:00], [12:00 to 15:00] and [22:00 to 24:00]) are set to 0.1875 ₵/kWh2 

and 0.0937 ₵/kWh2 respectively. Also, the cost coefficients for energy sold to the power grid 

for peak-demand and off-peak-demand time slots are considered as 0.1188 ₵/kWh and 0.0594 

₵/kWh respectively. Figure 3.23 shows both the buying and selling cost coefficient profiles. 

We assume that the maximum permissible energy transferred with the power grid (both for 

buying and selling) for all time slots is 60 kWh. The energy required by the energy-based CLs 

ranges from 0 to 3.5 kWh. We assume that the cumulative daily energy demand for each user’s 
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CL is 30 kWh. To model the users’ NCLs, we use the actual profiles of average hourly 

electricity consumption for a sample of homes in Italy taken from [391]. The aggregated 

forecast energy demand profile of NCLs over all users (i.e., ∑ 𝒃𝑛
𝑁
𝑛=1 ) and the corresponding 

uncertainty range (that is 10% of the forecast value for each time slot) is presented in Figure 

3.24. We consider a shared ESS unit with maximum storage capacity 120 kWh, and with the 

maximum charging/discharging rate of 25 kWh. We assume that both charging and discharging 

efficiencies are 0.9, initial charge level is zero, and battery degradation and leakage effects are 

negligible. The hybrid forecast energy generation profile of the shared PVS and DWT, taken 

from [392], with corresponding uncertainty range (that is 10% of the forecast value for each 

time slot), is represented in Figure 3.25. It is to be noted that, as the energy generation profiles 

of the RESs depend on weather conditions, we assume that the hybrid forecast energy 

generation profile of individual RESs for each user is obtained scaling by 10% the shared PVS 

and DWT profile (i. e., Figure 3.25) and considering a 10% uncertainty range for each time 

slot. For each PEV, we assume that the initial battery charge level and the desired final state of 

charge are 1 and 5 kWh, respectively. Also, we assume that the PEV leaves home at 8:00 and 

returns at 18:00. That is, the PEV is plugged-in during time slots [0:00, 08:00] ∪ [18:00, 24:00] 

and can participate in the energy scheduling (e.g., release its remaining stored energy to the 

system after arrival). We adopt discrete Gaussian distributed random variables to model the 

uncertainties of NCLs and RESs. We also assume that users are equipped with identical HVAC  

systems (i.e., HPs) and the desired indoor temperature setpoint ranges in [18, 21] ℃. Moreover, 

we consider active setpoints during time slots [06:00, 8:00] ∪ [17:00, 24:00], that is when 

occupants are present.  We set a desired temperature at 19℃ upon the nominal arrival time of 

occupants (i. e., 18:00), and the HP can start running earlier (e. g., 17:00) to raise the 

temperature to the desired value. We take the profile of daily outdoor temperature for a typical 

winter day in Italy from [391], and we set the value of model parameters as 𝜏𝑛 = 3600 s, 𝜋𝑛 =

15 𝑊 𝑠
𝑚⁄  and 𝐸𝑛 = 2.5 kWh. 

 

 
Figure 3. 23. Daily cost coefficients for the energy bought/sold from/to the power grid during peak-demand and 

off-peak-demand time slots.. 
 



 
 

145 

 

 
Figure 3. 24. Aggregated forecast energy demand profile of NCLs with corresponding uncertainty ranges. 

 

 
Figure 3. 25. Hybrid forecast energy generation profiles of shared PVS and DWT with corresponding uncertainty 

ranges. 

 

3.5.7.2. Results  

We simulate the energy scheduling of the sample MG by applying the method for three 

cases of analysis. First, the simulation results are reported and compared in three cases.  

Case 1: the nominal model with perfect forecast data ignoring uncertainty (i.e., when 𝛤 =

0). Therefore, no protection terms are considered against data uncertainty (i.e. 𝛽(𝒙𝑎 , 𝛤0) = 0 

and 𝛾ℎ(𝛤0) = 0, ℎ ∈ ℋ).  

Case 2: the robust model considering full protection against data uncertainty (i.e., the worst-

case realization) by adopting the maximum budget of uncertainty (𝛤0 = 𝑃𝐻 = 528), implying 

the most conservative solution. 

Case 3: the robust model considering uncertainty with 𝛤0 = 𝛤0
∗, where 𝛤0

∗ ∈ (0, 𝑃𝐻) 

corresponds to a potential choice for the budget of uncertainty when the robustness of the 

solution rarely changes for 𝛤0 > 𝛤0
∗. This value can be obtained after sensitivity analyses over 

different budgets of uncertainty (we set 𝛤0
∗ = 104), meaning that increasing the protection level 

by choosing 𝛤0 > 𝛤0
∗ does not provide a significant improvement in the robustness of the 

solution against uncertainty, due to the change in constraint violation for 𝛤0 ∈ [104,528]). 

The results of the energy scheduling for the three cases are presented in Figures 3.26-3.29. 

In Figure 3.26, the scheduled aggregated energy profiles of the energy-based CLs over users 

(i.e., ∑ 𝒙𝑛
𝑙𝑁

𝑛=1 ) are reported. Figure 3.27 represents the charging/discharging activities of the 

shared ESS (i.e., 𝒙𝑠). Figure 3.28 shows the optimal aggregated charging/discharging activities 

of PEVs (i.e., ∑ 𝒙𝑛
𝑣𝑁

𝑛=1 ). In Figure 3.29, the scheduled aggregated energy profiles of the HPs 

over users (i.e., ∑ 𝒙𝑛
𝑝𝑁

𝑛=1 ) are reported. First, the results show that the scheduling arranges the 



 
 

146 

 

operation time of the CLs to the off-peak time slots for minimizing the energy payment. Second, 

the ability of optimally storing the energy in the off-peak time slots and releasing it during the 

peak hour periods by the ESS and PEVs effectively contributes to the minimization of the total 

energy payment. Furthermore, the scheduling tries to exploit the energy harvested from the 

RESs first for supplying the users’ energy demand or charging the ESS and PEVs, and 

secondarily for transferring surplus energy to the power grid. For this specific scenario, the 

users’ daily energy payments and the PAR values for cases 1, 2, and 3 are respectively 27.81€, 

29.98€, and 28.62€ and 2.277, 2.325, and 2.297. Although the solution of case 1 leads to the 

minimum daily users’ energy payment (7.25% lower than case 2, and 2.84% lower than case 

3) and the lowest PAR (6.61% lower than case 2, and 3.11% lower than case 3), the result is 

the most optimistic case since it ignores the effects of the data uncertainty. Therefore, in real 

conditions, any disturbance in the forecast profiles of the load demands or the RESs energy 

generation may cause an excessive increase in the obtained value of the objective function. 

Also, the contractual constraints can be easily violated over the time window in presence of 

any disturbances because of the lack of any protection term in (101) against data uncertainty. 

 

 

 

 
Figure 3. 26. Aggregated energy profiles of the energy-based CLs for: (a) case 1, (b) case 2, and (c) case 3. 
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Figure 3. 27. Charging/discharging strategies of shared ESS for: (a) case 1, (b) case 2, and (c) case 3. 

 
On the other hand, the solution of case 2 provides full immunity against the worst-case 

realization. Here, the worst-case occurs when the energy demand uncertainty takes its upper 

bound, while the RESs generation uncertainty stands on its lower band during all time slots. 

This case guarantees that the solution is immunized against all possible uncertain data, leading 

to zero constraint violation rate. However, this immunity is obtained at the expenses of an 

unnecessarily too conservative solution, causing the highest users’ daily energy payment (i.e., 

29.98€) and highest PAR (i.e., 2.613). In order to prevent such a too conservative solution, 

case 3 provides a compromise where there is a respective decrease of 4.53% and 1.21% in the 

users’ daily energy payment and the PAR compared to those in the case 2. Meanwhile, the 

solution obtained by case 3 is robust against data uncertainty with very high probability (i.e., 

more than 99%) that is discussed in the next subsection. In general, by adjusting the budget of 

uncertainty in the possible range (𝛤0 ∈ [0, 528]), the level of conservativeness of the solution 

can be controlled and a trade-off between the users’ energy payment and the constraint violation 

rate can be established based on the decision maker’s preferences. In the next subsection, we 

also argue that when the forecast data are subject to uncertainty, the robust model provides a 

good performance in flattening the profile of the total exchanged energy with the power grid, 

leading to a lower PAR. For a further validation of the results, the method should be also analyzed 

in real conditions, i.e., evaluating the results achieved for different realizations of uncertain 

variables, as provided in the next subsection. 
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Figure 3. 28. Aggregated charging/discharging strategies of PEVs for: (a) case 1, (b) case 2, and (c) case 3. 

 

 

 

 
Figure 3. 29. Aggregated energy profiles of the HPs for: (a) case 1, (b) case 2, and (c) case 3. 
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3.5.7.3. Discussions  

To show the impact of data uncertainty on the problem and demonstrate the effectiveness of the 

proposed robust approach against it, Monte Carlo (MC) simulations are used to generate 10,000 

scenarios for the users’ demand and the RESs generation uncertainties. We then present a sensitivity 

analysis of the protection level with respect to the daily energy payment, the constraint violation 

rate, and the PAR through comparing the solutions generated by different budgets of uncertainty. 

The actual profile of the NCLs at each MC iteration is obtained by adding a normally distributed 

random sequence with zero mean and standard deviation equal to 0.2 kWh to the nominal forecast 

values. In order to obtain some insights on the effect of changing the budget of uncertainty on the 

users’ energy payment, constraint violation rate and the PAR, and ultimately to show the robustness 

of the approach, we present the energy scheduling results for the average profile of the MC 

simulations for all iterations. The profiles of the average energy exchanged with the power grid over 

all MC iterations compared to the maximum permissible energy bought/sold from/to the power grid 

per time slot (i.e., 𝑔(ℎ)/𝑔(ℎ)), indicated with the dashed line, for case 1, case 2, and case 3 are 

illustrated in Figures 3.30a, 3.30b and 3.30c, respectively. It can be found that, under the considered 

scenarios, the energy exchanged between users and the power grid violates constraint (101) in more 

than 34.83% of time slots in case 1 (the nominal model), which is undesirable (Figure 3.31a). 

Conversely, in case 2 (robust model - worst-case mode), these constraints are fully satisfied, 

confirming that full protection is established (Figure 3.31b). In case 3 (the robust model with 𝛤0 =

𝛤0
∗ = 104), the average exchanged energy profile (Figure 3.31c) shows that even by adopting a 

budget of uncertainty less than 20% of the maximum protection level, the constraint (101) over 

time window is met with very high probability (more than 99%). Table 3.5 reports the comparison 

of the average MC simulation results achieved by the three cases of simulation in terms of the daily 

total cost, the probability of constraint violation, the PAR, and the so-called price of robustness 

(PoR) defined as the percentage of relative difference between the costs achieved by a robust 

solution and a nominal solution [337]. We calculate the PoR as: 

𝑃𝑜𝑅 = 100
∑ 𝐶ℎ(𝑥𝑔,𝑟𝑜𝑏(ℎ))𝐻

ℎ=1 −∑ 𝐶ℎ(𝑥𝑔,𝑛𝑜𝑚(ℎ))𝐻
ℎ=1

∑ 𝐶ℎ(𝑥𝑔,𝑛𝑜𝑚(ℎ))𝐻
ℎ=1

  (149) 

where 𝑥𝑔,𝑛𝑜𝑚(ℎ) and 𝑥𝑔,𝑟𝑜𝑏(ℎ) (ℎ ∈ ℋ) are the optimal values of the energy that the MG 

exchanges with the power grid in accordance with the nominal and the robust scheduling, 

respectively. Although in case 1 a better respective saving of 3.61% and 1.88% in the value of average 

daily users’ energy payment can be achieved compared to those in case 2 and case 3, the constraint 

violation rate is drastically higher than those in two other cases (i.e., 35.02% and 34.10% higher than the 

values in the case 2 and case 3 respectively). On the other hand, the daily users’ energy payment in case 

3 is 1.76% lower than its value in case 2. Moreover, the PAR in the total energy exchanged in case 3 is 
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1.19% lower than its value in case 2. Moreover, the PAR in the total energy exchanged in case 3 is 1.66% 

lower than the PAR in case 2. Therefore, we can conclude that by selecting 𝛤0 = 𝛤0
∗, we avoid a 

significant penalty for the objective function value to protect the solution against constraint violation. 

Hence, the results confirm the importance of suitably selecting the budget of uncertainty for a trade-off 

between cost and robustness. In addition, the fourth column of Table 3.5 reports the average 

computational runtime in the three scenarios: the computation time for all the simulations is less than 1.5 

seconds. 

Summing up, the simulation results show that the method allows the decision maker to make 

a trade-off between constraint violation rate and PoR by adjusting the values of the budget of 

uncertainty. The robust energy scheduling not only reduces the users’ energy bills and the PAR by 

encouraging users to shift high-load CLs to the off-peak time slots, but also guarantees the solution to 

satisfy constraints with very high probability in the presence of the demand and the RESs generation 

uncertainties. The simulation also shows that the proposed robust approach is computationally 

tractable, with a reasonable computational running time. We remark that the proposed 

framework is generic and flexible as it can be applied to different structures of MGs (for 

example, with multiple CLs, NCLs, PEVs and non-interruptible loads) considering various 

types of uncertainties in distributed energy generation (e.g., a large number of shared 

distributed generation resources, which can be included in set ℳ) or demand, appearing in the 

LHS or RHS of the constraints of the robust counterpart. 

 

 

 
Figure 3. 30. Average aggregated energy consumed by the MG (i.e., NCLs’ and CLs’ demands, HPs’ demand, 

ESS’s charging and PEVs’ charging and average energy generated by the MG (i.e., shared and individual RESs’ 

generation, ESS’s discharging and PEVs’ discharging for: (a) case 1, (b) case 2, and (c) case 3. 
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Figure 3. 31. Average total energy bought/sold from/to the grid versus maximum permissible energy exchanged 

with the grid for: (a) case 1, (b) case 2, and (c) case 3. 

 

3.5.7.4. Comparison with a Related Approach 

For the sake of assessment and to better show the advancement of our approach with respect 

to the related literature, we compare the results of our approach with a well-known existing 

robust technique. Specifically, we use as reference approach the box-uncertainty-set method, 

where uncertain parameters are assumed to take their values from different intervals 

independently (we refer to [335], [393] for more details about the box-uncertainty-set method). 

We present a sensitivity analysis of the MC simulation results with respect to different budgets 

of uncertainty for both methods in terms of total energy payment, level of conservativeness, 

and the PAR of the energy profile, all reported in Figures 3.32a-3.32c. As can be observed from 

the results, despite the constraint violation rate within the primary time slots for our approach 

is slightly higher than the box-uncertainty-set method, our method provides a less conservative 

solution which always exhibits lower daily energy payments and PARs than the box-

uncertainty-set method.  

Table 3. 5. Comparison of Average MC Simulation* Results 

 

Daily Users’ 

Payment 

(€/day) 

Constraint 
violation rate 

(%) 

PAR (%) PoR (%) 
Computa-

tional 

runtime (s) 

Case 1 29.11 35.02 2.339 0 1.16 

Case 2 30.20 0.00 2.380 3.74 1.48 

Case 3 29.67 0.92 2.352 1.92 1.25 

* Simulation over 10,000 iterations 



 
 

152 

 

 

 

 
Figure 3. 32. Sensitivity analysis of the daily energy payment (a), the constraint violation rate (b), and the PAR (c) 

with respect to different budgets of uncertainty for the proposed method and the robust optimization approach 

based on box- uncertainty set. 

 
These results confirm the effectiveness of our approach, enabling the decision maker to 

make a good trade-off between the total energy payment by users, the level of conservativeness 

and the PAR by changing the value of the budget of uncertainty. 

3.5.8. Conclusions  

This section proposes a novel adjustable robust energy scheduling framework for residential 

MGs comprising energy-based and comfort-based CLs, individual PEVs and RESs, shared ESS 

and RESs under quadratic/linear dynamic pricing. We focus on uncertainties associated with 

RES generation and users’ energy demand. A MIQP problem is formulated to find the optimal 

scheduling of CLs as well as charging/discharging strategies of the ESS and PEVs. The 

simulation results highlight the robustness of the proposed energy scheduling in the uncertain 

context. A trade-off can be made by the decision maker to resolve the conflict between energy 

payment minimization and the contractual constraint satisfaction, which is advantageous for 

both the residential MG and the power grid. The future research paths include extending the 

system model by integrating additional subsystems such as non-interruptible loads, or other 

types of uncertainty sources such as uncertain real-time pricing and PEV plug-in/out times. 

Moreover, towards the deployment of large-scale SGs, the proposed robust scheduling problem 

can be expanded and resolved in a distributed multi-agent fashion. Future work may also 
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incorporate the robust method with a receding horizon mechanism for online energy 

scheduling.  

From the findings and contribution of the research in this chapter, the following paper has 

been presented: 

• S. M. Hosseini, R. Carli and M. Dotoli, “Robust Optimal Energy Management of a 

Residential Microgrid Under Uncertainties on Demand and Renewable Power 

Generation,” in IEEE Transactions on Automation Science and Engineering, 2020. 

doi: 10.1109/TASE.2020.2986269 
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4. Robust Distributed/Decentralized Approaches for 

Coordinated Charge Control of Electric Vehicles in 

Smart Grids 

4.1. Introduction 

Although the centralized optimization techniques generally show a high ability for finding 

best possible solutions, and are usually easy to implement, they suffer from poor privacy 

protection of users as well as computational and communication complexities and failures. 

Therefore, most recent studies are alternatively oriented toward distributed or decentralized 

techniques, where optimization tasks are distributed through different incorporated subsystems 

based on distributed information structures. In this section, we deal with the problem of optimal 

charging of large-scale PEV fleets in SGs aiming at the minimization of the aggregated charging 

cost and battery degradation, while satisfying the PEVs’ individual load requirements and the 

overall grid congestion limits in a fully distributed fashion. 

 

4.2. A Distributed Approach for Charge Control of 

Electric Vehicle Fleets Considering Grid 

Congestion and Battery Degradation 

4.2.1. Introduction  

According to the International Energy Agency’s (IEA) statistical reports, in 2012 the 

transportation sector accounted for 63.7% of the world’s petroleum consumption and 7135 
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million tons of carbon dioxide emissions [394]. Responding to these concerns, Plug-in Electric 

Vehicles (PEVs) are being promoted as a vital technology for sustainable city logistics to reduce 

fossil fuel consumption and greenhouse gas emissions [395]. At the same time, the broad 

deployment of PEVs may also pose new technical challenges to the power grid, endangering 

the reliability, security, and efficiency of the energy system [396]. In particular, the large-scale 

penetration of PEVs in national/regional stocks can impose a large additional burden on the 

power grid [397]. Indeed, uncoordinated random PEVs’ charging may bring to a variety of 

challenges to the power quality and reliability of power grids, requiring additional power 

generation capacity and threatening the smooth operation of the distribution network [398]. As 

a consequence, developing intelligent coordinated optimal charging strategies for large-scale 

PEV fleets has recently become a challenging research topic [399]. Thanks to the advances of 

Information and Communication Technology (ICT) [400], [401], the implementation of such 

optimal control approaches is becoming more immediate and affordable in the field of demand 

side management [402].  

4.2.2. Aims and Objectives  

In this subsection, we present a novel fully distributed control strategy for the optimal 

charging of large-scale PEV fleets aiming at the minimization of the aggregated charging cost 

and battery degradation, while satisfying the PEVs’ individual load requirements and the 

overall grid congestion limits. The proposed resolution algorithm requires a minimal shared 

information between PEVs that communicate only with their neighbors without relying on a 

central aggregator, thus guaranteeing the PEV users’ privacy. 

4.2.3. Related Works and Contributions  

Over the past years, a wide spectrum of works has explored the intelligent coordination of 

PEV fleets’ charging. The first literature contributions address the optimal PEVs’ charging 

problem based on a centralized control scheme, where a central operator is responsible for 

collecting all the information from the individual PEVs and for centrally computing their 

optimal charging profiles. Such a scheme is able to find the best possible solution and is 

generally easy to implement; however, it suffers from poor privacy protection of PEV users and 

from computational and communication concerns in large-scale PEV fleets, which are 

unavoidable, due to the high volume of individual PEVs’ data [403]. Hence, when the number 

of PEVs increases, a distributed strategy is much more efficient, since the optimization tasks 

are distributed through many agents. Even more importantly, PEV users’ privacy is 

satisfactorily preserved, since only the minimal personal information needs to be locally 
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broadcasted to the PEV’s neighbors. Consequently, recent studies are oriented towards 

distributed PEVs’ charging scheduling. For instance, References [404],[405] propose a 

distributed PEVs’ charging strategy to smooth the daily grid load profile concerning 

communication and computational overhead as well as PEV users’ privacy. In addition, a 

distributed waterfilling algorithm subject to individual constraints and coupled waterlevels is 

developed by Reference [406] and implemented on PEVs’ fleets for optimal charging. 

However, none of the aforementioned distributed strategies considers capacity constraints 

related to the overall grid or single components’ congestion constraints, such as the power 

distribution lines and feeders’ capacity limits. To tackle this critical issue, grid capacity 

constraints are being incorporated in recent PEVs scheduling methods to realistically model the 

reliability and efficiency of the system [407] Only few works address the PEVs’ charge 

scheduling problem under grid congestion management relying on a distributed control 

architecture. For instance, the authors in Reference [408] introduce a Lagrangian partial 

decomposition technique for the distributed scheduling of PEVs considering the transmission 

grid congestion. In References [409],[410], a distributed control strategy for PEVs’ charge 

scheduling is proposed enforcing capacity constraints on the distribution network. However, 

unlike our approach, the cited work [408] adopts a linear, and hence not fully realistic, cost 

function for the energy purchased from the power grid. Moreover, none of the cited studies 

[408],[409],[410] involve the issue of PEVs’ battery degradation in the charge scheduling 

problem, despite battery degradation is also a stringent requirement for real systems. Therefore, 

although both these studies have made positive efforts towards finding the optimal charging of 

PEVs in a distributed setting, due to their respective limitations, more research is still needed 

to provide a realistic and fully distributed framework for solving the scheduling problem of 

large-scale PEVs fleets in a comprehensive way. 

Responding to the need for efficient control strategies for the optimal charging of a fleet of 

PEVs that may also deal with the associated scalability and feasibility issues, we present a new 

charge scheduling framework with the specific contributions as follows: 1) we address the 

optimal charging of PEV fleets tackling both the power capacity limits related to the distribution 

network and the impact of charging strategies on battery degradation, in order to preserve the 

reliability and efficiency of both the power grid and the individual PEVs; 2) we establish a 

novel fully distributed control strategy for the optimal charging of large-scale PEVs’ fleets, in 

order to coordinate PEVs and eliminate the need for a central coordinator, reducing the 

computational complexity and guaranteeing the PEV users’ privacy. Our objective is obtaining 

a global optimum solution which minimizes the aggregated charging cost and battery 

degradation based on the PEVs’ individual satisfactions and requirements. Considering a 

realistic quadratic cost function for the energy purchased from the power grid, and a quadratic 

PEVs battery degradation model as well, we formulate the optimization problem as a convex 
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quadratic programming (QP) problem, where all the PEVs’ decision variables are coupled both 

via the objective function and some grid resource sharing constraints. Hence, we adopt the 

distributed control algorithm for waterfilling of Networked Control Systems (NCSs) with 

coupling constraints proposed in Reference [410] to solve our iterative distributed strategy 

effectively. We validate the proposed approach on numerical experiments with a large number 

of PEVs and show the ability of the method in finding a global optimum solution with a 

favorable computational efficiency. 

4.2.4. System Model 

We consider a fleet 𝒩 of 𝑁 PEVs, connected via the so-called G2V (Grid-to-Vehicle) mode 

of operation to a common distribution grid characterized by a given limited capacity. For the 

sake of simplicity, we assume that the PEV charging addresses the active power dispatch only, 

as commonly supposed by most works in the related literature [399]. We are interested in 

determining the optimal charging schedule for the whole fleet over a given time horizon 𝐻, 

composed by 𝐻 equally spaced time intervals with length Δ each. The following parameters are 

used to model the system under analysis: 

 

ℋ scheduling horizon (ℋ = {1,… , ℎ, … ,𝐻}) 

ℎ index denoting the generic time slot in the scheduling horizon (ℎ ∈ ℋ) 

𝐻 number of time slots in the scheduling horizon (𝐻 = |ℋ|) 

Δ fixed length of time slot 

𝒩 fleet of PEVs (𝒩 = {1,… , 𝑛, … ,𝑁}) 

𝑛,𝑚 indices denoting the PEVs in the fleet (𝑛, 𝑚 ∈ 𝒩 ) 

𝑁 number of PEVs in the fleet (𝑁 = |𝒩|) 

𝐾 diagonal matrix whose main diagonal contains the cost coefficients: 𝑘 =

[𝑘(1); … ; 𝑘(ℎ);… ; 𝑘(𝐻)] ∈ ℝ𝐻 

𝑑 profile of inflexible demand (not including PEVs’ load): 𝑑 =

[𝑑(1);… ; 𝑑(ℎ);… ; 𝑑(𝐻)] ∈ ℝ𝐻 

𝜎 trade-off parameter taking care of PEVs’ battery degradation 

𝑏 profile of distribution grid capacity per slot: 𝑏 = [𝑏(1);… ; 𝑏(ℎ);… ; 𝑏(𝐻)] ∈ ℝ𝐻 

𝜒𝑛 set of constraints for PEV 𝑛 (𝑛 ∈ 𝒩): 𝜒𝑛 ⊂ ℝ𝐻. 

 
Finally, the decision variables of the PEV fleet charging problem are the following: 

𝑥𝑛 vector of decision variables representing the charging profile of PEV 𝑛 (𝑛 ∈ 𝒩) 

over the time horizon: 𝑥𝑛 = [𝑥𝑛(1),… , 𝑥𝑛(ℎ), … , 𝑥𝑛(𝐻)] ∈ ℝ𝐻 
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4.2.5. Optimization Model 

The proposed mathematical model of the PEV fleet charging problem is defined as a QP: 

 min  
𝒙1,…,𝒙𝑛,…,𝒙𝑁

(𝑑 + ∑ 𝑥𝑛𝑛∈𝒩  )𝑇 𝐾(𝑑 +

∑ 𝑥𝑛𝑛∈𝒩  )  + 𝜎 ∑ ‖𝑥𝑛‖2
𝑛∈𝒩   

(150) 

s.t. 𝑥𝑛 ∈ 𝜒𝑛, 𝑛 ∈ 𝒩 (151) 

∑ 𝑥𝑛𝑛∈𝒩 ≤ 𝑏. (152) 

 

The above decision model relies on decision variables 𝒙1, … , 𝒙𝑛, … , 𝒙𝑁 representing the 

charging profile of the PEVs over the time horizon. The objective in (150) is minimizing the 

total charging cost, which is the summation of the costs of energy bought from the grid by the 

PEVs’ fleet over the whole-time horizon and the costs due to the batteries’ degradation. On the 

one hand, for the first cost term in (150), we consider a dynamic quadratic pricing, where the 

cost of electricity depends on the overall demand (namely, the aggregate PEVs’ demand 

∑ 𝑥𝑛
𝑁
𝑛=1  in addition to the inflexible demand (𝑑) in accordance with time-dependent cost 

coefficients in 𝑘. On the other hand, for the second cost term in (150), we assume that the 

batteries’ degradation is highly correlated to the integral of power transferred through the 

battery [407]. Moreover, in the above decision model two classes of constraints are addressed. 

The first one addresses charging constraints characterizing each PEV, as indicated in (151). For 

instance, sets 𝜒𝑛 (𝑛 ∈ 𝒩) could represent both some bounding on the charging rate and the 

achievement of a required state of charge at the end of the time horizon. Without loss of 

generality, we assume that 𝜒𝑛 (𝑛 ∈ 𝒩) are compact and convex sets. The second class of 

constraints concerns the power grid capacity resources shared by PEVs. As indicated by the 

vector inequality (152), we consider that the overall capacity (represented by the time-varying 

parameters in b) has not to be violated over the time horizon. We finally remark that, since there 

is a multiple coupled objective function in (150), and since (152) are multiple coupled 

constraints, the optimization problem (150)-(152) is coupled from both the objective function 

and constraint perspectives. 

4.2.6. The Proposed Distributed Algorithm 

4.2.6.1. Communication Network Modeling 

We assume that all the PEVs are connected to a communication network, modeled as an 

undirected and connected graph 𝒢 = (𝒩, ℰ): vertices 𝑛 ∈ 𝒩 represent the PEVs, while edges 

(𝑛,𝑚) ∈ ℰ model the available communication links. 
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The following parameters are used to model the communication network: 

 
𝑃 weights matrix: 𝑃 ∈ [0,1]𝑁×𝑁 . 𝑃𝑚𝑛 (i.e., the element (𝑚, 𝑛) of the matrix 𝑃) is used 

by PEV 𝑛 to weight information received from PEV 𝑚. Note that 𝑃𝑚𝑛 = 0 means 

that no communication between 𝑛 and 𝑚 occurs, whilst 𝑃𝑛𝑛 = 0 denotes the self-

weight of PEV 𝑛. 

 
As typically done in the related literature [405], we finally assume that 𝑃 is a double 

stochastic matrix (i.e., the sum of all the elements in each row and columns is equal to one). 

4.2.6.2. Algorithm Description 

Taking the optimization theory for NCSs into account, problem (150)-(152) can be solved 

in a fully distributed setting using the distributed waterfilling approach [406]. In the related 

literature, the waterfilling principle was originally used to determine the optimal transmission 

power between sub-channels in accordance with noise levels aiming at the maximization of 

data rate in a communication link. Subsequently, the waterfilling concept inspired effective and 

efficient mechanisms for several types of engineering problems, including distributed 

optimization [406]. In particular, leveraging on distributed waterfilling, solving (150)-(152) in 

a fully distributed setting corresponds to solving a multiple-waterlevel multi-constrained 

waterfilling problem [410]. Indeed, PEVs act as waterfilling sub-systems aiming at determining 

their own waterlevels, which are all coupled together by the overall objective function and the 

constraints on the shared resources. Interacting with neighbors only, each PEV computes its 

own waterlevel taking into consideration the waterlevels of all other PEVs, while avoiding the 

violation of the coupling constraint and contributing to achieve the minimum of global cost. 

Problem (150)-(152) is solved by the distributed mechanism reported in Algorithm 4.1, 

which properly adapts the distributed control algorithm for waterfilling of NCSs with coupling 

constraints proposed in Reference [410]. Specifically, Algorithm 4.1 is composed by an 

iterative procedure that is synchronously executed by all the PEVs and composed by alternating 

communication and update steps, making use of the following parameters: 

 

𝜏 number of communication steps per iteration (𝜏 ∈ ℕ) 

𝜌 positive parameter of the distributed waterfilling algorithm proposed in Reference 

[410]. 
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Algorithm 4.1 – The proposed distributed algorithm based on multi-user waterfilling with coupling 

constraints1 

initialize: 𝑥𝑛
(0)

 and 𝑙𝑛
(0)

 

𝑡 ← 0 

repeat 

1. update the PEVs’ charging profile average based on 𝜏 consensus communication steps: 

𝜔𝑛
(𝑡) = ∑

𝑚∈𝒩

(𝑃𝜏)𝑚𝑛𝑥𝑚
(𝑡)

 
 

(153) 

2. update the ground-level:  

𝛽𝑛
(𝑡+1)

= (𝐾 + (𝜌 + 𝜎)𝐼𝐻))−1(𝑑 + 𝑁𝜔𝑛
(𝑡+1)

− 𝑥𝑛
(𝑡) + 𝑙𝑛

(𝑡)) − 𝜌(𝐾 + (𝜌 + 𝜎)𝐼𝐻))−1𝑥𝑛
(𝑡)

           (154) 

3. update the charging profile:  

                                                               𝑥𝑛
(𝑡+1)

= Proj𝒳𝑛
(−𝛽𝑛

(𝑡+1)
)                                                   (155) 

4. update the Lagrange multipliers’ vector estimate based on 𝜏 consensus communication steps: 

                                                        𝜐𝑛
(𝑡+1)

= ∑𝑚∈𝒩 (𝑃𝜏)𝑛𝑚𝑙𝑛
(𝑡)

                                                                   (156) 

5. update the Lagrange multipliers’ vector: 

                                           𝑟𝑛
(𝑡+1)

=
1

1+𝜌
(𝜐𝑛

(𝑡+1)
+ 𝑁𝜔𝑛

(𝑡+1)
− 𝑏) −

𝜌

1+𝜌
𝑙𝑛
(𝑡)

                                           (157) 

6. project the Lagrange multipliers’ vector onto the non-negative orthant: 

                                                            𝑙𝑛
(𝑡+1)

= Projℝ+
𝐻(𝑟𝑛

(𝑡+1)
)                                                              (158) 

𝑡 ← 𝑡 + 1 

until convergence is reached 

return: 𝑥𝑛
(𝑡)

 
       1We denote the projection of 𝜎 onto 𝒴 as Proj𝒴(𝜎), i.e.: Proj𝒴(𝜎) = argmin

𝑦∈𝒴
∥ 𝑦 − 𝜎 ∥2  

 
For details on the algorithm steps, the reader is referred to Reference [410]. However, we 

remark that the setting addressed in Reference [410] is restricted to a specific quadratic 

objective function, which accounts only for a coupled quadratic form (i.e., 𝜎 = 0) whose 

corresponding matrix is the H-dimensional identity matrix (i.e., 𝐾 = 𝐼𝐻). Differently from 

Reference [410], Algorithm 4.1 addresses the linearly constrained distributed optimization 

problem in the case of a more general quadratic objective function (i.e., the sum of a coupled 

quadratic form whose corresponding matrix is 𝐾 and a separable quadratic form whose 

corresponding matrix is 𝜎𝐼𝐻). For this reason, differently from the approach proposed in 

Reference [410], matrices 𝐾 and 𝜎𝐼𝐻 appear in the computation ground-level defined by step 2 

of Algorithm 4.1. We finally remark that, under the considered assumptions, and choosing the 

value of algorithm parameters in accordance with conditions provided in Reference [410] (i.e., 

𝜌 > 𝑁 − 1), the iterations of Algorithm 4.1 converge and the corresponding results coincide 

with the optimal solution obtained solving (150)-(152) in a centralized fashion [410]. 

4.2.6.3. Numerical Experiments  

In this section we show the performance of the proposed control algorithm through 

numerical examples. We consider a scenario with 𝑁 = 100 ÷ 10000 non-homogenous PEVs, 
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each characterized by individual values of model parameters. In particular, the individual 

constraints set of PEV 𝑛 (with 𝑛 ∈ 𝒩) is modeled by 𝒳𝑛 = 𝑥𝑛 ∈ ℝ𝐻|∑ℎ∈ℋ 𝑥𝑛(ℎ)Δ =

𝑋𝑛, 𝑥𝑛
𝑙𝑏 ≤ 𝑥𝑛 ≤ 𝑥𝑛

𝑢𝑏, where 𝑋𝑛 (uniformly distributed in the range (5,15) [kWh]), 𝑥𝑛
𝑙𝑏(ℎ) (set 

to 0 [kW] over the whole horizon ℋ), and 𝑥𝑛
𝑢𝑏(ℎ) (set to 3.3 [kW] in the time window when 

PEVs are plugged-in, which is randomly extracted from ℋ) respectively denote the overall 

required cumulative energy charge, the minimum and maximum charging rate. The known cost 

coefficients over the time horizon are: 𝑘(ℎ) = 0.01 [€/kW2], ℎ ∈ ℋ. The base load 

consumption curve 𝑑 of the distribution network is inferred from Reference [398] (see dotted 

line in Figure 4.1). Furthermore, we scale this curve such that the penetration of the PEVs is 

constant, i.e., we impose that the ratio (maxℎ𝑑(ℎ))/𝑁 is constant as the size of the PEVs 

changes. As for the capacity of the distribution network, we scale the right-hand side of the 

coupling constraint according to the size of PEVs: 𝑏(ℎ) = 11.13𝑁 [kW], ℎ ∈ ℋ. Simulations 

are carried out for a 1-day scheduling horizon with 𝐻 = 24 time slots of one hour each (i.e., 

Δ = 1 [hour]). The proposed algorithm is implemented and tested in the Matlab environment 

with initialization vectors for the PEVs set to zero and 𝜌 parameter chosen in order to satisfy 

the convergence conditions. Results converge to the exact minimum values that may be 

obtained solving the scheduling problem (150)-(152) in a centralized fashion via a quadratic 

programming solver (corresponding to 24𝑁 variables, 48𝑁 bounding, 𝑁 equality, and 24 

inequality constraints). 

In Figure 4.1 we report the results obtained by Algorithm 4.1 when 𝑁 = 100. We consider 

two different cases of analysis in the formulation of problem (150)-(152). Figure 4.1 reports in 

solid line the aggregated charging profile of the PEVs without considering the battery 

degradation cost (i.e., setting to zero the second term in (150) by imposing 𝜎 = 0). Note that in 

this case a perfect valley-filling load profile could not be feasible, since we account for the 

overall capacity of the power grid distribution lines devoted to PEVs (i.e., constraint in (152)). 

In addition, Figure 4.1 reports in dashed line the obtained results considering the battery 

degradation (i.e., 𝜎 = 10). We note that in the latter case the presence of two terms in the 

objective function lead to spreading the aggregated charging profile on the time horizon more 

than in the former case, where the valley filling effect is more pronounced. On the one hand, as 

𝜎 increases, the penalization for the battery degradation takes over and the results loose 

optimality in terms of aggregated energy cost. On the other hand, this shows that the resulting 

control algorithm allows capturing individual cost functions for the PEVs as a function of 

battery state of charge. 
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Figure 4. 1. Charging scheduling of Algorithm 3 for a fleet of N = 100 PEVs. 

 

 

Figure 4. 2. Number of iterations of Algorithm 3 as function of number of PEVs. 

 
Finally, we provide a numerical analysis of the algorithm complexity. In particular, Figure 

4.2 shows the number of iterations versus the number of PEVs for two different classical 

topologies (undirected ring and small world) and two values for the number of communications 

per iteration (𝜏 = 5, 𝜏 = 10). In all the analyzed cases, the weights’ matrix 𝑃 is determined by 

the Metropolis-Hastings method [410]. From Figure 4.2 it is apparent that the number of 

iterations typically increases with the number of PEVs in all cases; however, the corresponding 

growing rate gradually slows down, confirming the approach scalability. As a final remark, 

from Figure 4.2 we note that the higher the communication density the lower the number of 

iterations that is needed. 

4.2.7. Conclusions  

This subsection proposes a novel distributed control strategy for the optimal charging of 

large-scale PEV fleets considering the constraints on the power grid, charging locations and 

individual PEVs. The proposed algorithm allows minimizing both the aggregated energy 

charging and battery degradation cost based on the PEVs’ individual requirements while 

satisfying the overall grid congestion limits. Numerical experiments on a simulated case study 

show the effectiveness of the proposed approach in finding a global optimum solution while 

respecting both the power grid and PEVs’ fleet congestion limits with a favorable 

computational efficiency. Future research will address extending our distributed framework to 
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include the reactive power dispatch in the optimal PEVs charging scheduling, modelling non-

idealities of communication network and uncertainties that affect the estimation of optimization 

model parameters, and investigating the adoption of alternative fully distributed approaches 

such as gossip based algorithms. 

From the findings and contribution of the research in this chapter, the following paper has 

been presented: 

• S. M. Hosseini, R. Carli, G. Cavone, M. Dotoli, “Distributed Control of Electric 

Vehicle Fleets Considering Grid Congestion and Battery Degradation,” in Internet 

Technology Letters, vol. 3, no. 3, pp. 1-6, 2020. doi: 10.1002/itl2.161. 

 

4.3. A Robust Decentralized Approach for Charge 

Control of Electric Vehicle Fleets under 

Uncertainty on Inelastic Demand and Energy 

Pricing Considering Grid Congestion and Battery 

Degradation 

4.3.1. Introduction 

Despite the increasing development of PEVs, some barriers still need to be solved for their 

efficient widespread usage. One of the major challenges concerns the optimal PEVs’ charging 

strategy in a proper PEVs’ charging infrastructure [411]. On the one hand, incorporating 

massive PEVs fleet into power grids needs coordinated charging strategies to prevent high 

electricity costs for charging and huge-peak power demand causing system instability. Indeed, 

uncoordinated random PEVs charging brings a variety of challenges to the power quality and 

reliability of power grids, threatening the smooth operation of the distribution network. On the 

other hand, unpredictable users’ load demand and the uncertain electricity price in day-ahead 

electricity markets can impose serious challenges to the design of near-optimal PEVs charge 

scheduling by moving the obtained solutions away from optimal points.  

Coping with these challenges of the largescale adoption of PEVs fleets in the power system, 

this subsection presents a robust decentralized framework for day-ahead charge control of 

PEVs fleets under uncertainty on the dynamic electricity price and the inelastic loads demand. 

The main objective of this work is minimizing both the overall charging energy payment and 

the aggregated battery degradation cost of PEVs while preserving the robustness of the solution 
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against perturbations in the uncertain parameters. Moreover, we take into account the power 

congestion limits of the overall capacity of the distribution network and the PEVs’ individual 

needs such as charge level requirements and battery degradation cost. The proposed approach 

relies on the so-called uncertainty set-based robust optimization, where uncertain parameters 

are assumed to take their values from different domain sets independently [336]. To solve the 

defined problem, we first establish a related deterministic model of the PEVs charge scheduling 

problem. Hence, we convert the deterministic model into a min-max robust counterpart 

regarding the uncertainty set inspired by the approach proposed in [337]. Finally, we apply 

some mathematical transformations on the robust counterpart to obtain an equivalent quadratic 

programming (QP) problem where all the PEVs’ decisions are coupled via the grid resource-

sharing constraints and the robust counterpart supporting constraints. We adopt an extended 

Jacobi-Proximal Alternating Direction Method of Multipliers (ADMM) algorithm [412] to 

solve effectively the resulting optimization problem in a decentralized fashion. We finally 

remark that, whereas many decentralized mechanisms have been developed for the coordinated 

PEVs charge scheduling, little or no attention has been devoted to extend such methods in a 

robust optimization perspective. Therefore, differently from the related literature, we consider 

a novel tractable robust decentralized framework that improves the performance with respect 

to classical deterministic decentralized approaches in presence of disturbances, while 

effectively dealing with the conservativeness of the obtained solutions. 

4.3.2. Aims and Objectives 

Whereas many decentralized mechanisms have been developed for the coordinated electric 

vehicles (EVs) charge scheduling, little or no attention has been devoted to extend such 

methods in a robust optimization framework. Therefore, this subsection proposes a novel robust 

decentralized charging strategy for large-scale PEV fleets. The system incorporates multiple 

PEVs as well as inelastic loads connected to the power grid under power flow limits. We aim 

at minimizing both the overall charging energy payment and the aggregated battery degradation 

cost of PEVs while preserving the robustness of the solution against uncertainties in the price 

of the electricity purchased from the power grid and the demand of inelastic loads. The 

proposed approach relies on the so-called uncertainty setbased robust optimization. The 

resulting charge scheduling problem is formulated as a tractable quadratic programming 

problem where all the PEVs’ decisions are coupled via the grid resource-sharing constraints 

and the robust counterpart supporting constraints. We adopt an extended Jacobi-Proximal 

Alternating Direction Method of Multipliers algorithm to effectively solve the formulated 

scheduling problem in a decentralized fashion, thus allowing the method applicability to large 

scale fleets. Simulations of a realistic case study show that the proposed approach not only 
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reduces the costs of the PEV fleet, but also maintains the robustness of the solution against 

perturbations in different uncertain parameters, which is beneficial for both PEVs’ users and 

the power grid. 

4.3.3. Related Works and Contributions 

Recent studies on coordinated smart charging of PEVs mainly try to fill the valley of off-

peak demand hours [413], smooth out the peaks of the aggregated demand curve [414], and 

minimize the cost of PEVs charging (or maximize the environmental benefits) [415]. The 

majority of existing literature addresses the PEVs charge scheduling problem based on a 

centralized control scheme, where a central operator makes decisions on the optimal charging 

strategies of all PEVs, and purchases the total required energy from the power grid [416]-[418]. 

Despite a satisfactory performance in finding optimal scheduling solutions, centralized 

charging schemes may result in load peaks in individual PEVs, they generally suffer from poor 

privacy protection, and can pose computational and communication concerns in large-scale 

PEV fleets, due to the high volume of individual PEVs’ data [419]. Therefore, decentralized 

strategies for PEVs charge control have gained attention due to their high potential for real-

world applications. Indeed, decentralized control schemes allow each PEV to individually 

minimize its own charging costs independently, by solving a decomposed optimization sub-

problem through local information. For example, in [420], the authors propose a decentralized 

PEV charging control framework to flatten the energy demand profile during peak-hour 

intervals by adopting a shrunken-primal-dual subgradient algorithm, which can be used either 

at the charging points or implemented by a central coordinator for parallel computing. In 

addition, the authors in [421] present a partial augmented Lagrangian method for the 

decentralized coordination of PEV charging, considering capacity limits for each feeder. 

Decentralized approaches to PEVs scheduling considering congestion management based on 

the well-known alternating direction method of multipliers (ADMM) are developed in [422] 

and [423]. However, despite the fact that the unpredictable users’ load demand and the 

electricity markets may impose serious challenges to the design of near-optimal PEVs charge 

scheduling, none of the aforementioned decentralized approaches give attention to this issue. 

As a matter of fact, assuming a deterministic strategy for PEVs scheduling can result in a non-

optimal or even infeasible solution [424]. Regarding the few studies contributing to 

decentralized PEVs’ scheduling taking data uncertainty into account, the authors in [424] 

propose a two-stage dynamic stochastic optimization scheme addressing uncertainties on 

electricity price, users’ load demand and renewable energy generation. A stochastic model 

predictive control-based approach dealing with the electricity price uncertainty is also presented 

in [425]. However, these stochastic-based approaches generally suffer from some limitations, 
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such as the large presence of uncertain data requiring to be modeled, dependency between some 

uncertain parameters, insufficient historical data in real situations, and high computational 

burden due to a significant number of scenarios. 

Therefore, despite the fact that these current researches have made positive endeavors 

towards the optimal PEVs scheduling, further research is still needed to effectively solve large-

scale PEVs charge control problems in a coordinated manner in the presence of uncertainties 

imposed by some supply- or demandside parameters’ data. Hence, the main contributions of 

this work are: 1) We present a novel mathematical model and an iterative coordinated 

framework, without relying on a central decision-maker, using an extended Jacobi-Proximal 

ADMM algorithm [412] to minimize the aggregated charging cost of large-scale PEV fleets 

under both PEVs’ individual requirements and grid power flow limits. 2) We account for the 

data uncertainties associated with the dynamic electricity price and the inelastic load demand 

by formulating a robust counterpart of the charge scheduling problem using an uncertainty 

setbased method inspired by [337]. 3) We define suitable robustness factors to mitigate the 

conservativeness of the proposed approach and we investigate the effects of such robustness 

factors on the robustness of the solution against variations of the uncertain parameters within 

the given uncertainty sets. 

We demonstrate the benefits of our proposed approach by a realistic case study with a large 

number of PEVs. The results show that the proposed approach not only limits the aggregate 

PEVs energy payment, but also maintains the robustness of the solution against perturbations 

in different uncertain parameters, which is beneficial for both PEVs’ end-users and the power 

grid. 

4.3.4. System Model 

The system architecture is shown in Figure 4.3. The control framework comprises two main 

parts: 1) a set of agents which simultaneously solve local optimization sub-problems aimed at 

determining the PEVs optimal charging strategies and making robustness decisions, and 2) the 

coordinator who is responsible for initializing agents parameters, gathering updated data from 

all agents, and broadcasting back the updated coordination data. We consider a time horizon 

ℋ = 1,… , ℎ, … ,𝐻, containing 𝐻 time slots with equal duration Δh. The components of the 

system are modeled in the following subsections. 
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Figure 4. 3. Scheme of the proposed system architecture. 

 

4.3.4.1. Electric Vehicles 

We assume to have a fleet of PEVs 𝒩 = 1,… , 𝑛,… ,𝑁 in the system under the grid-to-

vehicle operating mode. The charging profile of the PEV 𝑛 is represented by a column vector 

𝐱𝑛 = [𝑥𝑛(1),… , 𝑥𝑛(𝐻)]⊤, collecting the non-negative power charging rates over the time 

horizon. Denoting as 𝑙𝑛
𝑙𝑏 = [𝑙𝑛

𝑙𝑏(1),… , 𝑙𝑛
𝑙𝑏(𝐻)]⊤ and 𝑙𝑛

𝑢𝑏 = [𝑙𝑛
𝑢𝑏(1),… , 𝑙𝑛

𝑢𝑏(𝐻)]⊤ the minimum 

and maximum power charge rates required by the PEV 𝑛, respectively, the charging profile 𝐱𝑛 

has to be upper and lower bounded as follows:  

𝐥𝑛
𝑙𝑏 ≤ 𝐱𝑛 ≤ 𝐥𝑛

𝑢𝑏 ,    𝑛 ∈ 𝒩.  (159) 

  

Note that 𝑙𝑛
𝑙𝑏(ℎ) = 𝑙𝑛

𝑢𝑏(ℎ) = 0 for all the time slots ℎ ∈ ℋ in which the PEV 𝑛 is not 

plugged-in to the feeder. Furthermore, each PEV 𝑛 has to be recharged by a certain amount of 

energy 𝑙𝑛 at the end of the time window:  

Δh 𝟏𝐻,1
⊤  𝐱𝑛 = 𝑙𝑛,    𝑛 ∈ 𝒩 (160) 

  

where 𝟏𝐻,1 denotes the 𝐻-dimensional column vector with all ones. For the sake of 

compactness, for each PEV we introduce the set of feasible strategies as follows:  

𝒳𝑛 = {𝐱𝑛 ∈ ℝ𝐻|(1) − (2) hold},    𝑛 ∈ 𝒩. (161) 

  

Finally, we suppose that PEVs suffer from degradation in terms of capacity decreasing and 

resistance increase. Consequently, for each PEV we adopt a degradation cost function as 

follows [422]:  

𝑐𝑛
𝑑(𝐱) = 𝜙𝑛 ∥ 𝐱𝑛 ∥2 (162) 

  

where 𝜙𝑛 is the known degradation coefficient of the PEV 𝑛. 
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4.3.4.2. Grid Constraints and Energy Pricing 

We assume a linear time-varying cost function for the energy bought from the power grid. 

Denoting as 𝐤 = [𝑘(1), … , 𝑘(𝐻)]⊤ the cost coefficients over the time horizon, the cost incurred 

by the charging of the PEV 𝑛 is: 

𝑐𝑛
𝑒(𝐱𝑛) = ∑ 𝑘(ℎ)Δhℎ∈ℋ 𝑥𝑛(ℎ) = Δh 𝐤⊤𝐱𝑛  (163) 

  

Furthermore, we assume a limited capacity for power transferred with the power grid as 

follows:  

  

𝐝 + ∑𝑛∈𝒩 𝐱𝑛 ≤ 𝐠.  (164) 

  

where the 𝐻-dimensional column vectors 𝐝 = [𝑑(1), … , 𝑑(𝐻)]⊤ and 𝐠 = [𝑔(1), … , 𝑔(𝐻)]⊤ 

represent the profiles of the day-ahead inelastic load demand and of the maximum power that 

can be adsorbed from the distribution grid, respectively. 

4.3.5. Problem Formulation 

4.3.5.1. Deterministic Energy Scheduling Problem 

The deterministic PEVs charge scheduling problem is formulated based on nominal 

forecasted values of inelastic load demand and energy pricing: 

 min  
𝐱1∈𝜒1,…,𝐱𝑁∈𝜒𝑁

𝑐(𝐱1, … , 𝐱𝑁)  (165) 

s.t. (164).  

In (165) the objective function 𝑐(x1, … , x𝑁) = ∑𝑛∈𝒩 𝑐𝑛
𝑑(x𝑛) + 𝑐𝑛

𝑒(x𝑛) aims at minimizing 

both the total charged energy cost and battery degradation cost for the whole fleet of PEVs. The 

optimization problem (165) is labeled deterministic or nominal energy scheduling problem. 

4.3.5.2. Data Uncertainty Set Definition 

The previously defined deterministic scheduling problem unrealistically assumes perfect 

knowledge of inelastic load demand and energy pricing (i.e., of vectors 𝐝 and 𝐤). However, the 

variation in the forecast of these profiles may cause a large deviation from the optimum in the 

obtained results, leading to inefficient scheduling. Following the so-called set-based 

uncertainty model [336], we define a computationally tractable method to tackle uncertainty in 

the scheduling strategy, which consists in finding the solutions that are feasible for any 
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realization of uncertainty in a given set. Indeed, the set-based uncertainty approach is an 

effective methodology to obtain robust solutions to uncertain optimization problems [336]. To 

this aim, we firstly define the uncertainty set. We assume that the sources of uncertainties 

affecting the inelastic load demand and energy pricing are unknown but the corresponding 

maximum/minimum values are available. We denote the vectors of the uncertain parameters 

for the inelastic load profile as 𝐝̃ = [𝑑̃(1),… , 𝑑̃(𝐻)]
⊤

, and for cost coefficient profile as 𝐤̃ =

[𝑘̃(1),… , 𝑘̃(𝐻)]
⊤

, assuming symmetric distributions as follows: 

 𝐝 − 𝐝̂ ≤ 𝐝̃ ≤ 𝐝 + 𝐝̂  (166) 

𝐤 − 𝐤̂ ≤ 𝐤̃ ≤ 𝐤 + 𝐤̂ (167) 

where 𝐝̂ = [𝑑̂(1),… , 𝑑̂(𝐻)]
⊤

 and 𝐤̂ = [𝑘̂(1),… , 𝑘̂(𝐻)]
⊤

 are the vectors collecting the semi-

amplitude of maximum variations of the inelastic load demand and the cost coefficients, 

respectively. 

Rather than protecting the schedule against the worst-case deviation of all the parameters, 

we adopt the cardinality-constrained uncertainty method [337] that allows decision maker to 

decide the level of conservativeness and is able to withstand parameters’ uncertainty without 

excessively affecting the objective function and constraints. We introduce the so-called 

robustness factors (also known as budgets of uncertainty) 𝛾𝑘 and 𝛾𝑑 related to energy pricing 

and inelastic load demand, respectively. As for 𝛾𝑘, this is a robustness factor that denotes the 

number of parameters (i.e., 𝑘(ℎ), ℎ ∈ ℋ) protected against disturbances, taking values in 

[0, 𝐻]. The problem solution is guaranteed to be feasible if no more than ⌊𝛾𝑘⌋ of the parameters 

𝑘̃(ℎ) are subject to uncertainty, and one 𝑘̃(ℎ) changes no more than (𝛾𝑘 − ⌊𝛾𝑘⌋)𝑘̂(ℎ). Note that 

⌊⋅⌋ denotes the ceiling operator: given the real number 𝑎, ⌊𝑎⌋ is the greatest integer lower than 

or equal to a. As for 𝛾𝑑, this parameters takes values in [0, 𝐻] with an analogous meaning as in 

the 𝛾𝑘 case. 

4.3.5.3. Robust Energy Scheduling Problem 

The objective function (165) and the constraint (164) are affected by the uncertainty on 

inelastic load profile and cost coefficients. Replacing 𝐤 and 𝐝 with 𝐤̃ and 𝐝̃ in (163) and (164), 

and allowing 𝐤̃ and 𝐝̃ to take values in the sets defined in (166)-(167), (165) turns into a robust 

optimization problem. Getting inspiration from the cardinality-constrained approach proposed 

in [337], we can straightforwardly provide the robust counterpart of the optimization problem 

(165), which aims at achieving a solution that is feasible for any realization of the uncertainty 

within the a given uncertainty set. 
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By defining the budget of uncertainty 𝛾𝑘 and the corresponding protection function 

𝛽(𝐱1, … , 𝐱𝑁 , γ𝑘) for the objective function term (163), as well as the budget of uncertainty 𝛾𝑑 

and the corresponding protection functions 𝜹(𝛾𝑑) = [𝛿1(𝛾𝑑), … , 𝛿𝐻(𝛾𝑑)]⊤ for the capacity 

constraints (164), the robust counterpart of the deterministic scheduling formulation (165) is 

given by the following non-linear optimization problem: 

 min  
𝐱1∈𝜒1,…,𝐱𝑁∈𝜒𝑁

𝑐(𝐱1, … , 𝐱𝑁) + 𝛽(𝐱1, … , 𝐱𝑁, γ𝑘)  (168) 

s.t. 𝐝 + ∑𝑛∈𝒩 𝐱𝑛 + 𝜹(𝛾𝑑) ≤ 𝐠.  

 
where 

𝛽(𝐱1, … , 𝐱𝑁, γ𝑘) = (169) 

max
{𝒬∪{𝑞}|𝒬⊆ℋ,

|𝒬|=⌊𝛤0⌋,𝑞∈ℋ∖𝒬}

 (∑ 𝑘̂(ℎ) |∑ 𝑥𝑛

𝑛∈𝒩

(ℎ)|

ℎ∈𝒬

  

+(𝛾𝑘 − ⌊𝛾𝑘⌋)𝑘̂(𝑞) |∑ 𝑥𝑛

𝑛∈𝒩

(𝑞)|)  

𝜹(𝛾𝑑)=[
𝛿1(𝛾𝑑)

⋮
𝛿𝐻(𝛾𝑑)

] =  max  
𝑢(1),...,𝑢(𝐻)

[
𝑢(1)𝑑̂(1)

⋮
𝑢(𝐻)𝑑̂(𝐻)

] (170) 

s.t.   0 ≤ 𝑢(ℎ) ≤ 1,    ℎ ∈ ℋ (171) 

∑ 𝑢(ℎ)

ℎ∈ℋ

≤ 𝛾𝑑 (172) 

 
Note that in (169) where we introduce the subset 𝒬 and the index 𝑞 to deal with uncertainty. 

In particular, 𝒬 is the subset of time slot indices, whose corresponding cost coefficients get the 

maximum deviation from the nominal values. At most ⌊𝛾𝑘⌋ indices are assumed to belong to 

this subset. Further, in case 𝛾𝑘 is not integer, we select a time slot index 𝑞, whose corresponding 

cost coefficient is affected by a variation lower than the maximum deviation (i.e., the value is 

between 𝑘(𝑞) and 𝑘(𝑞) + 𝑘̂(𝑞)). All the remaining cost coefficient get the nominal values (i.e., 

𝑘(ℎ) for ℎ not belonging to 𝒬 and different from 𝑞). Similarly, in (170)-(172), we introduce 

the 𝐻 decision variables 𝑢(1), … , 𝑢(𝐻) to quantify the portions (not necessarily integer) of the 

total uncertainty budget 𝛾𝑑 allocated over all the time slots. 

Observing (168), it can be found that the robust counterpart of the scheduling problem 

includes strong non-linearities and cardinality calculations due to the inner maximization 

defined by (169) and (170)-(172). Thus, it is still difficult to solve the problem in its current 

min-max form. Getting inspiration from [337], this issue can be resolved by transforming the 

robust counterpart into an easier form. By introducing the supporting variables 𝜂, 𝜽 =

[𝜃(1), … , 𝜃(𝐻)]⊤, and 𝜻 = [𝜁(1), … , 𝜁(𝐻)]⊤, it could be demonstrated that the robust 

counterpart (168) is equivalent to the following QP formulation: 
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min
𝐱1∈𝒳1,…,𝐱𝑁∈𝒳𝑁,

𝜂∈ℝ+,𝜽∈ℝ+
𝐻,𝜻∈𝒵

(∑

𝑛∈𝒩

(𝜙𝑛𝐱𝑛
⊤𝐱𝑛 + Δh 𝐤⊤𝐱𝑛) + 𝛾𝑘𝜂 + 𝟏𝐻,1

⊤ 𝜽) (173) 

s.t.   ∑ 𝑥𝑛𝑛∈𝒩 + 𝑑̂ ∘ ζ ≤ 𝑔 − 𝑑 (174) 

𝑘̂ ∘ ∑ 𝑥𝑛

𝑛∈𝒩

− η1𝐻,1 − θ ≤ 0𝐻,1 (175) 

where the symbol ∘ denotes the entrywise product and 𝒵 is a constraint set defined as follows:  

  

𝒵 = {𝜻 ∈ ℝ𝐻|𝟎𝐻,1 ≤ 𝜻 ≤ 𝟏𝐻,1, 𝟏𝐻,1
⊤ 𝜻 ≥ 𝛾𝑑}. (176) 

 
We finally remark that the robust counterpart (173)-(175) has 𝑁𝐻 + 𝐻2 + 1 real variables 

and 𝑁 equality, 2𝐻 + 1 inequality, and 2𝐻𝑁 + 3𝐻 + 1 bounding constraints, in contrast with 

the 𝑁𝐻 variables and 𝑁 equality, 𝐻 inequality, and 2𝐻𝑁 bounding constraints necessary for 

the nominal scheduling (165). 

 

4.3.6. The Decentralized Robust Resolution 

Approach 

In this section we propose an iterative resolution process that leads all the PEVs to achieve 

an agreement on the optimal set of robust charging strategies, without relying on a central 

decision-maker, i.e., to compute in a decentralized fashion the global optimal solution of (173)-

(175). The proposed approach is based on a decentralized duality-based mechanism. To this 

aim, we introduce 𝑁 + 2 decision units (see Figure 4.3): 𝑁 PEV charging controller (ECC) 

agents solving as many independent local optimization sub-problems, the robustness controller 

(RC) agent that is in charge of calculating supporting variables of the robust counterpart, and 

the coordinator unit (CU) that collects the strategies from agents to calculate the Lagrange 

multipliers that are sent back to the agents. Note that the functions of the RC agent and the CU 

could be merged into one unit, so that the total number of units can be reduced to 𝑁 + 1. For 

the sake of clarity, in the sequel we consider the roles of the coordinator and RC agent 

separated. 

4.3.6.1. Reformulation of the Robust Counterpart 
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Although the objective function in (173) is separable, problem (173)-(175) cannot be easily 

decomposed since the decision variables are coupled in the global constraints (174)-(175). 

Hence, for convenience, we preliminarily convert (173)-(175) as follows: 

min
𝐱𝟏∈𝒳1,…,𝐱𝐍∈𝒳𝒩

,𝐱𝐍+𝟏∈𝒳𝒩+1

(∑ 𝐱𝑖
⊤

𝑖∈𝒩

𝑄𝑖𝐱𝑖 + ∑ 𝐟𝑖
⊤𝐱𝑖

𝑖∈𝒩∪{𝑁+1}

) (177) 

s.t.   ∑ 𝐴𝑖𝐱𝑖 = 𝐛𝑖∈𝒩∪{𝑁+1}  (178) 

where ECCs (i.e., agents 𝑖 ∈ 𝒩) and the RC (i.e., agent 𝑖 = 𝑁 + 1) determine their own 

decision variables blocks, having access to their objective function parameters, local constraint 

sets, and local and global parameters of coupling constraints (178), where: 

𝐱𝑁+1 = (𝜂, 𝜽⊤, 𝜻⊤, 𝝈⊤)⊤ (179) 

𝒳𝒩+1 = ℝ+ × ℝ+
𝐻 × 𝒵 × ℝ+

2𝐻 (180) 

𝑄𝑖 = ϕ𝑖𝐼𝐻 ,  𝑖 ∈ 𝒩 (181) 

𝑓𝑖 = Δh 𝑘,  𝑖 ∈ 𝒩 (182) 

𝑓𝑁+1 = (γ𝑘 , 11,𝐻, 01,𝐻 , 01,2𝐻)
⊤

 (183) 

𝐴𝑖 = (
𝐼𝐻

diag(𝑘̂)
),    𝑖 ∈ 𝒩 (184) 

𝐴𝑁+1 = (
01,𝐻 0𝐻,𝐻 diag(𝑑̂)

−11,𝐻 −𝐼𝐻 0𝐻,𝐻
𝐼2𝐻) (185) 

𝑏 = (
𝑔 − 𝑑
0𝐻,1

) (186) 

 
We highlight that, introducing the vectors of non-negative slack variables 𝝈 ∈ ℝ+

2𝐻 in the 

decision variable vector 𝐱𝑁+1 defined in (179), the resulting optimization problem (177)-(178) 

is a quadratic programming problem subject to a linear equality coupling constraint. As a 

consequence, an ADMM approach can be adopted to solve the problem by dual decomposition. 

4.3.6.2. The Proposed Decentralized Algorithm 

We propose Algorithm 4.2 as the decentralized iterative resolution process to solve (177)-

(178). Algorithm 4.2 relies on a modified version of the Jacobi-Proximal ADMM defined in 

[412]. In particular, the proposed algorithm is based on iterating the following three steps: 

𝑥𝑖
(𝑡+1)

= argmin
𝐱𝑖∈𝓧𝑖

(𝑥𝑖
⊤𝑄𝑖𝑥𝑖 + 𝑓𝑖

⊤𝑥𝑖 +
ρ𝑖

2
‖𝑥𝑖 − 𝑥𝑖

(𝑡)
‖

2
+   
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α

2
‖𝐴𝑖𝑥𝑖 + ∑ 𝐴𝑗𝑥𝑗

(𝑡)
− 𝑏 +

λ(𝑡)

α𝑗∈{𝒩∖{𝑖}}∪{𝑁+1} ‖
2

) , 𝑖 ∈ 𝒩   (187) 

𝑥𝑁+1
(𝑡+1)

= argmin
𝐱𝑁+1∈𝓧𝑁+1

(𝑓𝑁+1
⊤ 𝑥𝑁+1 +   

α

2
‖𝐴𝑁+1𝑥𝑁+1 + ∑ 𝐴𝑖𝑥𝑖

(𝑡+1)
− 𝑏 +

λ(𝑡)

α𝑖∈{𝒩 ‖
2

)  (188) 

λ(𝑡+1) = λ(𝑡) + α(∑ 𝐴𝑖𝑥𝑖
(𝑡+1)

− 𝑏𝑖∈𝒩∪{𝑁+1} ).  (189) 

 

In the initialization phase of Algorithm 4.2 (lines 1-3), the Coordinator initializes the 

Lagrange multipliers vector 𝝀(0) related to the coupling constraint (178), whilst each ECC agent 

𝑖 ∈ 𝒩 initializes its own strategy 𝐱𝑖
(0)

. The proposed algorithm works iteratively (line 4). 

Finally, the Coordinator terminates the iterative process when an adequate termination criterion 

is reached (line 16). 

Remark 1: While all the ECCs (i.e., agents 𝑖 ∈ 𝒩) update their own strategies in a Jacobi 

fashion (i.e., in parallel), the RC (agent 𝑖 = 𝑁 + 1) updates its strategy in a Gauss-Seidel 

fashion (i.e., sequentially). Indeed, in (188) the RC incorporates the results of the preceding 

update done by ECCs in (187). 

Remark 2: Following [412], it could be demonstrated that Algorithm 4.2 asymptotically 

converges to the global optimum of (177)-(178) if the following conditions related to the 

algorithm parameters are satisfied: 

𝜌𝑖 ≥ 𝛼(𝑁 − 1)‖𝐴𝑖‖
2,  𝑖 ∈ 𝒩. (190) 

4.3.7. Numerical Experiments 

In this section, we apply the proposed robust framework to the day-ahead charge scheduling 

for a fleet of PEVs serving the residential MG end-users related to the scenario presented in 

[426]. 

The proposed algorithm is implemented in MATLAB R2019a on a desktop PC with i7-

7500U core 2.70 GHz processor and 16 GB RAM memory. Initialization vectors are set to zero-

values, whilst parameter 𝛼 is assigned a unitary value and 𝜌𝑖 (𝑖 ∈ 𝒩) is equal to the right-hand 

side of (177). 
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Algorithm 4.2 – Decentralized Convergence to the Robust Optimal 

Charging Schedule 

Parameters: 𝛼 (CU, ECC 𝑖 ∈ 𝒩, and RC), 𝜌𝑖 (ECC 𝑖 ∈ 𝒩) 

Inputs: 𝑄𝑖, 𝑓𝑖, 𝒳𝑖, 𝐴𝑖 (ECC 𝑖 ∈ 𝒩), 𝑓𝑁+1, 𝒳𝑁+1, 𝐴𝑁+1 (RC), 𝑏 (CU, 

ECC 𝑖 ∈ 𝒩, and RC) 

1 CU initializes 𝝀(0) 

2 each ECC 𝑖 ∈ 𝒩 initializes 𝐱𝑖
(0)

 

3 set 𝑡 ← 0    

4 repeat 

5 CU broadcasts 𝝀(𝑡) to ECCs and RC 

6 for each ECC 𝑖 ∈ 𝒩  do 

7 ECC 𝑖 updates its own charging strategy by (187) 

8 end for 

9 CU gathers 𝐴𝑖𝐱𝑖
(𝑡+1)

 (𝑖 ∈ 𝒩) from ECCs   

10 CU sends ∑𝑖∈𝒩 𝐴𝑖𝐱𝑖
(𝑡+1)

 to RC   

11 RC updates the robustness strategy by (188)   

12 CU gathers 𝐴𝑁+1𝐱𝑁+1
(𝑡+1)

 from RC   

13 CU updates the Lagrange multipliers vector by (189)   

14 Set 𝑡 ←  𝑡 + 1 

15 until an adequate termination criterion is reached 

Outputs: 𝐱1
(𝑡)

, … , 𝐱𝑁
(𝑡)

 

 

4.3.7.1. Parameters and Setting 

We consider a time window for simulations of one weekday from 0:00 to 23:59. Each time 

slot is set equal to 60 minutes (i.e., Δℎ = 1 hour), meaning that the charging schedule is 

achieved by solving the optimization problem for the next 𝐻 = 24 hours. The energy pricing 

over the scheduling window is based on the locational marginal price by ISO-NE (New England 

Independent System Operator) [427]. The nominal profile of electricity pricing (i.e., 𝐤) is 

shown in Figure 4.4 through the solid line, whilst the corresponding uncertainty range (i.e., 𝐤 −

𝐤̂, 𝐤 + 𝐤̂) - determined as 15% of the nominal value for each time slot - is shown in Figure 4.4 

by the dotted-lines. 

We consider 𝑁 = 100 homogenous PEVs: for all of them the charging rate ranges from 0 

to 3.3 kW. The time window when the PEV 𝑛 ∈ 𝒩 is plugged-in (i.e., the time slot ℎ ∈ ℋ such 

that 𝑙𝑛
𝑢𝑏(ℎ) ≥ 0) and the energy amount required to achieve the desired charge level (i.e., 𝑙𝑛) 

are both randomly extracted in accordance with the PEVs data probability distribution 

considered in [428]. For all PEVs the degradation coefficient is 𝜎𝑛 = 10 𝑐𝑒𝑛𝑡𝑠/𝑘W2. 

We assume that all PEVs are connected to node-25 of the single phase distribution network 

considered in [426]. Figure 4.5 shows as solid-line bars the nominal profile of the inelastic 

demand inferred by [426], which includes the overall electrical energy consumption of the 

residential users (i.e., 𝐝). The corresponding uncertainty range (i.e., 𝐝 − 𝐝̂, 𝐝 + 𝐝̂) of the 

inelastic demand (that is shown in Figure 4.5 by dotted-lines) is determined as 15% of the 

nominal value for each time slot. In addition, Figure 4.5 shows as dashed line the profile of the 
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maximum permissible power flow imposed by the distribution network to the PEVs feeders 

[426]. 

 

 
Figure 4. 4. Profile of electricity price with corresponding uncertainty ranges. 

 

 
Figure 4. 5. Profile of inelastic demand with corresponding uncertainty ranges. 

 

4.3.7.2. Results and Discussion 

First, we determine the results obtained by Algorithm 1 in the following three cases.   

    • Case 1: the deterministic optimization model (i.e., when 𝛾𝑘 = 𝛾𝑑 = 0). Therefore, no 

protection terms are considered against data uncertainty (i.e., 𝛽(𝐱1, … , 𝐱𝑁 , 𝛾𝑘) = 0 and 

𝜹(𝛾𝑑) = 𝟎𝐻,1).  

    • Case 2: the robust optimization model considering full protection against data 

uncertainty (i.e., the worst-case realization) by adopting the maximum budgets of uncertainty 

(𝛾𝑘 = 𝛾𝑑 = 𝐻), implying the most conservative solution.  

    • Case 3: the robust optimization model considering uncertainty with 𝛾𝑘 = 𝛾𝑘
∗ and 𝛾𝑑 =

𝛾𝑑
∗ , where 𝛾𝑘

∗ ∈ (0,𝐻] and 𝛾𝑑
∗ ∈ (0,𝐻] correspond to a potential choice for the budget of 

uncertainty when the robustness of the solution rarely changes for 𝛾𝑘 ≥ 𝛾𝑘
∗ and 𝛾𝑑 ≥ 𝛾𝑑

∗ . This 

value can be obtained after sensitivity analyses over different budgets of uncertainty (we set 

𝛾𝑘
∗ = 5 and 𝛾𝑑

∗ = 17), meaning that increasing the protection level by choosing 𝛾𝑘 > 𝛾𝑘
∗ and 

𝛾𝑑 > 𝛾𝑑
∗  does not provide a significant improvement in the robustness of the solution against 

uncertainty.  

We investigate the effects of the proposed method in the three cases by two well-known 

indices: 1) the price of robustness (PoR) and 2) the constraint violation rate (CVR) [336]. The 

PoR is defined as the percentage of relative difference between the cost achieved by a robust 
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solution and a nominal solution. The CVR measures the percentage number of times a given 

solution does not satisfy the inequality constraints in (163) in reference to several realizations 

of the uncertainty parameters in a Monte Carlo (MC) simulation with 10000 runs. 

The results of the energy scheduling for the three cases are presented in Figure 4.6. The 

PEVs’ energy payments for cases 1, 2, and 3 are respectively 466.00$, 484.51$, and 469.50$. 

Although - as expected - the solution of case 1 leads to the minimum PEVs’ energy payment, 

the result is the most optimistic case, since it ignores the effects of the data uncertainty. 

Therefore, in real conditions, any disturbance in the forecast profiles of the load demands or 

energy pricing may cause an excessive increase in the obtained value of the objective function. 

Also, the grid constraints can be easily violated over the time window in presence of any 

disturbances because of the lack of any protection term in (163) against data uncertainty (in 

fact, CVR = 31.24%). On the other hand, the solution of case 2 provides full immunity against 

the worst-case realization. Here, the worst-case occurs when the energy demand and energy 

pricing uncertainties take their upper bounds during all time slots. This case guarantees that the 

solution is immunized against all possible uncertain data, leading to CVR = 0. However, this 

immunity is obtained at the expenses of an unnecessarily too conservative solution, causing the 

highest PoR (equal to 3.97%). In order to prevent such a too conservative solution, case 3 

provides a compromise where there is a respective decrease in the PEVs’ cost compared to case 

2 as well as in the PoR (equal to 0.75%). Meanwhile, the solution obtained by case 3 is robust 

against data uncertainty (CVR = 14.68%). In general, by adjusting the budgets of uncertainty 

in the possible range, the level of conservativeness of the solution can be controlled and a trade-

off between the PoR and the CVR may be obtained. 

 

 

(a) 

 
(b) 
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(c) 

Figure 4. 6. Aggregated PEVs charging schedule - (a) case 1; (b) case 2; (c) case 3. 

 
 

Moreover, for each case of analysis, in Figure 4.7 we report 1) the relative optimality gap 

(ROG) and 2) the relative coupling constraint residual (RCCR) as a function of iterations. The 

ROG is defined as the relative difference between the objective cost achieved by the algorithm 

solution at a given iteration and the optimal cost 𝑐∗ computed by a centralized solver: 

|𝑐 (𝐱1
(𝑡)

, … , 𝐱𝑁
(𝑡)

) − 𝑐∗| /𝑐∗ The RCCR measures the relative deviation observed in the equality 

coupling constraint by the algorithm solution at a given iteration: ‖∑𝑖∈𝒩∪𝑁+1 𝐴𝑖𝐱𝑖
(𝑡) − 𝐛‖/∥

𝐛 ∥ As it can be seen from Figure 4.7, Algorithm 4.2 achieves optimality and feasibility in all 

cases, while the value of the robustness factors does not affect the algorithm convergence speed. 

We finally remark that in all the simulations runs the results obtained by the proposed 

decentralized algorithm converge to the exact optimal values of (173)-(175), which may be 

achieved in a centralized fashion via a linear programming solver, confirming the approach 

optimality. 

Second, we present a sensitivity analysis of the 10000 runs MC simulation results with 

respect to different budgets of uncertainty 𝛾𝑘 ∈ [0, 𝐻] and 𝛾𝑑 ∈ [0, 𝐻] in terms of average PoR 

and CVR, all reported in Figure 4.8. As can be observed from the results, both the PoR and 

CVR present a non-linear trend. On the one hand, for any fixed value of 𝛾𝑘, as the value of 𝛾𝑑 

increases, the PoR monotonically gets worse, whilst the CVR monotonically gets better. On the 

other hand, for a fixed high value of 𝛾𝑑, both the PoR and CVR are quite constant with respect 

to changes in 𝛾𝑘; conversely, for a fixed low value of 𝛾𝑑, the variations of the PoR and CVR 

have a convex and concave profile presenting a local maximum and minimum, respectively. 
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(a) 

 

(b) 

Figure 4. 7. Evolution of the ROG (a) and RCCR (b) across iterations. 

 

 

(a) 

 

(b) 

Figure 4. 8. Sensitivity analysis of the average PoR (a) and CVR (b) with respect to different budgets of 

uncertainty 

 
In addition, the PoR and the CVR present a mutually dual behavior, confirming that they 

are two competing indices: the PoR is higher where the CVR is higher, and viceversa.  
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Figure 4. 9. Number of iterations required by Algorithm 4.2 to achieve  𝑅𝑂𝐺 < 10−3 ∧ 𝑅𝐶𝐶𝑅 < 10−3  for 

different number of PEVs (average results over MC simulations). 

 

This result confirms the effectiveness of our approach, enabling the chance of a good trade-

off between the total energy payment and the level of conservativeness by changing the value 

of the budget of uncertainty. 

Finally, we provide a numerical analysis of the algorithm complexity when the number of 

PEVs vary in the range 𝑁 = 10 ÷ 300. To this aim, we scale both the inelastic load demand 

curve 𝐝 and the power flow limit curve 𝐠 in Fig. 3, such that the penetration of the PEVs is 

constant, i.e., we impose that the ratios (maxℎ𝑑(ℎ))/𝑁 and (maxℎ𝑔(ℎ))/𝑁 are constant while 

changing 𝑁. Referring to 𝛾𝑘 = 5 and 𝛾𝑑 = 17, Figure 4.9 shows that the number of iterations 

required by the proposed algorithm to make both the relative optimality gap and the relative 

coupling constraint residual lower than a given threshold over different size of PEVs. From 

Figure 4.9 we note that the number of iterations increases linearly with the number of PEVs, 

confirming the approach scalability. 

4.3.8. Conclusions 

In this subsection, we propose a novel robust control algorithm for optimally controlling the 

battery charging of electric vehicles under grid resource sharing constraints in a decentralized 

fashion. On the one hand, the proposed approach fills a gap in the existing literature, where 

there is a lack of investigations on decentralized robust approaches aimed at efficiently 

increasing the penetration of PEVs while preserving the power grid congestion limits. On the 

other hand, the application to numerical experiments based on real case studies highlights the 

robustness of the proposed energy scheduling in the uncertain context. A trade-off can be made 

relying on a decentralized framework to resolve the conflict between energy payment 

minimization and contractual constraint satisfaction, which is advantageous for both the electric 

vehicle users and the power grid operator. Future research will address: demonstrating the 

optimality and convergence properties of the proposed approach, assessing the scalability of 

the algorithm in larger-scale scenarios, extending the system model by integrating additional 

objective functions and constraints, and modeling other types of uncertainty sources that may 

affect decision parameters. 
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From the findings and contribution of the research in this chapter, the following paper has 

been presented: 

• S. M. Hosseini, R. Carli, A. Parisio and M. Dotoli, “Robust Decentralized Charge 

Control of Electric Vehicles under Uncertainty on Inelastic Demand and Energy 

Pricing,” IEEE International Conference on Systems, Man, and Cybernetics (SMC), 

Toronto, Canada, Oct 11-14, 2020. 
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5. Conclusions and Future Work  

In this thesis several approaches were proposed to address the optimal DSM of smart 

electrical energy systems (e.g., smart residential MGs and smart PEVs fleets) in the presence 

of disturbances in forecast data. The proposed approaches represented improvements with 

respect to the state of the art in the exploitation of optimization techniques to solve problems 

arising in energy management and control of SGs.  

The first part of thesis focused on centralized techniques for the DSM of residential MGs 

under uncertainty in forecast data. We presented several day-ahead and online energy 

scheduling for residential MGs. Several elements of novelty and original contributions of this 

part may be highlighted as: 

• The optimization technique presented in subchapter 3.2 is the first to the best of the 

author’s knowledge to provide a robust DSM under bounded uncertainty sets dealing 

with intermittency in both RESs and loads in residential smart users including ESS 

units. The proposed approach developed a robust optimization framework for the day-

ahead scheduling of residential smart user under uncertainties of forecast data. Unlike 

stochastic scenario-based techniques, the proposed method took advantage from a 

robust optimization scheme including minimum information on the sources of 

uncertainty - namely only the deterministic range of the uncertain variables and the 

resistance against any disturbance in the uncertainty set - and characterized by a lower 

computational burden than stochastic optimization that normally utilizes time 

consuming Monte Carlo sampling. 

• The optimization technique presented in subchapter 3.3 is the first to the best of the 

author’s knowledge to provide an online energy scheduling of a residential MG with 

the possibility of concurrent occurrence of uncertainties in the estimated load demand 

and RES unit while considering a non-linear objective function. The proposed method 

is a new energy scheduling approach for residential applications in a retail electricity 

market regarding uncertainties in the estimation of load demand and RES generation. 

In our MPC-based method, the concept of receding horizon control made is possible to 

compute corrective actions with regard to any disturbance in the parameter’s 

estimation. Also, we considered a quadratic pricing function for the energy bought 
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from the grid, which yields more realistic results than the recalled approaches. The 

proposed approach provided a full exploitation of the RES in variable weather 

conditions, the optimal planning of the usage of electrical devices and determining an 

optimal strategy of storage charging/discharging, whilst minimizing the cost of energy 

acquired from the grid and limiting the PAR in the aggregate load demand. 

• The optimization technique presented in subchapter 3.4 is the first to the best of the 

author’s knowledge to provide an online energy scheduling framework based on 

RMPC to state and solve the energy scheduling problem of a residential MG with a 

shared ESS under quadratic cost function. The proposed approach tackled the forecast 

load uncertainty in both the objective function and corresponding contractual 

constraints. The problem included uncertain terms in both the left-hand side and the 

right-hand side of the inequality constraints. All technical constraints and a contractual 

obligation imposed by the electric grid, limiting the total energy consumption per time 

slot to a maximum level were formulated. Moreover, the conservativeness of the 

proposed scheme and its flexibility for applying to different applications were analyzed 

and discussed. 

• Finally, the optimization technique presented in subchapter 3.5 is the first to the best 

of the author’s knowledge to provide a comprehensive model and a systematic robust 

methodology to state and solve a more generic energy scheduling problem of a grid-

connected residential MG with several users incorporating individually owned RESs, 

NCLs, energy-based and comfort-based CLs, and PEVs. Moreover, the smart users 

shared a given number of RESs and an ESS under a dynamic quadratic pricing. 

However, the MG was also able to sell its extra energy back to the grid by a dynamic 

linear pricing. We took the forecast uncertainty caused by the RESs energy profiles, as 

well as the users’ energy demand, into account. To the best of the authors’ knowledge, 

no robust quadratic programming approach for the energy scheduling of the residential 

MG has ever been proposed to tackle the uncertainties associated with RES generation 

and users’ energy demand under quadratic pricing. The proposed framework is generic 

and flexible as it can be applied to different structures of MGs considering various 

types of uncertainties in energy generation or demand. Moreover, we dealt with the 

conservativeness of the proposed scheme for different scenarios and quantify the 

effects of the budget of uncertainty on the cost saving, the PAR and constraints’ 

violation rate. The proposed robust approach enables the decision maker (i.e., the 

energy manager of the MG) to make a trade-off between the users’ payment and 

constraints’ violation rate by adjusting the values of the budget of uncertainty. 
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• The future research paths of this first set of approaches presented in the thesis include 

extending the system model by integrating additional subsystems such as non-

interruptible loads, or other types of uncertainty sources such as uncertain real-time 

pricing and PEV plug-in/out times. 

The second part of thesis focused on distributed techniques to deal with the problem of 

optimal charging of large-scale PEV fleets aiming at the minimization of the aggregated 

charging cost and battery degradation, while satisfying the PEVs’ individual load requirements 

and the overall grid congestion limits. The elements of novelty and original contributions of 

this part consist in: 

• The optimization technique presented in subchapter 4.2 is the first to the best of the 

author’s knowledge to address the optimal charging of PEV fleets considering both the 

power capacity limits related to the distribution network and the impact of charging 

strategies on battery degradation, in order to preserve the reliability and efficiency of 

both the power grid and the individual PEVs. Moreover, we established a novel fully 

distributed control strategy for the optimal charging of large-scale PEVs’ fleets, in 

order to coordinate PEVs and eliminate the need for a central coordinator, reducing the 

computational complexity and guaranteeing the PEV users’ privacy. The proposed 

method aimed at obtaining a global optimum solution which minimized the aggregated 

charging cost and battery degradation based on the PEVs’ individual satisfactions and 

requirements. The proposed approach considered a quadratic cost function for the 

energy purchased from the power grid, and a quadratic PEVs battery degradation model 

as well, and formulated the optimization problem as a convex quadratic programming 

problem, where all the PEVs’ decision variables were coupled both via the objective 

function and some grid resource sharing constraints. 

• The optimization technique presented in subchapter 4.3 is the first to the best of the 

author’s knowledge to provide a novel mathematical model and an iterative 

coordinated framework, without relying on a central decision-maker, using an extended 

Jacobi-Proximal ADMM algorithm to minimize the aggregated charging cost of large-

scale PEV fleets under both PEVs’ individual requirements and grid power flow limits. 

We accounted for the data uncertainties associated with the dynamic electricity price 

and the inelastic load demand by formulating a robust counterpart of the charge 

scheduling problem using an uncertainty setbased method. Moreover, we defined 

suitable robustness factors to mitigate the conservativeness of the proposed approach, 

and we investigated the effects of such robustness factors on the robustness of the 

solution against variations of the uncertain parameters within the given uncertainty 

sets. 
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• Future research of this second set of approaches presented in the thesis will include 

demonstrating the optimality and convergence properties of the proposed approach, 

assessing the scalability of the algorithm in larger-scale scenarios, extending the system 

model by integrating additional objective functions and constraints, and modeling other 

types of uncertainty sources that may affect decision parameters. 
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Appendix A 

In this appendix, we provide the mathematical steps employed in defining (126)-(132) as the 

robust counterpart of the scheduling problem (117)-(123). 

Preliminarily, for the ease of implementation, following [337], we transform (117)-(123) 

into an equivalent form where the objective function is not subject to uncertainty, and data 

uncertainty only affects the elements in the LHS of constraints. In particular, we get an 

equivalent problem with linear objective function and both quadratic and linear constraints as 

follows: 

min
𝒙𝑙,𝒙𝑝,𝒙𝑣,𝒙𝑣𝛿,𝒙𝑠,𝒙𝑠𝛿,𝒙𝑔𝛿,

𝒙𝑎,𝜹𝑣,𝜹𝑠,𝜹𝑔,𝛼,𝒙𝑏

𝛼  
(191) 

s.t. (64)-(70), (72)-(74), (77)-(83), (85)-(87), 

(90)-(96), (99)-(101), (103), (106)-(108), 

and 

 

𝒙𝑏 = 𝟏𝑃,1  (192) 

𝑐(𝒙𝑔𝛿 , 𝒙𝑎) − 𝛼 ≤ 0  (193) 

𝒙𝑎 + ∑ 𝒅𝑝 ∘ 𝒙𝑝
𝑏𝑃

𝑝=1 ≤ 𝒈  (194) 

𝒙𝑎 + ∑ 𝒅𝑝
𝑃
𝑝=1 ∘ 𝒙𝑝

𝑏 ≥ 𝒈 (195) 

𝒙𝑎 + 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1 ∘ 𝒙𝑝

𝑏 ≤ 𝒈  (196) 

𝒙𝑎 − 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1 ∘ 𝒙𝑝

𝑏 ≥ 𝟎𝐻,1  (197) 

𝒙𝑎 − 𝒙𝑔𝛿 + 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1 ∘ 𝒙𝑝

𝑏  ≥ 𝒈 (198) 

𝒙𝑎 − 𝒙𝑔𝛿 + 𝒈 ∘ 𝜹𝑔 + ∑ 𝒅𝑝
𝑃
𝑝=1 ∘ 𝒙𝑝

𝑏 ≤ 𝒈. (199) 

  

Note that in (191) and (193) we introduce the scalar auxiliary variable 𝛼 to move the 

uncertain parameters from objective function to inequality constraints. Similarly, we introduce 

vector 𝒙𝑏 ≜ [𝒙1
𝑏;… ; 𝒙𝑝

𝑏; … ; 𝒙𝑃
𝑏] collecting 𝑃 column vectors of 𝐻 auxiliary variables 𝒙𝑝

𝑏 ≜

[𝑥𝑝
𝑏(1);… ; 𝑥𝑝

𝑏(ℎ);… ; 𝑥𝑝
𝑏(𝐻)]  (𝑝 ∈ 𝒫) to preserve uncertain parameters in the LHS of 

constraints.  

Assuming that optimization input parameters take the values defined by (125), we first 

replace the nominal value of the 𝑃𝐻 parameters 𝑑𝑝(ℎ) (ℎ ∈ ℋ, 𝑝 ∈ 𝒫) with its deviated value 

𝑑̃𝑝(ℎ) in all the minority (193), (194), (196), (198) and majority inequalities (195), (197), (199). 

Then, getting inspiration from the cardinality-constrained approach proposed in [337], for a 

fixed 𝛤0 ∈ [0, 𝑃𝐻], we impose that only a subset of these parameters vary to adversely affect 

the solution. Finally, for each of the above mentioned constraints, the final mathematical 
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expression is resorted as a summation of two main terms, one related to the deterministic 

function, and the second called protection function, with all sub-terms including the variation 

of the uncertain parameter (i.e., 𝑑̂𝑝(ℎ), ℎ ∈ ℋ, 𝑝 ∈ 𝒫).  

Summing up, the corresponding robust counterpart of the deterministic formulation (191)- 

(199) is given by the following non-linear optimization problem: 

min
𝒙𝑙,𝒙𝑝 ,𝒙𝑣,𝒙𝑣𝛿,𝒙𝑠,𝒙𝑠𝛿,𝒙𝑔𝛿,

𝒙𝑎,𝜹𝑣,𝜹𝑠,𝜹𝑔,𝛼,𝒙𝑏

𝛼  
(200) 

s.t. (64)-(70), (72)-(74), (77)-(83), (85)-(87), 

(90)-(96), (99)-(101), (103), (106)-(108), and 
 

𝑐(𝒙𝑔𝛿 , 𝒙𝑎) − 𝛼 + 𝛽(𝒙𝑎, 𝛤0) ≤ 0  (201) 

∑ 𝑑𝑝(ℎ) 𝑝∈𝒫 𝑥𝑝
𝑏(ℎ) + 𝑥𝑎(ℎ) + 𝛾ℎ(𝒙𝑏 , 𝛤0) ≤ 𝑔(ℎ),ℎ ∈ ℋ (202) 

∑ 𝑑𝑝(ℎ)𝑝∈𝒫 𝑥𝑝
𝑏(ℎ) + 𝑥𝑎(ℎ) − 𝛾ℎ(𝒙

𝑏 , 𝛤0) ≥ 𝑔(ℎ), ℎ ∈ ℋ (203) 

𝑥𝑎(ℎ) + 𝑔(ℎ)𝛿𝑔(ℎ) + ∑ 𝑑𝑝(ℎ)𝑥𝑝
𝑏(ℎ)𝑃

𝑝=1   

+𝛾ℎ(𝒙
𝑏 , 𝛤0) ≤ 𝑔(ℎ), ℎ ∈ ℋ 

(204) 

𝑥𝑎(ℎ) − 𝑔(ℎ)𝛿𝑔(ℎ) + ∑ 𝑑𝑝
𝑃
𝑝=1 (ℎ)𝑥𝑝

𝑏(ℎ)  

−𝛾ℎ(𝒙
𝑏 , 𝛤0) ≥ 0, ℎ ∈ ℋ 

(205) 

𝑥𝑎(ℎ) − 𝑥𝑔𝛿(ℎ) + 𝑔(ℎ)𝛿𝑔(ℎ) + ∑ 𝑑𝑝
𝑃
𝑝=1 (ℎ)𝑥𝑝

𝑏(ℎ)  

−𝛾ℎ(𝒙𝑏 , 𝛤0) ≥ 𝑔(ℎ), ℎ ∈ ℋ 
(206) 

𝑥𝑎(ℎ) − 𝑥𝑔𝛿(ℎ) + 𝑔(ℎ)𝛿𝑔(ℎ) + ∑ 𝑑𝑝
𝑃
𝑝=1 (ℎ)𝑥𝑝

𝑏(ℎ)  

+𝛾ℎ(𝒙𝑏 , 𝛤0) ≤ 𝑔(ℎ), ℎ ∈ ℋ 
(207) 

 

where the protection function of the objective 𝛽(𝒙𝑎 , 𝛤0) is defined in (133) and the protection 

functions of the inequality constraints 𝛾ℎ(𝒙𝑏, 𝛤0) is defined as 𝛾ℎ(𝛤0) (ℎ ∈ ℋ) in (134) (here 

(192) is used for the sake of notation simplicity). 

Finally, removing unnecessary variables 𝛼 and 𝒙𝑏, it is straightforward transforming (200)- 

(207) into (126)-(132). 

We finally remark that, in this formulation, the approach proposed in [337] is slightly 

modified. First, in [337] the uncertainty is modeled constrain-wise (i.e., perturbations of 

uncertain parameters in different constraints are not linked to each other). This allows defining 

for each constraint an individual budget of uncertainty, which represents the deviation allowed 

to the uncertain parameters affecting the given constraint.  Conversely, in (200)-(207) only one 

𝛤0 is introduced to denote the total budget of uncertainty for all the parameters. In effect, the 

𝑃𝐻 uncertain parameters 𝑑𝑝(ℎ) (ℎ ∈ ℋ, 𝑝 ∈ 𝒫) simultaneously affect all the constraints (193)- 

(199). Second, in [337] there are as many separated protection functions as the unlinked 
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constraints. On the other hand, in the above-defined approach, the definition of protection 

function in (133)-(136) is coupled to ensure the maximum variation for the entire set of 

uncertainty sources over the whole time horizon. 

 

Appendix B 

In this appendix, we provide the mathematical steps employed in transforming the robust 

counterpart from the min-max formulation (126)-(132) to the MIQP form (137)-(147). 

We preliminarily note that (133)-(136) define a multi-objective optimization problem that 

aims at determining the portions 𝛤1, … , , 𝛤ℎ , … , 𝛤𝐻 of the uncertainty budget 𝛤0 over all the time 

slots, which simultaneously maximize the values of the protection functions in the objective 

and constraints affected by uncertainty. This is formally expressed in the following lemma. 

Lemma 1 (Protection functions as a solution of a multi-objective linear programming 

problem) - Protection functions 𝛽(𝒙𝑎, 𝛤0) and 𝛾ℎ(𝛤0) (ℎ ∈ ℋ) defined in (133)-(136) equal to 

the optimal values of the objective functions in the following optimization problem: 

max
𝒖1,…,
𝒖𝐻,𝛤1,
…,𝛤𝐻 

 [
 
 
 
 
∑ 2𝑘+(ℎ)|𝑥𝑎(ℎ)|∑ 𝑢𝑝(ℎ)𝑑̂𝑝(ℎ)𝑝∈𝒫ℎ∈ℋ

∑ 𝑢𝑝(1)𝑝∈𝒫 𝑑̂𝑝(1)

⋮
∑ 𝑢𝑝(𝐻)𝑝∈𝒫 𝑑̂𝑝(𝐻) ]

 
 
 
 

  (208) 

s.t. 0 ≤ 𝑢𝑝(ℎ) ≤ 1, 𝑝 ∈ 𝒫, ℎ ∈ ℋ (209) 

∑ 𝑢𝑝(ℎ)𝑝∈𝒫 ≤ 𝛤ℎ , ℎ ∈ ℋ  (210) 

0 ≤ 𝛤ℎ ≤ 𝑃, ℎ ∈ ℋ,∑ 𝛤ℎℎ∈ℋ = 𝛤0. (211) 

  

Proof: The optimal solution of (208)-(211) consists in the optimal allocation 𝛤1
∗, … , 𝛤𝐻

∗ 

(whose values are not necessarily integer) of the uncertainty budget 𝛤0 among all the 𝐻 slots in 

the time window ℋ and, for each time slot ℎ ∈ ℋ, the optimal assignment of supporting 

variables 𝑢1
∗(ℎ),… , 𝑢𝑃

∗ (ℎ) representing the levels of variation related to all the 𝑃 uncertainty 

sources in 𝒫. For each ℎ ∈ ℋ,  ⌊𝛤ℎ
∗⌋ of these variables are equal to 1, one of these is equal to 

𝛤ℎ
∗ − ⌊𝛤ℎ

∗⌋, and the remaining ones are equal to zero. This is equivalent to the selection of 

subsets {𝒬ℎ ∪ {𝑞ℎ}|𝒬ℎ ⊆ 𝒫, |𝒬ℎ| = ⌊𝛤ℎ⌋, 𝑞ℎ ∈ 𝒫\𝒬ℎ} (ℎ ∈ ℋ) with corresponding cost 

functions in the arguments of (133) and additional constraints ∑ 𝛤ℎℎ∈ℋ = 𝛤0 and 0 ≤ 𝛤ℎ ≤

𝑃, ℎ ∈ ℋ.□  

We finally state the cornerstone of our investigation. 

Theorem 1 (Robust counterpart as a MIQP problem) – Robust counterpart (126)-(132) has 

the equivalent MIQP formulation (137)-(147). 
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Proof: Preliminarily, we consider the dual of (208)-(211) based on the duality theory for 

multi-objective optimization [388]:  

min
𝛬∈ℝ,𝝀∈ℝ𝐻,

𝛩11,…,𝛩1𝐻,…,
𝛩𝑃1,…,𝛩𝑃𝐻∈ℝ,
𝜽11,…,𝜽1𝐻,…,

𝜽𝑃1,…,𝜽𝑃𝐻∈ℝ𝐻 
 

[
 
 
 

𝛤0𝛬 + ∑ ∑ 𝛩𝑝ℎℎ∈ℋ𝑝∈𝒫

𝛤0𝜆(1) + ∑ ∑ 𝜃𝑝ℎ(1)ℎ∈ℋ𝑝∈𝒫

⋮
𝛤0𝜆(𝐻) + ∑ ∑ 𝜃𝑝ℎ(𝐻)ℎ∈ℋ𝑝∈𝒫 ]

 
 
 

  

(212) 

s.t. 𝑤0𝛬 + 𝒘𝑇𝝀 ≥ 0 (213) 

𝑤0𝛩𝑝ℎ + 𝒘𝑇𝜽𝑝ℎ ≥ 0, 𝑝 ∈ 𝒫, ℎ ∈ ℋ  (214) 

𝑤0(𝛬 + 𝛩𝑝ℎ − 2𝑘+(ℎ)𝑑̂𝑝(ℎ)|𝑥𝑎(ℎ)|)  

+𝒘𝑇(𝝀 + 𝜽𝑝ℎ − 𝒅̂𝑝) ≥ 0, 𝑝 ∈ 𝒫, ℎ ∈ ℋ. 
(215) 

 

where the previously defined parameters 𝑤0,𝑤1, … ,𝑤𝐻  correspond to the (𝐻 + 1) weights 

associated to the components in the mapping argument of (208). Note that in  (212)-(215) we 

denote the (𝐻 + 1) dual variables of (210)-(211) (which can be compactly written as 

∑ ∑ 𝑢𝑝(ℎ)𝑝∈𝒫 ≤ 𝛤0ℎ∈ℋ ) as 𝛬 ∈ ℝ, 𝝀 ∈ ℝ𝐻 and the (𝐻 + 1)𝐻𝑃 dual variables of (209) as 

𝛩11, … , 𝛩𝑃𝐻 ∈ ℝ,𝜽11, … , 𝜽𝑃𝐻 ∈ ℝ𝐻. 

By theorem of strong duality for multi-objective optimization [388], optimal values of 

objective functions in (212)-(215) and (208)-(211) coincide. Using Lemma 1, the protection 

functions 𝛽(𝒙𝑎 , 𝛤0) and 𝛾ℎ(𝛤0) (ℎ ∈ ℋ) equal to the optimal values of the objective functions 

in (212)-(215).  

Let us define a new supporting variables vector 𝒚 ≜ |𝒙𝑎| by introducing the inequality 

constraints defined in (147). Consequently, (215) can be rewritten as: 

𝑤0 (𝛬 + 𝛩𝑝ℎ −
1

2
𝑘+(ℎ)𝑑̂𝑝(ℎ)𝑦(ℎ))  

+𝒘𝑇(𝝀 + 𝜽𝑝ℎ − 𝒅̂𝑝) ≥ 0, 𝑝 ∈ 𝒫, ℎ ∈ ℋ. 

(216) 

 

Finally, replacing (212)-(214) and (216) into (126)-(132), we obtain that (126)-(132) is 

equivalent to MIQP problem (137)-(147).□ 
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