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Abstract

Opacity is a security and privacy property that evaluates whether an external observer (intruder) can infer a secret of a
system by observing its behaviour. This paper proposes an on-line approach to address the problem of current-state opacity
in discrete event systems modeled in a labeled Petri Net (PN) framework and by observing its evolution. An observation of
the system is said to be current-state opaque if an intruder is unable to determine whether the current-state of the system is
within a set of secret states, otherwise it is said to be not current-state opaque. The proposed approach to verify the current-
state opacity works on-line: the intruder waits for the occurrence of an observable event and uses Integer Linear Programming
problem solutions to verify if the given observation of the system is current-state opaque. Moreover, the proposed method is
applied in two different settings: i) a centralized approach where the intruder has full knowledge of the system model but is
able to partially observe the system behaviour; ii) a decentralized approach where a set of intruders can observe different event
sets and collaborate with a coordinator to check the same secret. Finally, several examples are presented to demonstrate the
efficiency of the proposed method.

Key words: On-line security analysis; Petri nets; Integer linear programming; Decentralized systems.

1 Introduction

The problems of security and privacy have received ex-
tensive concerns in on-line services of networked and
cyber-physical systems over the last few decades. To for-
mulate these problems, various notions of security and
privacy have been proposed in the literature, such as
anonymity [23], [29], non-interference [7], [17] and opac-
ity [5], [24], [25]. In particular, opacity is a security and
privacy property that evaluates whether an external ob-
server (intruder) can infer a secret of a system by ob-
serving its behaviour. Depending on the definition of the
secret, there are two main kinds of opacity properties
provided in the related literature: language-based opac-
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ity and state-based opacity. State-based opacity defines
the secret as a set of secret states and it can be further
classified as initial-state opacity [25], [27], [30], initial-
and-final-state opacity [33], current-state opacity [28],
[31] and k-step opacity [26]. The work in [33] proposes a
polynomial algorithm to transform one of the four kind-
s of opacity (language-based, initial-state, initial-and-
final-state, and current-state) to any other.

This paper focuses on the current-state opacity. In par-
ticular, a system is said to be current-state opaque with
respect to a secret, if for any observation, the intruder
cannot infer that the current state of the system belongs
to the secret. More precisely, opacity requires that for
any observation the intruder estimates the set of states
consistent with the observation and verifies that is not
subset of the secret. Some works address the verifica-
tion of current-state opacity in Discrete Event Systems
(DESs) that are modeled as Finite-State Automata (F-
SA). In this framework, the intruder is considered as an
external observer that has full knowledge of the struc-
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ture of the system but has only partial observation on
its events. The well-known approach to verify current-
state opacity is to build an observer automaton [24] that
represents the intruder’s state estimate after a word is
observed. Motivated by the work in [24], Saboori and
Hadjicostis [28] also present current-state opacity no-
tions in Probabilistic Finite Automata (PFA) and the
corresponding verification methods. However, the con-
struction of the observer has O(2n) state-space and time
complexity where n is the number of the states in the
automaton.

Most opacity-related studies consider a centralized ar-
chitecture in the framework of automata, i.e., only one
intruder verifies the opacity of the system. Due to dis-
tributed nature of real systems, several works also take
into account distributed definitions of opacity. The s-
tudy in [1] considers several intruders that have differ-
ent observation masks and secrets. A system is said to
be concurrently opaque if all the secrets are safe. Wu
and Lafortune [33] extend the opacity notion to a coor-
dinated architecture where multiple intruders work to-
gether with a coordinator to discover the same secret. In
their work, joint opacity properties are first introduced
and adapted to the coordinated architecture. In addi-
tion, Paoli and Lin [21] introduce decentralized opacity
definitions for the cases with and without coordination
among agents based on languages.

Compared with automata, PNs have the advantages of
modeling DESs by their twofold representation: graphi-
cal and mathematical. Thus, PNs have been extensive-
ly applied to structural analysis theory [18], deadlock
control [19], [32], supervisory control theory [20] and
scheduling [2].

In the framework of PNs, current-state opacity is first
introduced in [5] and this notion is then extended to la-
beled transition systems in [6]. Moreover, Tong et al. [31]
solve the verification of current-state opacity in labeled
Petri Nets (LPNs). The work in [31] proposes a neces-
sary and sufficient condition for current-state opacity by
using the notion of basis markings [8], [16]. The advan-
tage of this method is to avoid the exhaustive enumera-
tion of the reachable markings. However, it can be only
applied to bounded PNs and a large memory may be
still required.

In order to avoid the states enumeration of a system,
this paper presents an on-line verification method of
current-state opacity by employing LPN models and In-
teger Linear Programming (ILP) problem, an approach
also used to solve the on-line fault diagnosis [3], [13],
[14] and fault diagnosability tests [4]. More precisely, the
structure of the LPN and the initial marking are known
by the intruder which only has partial observation of the
transitions. The intruder waits for an observable even-
t and exploits an algorithm to determine whether the
system behaviour remains in the secret or not. By the

definition of current-state opacity, if there exists an ob-
servation such that the intruder can decide that all the
markings consistent with the observation belong to the
secret, then the system is said to be not current-state
opaque with respect to the secret. Moreover, the pro-
posed technique is also extended to the decentralized ar-
chitecture that is composed by a number of local intrud-
ers communicating their own output information with a
coordinator. Each local intruder has a full knowledge of
the net structure and its initial marking, but it observes
only a subset of the observable events. The coordinator
is used to produce the global result as the single glob-
al (system) intruder. To this aim, we propose a protocol
for the communication between the local intruders and
the coordinator.

As a conclusion of this section, we summarize the main
features and contributions of this paper.

(1) An on-line algorithm for opacity is presented in the
framework of PN system exploiting ILP. The algo-
rithm checks the current-state opacity property for
each given observation of the system by avoiding
off-line computation of the observer.

(2) By using the on-line strategy, the proposed method
avoids the redesign and redefinition of the intruder
when the system structure changes.

(3) The on-line method for verification of current-state
opacity is applied in a decentralized architecture.

(4) The proposed methods in centralized and decen-
tralized architecture are general since they both can
be applied to the net with bounded and unbounded
state space.

The rest of this paper is organized as follows. Section 2
briefly introduces some basics of the PN formalism. Sec-
tion 3 defines the intruder, proposes the on-line algorith-
m to verify current-state opacity and uses some examples
to show the efficiency of the approach. Section 4 extends
the algorithm proposed in Section 3 to a decentralized
architecture and an example illustrates this distributed
approach. Finally, Section 5 draws the conclusion.

2 Preliminaries

2.1 Petri nets

This section reviews some basics of PNs [22] used in the
paper.

A PN is a 4-tuple PN = (P, T, Pre, Post), where P is
a set of m places represented by circles, T is a set of
n transitions represented by bars, Pre : P × T → N
and Post : P × T → N are the pre- and post-incidence
matrices, respectively, which specify the arcs connecting
places and transitions. More precisely, for each p ∈ P
and t ∈ T element Pre(p, t) (Post(p, t)) is equal to a
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natural number indicating the arc multiplicity if an arc
going from p to t (from t to p) exists, and it is equal
to 0 otherwise. Note that N is the set of non-negative
integers. Matrix C = Post−Pre is the m×n incidence
matrix of the PN.

The state of a PN is given by its current marking that
is a mapping M : P → Nm, assigning to each place
an integer number of tokens. The marking of place p is
denoted by M(p). For simplicity, markings can also be
denoted asM =

∑
p∈P M(p) ·p. A PN system ⟨PN,M0⟩

is a net PN with an initial marking M0.

A transition tj ∈ T is enabled at M if M ≥ Pre(·, tj)
holds and M [tj⟩ is used to denote that tj ∈ T is en-
abled at marking M . When fired, tj produces a new
marking M ′, denoted by M [tj⟩M ′ that is computed by

the PN state equation M ′ = M + C · −→tj , where
−→
tj is

an n-dimensional firing vector corresponding to the jth
canonical basis vector.

Let σ = t1t2 . . . tk be a sequence of transitions (firing
sequence) and let k be its length, given by the number
of transitions that σ contains. The fact that a transition
t ∈ T appears in the sequence σ is denoted by t ∈ σ.
Moreover, the notation M [σ⟩ denotes that σ is enabled
at M and M [σ⟩M ′ denotes that the firing of σ yields
M ′. The set of all sequences that can fire in a net system
⟨PN,M0⟩ is denoted by L(PN,M0) = {σ ∈ T ∗|M0[σ⟩}.
In addition, σ⃗ : T → Nn is the firing vector associated
with a sequence σ.

A marking M is said to be reachable from ⟨PN,M0⟩ if
there exists a firing sequence σ such that M0[σ⟩M . The
set of all markings reachable from M0 defines the reach-
ability set of ⟨PN,M0⟩, which is denoted asR(PN,M0).

A PN having no directed cycles is said to be acyclic. The
following theorem shows an important property of this
subclass of PNs.

Theorem 1 [11] Let ⟨PN,M0⟩ be an acyclic PN.

(1) If vector y satisfies equation M0 + C · y ≥ 0⃗, there
exists a firing sequence σ fireable from M0 such that
σ⃗ = y.

(2) A markingM is reachable fromM0 iff there exists a
non-negative integer solution y satisfying the state
equation M = M0 + C · y.

2.2 Labeled Petri nets

An LPN is 4-tupleG = (PN,M0, E, λ) where ⟨PN,M0⟩
is a PN system, E is an alphabet (a set of labels) and
λ : T → E ∪ {ε} is a labeling function that assigns to
each transition t ∈ T either a symbol e ∈ E or the empty
word ε.

We assume that the intruder has complete knowledge of
the net system but partial observation of its behaviour.
Namely, the set of transitions can be partitioned into
T = To ∪ Tu with To ∩ Tu = ∅, where To (resp. Tu) is
the set of |To| = no (resp. |Tu| = nu) observable (resp.
unobservable) transitions whose occurrence can (resp.
cannot) be detected by the intruder. Hence, the labeling
function λ is defined as follows: if t ∈ To then λ(t) = e ∈
E, and if t ∈ Tu then λ(t) = ε. Here, we assume that the
same label e ∈ E can be associated to more than one
transition. In the following, we denote by T (e) = {t ∈
To|λ(t) = e} the set of transitions associated with the
same label e ∈ E.

Moreover, we denote as w the sequence of events associ-
ated with the sequence σ ∈ T ∗ such thatw = λ(σ) by us-
ing the extended form of the labeling function λ : T ∗ →
E∗. The set of languages generated by an LPN is denot-
ed as L(PN,M0) = {w ∈ E∗|∃σ ∈ L(PN,M0) : λ(σ) =
w}. In addition, we denote by σu ∈ σ (σo ∈ σ) the subse-
quence of σ composed of the unobservable (observable)
transitions and by σ⃗u : Tu → Nnu (σ⃗o : To → Nno) the
corresponding firing vector.

Given a net PN = (P, T, Pre, Post) and a subnet TA ⊆
T of its transitions, we define the TA-induced subnet of
PN as a new net PNA = (P, TA, P reA, PostA) where
PreA and PostA are the restrictions of Pre and Post
to TA, i.e., PNA is the net obtained from PN by re-
moving all transitions in T\TA, which is denoted by
PNA∠TA

PN . In the following, matrices Cu = Postu −
Preu and Co = Posto − Preo denote the restriction of
the incidence matrix C to Tu and To, respectively.

Let w be an observed word. We define S(w) = {σ ∈
L(PN,M0)|λ(σ) = w} as the set of firing sequences con-
sistent with w and C(w) = {M ∈ Nm|∃σ ∈ S(w) :
M0[σ⟩M} as the set of markings consistent with w.

3 Verification of current-state opacity in the
centralized approach

In this section, we provide an on-line approach for ver-
ification of current-state opacity in the centralized ap-
proach.

3.1 Description of current-state opacity

In the following, we first recall opacity definitions in [31]
for DESs that are modeled by LPNs. A secret is defined
as a set of secret states S ⊆ R(PN,M0).

Definition 1 [31] Let G be an LPN system and S be a
secret. An observation w of G is said to be current-state
opaque wrt S if C(w) * S holds.

Based on Definition 1, the current-state opacity defini-
tion for a system is given as follows.
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Definition 2 [31] Let G be an LPN system and S be a
secret. G is said to be current-state opaque wrt S if all
observations w are current-state opaque wrt S.

Motivated by Definitions 1 and 2, we provide the follow-
ing two definitions of a not current-state opaque obser-
vation and a not current-state opaque system, respec-
tively.

Definition 3 LetG be an LPN system and S be a secret.
An observation w of G is said to be not current-state
opaque wrt S if C(w) ⊆ S holds.

A not current-state opaque observation w implies that
the intruder can infer that all the markings consistent
with w belong to the secret, i.e., ∀M ∈ C(w) : M ∈ S.

Consequently, a not current-state opaque system is de-
fined as follows.

Definition 4 LetG be an LPN system and S be a secret.
G is said to be not current-state opaque wrt S if there
exists an observation w that is not current-state opaque
wrt S.

In this paper, the following set of Generalized Mutual
Exclusion Constraints (GMECs) [15] describes the se-
cret:

S =
r∩

q=1

{M ∈ Nm|xT
q ·M ≤ kq},

where xq ∈ Zm and kq ∈ Z with q = 1, 2, . . . , r. Note
that Z is the set of integers. Such a set of GMECs (xq, kq)
is denoted as S = {M ∈ Nm|X ·M ≤ K}, where X =
[x1, x2, . . . , xr]

T and K = [k1, k2, . . . , kr]
T .

3.2 The on-line intruder specification

In this subsection, given an observed word w, we show
how to characterize the sets S(w) and C(w) by solving
ILP problems and we specify the on-line intruder.

Firstly, the following assumption is given for the system
under investigation:

A1) The Tu-induced subnet PNu∠TuPN and To-
induced subnet PNo∠ToPN are acyclic.

In particular, assumption A1 allows us to study the
reachability of the unobservable and observable subnets
by using the state equation. The inputs of the intrud-
er are the LPN system G = (PN,M0, E, λ), the secret
S modeled by a set of GMECs, and the observed word
w ∈ L(PN,M0). The output of the intruder is the set-
valued function Φ(w) that is defined as follows:

Definition 5 An on-line intruder is a function
Φ : L(PN,M0) → {Y,N} that associates to each obser-
vation w ∈ L(PN,M0) the following sets:

(1) Φ(w) = {Y } if the observation of the system is
current-state opaque wrt the secret S.

(2) Φ(w) = {N} if the observation of the system is not
current-state opaque wrt the secret S.

Given an LPN system G = (PN,M0, E, λ) with lan-
guage L(PN,M0) and satisfying assumption A1, we
specify an intruder that works on-line and determines
whether an observation is opaque or not after the occur-
rence of each new event. More precisely, for each initial
marking M0 ∈ Nm, at the occurrence of an observed
word w ∈ L(PN,M0), the following proposition shows
a linear algebraic characterization of each transition
sequence σ ∈ T ∗ whose firing at M0 is consistent with
the observation w = λ(σ).

Proposition 1 Let L(PN,M0) be the language of an
LPN system G = (PN,M0, E, λ) satisfying assump-
tion A1. Given a word w ∈ L(PN,M0) denoted by w =
e1e2 . . . eh (where ei ∈ E for i = 1, 2, . . . , h is the ith
observed event), there exists at least one sequence σ =
σu1σo1σu2σo2 . . . σuh

σoh σuh+1
with |σui | ≥ 0 for i =

1, 2, . . . , h+1 and |σoi | = 1 for i = 1, 2, . . . , h enabled at
the initial marking M0 such that λ(σ) = w = e1e2 . . . eh
iff there exist 2h + 1 firing vectors σ⃗u1 , σ⃗u2 , . . . , σ⃗uh+1

,
σ⃗o1 , σ⃗o2 , . . . σ⃗oh that satisfy the following set of con-
straints denoted by ρ(M0, w):



σ⃗ui ∈ Nnu , for i = 1, . . . , h+ 1 (a)

σ⃗oi ∈ Nno , for i = 1, . . . , h (b)

Cu

k∑
i=1

σ⃗ui ≥ Preo · σ⃗ok −M0 − Co

k−1∑
i=1

σ⃗oi ,

for k = 1, . . . , h (c)

M0 + Cu

h+1∑
i=1

σ⃗ui + Co

h∑
i=1

σ⃗oi ≥ 0⃗ (d)∑
tj∈T (e1)

σ⃗o1(tj) = 1∑
tj∈T (e2)

σ⃗o2(tj) = 1

· · ·∑
tj∈T (eh) σ⃗oh(tj) = 1 (e)∑
tj /∈T (e1)

σ⃗o1(tj) = 0∑
tj /∈T (e2)

σ⃗o2(tj) = 0

· · ·∑
tj /∈T (eh) σ⃗oh(tj) = 0

(1)

Proof: (Only if) Assume that σ ∈ S(w) such that σ =
σu1σo1 . . . σuh

σohσuh+1
andM0[σu1σo1⟩M1 . . .Mh−1[σuh

σoh⟩Mh[σuh+1
⟩Mh+1, where Mi is the marking reached

after observable sequence σoi (|σoi | = 1) fires for
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i = 1, . . . , h and Mh+1 is the marking reached after
unobservable sequence σuh+1

fires. The corresponding
firing vectors σ⃗u1 , . . ., σ⃗uh+1

, σ⃗o1 , . . ., σ⃗oh trivially verify
the 2h+ 1 constraints of (1)(a) and (1)(b).

By the enabling condition, we have:

Mi−1 + Cu · σ⃗ui ≥ Preo · σ⃗oi for i = 1, . . . , h. (2)

Moreover, by the state equation, the firing vectors σ⃗u1 ,
. . ., σ⃗uh

, σ⃗o1 , . . ., σ⃗oh satisfy the constraints:

Mi−1 +Cu · σ⃗ui +Co · σ⃗oi = Mi for i = 1, . . . , h. (3)

By writing (2) and (3) for each i = 1, . . . , h and recur-
sively eliminating all the intermediate markings Mi for
i = 1, . . . , h from the obtained equations, it holds that

Cu

k∑
i=1

σ⃗ui
≥ Preo ·σ⃗ok−M0−Co

k−1∑
i=1

t⃗oi for k = 1, . . . , h.

In addition, for the marking Mh+1, by Theorem 1, we
have

M0 + Cu

h+1∑
i=1

σ⃗ui + Co

h∑
i=1

σ⃗oi ≥ 0⃗. (4)

Since λ(σ) = w with w = e1e2 . . . eh, at each step, only
one transition corresponding to the ith observed event
ei for i = 1, 2, . . . , h can fire. Hence, constraints (1)(e)
hold.

(If) If there exist some firing vectors σ⃗u1 , . . ., σ⃗uh+1
, σ⃗o1 ,

. . ., σ⃗oh that satisfy the set of constraints ρ(M0, w), then
there exist a sequence M1, . . ., Mh−1, Mh that satisfies
(2) and (3), and Mh+1 that satisfies (4). By Theorem 1,
there exists a sequence σ = σu1σo1 . . . σuh

σohσoh+1
that

is enabled at M0, which may fire yielding the evolu-
tion M0[σu1σo1⟩M1 . . .Mh−1[σuh

σoh⟩Mh[σuh+1
⟩Mh+1.

Moreover,
∑

tj∈T (ei)
σ⃗oi(tj) = 1 and

∑
tj /∈T (ei)

σ⃗oi

(tj) = 0 in (1)(e) for i = 1, . . . , h are congruence condi-
tion between transitions having the same label for each
observed event in w. Hence, λ(σ) = w = e1 . . . eh. �

Remark 1 Note that the empty word w = ε belongs to
the set L(PN,M0). In this case, according to Theorem 1,
there exists at least one sequence σ = σu1 with |σu1 | ≥ 0
enabled at the initial markingM0 such that λ(σ) = w = ε
iff there exists a vector σ⃗u1 that satisfies the following set
of constraints denoted by ρ(M0, w):

{
σ⃗u1 ∈ Nnu ,

M0 + Cu · σ⃗u1 ≥ 0⃗.
(5)

In general, the solution of the set of constraints ρ(M0, w)
is not a singleton and fully characterizes the two set-
s S(w) and C(w). Actually, constraints (1) imply that

M = M0 + Cu

h+1∑
i=1

σ⃗ui + Co

h∑
i=1

belongs to C(w). In or-

der to verify if the behaviour of the system remains in
the secret under the given observation w ∈ L(PN,M0),
we have to find a possible solution of (1), i.e., a set of
firing vectors leading to a marking that does not belong
to the secret. The following theorem proves that such a
solution can be obtained by solving the ILP Problem 1
(ILPP 1).

Proposition 2 LetG = (PN,M0, E, λ) be an LPN sys-
tem and S be a secret. Given an observed word w =
e1e2 . . . eh ∈ L(PN,M0), let us define the following ILP
problem, ILPP 1:


zq = max xT

q ·M
s.t. ρ(M0, w)

M = M0 + Cu

h+1∑
i=1

σ⃗ui + Co

h∑
i=1

σ⃗oi .

(6)

An observation w of G is current-state opaque wrt S
iff for a GMEC (xq, kq) of the secret, ILPP 1 admits a
solution σ⃗u1 , σ⃗u2 , . . ., σ⃗uh+1

, σ⃗o1 , σ⃗o2 , . . ., σ⃗oh and it
holds zq > kq .

Proof: Since w ∈ L(PN,M0), according to Proposition
1 the set of constraints ρ(M0, w) fully describes the whole
set C(w) (the estimation of the intruder).

(Only if) By contradiction, let us assume that w is
current-state opaque wrt the secret S and zq =max
xT
q · M ≤ kq with q = 1, . . . , r holds for each GMEC

in the secret S. Then each marking M ∈ C(w) satisfies
X ·M ≤ K. That is to say, all the markings in the set
of C(w) belong to the secret. According to Definition 3,
w is not current-state opaque wrt the secret S, which
contradicts the hypothesis.

(If) If zq=max xT
q ·M > kq for a GMEC (xq, kq) of the

secret S, then there exists a marking M ∈ C(w) such
that xT

q ·M > kq. This implies that marking M is not in
the secret and according to Definition 1, the observation
w of G is current-state opaque wrt S and the conclusion
holds. �

Remark 2 Note that the empty word w = ε belongs to
the set L(PN,M0). In this case, ILPP 1 can be rewritten
as follows:


zq = max xT

q ·M
s.t. ρ(M0, w)

M = M0 + Cu · σ⃗u1 ,

(7)
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and w = ε of G is current-state opaque wrt S iff for a
GMEC (xq, kq) of the secret, ILPP 1 admits a solution
σ⃗u1 and it holds zq > kq. �

Proposition 2 provides the following sufficient and nec-
essary condition to verify whether an LPN system is not
current-state opaque.

Corollary 1 LetG = (PN,M0, E, λ) be an LPN system
and S be a secret. The system is not current-state opaque
iff there exists an observation w such that ILPP 1 admits
a solution with zq =max xT

q · M ≤ kq for each GMEC
(xq, kq) of the secret.

Proof: It follows immediately from Definition 4 and
Proposition 2.

3.3 The on-line algorithm to verify current-state opac-
ity

Based on the aforementioned results, we propose Algo-
rithm 1 that the intruder can apply on-line to verify the
current-state opacity of a given LPN system. In the fol-
lowing, we discuss the details of Algorithm 1.

Algorithm 1. On-line algorithm specifying the intruder
function
Input: G = (PN,M0, E, λ), S
Output: Φ(w)
Step 1. Initializing the variables of the algorithm

w := ε, h := 0, Φ(w) := ∅
Step 2. Verifying if the observed word w is current-state
opaque wrt S

for q = 1 to r do
Solve ILPP 1


zq = max xT

q ·M
s.t. ρ(M0, w)

M = M0 + Cu

h+1∑
i=1

σ⃗ui + Co

h∑
i=1

σ⃗oi

if zq > kq then
Φ(w) := {Y } go to Step 3

end if
end for
Φ(w) := {N} go to Step 4

Step 3. Recording the events
Wait until an event e ∈ E occurs
w := we, h := h+ 1, Φ(w) := ∅
go to Step 2

Step 4. End

Step 1 initializes the variables of the algorithm where h
denotes the length of w.

Step 2 verifies whether w is current-state opaque wrt
S: if there exists a GMEC (xq, kq) of S such that the
objective function value of ILPP 1 zq > kq, then by
Proposition 2, w is current-state opaque wrt S. In this
case, the algorithm goes to Step 3 to wait for a new
event. Moreover, if ILPP 1 admits an optimal solution
with zq ≤ kq for each of the GMEC (xq, kq) of the secret,
then by Proposition 2, w is not current-state opaque wrt
S. Consequently, according to Corollary 1, the system
G is not current-state opaque wrt S.
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p4

t3

t2

t4

(a)

(a)

(b)

p5
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22
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Fig. 1. The LPN system considered in Example 1.

Example 1 In order to show the application of Al-
gorithm 1, we consider the LPN of a communica-
tion system proposed in [31] that is shown in Fig. 1.
There are six places, eight transitions and two ob-
servable events, i.e., E = {a, b}. The set of ob-
servable transitions is To = {t1, t2, t3, t4} such that
T (a) = {t1, t3} and T (b) = {t2, t4}, and the set of
unobservable transitions is Tu = {ε5, ε6, ε7, ε8}. The
initial marking isM0 = [2, 0, 0, 0, 0, 0]T . Let the secret be
S = {M ∈ N6|X ·M ≤ K} with X = [0, 0, 1, 0, 1, 0] and
K = 0. By using the Basis Reachability Graph (BRG)
and its observer presented in [31], the system is inferred
not current-state opaque wrt the secret. Now, we show the
procedure of the proposed on-line algorithm as follows.

Suppose that no observable event occurs in the system, by
Algorithm 1, we obtain Φ(ε) = {Y }, i.e., the observation
w = ε is current-state opaque wrt S.

Assume that the observable event a occurs. By applying
Algorithm 1, we infer Φ(a) = {Y }, i.e., the observation
w = a is current-state opaque wrt S.

Now, assume that the second observable event a occurs:
Algorithm 1 provides Φ(aa) = {N}, i.e., the observation
w = aa is not current-state opaque wrt S. Moreover,
according to Definition 4, the system is not current-state
opaque wrt S. �

3.4 Computational complexity

As regard the computational complexity of Algorithm
1, we note that the algorithm needs to solve for each
observation w at most r ILPPs, which are NP-hard in
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theory. To evaluate the computational effort required
by the proposed algorithm, we recall that the primary
determinants of the computational cost of an ILPP are
the numbers of variables and constraints in it. It is easy
to infer that the numbers of variables and constraints in
each ILPP are h ·n+nu+m and h ·m+2 ·(h+m) in the
worst case, respectively, where h ≥ 0 denotes the length
of the observationw, n denotes the number of transitions
in the LPN, nu denotes that of unobservable transitions
in the LPN and m denotes that of places in the LPN.
Hence, the on-line computational cost of the proposed
algorithm increases with the number of observed events.
However, in practice, our experience shows that in the
examined cases, compared with those presented in the
literature, an optimal solution is obtained in a short time
by solving the ILPPs on a PC equipped with a standard
solver of optimization tool.

3.5 Example

This subsection provides some experimental results of
the algorithm proposed in this paper. The obtained com-
putational time refers to the CPU seconds of a notebook
computer under the Windows 7 operating system with
Intel CPU Core 2.6 GHz, 8 GB memory and a standard
optimization solver.

In order to show the advantage and efficiency of the pro-
posed on-line algorithm, let us consider a large exam-
ple shown in Fig. 2, which is taken from [9]. This ex-
ample is an LPN that models a manufacturing system.
The LPN is composed by 46 places, 39 transitions and
the event set is E = {a, b, c, d, e, g, l}. The set of observ-
able transitions To consists of transitions from t1 to t13
such that T (a) = {t1}, T (b) = {t2, t3, t11}, T (c) = {t4},
T (d) = {t5, t10, t13}, T (e) = {t6}, T (g) = {t7, t8, t12}
and T (l) = {t9}. The secret is defined by the follow-
ing set: S = {M ∈ N46|M(p16) + M(p19) + M(p26) +
M(p27) ≤ 0}. By applying the method in [31] to this ex-
ample, the system is not current-state opaque wrt the
secret. However, it takes more than 1800 seconds to ob-
tain this result due to the computation of the BRG and
its observer.

Now, we apply Algorithm 1 to this example. In particu-
lar, the performance of Algorithm 1 is presented in Table
1, where the first column represents the evolution of the
system,Nvar andNcon indicate the numbers of variables
and constraints of ILPP 1, respectively. The fourth col-
umn shows the CPU time in seconds for solving ILPP
1 and the fifth column is the output of Algorithm 1 at
each step. From Table 1, we can see that the observed
event sequence w = aegl is not current-state opaque wrt
the secret S. Hence, according to Definition 4, we con-
clude that the LPN system is not current-state opaque
wrt the secret.
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Fig. 2. LPN modeling a manufacturing system [9].

Table 1
Performance of Algorithm 1 on the net in Fig. 2

Action NvarNcontime/(s) Φ(w)

no observable event occurs 72 92 9×10−3 {Y}
observable event a occurs 111 140 1.2×10−2 {Y}
observable event e occurs 150 188 1.4×10−2 {Y}
observable event g occurs 189 236 1.6×10−2 {Y}
observable event l occurs 228 284 1.7×10−2 {N}

4 Verifying current-state opacity in a decentral-
ized approach

In this section, we extend the study of on-line verification
of current-state opacity to a decentralized architecture
where a set of local intruders observes the system and
each intruder can observe only a part of the observable
events. Each local intruder has the full knowledge of the
system model and communicates with a coordinator to
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infer the secret. More precisely, each local intruder ob-
serves the system by its own observation mask, checks
the opacity property for the local observation, and then
reports the result to the coordinator. A protocol is pro-
posed for the communication between the local intrud-
ers and the coordinator.

4.1 The decentralized architecture

In the following, we introduce the decentralized archi-
tecture that is used in this paper. This architecture is
presented in [12] and [33] in the framework of automata,
and also adopted [10] in the framework of PNs. The de-
centralized architecture for verifying current-state opac-
ity is shown in Fig. 3, where a set J = {1, 2, . . . , J} of
local intruders works to verify if the behaviour of the sys-
tem remains in the secret under the given observation.
Different local intruders can have different observation
masks. Hence, we define To,j ⊆ To as the set of locally
observable transitions for each local intruder j ∈ J . Any
observable transition is observed by at least one local
intruder, i.e.,

∪
j∈J To,j = To. The set of locally unob-

servable transitions is defined as Tu,j = T \ To,j . In the
following, no,j and nu,j denote the numbers of the local-
ly observable and unobservable transitions, respectively.

Coordinator C

Local 

inturder 1

P2(w) PJ(w)

System Net <PN,M0>

Local 

inturd 1

P2(w) PJ(w)

Φ(w) 

Φ 1(w1) Φ2(w2) ΦJ(wJ) 

w1 w2 wJ

w 

Local 

inturder 2

Local 

inturder J

P1(w) 

w w 

Fig. 3. The decentralized architecture.

Now, we define the labeling function associated with the
jth local intruder as follows:

λj(t) =

{
λ(t), if t ∈ To,j

ε, otherwise.
(8)

Moreover, for each j ∈ J , Ej ⊆ E denotes the set of
observable labels by the jth local intruder, and the pro-
jection over Ej , for j ∈ J , Pj : E∗ → E∗

j is defined as
follows: for all w ∈ E∗ and e ∈ E, 1) Pj(ε) = ε and 2)

Pj(we) = Pj(w)e if e ∈ Ej and Pj(we) = Pj(w) other-
wise.

As shown in Fig. 3, each local intruder j ∈ J checks the
opacity property for its own observation wj = Pj(w),
and depending on its output Φj(wj), it transmits this
result to a coordinator by a given protocol. The coordi-
nator analyses the information from the local intruders
and then generates a global output Φ(w).

The following assumptions are introduced for the decen-
tralized architecture.

A2) The Tu,j-induced subnet PNu,j∠Tu,jPN and the
To,j-induced subnet PNo,j∠To,jPN are acyclic for
any local intruder j ∈ J .

A3) For each label e ∈ E, there exists at least one local
intruder that can observe all transitions whose label
is e.

A4) The output sent by each local intruder is received
by the coordinator correctly.

A5) There is no delay in the communication between
the local intruders and the coordinator.

4.2 The local intruder specification

First, we appropriately modify the formulation of ILPP
1 of Algorithm 1 proposed in Section 3 for each local
intruder j ∈ J .

Let wj be an observation of the jth local intruder, and
wj be associated with the firing sequence σj ∈ T ∗ such
that wj = λj(σj) by using the extended form of the
labeling function λj : T ∗ → E∗

j . We define Sj(wj) =
{σj ∈ L(PN,M0)|λj(σj) = wj} as the set of firing se-
quences consistent with wj for the jth local intruder and
Cj(wj) = {M ∈ Nm|∃σj ∈ S(wj) : M0[σ⟩M} as the set
of markings consistent with wj for the jth local intruder.

Moreover, we denote Cj
u = Postju − Preju and Cj

o =
Postjo −Prejo as the restrictions of the incidence matrix
C = Post− Pre to Tu,j and To,j , respectively. The fol-
lowing proposition is immediately obtained from Propo-
sition 1 in Section 3 to provide a local linear algebraic
representation of a sequence σj ∈ T ∗ that is consistent
with wj .

Proposition 3 Consider an LPN systemG = (PN,M0,
E, λ) with language L(PN,M0) and the jth local in-
truder satisfying assumption A2. Given an observa-
tion wj ∈ L(PN,M0) denoted by wj = ej1e

j
2 . . . e

j
d

(eji ∈ E for i = 1, 2, . . . , d denotes the ith local-
ly observed event), there exists at least one sequence
σj = σj

u1
σj
o1σ

j
u2
σj
o2 . . . σ

j
ud

σj
od
σj
od+1

with |σui | ≥ 0 for
i = 1, 2, . . . , d enabled at the initial marking M0 such
that λj(σj) = wj = ej1e

j
2 . . . e

j
d iff there exist 2d+1 firing

vectors σj
u1
, σj

u2
, . . ., σj

ud+1
, σj

o1 , σ
j
o2 , . . ., σ

j
od

that satisfy

the following set of constraints denoted by ρj(M0, wj):
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σ⃗
u
j
i
∈ Nnu,j , for i = 1, . . . , d+ 1 (a)

σ⃗
o
j
i
∈ Nno,j , for i = 1, . . . , d (b)

Cj
u

v∑
i=1

σ⃗
u
j
i
≥ Prejo · σ⃗j

ov −M0 − Cj
o

v−1∑
i=1

σ⃗j
oi ,

for v = 1, . . . d (c)

M0 + Cj
u

d+1∑
i=1

σ⃗j
ui

+ Cj
o

d∑
i=1

σ⃗j
oi ≥ 0⃗ (d)∑

tk∈T (e
j
1)
σ⃗j
o1(tk) = 1∑

tk∈T (e
j
2)
σ⃗j
o2(tk) = 1

· · ·∑
tk∈T (e

j
d
)
σ⃗j
od(tk) = 1 (e)∑

tk /∈T (e
j
1)
σ⃗j
o1(tk) = 0∑

tk /∈T (e
j
2)
σ⃗j
o2(tk) = 0

· · ·∑
tk /∈T (e

j
d
)
σ⃗j
od(tk) = 0.

(9)

Similarly to Remark 1, whenw = ε, the set of constraints
ρj(M0, wj) can be rewritten as follows:

 σ⃗uj
1
∈ Nnu,j ,

M0 + Cj
u · σ⃗j

u1
≥ 0⃗.

(10)

Accordingly, we can obtain the formulation of ILPP 1
for each local intruder j ∈ J as follows:

zq = max xT
q ·M

s.t. ρj(M0, wj)

M = M0 + Cj
u

d+1∑
i=1

σ⃗j
ui

+ Cj
o

d∑
i=1

σ⃗j
oi .

(11)

4.3 Main results for the decentralized approach

In the following, we present some results that can pro-
vide a rule for the coordinator to produce a global out-
put about the verification of current-state opacity for a
given observation based on the information of the local
intruders.

Definition 6 Assume that w = e1e2 . . . eh (h ≥ 1) is an

observed word and wj = ej1e
j
2 . . . e

j
d (d ≤ h) is the word

projection of the local intruder j ∈ J . J ∗(w) = {j ∈
J |eh = ejd} is defined as the set of local intruders that
can observe the last event of w.

Remark 3 By assumption A3, the set of local intruders
that can observe the last event of w is not empty, i.e.,
J ∗(w) ̸= ∅. In particular, if w = ε, then J ∗(w) = J
always holds.

Proposition 4 shows the relations between the set of se-
quences consistent with wj and the set of sequences con-
sistent with w.

Proposition 4 Consider an observation w ∈ L(PN,
M0). Under assumption A3, it holds S(w) ⊆ Sj(wj) for
each local intruder j ∈ J ∗(w). .

Proof: By Remark 3 (where assumption A3 necessarily
holds), we have J ∗(w) ̸= ∅. Since To,j ⊆ To and Ej ⊆ E
for each j ∈ J ∗(w), we infer wj ∈ w. If there exists σ ∈
S(w) withw = λ(σ), we can find a sequencewj ∈ w such
that wj = λj(σ). Hence, σ is a sequence consistent with
w and also a sequence consistent with wj . We conclude
that S(w) ⊆ Sj(wj) holds. �

Based on Proposition 4, Corollary 2 shows the relations
between the set of markings consistent with wj and the
set of markings consistent with w.

Corollary 2 Consider an observation w ∈ L(PN,M0).
Under assumption A3, it holds C(w) ⊆ Cj(wj) for each
local intruder j ∈ J ∗(w).

Proof: It follows immediately from Proposition 4 and
the state equation. �

The following proposition provides a rule for a coordi-
nator to determine whether a given observation of the
system is not current-state opaque according to the in-
formation of a local intruder.

Proposition 5 LetG = (PN,M0, E, λ) be an LPN sys-
tem and S be a secret. If there exists a local intruder
j ∈ J ∗(w) that provides Φj(wj) = {N}, then it holds
Φ(w) = {N}.

Proof: If there exists a local intruder j ∈ J ∗(w) that
provides Φj(wj) = {N}, then by Definitions 3 and 5,
we infer Cj(wj) ⊆ S. According to Corollary 2, C(w) ⊆
Cj(wj) holds and it implies that C(w) ⊆ S. Thus, Φ(w) =
{N} holds. �

Corollary 3 LetG = (PN,M0, E, λ) be an LPN system
and S be a secret. If the system is not current-state opaque
wrt S for any local intruder j ∈ J ∗(w), then the system
is not current-state opaque wrt S.

Proof: It follows immediately from Definition 4 and
Proposition 5. �
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Algorithm 2. Protocol 1
Input: G = (PN,M0, E, λ), S
Output: Φ(w)
Step 1. Initializing the variables of the algorithm

w := ε, wj := ε, Φ(w) := ∅
Step 2. Performance of the local intruders

for each local intruder j ∈ J ∗(w) do
computes Φj(wj) by Algorithm 1.
if Φj(wj) = {N} then
local intruder j transmits Φj(wj) to the coordi-

nator
end if

end for
Step 3. Determining the output of the coordinator

If the coordinator receives Φj(wj) = {N} then
it sets Φ(w) = {N} go to Step 5

Step 4. Recording the events
Wait until an event e ∈ E occurs
w := we, wj := wjPj(e), Φ(w) := ∅
go to Step 2

Step 5. End

4.4 The decentralized algorithm for the current-state
opacity

In this subsection, we present Algorithm 2 that the lo-
cal intruders and the coordinator have to apply in order
to verify the current-state opacity. Step 1 initializes the
variables of Algorithm 2. In Step 2, each local intruder
j ∈ J ∗(w) verifies the current-state opacity of the sys-
tem on the basis of its own observation. If Φj(wj) = {N},
then j transmits its result to the coordinator. Step 3 is
performed by the coordinator: according to Proposition
5, if there exists a local intruder j ∈ J ∗(w) that provides
Φj(wj) = {N}, then Φ(w) = {N} holds. In this case, by
Corollary 3, the system is not current-state opaque wrt
S. Moreover, Step 4 updates the observation by waiting
a new event e ∈ E occurrence.

p1
t1

p3

p2 ε7 p4

t4

t3

t5

(a)

(a)

(b)

p5
p6

22
(b)

ε6 
(b)t2

Fig. 4. An LPN system considered in Example 2.

Example 2 Let us consider the LPN in Fig. 4
with two local intruders J = {1, 2} whose set-
s of observable transitions are To,1 = {t1, t4} and
To,2 = {t2, t3, t5}, respectively. The system events are
E = {a, b} with E1 = {a} and E2 = {b}. The ini-
tial marking is M0 = [2, 0, 0, 0, 0, 0]T and the secret is
S = {M ∈ N6|X ·M ≤ K} with X = [0, 1, 1, 0, 0, 0] and

K = 1.

Suppose that no observable event occurs in the system,
i.e., w = ε, w1 = ε and w2 = ε. Local intruders 1 and 2
provide Φ1(w1) = {Y } and Φ2(w2) = {Y }, respectively.
According to Algorithm 2, no local intruder transmits its
result to the coordinator. Consequently, the coordinator
remains silent.

Suppose that the first observable event a occurs in the
system, hencew = a,w1 = a andw2 = ε. SinceJ ∗(w) =
{1}, local intruder 1 provides Φ1(w1) = {Y }. According
to Algorithm 2, no local intruder transmits its result to the
coordinator and also in this case the coordinator remains
silent.

Finally, assume that the second observable event b oc-
curs: w = ab, w1 = a and w2 = b. Since J ∗(w) = {2},
local intruder 2 provides Φ2(w2) = {N}. According to
Algorithm 2, this intruder transmits its result to the co-
ordinator. Then, the coordinator sets Φ(w) = {N} and
according to Definition 4, the system is not current-state
opaque wrt S.

5 Conclusion and future work

In this paper, we propose an on-line intruder in the la-
beled Petri Net (LPN) framework. The intruder observes
and stores the event sequence of the LPN system and de-
cides on-line whether the given observation of the system
is current-state opaque or not. To this aim, an Integer
Linear Programming problems is defined and we prove
that, on the basis of the provided solutions at each ob-
served event, it is possible to decide if the system is not
current-state opaque. Moreover, in order to deal with
decentralized system settings, the proposed on-line ap-
proach is extended to a decentralized architecture where
a set of local intruders communicate with a coordinator.

Compared with the existing approach of [31], we enlight-
en that the proposed methodology for opacity verifica-
tion avoids the enumeration of the PN markings and can
be applied also to unbounded nets. Moreover, the on-line
approach allows us to avoid the redesign of the intruder
when the system changes because it is only necessary to
give the new LPN structure to the algorithm. By apply-
ing the proposed algorithm to a large example, we show
its efficiency.

Future works will focus on improving the decentralized
approach by obtaining results also in the case that the
system observation is current-state opaque wrt the secret
for the local intruders.
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