
20 November 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Multi-Task Learning at the Mobile Edge: an Effective Way to Combine Traffic Classification and Prediction / Rago,
Arcangela; Piro, Giuseppe; Boggia, Gennaro; Dini, Paolo. - In: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.
- ISSN 0018-9545. - STAMPA. - 69:9(2020), pp. 10362-10374. [10.1109/TVT.2020.3005724]

This is a post print of the following article

Original Citation:

Multi-Task Learning at the Mobile Edge: an Effective Way to Combine Traffic Classification and
Prediction

Published version
DOI:10.1109/TVT.2020.3005724

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/198382 since: 2024-01-03

Publisher:

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

Multi-Task Learning at the Mobile Edge:
an Effective Way to Combine

Traffic Classification and Prediction
Arcangela Rago, Student Member, IEEE, Giuseppe Piro, Member, IEEE, Gennaro Boggia, Senior

Member, IEEE, and Paolo Dini

Abstract—Mobile traffic classification and prediction are key
tasks for network optimization. Most of the works in this
area present two main drawbacks. First, they treat the two
tasks separately, thus requiring high computational capabilities.
Second, they perform data mining on the information collected
from the data plane, which is unsuitable for the mobile edge. To
bridge this gap, this paper properly tailors a Multi-Task Learning
model running directly at the edge of the network to anticipate
information on the type of traffic to be served and the resource
allocation pattern requested by each service during its execution.
Our study exploits data mining from the control channel of an
operative mobile network to also reduce storage and monitoring
processing. Different configurations of neural networks, which
adopt autoencoders (i.e. Undercomplete Autoencoder or Sequence
to Sequence Autoencoder) as key building blocks of the proposed
Multi-Task Learning methodology for common feature repre-
sentations, are investigated to evaluate the impact of the obser-
vation window of traffic profiles on the classification accuracy,
prediction loss, complexity, and convergence. The comparison
with respect to conventional single-task learning approaches, that
do not use autoencoders and tackle classification and prediction
tasks separately, clearly demonstrates the effectiveness of the
proposed Multi-Task Learning approach under different system
configurations.

Index Terms—Machine Learning, Mobile Data, Deep Learning,
Traffic Classification, Traffic Prediction

I. INTRODUCTION

Machine Learning (ML) is the branch of Artificial Intel-
ligence (AI) that investigates algorithms able to learn and
improve their experience and performance over time directly
from data examples, without being explicitly programmed.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

A. Rago, G. Piro, and G. Boggia are with the Department of Electrical
and Information Engineering (DEI), Politecnico di Bari, Italy, and with
Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT); e-
mail: {arcangela.rago, giuseppe.piro, gennaro.boggia}@poliba.it.

P. Dini is with Centre Tecnologic de Telecomunicacions de Catalunya
(CTTC/CERCA), Barcelona, Spain; e-mail: paolo.dini@cttc.es.

This work was supported by the PRIN project no. 2017NS9FEY entitled
”Realtime Control of 5G Wireless Networks: Taming the Complexity of Future
Transmission and Computation Challenges” funded by the Italian MIUR, by
the Apulia Region (Italy) Research project INTENTO (36A49H6), by the
European Union’s Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement No 675891 (SCAVENGE),
and by Spanish MINECO grant TEC2017-88373-R (5G-REFINE). It has
been also partially supported by the Italian MIUR PON projects Pico&Pro
(ARS01 01061), AGREED (ARS01 00254), FURTHER (ARS01 01283),
and RAFAEL (ARS01 00305).

With these algorithms, a system can scrutinize data and deduce
knowledge: hidden patterns in the training data are identified
and used to analyze unknown information and drive the
execution of a given task (typically classification, prediction,
or clustering) [1]. To improve these capabilities, deep learning
further enables the mining of valuable information of data
coming from heterogeneous sources and unveils hidden cor-
relations automatically, which would have been too complex
to extract by human experts [2]. Recently, ML-based solutions
have been applied to the mobile networking domain [3], where
the growing diversity and complexity of the mobile network
architectures made the monitoring and the managing of the
multitude of network elements intractable [4], [5]. At the
same time, networking researchers have been recognizing the
importance of deep learning and its ability to solve specific
problems in current and future generations of mobile systems
[2], [6], [7].

In line with this emerging research trend, we investigate
in this paper the potential of deep learning for mobile traffic
classification and prediction, which are key tasks for network
optimization. In fact, the envisaged architecture of the fifth
generation (5G) of mobile broadband systems will integrate
new technology components (e.g., massive MIMO, mm-Wave
communication, network slicing, vehicular networks, more
and broader frequency bands), a higher variety of devices
(e.g., smartphone, sensors, and different types of machines),
a larger number of services (typical broadband services, as
well as some advanced applications such as extended reality
and automated driving) with tighter latency requirements, so
that resource allocation is expected to reach unprecedented
complexity [8]–[10]. In this context, network optimization
frameworks may be supported by deep learning algorithms,
which, when properly tailored, may anticipate information on:
i) the type of traffic to be served, e.g. its main characteristics
in terms of bandwidth and latency requirements (i.e. traffic
classification) and ii) the resource allocation pattern requested
by each service along its duration (i.e. traffic prediction).

Most of the literature in this field treat traffic classification
and prediction separately [11]–[22] (please see Section II for
further details). Instead, we propose a Multi-Task Learning
(MTL) approach [23], which reduces the number of training
samples to be learnt by the two tasks and leads to performance
improvement compared with learning them individually [24].

At the same time, it is important to remark that offloading
the huge amount of data generated from edge to cloud is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

intractable in 5G scenarios since it causes oppressive network
congestions. Therefore, it is highly preferable that deep learn-
ing algorithms run at the edge of the network and give online
support to optimization frameworks to promptly take decisions
and trigger the proper management actions (e.g., radio resource
scheduling, cell selection, and sleep mode enabling, to name
a few) [25]–[27]. Almost all the approaches presented in the
current state of the art implement data mining on the huge
amount of information collected at the network or application
layers of the data plane. Differently, the proposed MTL model
considers data belonging to the control plane, as recently
investigated, and it is trained with information extracted from
the Physical Downlink Control CHannel (PDCCH) of an
operative mobile network in Spain. The rationale behind the
choice of using the control channel is twofold. First, the
volume of control messages from the control plane is much
smaller than the user traffic from the data plane (which may
also be encrypted), leading to fast and efficient classification
and prediction, which are still evaluated on the derived data
plane information. Specifically, the classification task registers
an accuracy up to 99% and the prediction task ensures a Mean
Square Error (MSE) lower than 10−3. Second, the algorithm
runs at the radio interface, which allows fast execution of the
two tasks directly at the edge.

In summary, the original contributions of this work are:
• Joint traffic classification and prediction though a MTL

model running at the edge of the network;
• Data mining from the PDCCH control channel, which

guarantees reduced storage requirements, fast data pro-
cessing, and limited monitoring complexity;

• Use of autoencoders as key building blocks of the pro-
posed MTL methodology for common feature representa-
tions, shared by both classification and prediction tasks.
Specifically, Undercomplete and Sequence to Sequence
(Seq2Seq) architectures are tailored for our scenario and
their performance are compared;

• Comparison with conventional single-task learning ap-
proaches for traffic classification and prediction, that
do not use autoencoders and tackle classification and
prediction tasks separately.

The remainder of the paper is as follows. In Section II
we introduce the related work on this area and identify the
gaps, which we intend to fill with this paper. Section III is
dedicated to the proposed MTL approach, including the design
criteria and the data processing for training. In Section IV
we analyze and compare the performance achieved by single-
task models for traffic classification and prediction used as
benchmarks. Finally, Section V concludes the paper and draws
future research activities.

II. STATE OF THE ART

As already anticipated in the Introduction, ML has been
recently applied to the mobile networking domain [3]. Possible
applications include radio access technology selection [34],
malware detection [35], development of networked systems
[36], energy saving [37], panoramic video streaming [38],
and cloudlets activation for scalable Mobile Edge Computing

[39]. Several approaches, based on Support Vector Machine
and Random Forest algorithms, have been also conceived
to identify applications or smartphone types starting from
the observation of encrypted communication flows [40]–[43].
Nevertheless, mobile data are usually generated by hetero-
geneous sources, exhibit non-trivial spatio/temporal patterns,
and often embrace high volumes of different information [44].
Flows’ characteristics are also rapidly prone to be out of date
and need to be frequently updated [45]. In these complex
and dynamics conditions, ML algorithms generally fail to
automatically extract and use the key features describing the
investigated flows [6]. On the contrary, deep learning methods
demonstrated to be able to overcome the traditional ML ap-
proaches because of their native ability to successfully support
traffic analysis and accurately characterize traffic dynamics
[6], [8], [45]–[50]. Unfortunately, mobile networking and deep
learning problems have been explored mostly independently
and only recently crossovers between the two research areas
have emerged.

Reference deep learning solutions for traffic classifica-
tion leverage Convolutional Neural Networks with one-
dimensional [11]–[13] or two-dimensional [13], [14] convo-
lutional layers, Stacked Autoencoder with five stacked layers
[12]–[14], Multi-Layer Perceptron (MLP) with one [13] or
two hidden layers [13], [14], and standard or hybrid Long
Short-Term Memory (LSTM) combined with two-dimensional
convolutional layers [13]. However, only [13] focuses on
mobile networks. Among the other important investigations
it provides, the work [13] also demonstrates how deep neural
networks guarantee greater accuracy levels than conventional
ML approaches in mobile networks. On the other hand, deep
learning also outperforms baseline approaches for traffic pre-
diction, including the conventional Auto Regressive Integrated
Moving Average scheme [6]. Here, reference methodologies
are based on densely connected Convolutional Neural Net-
works with two-dimensional convolutional layers [15] and
LSTMs [16]–[19], as well as on their combination [20]–
[22], that can extract spatial and temporal correlations of data
through the convolutional operation and LSTM memory cells,
respectively. In that case, all of the reviewed contributions
focus on mobile networks.

The analysis of the state of the art on deep learning
strategies highlights that traffic classification and prediction
are generally treated separately. In other words, classification
and prediction are achieved by means of two separate single-
tasks. Unfortunately, this represents an important drawback
because their parallel execution involves the training of differ-
ent learning architectures, as well as an inevitable increment
of computational requirements [24].

The MTL approach solves the aforementioned issue, while
often reaching greater performance levels when compared
with single-tasks approaches [24], [51]. Differently from the
single-task scheme, MTL basically embraces a learning ar-
chitecture that extracts common feature representations from
the training data and jointly executes multiple, but related,
tasks. Therefore, MTL emerges as a suitable solution for
meeting the computational and memory constraints affecting
mobile networks [6]. Valuable contributions in this direction

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

TABLE I
COMPARISON AMONG OUR WORK AND THE OTHER CONTRIBUTIONS FOCUSING ON TRAFFIC ANALYSIS THROUGH DEEP LEARNING

Contributions Task
Mobile

scenario

Processed messages Dataset type

Classification Prediction Joint Data plane Control plane
Network/

application
level data

Traffic
volume/

load

Radio
link-level

data
[11], [12], [14] X X X X

[13] X X X X X

[15]–[22] X X X X X

[28], [29] X X X X

[30], [31] X X X X X

[32] X X X X X X

[33] X X X X X

Our work X X X X X X

are presented in [28], [29], where a MTL architecture is
designed to implement multiple tasks related to the traffic
classification only. Unfortunately, they do not address traffic
prediction and do not focus on mobile networks.

Another important consideration emerging from the scien-
tific literature is that all the investigated contributions perform
data mining from the messages exchanged over the data plane
(i.e., traffic volume/load collected at the network or application
layers, equipped with application labels for classification task).
Therefore, by considering the huge amount of data handled
by mobile systems, the reviewed methodologies cannot be
applied to the control plane and require high computational
and memory capabilities, thus becoming unfeasible for the
mobile edge.

The goal of this paper is to adopt a MTL architecture at
the edge of the network to jointly classify mobile services and
forecast future traffic demands. Our study exploits data mining
from the unencrypted control channel of an operative mobile
network to properly characterize the mobile traffic at the radio
interface, in addition to getting out data plane information
(i.e., traffic volume/load and application labels) and reducing
storage and monitoring processing. Therefore, even if the data
mining is performed on the control plane, the accuracy of
the classification and prediction tasks is still evaluated on the
derived data plane information. Interesting contributions in
this direction address traffic pattern analysis and classification
[30]–[32] and traffic prediction [33] through data mining
performed on the PDCCH. The proposed solutions, however,
are not based on the MTL approach.

In this work, we still pursue the idea that traffic classification
and prediction at the radio interface can enable advanced
Quality of Service and Quality of Experience enforcement
policies based on a priori knowledge of application behaviors.
Thus, network operators can configure and manage network
resources in a more intelligent and prolific mode thanks to
the knowledge extracted by deep learning algorithms. Never-
theless, differently from the current state of the art, and for
the best of our knowledge, we formulate a novel methodology
that applies MTL to classify and predict mobile traffic at the
mobile edge, as we are proposing in this work.

To conclude, Table I summarizes the goals and the method-
ologies followed by the scientific contributions reviewed in this

Fig. 1. Input and output of the proposed MTL approach in a mobile network.

section, while highlighting the main differences with respect
to the MTL model proposed herein.

III. THE PROPOSED MULTI-TASK LEARNING APPROACH

The developed methodology originates from the consider-
ation that any active session can be described, at the radio
link-level, through a traffic profile reporting the amount of
data exchanged between the base station and mobile terminal
during the time, simply referred to as radio utilization pattern.
Therefore, by observing such a profile during a time interval
T , it could be possible to classify the application type which
the investigated session belongs to (task 1) and predict the
radio utilization pattern that the session will experience in
the upcoming time instants (task 2). This goal is successfully
achieved through a MTL architecture running directly at the
edge of a mobile network (Fig. 1). Without loss of generality,
the contribution directly focuses on the downlink communi-
cation. However, the whole approach can be applied to the
uplink as well.

To facilitate the understanding of the notations adopted in
what follows, a summary of symbols is reported in Table II.

Following these initial considerations, the proposed MTL
approach grounds its roots into the feature learning repre-
sentation concept [24], according to which the features for
a common representation of our input (i.e. traffic profiles)
are extracted and jointly used to execute the two tasks (i.e.,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

TABLE II
LIST OF MATHEMATICAL SYMBOLS

Symbol Description
i Traffic session index
j Time instant index
D Original input matrix with traffic profiles
di Row vector in D that represents traffic session
rD Number of rows (traffic sessions) in D
∆ Number of columns (time instants) in D
c Column vector of labels associated to D
ci Label (i.e. component of c) associated to di

T Observation window
M Pre-processed input matrix with traffic profiles
mi Row vector in M that represents traffic session lasting T
mi,j Component of mi during the j-th time instant
rM,tr Number of rows of M selected as training set
H Codeword matrix with feature learning representations of M
hi Feature learning representation (i.e. component of H) of mi

M̂ Reconstructed input matrix
m̂i Reconstructed traffic session in M̂
m̂i,j Reconstructed component of m̂i during the j-th time instant
l Column vector of labels associated to M
li Label (i.e. component of l) associated to mi

l̂ Column vector of learned labels associated to M
l̂i Learned label (i.e. component of l̂) associated to mi

mT+1 Column vector with data exchanged at T + 1
mi,T+1 Component subsequent to mi with data exchanged at T + 1
m̂T+1 Predicted column vector with data exchanged at T + 1
m̂i,T+1 Predicted component at T + 1 related to mi

LA Mean Square Error (loss) of the Autoencoder
LC Mean Square Error (loss) of the Classifier
AC Classifier accuracy
LP Mean Square Error (loss) of the Predictor
PMTL Multi-objective performance metric for the MTL model

classification and prediction). In particular, the conceived
methodology uses an autoencoder to obtain the common
feature representations of input data because it can directly
accomplish this operation without requiring the knowledge
of data distribution nor the explicit identification of a cer-
tain structure [49]. Classification and prediction tasks are
later executed through softmax and fully-connected layers,
respectively. Accordingly, the autoencoder is a key building
and enabling block of the proposed MTL methodology, that
effectively allows the joint execution of classification and
prediction tasks.

As depicted in Fig. 1, the outcomes of the proposed scheme
can be exploited to implement advanced methodologies for the
management and the optimization of mobile networks. Our
approach is conceived to process data directly at the edge,
so that the right actions may be triggered faster and locally.
Possible strategies that may benefit from the implementation
of our architecture range from radio resource scheduling and
admission control, mobility management and energy saving
mechanisms, to network slicing and dynamic placement of
virtualized functions, as well as to the optimization of com-
puting resources at both edge and core network (see Fig. 1).
Nevertheless, note that the rest of this Section focuses on the
MTL approach and the reference dataset taken into account for
training purposes. Any other considerations related to network
optimization aspects, however, remain out of the scope of this
work and they will be addressed in the future.

A. The training dataset

Being our approach intended to work at the mobile edge,
data exchanged through the radio interface are needed for
training our model. An operator owing the mobile infrastruc-
ture can simply retrieve this information and use it for both the
training and operating phases. However, in our case, we use
the dataset created in our previous work [32], which consists
of traffic traces containing the Downlink Control Information
(DCI) messages carried within the PDCCH with a time gran-
ularity of 1ms. This information is used by the eNodeB to
communicate scheduling information to the connected mobile
terminals. DCI messages are unencrypted and be decoded by a
specific hardware/software tool called Online Watcher for LTE
(OWL) [52]. A key characteristic of the training dataset is that
it is gathered from the control channel, which simplifies the
monitoring system complexity, assures fast data processing,
and reduces the storage capacity due to the limited volume of
data.

The captured traces are generated by different applications
running in a mobile terminal under our control and attached to
an operative mobile network in Spain. Six different applica-
tions grouped in three categories have been tested: YouTube
and Vimeo for video-streaming, Spotify and Google Music
for audio-streaming, and Skype and WhatsApp Messanger
for video-call. We selected those applications because they
generally produce, according to recent Ericsson [53] and Cisco
[54] reports, more than 80% of the mobile data traffic and
require optimal resource management due to their strict quality
requirements. The proposed approach, however, can be safely
applied to other mobile network scenarios with a different set
of applications and services, only requiring a new training
procedure. Also, after an effective training, our methodology
is extendable to any number of classes because it is general
and not restricted to a specific use-case (see Section IV-E for
more details).

Among the several parameters extracted from the DCI
messages, we used the Transport Block Size (TBS), which
specifies the length of the packet burst to be sent to/from the
considered mobile terminal in the current time slot [55]. Then,
TBS values are processed to generate the radio utilization
patterns describing the amount of data exchanged between the
base station and mobile terminal during the time, with a time
granularity of 1s.

Formally, let rD be the number of traffic sessions collected
in a period of time equal to ∆. In this work, rD = 11574
and ∆ = 60s. The distribution of the sessions among the
considered application categories is reported in Fig. 2. The
original training dataset contains a matrix D and a vector c of
labels. In particular, the original input matrix D describes the
captured traffic profiles (also referred to as the radio utilization
patterns) of rD different sessions for the amount of time equal
to ∆. Thus, the matrix D has a dimension equal to rD ×∆,
where rD and ∆ are the number of rows (traffic sessions) and
the number of columns (time instants) in D. The vector c of
labels contains the application type of the controlled sessions,
with a dimension equal to rD×1. For example, given the i-th
investigated session, it holds that di,j ∈ D and ci ∈ c are the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

Fig. 2. Number of sessions vs application types in the considered dataset.

Fig. 3. Pre-processing of the training dataset.

amount of data delivered across the radio interface during the
j-th time slot and the label describing the application type of
the i-th session, respectively. All the values stored in D are
normalized within the range [0,1] to accelerate the training
convergence [56].

The training dataset has been conveniently pre-processed
to be managed by our deep learning models. For the sake
of clarity, the pre-processing procedure has been depicted in
Fig. 3. A new matrix M is generated from D, whose rows
represent the observation windows of duration T . The resulting
matrix M has a dimension of rD(∆ − T + 1) × T . The
vector c is used to generate a new set of labels, namely
l, describing the application type associated to each portion
of the investigated session stored in M. The vector l has
a dimension of rD(∆ − T + 1) × 1. A set of new column
vectors, namely mT+1, mT+2, and mT+3, with dimension
rD(∆−T+1)×1, are generated from D to store the amount of
data exchanged between base station and the mobile terminal
after the observation window T .

Finally, 80% of M is used as training set, while the
remaining 20% is used as validation set. The number of rows
of the matrix M selected as training set, whose performance
will be listed and evaluated, is simply denoted with rM,tr.

B. Components of the developed MTL model

Fig. 4 shows the proposed MTL model, embracing three
main components: autoencoder, classifier, and predictor. Each
component presents specific input and output parameters. The
training of the developed MTL model is divided into two
stages. The first stage consists of the training of autoencoder.
The second stage refers to the training of both classifier and

Fig. 4. Our proposed MTL model.

predictor, known the set of feature learning representations
provided by the encoder.

1) The autoencoder: It represents a particular Artificial
Neural Network (ANN) implementing two key functionalities.
Given an input data mi = {mi,1, ...,mi,T }, that is a row
of the matrix M, the encoder generates the corresponding
feature representation, namely hi, which then allows the joint
execution of the two tasks. Specifically, hi ∈ H appears
like a compression of input data [49] and it is referred to
as codeword in the next sections. On the other hand, the
decoder provides a reconstruction of the input data, namely
m̂i = {m̂i,1, ..., m̂i,T }, starting from the aforementioned fea-
ture learning representation. The autoencoder uses the sigmoid
activation function for the output layer and Rectified Linear
Unit (ReLU) for other layers [6]. In addition, it also uses
weights, that are properly configured during the training phase.

This work investigates two different autoencoder schemes:
• the Undercomplete Autoencoder, leveraging regular

densely-connected neural network layers, based on MLP
[57]. In particular, MLP is a fully-connected and feed-
forward neural network, that has low computational com-
plexity.

• the Seq2Seq Autoencoder, that manages encoder and
decoder functionalities through LSTM [58]. The LSTM
is a popular variant of Recurrent Neural Networks
(RNNs) that can extract long range temporal dependen-
cies through input, forget, and output gates and mitigate
gradient vanishing and exploding problems. This type
of neural network is suitable for processing time series
because the output of each memory cell may depend on
the entire sequence of previous cell states [6], [13], [59].
Due to the intrinsic temporal relations in mobile traffic
data, LSTM-based architecture appears as the logical
choice, at the cost of higher computational complexity.

To train the two types of autoencoder, weights are iteratively
updated in order to minimize the MSE loss function LA,
formally defined as [57], [60]:

LA =
1

rM,tr

rM,tr∑
i=1

T∑
j=1

(mi,j − m̂i,j)
2 (1)

As shown in Fig. 4, the common feature representation hi

generated by the autoencoder is provided to both classifier and
predictor for driving classification and prediction tasks.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

Fig. 5. Baseline single-task learning architectures for classifier and predictor.

2) The classifier: It maps the feature learning representa-
tion hi to a learned label l̂i describing the application type of
the investigated session. To this end, it uses the softmax layer,
based on the softmax activation function [6], working with a
number of classes (i.e., the considered application types) equal
to 3, even if our methodology is extendable to any number of
classes.

The softmax layer of the classifier is configured by pe-
nalizing the MSE loss function LC between the true label
li associated to the input data mi and the learned label l̂i
associated to the feature learning representation hi:

LC =
1

rM,tr

rM,tr∑
i=1

(li − l̂i)
2
. (2)

Once configured, the classifier accuracy AC quantifies the
percentage of correct classifications with respect to the total
number of classifications [61]:

AC =
number of correct classifications

rM,tr
· 100. (3)

3) The predictor: It predicts the amount of data that a given
session is expected to exchange with the base station after
the observation window T , that are: m̂i,T+1 stored in m̂T+1,
m̂i,T+2 stored in m̂T+2, m̂i,T+3 stored in m̂T+3, and so
on. It makes use of a fully-connected layer with the ReLU
activation function [6].

The predictor is configured in order to minimize the MSE
loss function LP , formulated for T + 1s as [62]:

LP =
1

rM,tr

rM,tr∑
i=1

(
mi,T+1 − m̂i,T+1

)2

. (4)

Of course, it is expected that the prediction loss function,
which minimizes the difference between the true and the
predicted amount of exchanged data, will increase with the
time distance between the latest value of the investigated traffic
profile and the predicted one.

IV. PERFORMANCE EVALUATION

The conceived MTL architectures have been implemented
in Keras, a high-level neural networks API written in Python,
running on top of TensorFlow [63], and simulations have
been executed on an Intel Core i7 CPU with 16 GB of
RAM. Moreover, different configurations of neural networks
are investigated to quantify the impact of the observation
window, T , on the classifier accuracy, AC , and the prediction
loss, LP . Once the best solutions are selected, we present

a complete analysis on the classification and prediction per-
formance together with a discussion on the complexity and
convergence of the selected architectures.

To simplify the understanding of the analysis presented in
this section, the proposed MTL architectures are named as
follows: MTL-U refers to the MTL architecture based on the
Undercomplete Autoencoder; MTL-S2S refers to the MTL
architecture based on the Seq2Seq Autoencoder.

Assuming to describe the ratio between the size of the
input layer and the size of hidden layers in the form X:Y
for the neural networks with only one hidden layer and
X:Y:Z for the neural networks with two hidden layers, the
investigated configurations include 8:5, 8:6, 8:8, and 8:5:3.
The observation window T is chosen in the range from 5 to
20. Regarding the autoencoder, the size of the codeword is
also set to different values (please see Tables III and IV for
further details).

The training phase for all the components belonging to the
designed MTL architectures is done with 200 epochs. The
Adam optimization is used to iteratively update the network
weights based on the training data [64].

To provide further insight, the comparison with baseline
single-task learning architectures, that do not use the au-
toencoder and that tackle traffic classification and prediction
separately, is presented as well. In particular, the reference
single-task architectures selected for the cross-comparison are
based on LSTM because, as stated in Section III-B, this
type of neural network is suitable for processing time series.
Furthermore, due to the wide adoption of LSTM in the
state-of-the-art deep learning models (e.g., [13], [16]–[19]),
LSTM-based architecture appears as the logical choice for
the comparison (single-task learning) schemes, as well as for
the MTL approach. Assuming to work with the same training
dataset and to adopt the same set of symbols, the single-task
classifier and the single-task predictor are depicted in Fig. 5.

A. Selection of suitable MTL architectures

Autoencoder loss, LA, classification accuracy, AC , and
prediction loss, LP , achieved for all the configurations of the
designed MTL architectures are reported in Tables III and
IV. The same performance indexes obtained with single-task
approaches are reported in Table V. For both MTL and single-
task architectures and for each observation window T , these
results are used to select the configurations that ensure the best
performance.

Regarding the conceived MTL architectures, the analysis
concerns multiple objectives, that refer to the maximization of
AC and the minimization of LP . To this end, a performance
metric, PMTL, is defined in (5) as a weighted linear sum of
obtained results for each task, where the weight α may assume
an arbitrary value from 0 to 1 [65], [66]. Since the higher the
loss, the lower the performance, the min-max normalization is
performed for LP to properly combine the two metrics [61],
considering the minimum prediction loss reported in Tables
III, IV, and V (i.e., LPmin), the maximum prediction loss
reported in Tables III, IV, and V (i.e., LPmax), the value
of the normalized metric describing the worst performance

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

PMTL = αAC + (1− α)

[
LP − LPmin

LPmax − LPmin

(L′Pmax − L
′
Pmin) + L′Pmin

]
(5)

TABLE III
PERFORMANCE OF MTL-U. FOR EACH T , THE BEST CONFIGURATION IS HIGHLIGHTED.

T [s] Codeword

MTL-U
1 hidden layer 2 hidden layers

8:5 8:6 8:8 8:5:3

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

5 3 0.83 89.20 2.56 6.69 93.02 2.54 5.68 91.72 2.50 23.10 86.86 2.60
4 0.83 88.39 2.56 4.25 91.22 2.50 2.12 92.37 2.53 23.09 87.51 3.49

10
3 6.64 95.02 1.77 6.04 95.41 1.70 2.26 91.93 1.63 8.20 93.21 1.67
4 2.93 93.47 1.73 4.98 96.99 1.66 3.94 94.61 1.61 6.73 92.99 1.68
5 2.06 91.02 1.73 4.85 95.45 1.72 2.12 92.90 1.61 4.49 93.33 1.69

15

3 4.32 90.56 1.27 5.12 94.75 1.18 2.28 90.51 1.15 4.25 94.95 1.21
4 3.70 90.16 1.24 5.15 93.90 1.17 0.57 94.92 1.15 2.86 94.19 1.19
5 1.97 93.82 1.18 3.62 98.08 1.20 0.25 94.37 1.14 4.80 97.53 1.16

10 3.61 96.21 1.18 2.69 96.31 1.11 2.49 98.75 1.03 1.82 93.51 1.22

20

3 3.84 88.97 0.96 4.56 97.64 0.91 2.50 90.50 0.83 1.43 95.41 0.88
4 0.52 94.57 0.95 3.32 99.43 0.88 0.30 94.94 0.81 3.38 95.22 0.85
5 0.43 94.91 0.91 3.44 98.26 0.90 0.34 91.16 0.79 3.04 94.10 0.91

10 2.29 96.60 0.90 2.48 99.36 0.81 1.80 97.23 0.73 1.56 94.95 0.87

TABLE IV
PERFORMANCE OF MTL-S2S. FOR EACH T , THE BEST CONFIGURATION IS HIGHLIGHTED.

T [s] Codeword

MTL-S2S
1 hidden layer 2 hidden layers

8:5 8:6 8:8 8:5:3

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

5
3 0.014 92.72 2.41 0.024 92.40 2.48 0.058 92.25 2.33 16.68 90.09 2.44
4 16.72 92.56 2.50 0.011 92.35 2.39 16.70 92.10 2.39 16.73 90.59 2.45
5 0.027 94.55 2.46 0.048 94.26 2.42 0.017 94.59 2.33 16.70 90.36 2.51

10
3 0.0081 96.52 1.55 0.016 97.19 1.51 0.029 93.53 1.50 16.69 92.22 1.54
4 0.0045 96.71 1.51 0.0099 96.69 1.53 0.0045 95.67 1.40 15.50 96.44 1.61
5 0.019 96.17 1.51 0.021 97.33 1.46 0.0032 94.45 1.38 0.060 97.52 1.54

15

3 0.0066 96.21 1.17 0.023 97.15 1.07 0.011 98.03 0.87 16.68 91.99 0.97
4 11.16 98.54 1.01 0.018 95.48 1.03 0.011 97.75 1.02 11.13 96.60 1.22
5 0.0083 98.16 1.03 0.014 95.22 0.98 0.0034 98.26 0.95 0.0076 95.48 1.01

10 0.0029 97.96 0.91 0.0048 98.06 0.86 0.0075 99.33 0.81 0.019 95.41 1.01

20

3 0.014 97.85 0.78 0.0035 92.52 0.66 0.012 93.68 0.61 0.0047 98.47 0.70
4 0.0087 98.18 0.75 0.0035 94.07 0.74 0.0060 98.50 0.67 0.016 97.56 0.77
5 0.0039 98.00 0.81 0.0045 94.92 0.75 0.0032 97.84 0.61 0.019 98.23 0.75

10 0.0032 98.95 0.77 0.0034 97.92 0.67 0.0072 99.64 0.62 0.0055 95.02 0.68

(i.e., L′Pmax = 0), and the value of the normalized metric
describing the best performance (i.e., L′Pmin = 100).

Figs. 6 and 7 show the performance of the MTL configu-
rations that register the highest PMTL metric as a function
of α, for MTL-U and MTL-S2S, respectively. These figures
help to identify the suitable values of α to be used for the
selection of the best MTL configurations. Reported curves
demonstrate that α = 0.5 and α = 1 cannot be used for this
purpose. In fact, if α ≤ 0.5, the multi-objective metric PMTL
suggests to select configurations that register low classification
accuracy. On the contrary, when α = 1, the multi-objective
metric PMTL suggests to select configurations that register
higher prediction losses, especially when T increases. Other
values of α provide similar outcomes. Thus, the rest of this

paper considers the best configurations of the proposed MTL
architectures selected with α = 0.8. They are highlighted in
Tables III and IV.

Regarding the single-task approaches, the best configura-
tions are simply selected by considering those that offer better
performance for each T . Also in this case, they are highlighted
in Table V.

In general, we note that the performance of both MTL
and single-task approaches improve when T increases because
more data are used to make decisions. Focusing the attention
on the proposed MTL model, there is not a precise relationship
between MTL performance and codeword size: while MTL-
S2S always achieves the best performance with the biggest
codeword size, the same consideration cannot be done for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

5 10 15 20

T [s]

90

92

94

96

98

100

Best MTL configuration with =0.5

Best MTL configuration with =0.6

Best MTL configuration with =0.7

Best MTL configuration with =0.8

Best MTL configuration with =0.9

Best MTL configuration with =1

(a)

5 10 15 20

T [s]

1

2

3
10

-3

Best MTL configuration with =0.5

Best MTL configuration with =0.6

Best MTL configuration with =0.7

Best MTL configuration with =0.8

Best MTL configuration with =0.9

Best MTL configuration with =1

(b)

Fig. 6. (a) Classification accuracy and (b) prediction loss at T + 1s registered by the best configurations of MTL-U, as a function of α.

5 10 15 20

T [s]

90

92

94

96

98

100

Best MTL configuration with =0.5

Best MTL configuration with =0.6

Best MTL configuration with =0.7

Best MTL configuration with =0.8

Best MTL configuration with =0.9

Best MTL configuration with =1

(a)

5 10 15 20

T [s]

1

2

3
10

-3

Best MTL configuration with =0.5

Best MTL configuration with =0.6

Best MTL configuration with =0.7

Best MTL configuration with =0.8

Best MTL configuration with =0.9

Best MTL configuration with =1

(b)

Fig. 7. (a) Classification accuracy and (b) prediction loss at T + 1s registered by the best configurations of MTL-S2S, as a function of α.

TABLE V
PERFORMANCE OF THE SINGLE-TASK APPROACH. FOR EACH T , THE BEST CONFIGURATION IS HIGHLIGHTED.

T [s]

Single-task classifier

1 hidden layer 2 hidden
layers

8:5 8:6 8:8 8:5:3

AC
[%]

AC
[%]

AC
[%]

AC
[%]

5 88.02 92.52 91.44 90.81
10 95.56 94.69 95.97 93.22
15 96.76 96.60 97.18 96.07
20 95.36 97.73 97.52 97.04

T [s]

Single-task predictor

1 hidden layer 2 hidden
layers

8:5 8:6 8:8 8:5:3

LP
[·10−3]

LP
[·10−3]

LP
[·10−3]

LP
[·10−3]

5 2.64 2.56 2.47 2.43
10 1.77 1.67 1.48 1.55
15 1.22 1.12 0.97 1.11
20 0.91 0.84 0.77 0.79

MTL-U.

B. Classification performance

Fig. 8 depicts the classification accuracy of the selected
architectures as a function of T . As already anticipated, the
performance always improves when T increases because all
the learning architectures can use a higher number of training
data to perform session classification. It is also evident that the
single-task approach registers lower accuracy levels, ranging
from 92.52% to 97.73%. On the contrary, better results are
registered by the proposed MTL architectures: in this case,
it is possible to reach an accuracy level up to 99.64%. The
conducted study also demonstrates that MTL-S2S achieves
higher classification accuracy for each T .

TABLE VI
F-SCORE ANALYSIS.

Architecture F-score
T=5s T=10s T=15s T=20s

MTL-U 0.9312 0.9755 0.9904 0.9926
MTL-S2S 0.9501 0.9652 0.9927 0.9971

Single-task classifier 0.9198 0.9586 0.9817 0.9866

Classification performance can be further investigated
through the F-score [61] index. Theoretically, the higher
the F-score value, the better the ability of the classifier to
make proper decisions. The results summarized in Table VI
generally confirm what already discussed. In fact, F-score

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

5 10 15 20

T [s]

90

92

94

96

98

100

MTL-U

MTL-S2S

Single-task classifier

Fig. 8. Classification performance.

improves when T increases, and the single-task approach
always registers the lowest F-score values. Regarding the
proposed MTL architectures, an exception is reported when
T = 10s: in that case, even if MTL-U registers the highest
F-score, it achieves a lower classification accuracy than MTL-
S2S because of a higher error rate for a specific application
type (see the study on the confusion matrices proposed below).

To analyze which classes are mismatched in the classifica-
tion process, the confusion matrices are provided in Fig. 9 for
each T . In general, both MTL architectures misclassify video-
streaming sessions with audio-streaming ones. Nonetheless,
such an error classification rate decreases when T increases.
When T = 5s, in fact, 14% and 13% of video-streaming ses-
sions are (wrongly) classified as audio-streaming by MTL-U
and both MTL-S2S and the single-task classifier, respectively.
These percentages decrease to 2% for MTL-U, 1% for MTL-
S2S, and 4% for the single-task classifier when T = 20s.
However, also in this case, it is possible to observe how the
proposed MTL architectures always provide better results with
respect to those measured for the single-task approach. Going
more into detail, MTL-S2S presents the highest percentage of
sessions, which are correctly classified, for each T , except for
T = 10s. When T = 10s, as anticipated with the analysis of
F-score, MTL-U reports a lower AC than MTL-S2S. However,
MTL-U reports a higher F-score. The confusion matrices show
the reason why it occurs. The percentages of video-streaming
sessions which are correctly classified by MTL-U (see Fig.
9(b), on the left) and MTL-S2S (see Fig. 9(b), in the middle)
are 94% and 92%, respectively.

C. Prediction performance

Fig. 10 shows the prediction loss registered for the time
instants T + 1s, T + 2s, and T + 3s. First of all, it is evident
that the curves for T + 3s are incomplete. In this case, the
training process always fails when T = 5s. As expected,
the prediction loss decreases with the observation window T ,
because the learning architectures have more training data to
make a prediction. Regarding the prediction performed at both
T +1s and T +2s, MTL-S2S and MTL-U always register the
best and the worst performance levels, respectively. On the
other hand, when the prediction is done a T + 3s, the single-
task approach slightly exceeds the prediction losses registered
by MTL-U.

TABLE VII
COMPLEXITY ANALYSIS OF LEARNING ARCHITECTURES.

Architecture # Parameters
T=5s T=10s T=15s T=20s

MTL-U
Autoencoder 98 314 805 960
Classifier 72 189 543 618
Predictor 43 114 411 486

MTL-S2S
Autoencoder 806 1607 5496 8781
Classifier 438 665 2513 3603
Predictor 386 563 2211 3201

Single-task Classifier 111 513 1068 1068
Predictor 82 491 1036 1781

In summary, MTL-S2S always guarantees the lowest predic-
tion losses, at the cost of higher complexity (see Section IV-D).
MTL-U registers the worst performance when the prediction
is done at T+1s and T+2s. The single-task approach exhibits
intermediate performance levels when T + 1s and T + 2s, but
it registers the highest prediction losses at T + 3s. Obtained
results also confirm the ability of LSTM, which is exploited in
both MTL-S2S and the single-task scheme, to suitably process
time series by taking into account the temporal sequence of
TBS values.

D. Complexity and convergence analysis

The complexity of selected learning architectures is eval-
uated by measuring the number of trainable parameters: the
higher the number of parameters, the higher the complexity
level. Results are summarized in Table VII. Firstly, it is evident
that the complexity of all the investigated learning architec-
tures increases when the observation window T increases.
MTL-S2S always registers the highest complexity. Also the
single-task approach, based on LSTM, has a high complexity
because of the structures of LSTM cells. On the contrary,
MTL-U guarantees the lowest complexity for each observation
window T .

The convergence analysis evaluates the performance of the
investigated learning architectures (including autoencoder loss,
classification accuracy, and prediction loss) as a function of
the number of epochs considered during the training phase.
Fig. 11 shows the autoencoder loss as a function of the
number of epochs. MTL-S2S has the slowest convergence
time, while providing the lowest autoencoder loss. Fig. 12
depicts the classification accuracy as a function of the number
of epochs. While the proposed MTL architectures reach similar
performance, the single-task approach always registers the
highest convergence time. Fig. 13 shows the prediction loss as
a function of the number of epochs. In this case, it is possible
to observe that MTL-S2S achieves lower performance losses,
at the cost of a slower convergence time.

E. A further evaluation with more classes

As described in Section III-A, the proposed MTL approach
can be applied to different scenarios with a higher number
of classes. To provide further insight, the training dataset
considered in this work allowed us to evaluate the perfor-
mance of the proposed methodology when considering the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

(a) (b)

(c) (d)

Fig. 9. Confusion matrix for MTL-U, MTL-S2S, and the single-task classifier when (a) T = 5s, (b) T = 10s, (c) T = 15s, and (d) T = 20s.

5 10 15 20

T [s]

1

2

3
10

-3

MTL-U

MTL-S2S

Single-task predictor

(a)

5 10 15 20

T [s]

1

2

3
10

-3

MTL-U

MTL-S2S

Single-task predictor

(b)

5 10 15 20

T [s]

1

2

3
10

-3

MTL-U

MTL-S2S

Single-task predictor

(c)

Fig. 10. Prediction performance of the best configurations of MTL-U and MTL-S2S and the single-task approach: a) prediction loss at T + 1s, b) prediction
loss at T + 2s, and c) prediction loss at T + 3s.

six available classes of applications: YouTube, Vimeo, Spotify,
Google Music, Skype, and WhatsApp Messanger. Specifically,
differently from the original investigation, the applications
belonging to the same service category have been treated as
separate classes. We tested the configurations of the MTL-S2S
approach that achieved the best performance in the analysis
of three service categories only. Figs. 14 and 15 depict the
classification accuracy and the prediction loss of MTL-S2S
and the single-task schemes with six classes as a function of
T . Obtained results further confirm that the proposed MTL
approach outperforms baseline single-task scheme also in
scenarios with a higher number of classes. Differently from the
previous case, however, lower accuracy levels are caused by
very similar patterns of applications (especially those of audio-
streaming type) and it is increasingly difficult to distinguish
the different applications when the observation window T
decreases.

V. CONCLUSIONS

This work has tailored a Multi-Task Learning model for
traffic classification and prediction at the mobile edge, which
leverages data mining from the Physical Downlink Control
Channel and two types of autoencoders (i.e., the Undercom-
plete Autoencoder and the Sequence to Sequence Autoen-
coder) exploited as key building blocks for obtaining common
feature representations. Different configurations of neural net-
works have been trained with a real dataset collected from an
operative mobile network in Spain. Moreover, a wide set of
simulations has investigated the performance of the developed
approach in terms of classification accuracy, prediction loss,
complexity, and convergence. A cross-comparison with respect
to conventional single-task learning schemes, that do not use
autoencoders and that are generally investigated in the current
state of the art for traffic classification and prediction, has
also demonstrated that: i) the Multi-Task Learning architec-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

40 80 120 160 200
10

-6

10
-4

10
-2

10
0

MTL-U

MTL-S2S

40 80 120 160 200
10

-6

10
-4

10
-2

10
0

40 80 120 160 200
10

-6

10
-4

10
-2

10
0

40 80 120 160 200
epoch [#]

10
-6

10
-4

10
-2

10
0

T = 5s

T = 10s

T = 15s

T = 20s

Fig. 11. Autoencoder loss vs number of epochs.

40 80 120 160 200
40
50
60
70
80
90

100

MTL-U

MTL-S2S

Single-task classifier

40 80 120 160 200
40
50
60
70
80
90

100

40 80 120 160 200
40
50
60
70
80
90

100

40 80 120 160 200
epoch [#]

40
50
60
70
80
90

100

T = 5s

T = 15s

T = 20s

T = 10s

Fig. 12. Classification accuracy vs number of epochs.

tures, leveraging the autoencoders, always guarantee higher
performance than the single-task learning approach, ii) the
Multi-Task Learning architecture based on the Sequence to
Sequence Autoencoder always achieves the highest classifica-
tion accuracy and the lowest prediction losses, at the cost of
a higher complexity and convergence time. Further research
activities will exploit the conceived methodology to properly
design advanced techniques for mobile network optimization,
ranging from radio resource scheduling and admission control,
mobility management and energy saving mechanisms, to net-
work slicing and dynamic placement of virtualized functions.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[2] M. Paolini, “Mastering Analytics: How to benefit from big data and
network complexity: An Analyst Report.” RCR Wireless News, 2017.

20 80 120 160 200

1

2

3
10

-3

MTL-U

MTL-S2S

Single-task predictor

40 80 120 160 200

1

2

3
10

-3

40 80 120 160 200

1

2

3
10

-3

40 80 120 160 200
epoch [#]

1

2

3
10

-3

T = 15s

T = 20s

T = 5s

T = 10s

Fig. 13. Prediction loss vs number of epochs.

5 10 15 20

T [s]

60

70

80

90

100

MTL-S2S

Single-task classifier

Fig. 14. Classification performance with six application classes.

5 10 15 20

T [s]

1

2

3
10

-3

MTL-S2S

Single-task predictor

Fig. 15. Prediction performance at T + 1s with six application classes.

[3] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A Comprehensive Survey
on Machine Learning for Networking: Evolution, Applications and
Research Opportunities,” J. Internet Services Appl., vol. 9, no. 1, p. 16,
2018.

[4] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, and W. Xiang,
“Big Data-Driven Optimization for Mobile Networks toward 5G,” IEEE
Netw., vol. 30, pp. 44–51, 2016.

[5] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo,
“Machine Learning Paradigms for Next-Generation Wireless Networks,”
IEEE Wireless Commun., vol. 24, no. 2, pp. 98–105, Apr. 2017.

[6] C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and
Wireless Networking: A Survey,” IEEE Commun. Surveys Tuts., vol. 21,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

no. 3, pp. 2224–2287, 2019.
[7] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of

Machine Learning in Wireless Networks: Key Techniques and Open
Issues,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, 2019.

[8] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What Will 5G Be?” IEEE J. Sel. Areas
Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[9] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag.,
vol. 52, no. 2, pp. 74–80, 2014.

[10] P. K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour,
“Design Considerations for a 5G Network Architecture,” IEEE Commun.
Mag., vol. 52, no. 11, pp. 65–75, 2014.

[11] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end En-
crypted Traffic Classification with One-dimensional Convolution Neural
Networks,” in Proc. Int. Conf. Intell. Secur. Inform., 2017, pp. 43–48.

[12] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
Packet: A Novel Approach For Encrypted Traffic Classification Using
Deep Learning,” Soft Comput., pp. 1–14, 2017.

[13] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile Encrypted
Traffic Classification Using Deep Learning: Experimental Evaluation,
Lessons Learned, and Challenges,” IEEE Trans. Netw. Service Manag.,
vol. 16, no. 2, pp. 445–458, June 2019.

[14] P. Wang, F. Ye, X. Chen, and Y. Qian, “Datanet: Deep Learning Based
Encrypted Network Traffic Classification in SDN Home Gateway,” IEEE
Access, vol. 6, pp. 55 380–55 391, 2018.

[15] C. Zhang, H. Zhang, D. Yuan, and M. Zhang, “Citywide Cellular
Traffic Prediction Based on Densely Connected Convolutional Neural
Networks,” IEEE Commun. Lett, vol. 22, no. 8, pp. 1656–1659, 2018.

[16] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang,
“Spatiotemporal Modeling and Prediction in Cellular Networks: A Big
Data Enabled Deep Learning Approach,” in Proc. IEEE Int. Conf.
Comput. Commun. (INFOCOM), 2017, pp. 1–9.

[17] L. Chen, D. Yang, D. Zhang, C. Wang, J. Li et al., “Deep Mobile
Traffic Forecast and Complementary Base Station Clustering for C-RAN
Optimization,” J. Netw. Comput. Appl., vol. 121, pp. 59–69, 2018.

[18] J. Feng, X. Chen, R. Gao, M. Zeng, and Y. Li, “DeepTP: An End-
to-End Neural Network for Mobile Cellular Traffic Prediction,” IEEE
Netw., vol. 32, no. 6, pp. 108–115, 2018.

[19] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Deep
Learning with Long Short-Term Memory for Time Series Prediction,”
IEEE Commun. Mag., 2019.

[20] C.-W. Huang, C.-T. Chiang, and Q. Li, “A Study of Deep Learning
Networks on Mobile Traffic Forecasting,” in Proc. 28th IEEE Annu. Int.
Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), 2017, pp. 1–6.

[21] C. Zhang and P. Patras, “Long-term Mobile Traffic Forecasting Using
Deep Spatio-Temporal Neural Networks,” in Proc. 18th ACM Int. Symp.
Mobile Ad Hoc Netw. and Comput., 2018, pp. 231–240.

[22] C. Zhang, M. Fiore, and P. Patras, “Multi-Service Mobile Traffic
Forecasting via Convolutional Long Short-Term Memories,” in Proc.
IEEE Int. Symp. Meas. Netw. (M&N), July 2019, pp. 1–6.

[23] R. Caruana, “Multitask Learning,” Mach. Learn., vol. 28, no. 1, pp.
41–75, 1997.

[24] Y. Zhang and Q. Yang, “A Survey on Multi-Task Learning,” arXiv
preprint arXiv:1707.08114, 2017.

[25] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
Learning Meets Computation and Communication Control in Evolving
Edge and Cloud: Challenges and Future Perspective,” IEEE Commun.
Surveys Tuts., 2019.

[26] K. Bian, C. Gao, Y. Tao, Y. Zhang, L. Song, S. Dong, and X. Li,
“Learning at the Edge: Smart Content Delivery in Real World Mobile
Social Networks,” IEEE Netw., vol. 33, no. 4, pp. 208–215, 2019.

[27] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart Resource Allocation for
Mobile Edge Computing: A Deep Reinforcement Learning Approach,”
IEEE Trans. Emerg. Topics Comput, pp. 1–1, 2019.

[28] S. Rezaei and X. Liu, “Multitask Learning for Network Traffic Classi-
fication,” arXiv preprint arXiv:1906.05248, 2019.

[29] H. Sun, Y. Xiao, J. Wang, J. Wang, Q. Qi, J. Liao, and X. Liu, “Common
Knowledge Based and One-Shot Learning Enabled Multi-Task Traffic
Classification,” IEEE Access, vol. 7, pp. 39 485–39 495, 2019.

[30] A. Rago, G. Piro, H. D. Trinh, G. Boggia, and P. Dini, “Unveiling Radio
Resource Utilization Dynamics of Mobile Traffic through Unsupervised
Learning,” in Proc. IEEE Netw. Traffic Meas. Anal. Conf. (TMA), Paris,
France, June 2019.

[31] F. Meneghello, M. Rossi, and N. Bui, “Smartphone Identification via
Passive Traffic Fingerprinting: a Sequence-to-Sequence Learning Ap-
proach,” IEEE Netw., vol. 34, no. 2, pp. 112–120, 2020.

[32] H. D. Trinh, A. F. Gambin, L. Giupponi, M. Rossi, and P. Dini, “Mobile
Traffic Classification through Physical Channel Fingerprinting: a Deep
Learning Approach,” arXiv preprint arXiv:1910.11617, 2019.

[33] H. D. Trinh, L. Giupponi, and P. Dini, “Mobile Traffic Prediction from
Raw Data Using LSTM Networks,” in Proc. 29th IEEE Annu. Int. Symp.
Pers. Indoor Mobile Radio Commun. (PIMRC), 2018, pp. 1827–1832.

[34] D. D. Nguyen, H. X. Nguyen, and L. B. White, “Reinforcement Learning
With Network-Assisted Feedback for Heterogeneous RAT Selection,”
IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 6062–6076, 2017.

[35] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation
of Machine Learning Classifiers for Mobile Malware Detection,” Soft
Comput., vol. 20, no. 1, pp. 343–357, Jan. 2016.

[36] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed Machine Learning
Approaching LAN Speeds,” in Proc. USENIX Conf. Networked Syst.
Des. Implementation (NSDI), Berkeley, CA, USA, 2017, pp. 629–647.

[37] M. Miozzo, N. Piovesan, and P. Dini, “Coordinated Load Control of
Renewable Powered Small Base Stations through Layered Learning,”
IEEE Trans. Green Commun. Netw., pp. 1–1, 2019.

[38] Y. Zhang, Y. Guan, K. Bian, Y. Liu, H. Tuo, L. Song, and X. Li,
“EPASS360: QoE-aware 360-degree Video Streaming over Mobile De-
vices,” IEEE Trans. Mobile Comput., pp. 1–1, 2020.

[39] T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato, and K. Temma,
“Cloudlets Activation Scheme for Scalable Mobile Edge Computing
with Transmission Power Control and Virtual Machine Migration,” IEEE
Trans. Comput., vol. 67, no. 9, pp. 1287–1300, 2018.

[40] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic, “Who do you sync
you are? Smartphone Fingerprinting via Application Behaviour,” in
Proc. ACM Conf. Secur. Privacy Wireless Mobile Netw., 2013, pp. 7–12.

[41] Y. Liu, S. Zhang, B. Ding, X. Li, and Y. Wang, “A Cascade Forest
Approach to Application Classification of Mobile Traces,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1–6.

[42] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I Know What You Did On
Your Smartphone: Inferring App Usage Over Encrypted Data Traffic,”
in Proc. IEEE Conf. Commun. Netw. Secur., 2015, pp. 433–441.

[43] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust Smart-
phone App Identification Via Encrypted Network Traffic Analysis,”
IEEE Trans. Inf. Forensics Security, vol. 13, no. 1, pp. 63–78, 2018.

[44] M. Conti, Q. Q. Li, A. Maragno, and R. Spolaor, “The Dark Side(-
Channel) of Mobile Devices: A Survey on Network Traffic Analysis,”
IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2658–2713, 2018.

[45] P. Wang, X. Chen, F. Ye, and Z. Sun, “A Survey of Techniques for
Mobile Service Encrypted Traffic Classification Using Deep Learning,”
IEEE Access, vol. 7, pp. 54 024–54 033, 2019.

[46] N. Bui, M. Cesana, S. A. Hosseini, Q. Liao, I. Malanchini, and J. Wid-
mer, “A Survey of Anticipatory Mobile Networking: Context-Based
Classification, Prediction Methodologies, and Optimization Techniques,”
IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1790–1821, 2017.

[47] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue,
and K. Mizutani, “State-of-the-Art Deep Learning: Evolving Machine
Intelligence Toward Tomorrow’s Intelligent Network Traffic Control
Systems,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2432–2455,
2017.

[48] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar,
“Towards the Deployment of Machine Learning Solutions in Network
Traffic Classification: A Systematic Survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 2, pp. 1988–2014, 2019.

[49] D. Gündüz, P. de Kerret, N. D. Sidiropoulos, D. Gesbert, C. R. Murthy,
and M. van der Schaar, “Machine Learning in the Air,” IEEE J. Sel.
Areas Commun., vol. 37, no. 10, pp. 2184–2199, Oct. 2019.

[50] S. Rezaei and X. Liu, “Deep Learning for Encrypted Traffic Classifica-
tion: An Overview,” IEEE Commun. Mag., vol. 57, no. 5, pp. 76–81,
2019.

[51] X. Song, H. Kanasugi, and R. Shibasaki, “DeepTransport: Prediction and
Simulation of Human Mobility and Transportation Mode at a Citywide
Level.” in IJCAI, vol. 16, 2016, pp. 2618–2624.

[52] N. Bui and J. Widmer, “OWL: A Reliable Online Watcher for LTE
Control Channel Measurements,” in Proc. ACM Workshop All Things
Cellular Operations Appl. Challenges, 2016, pp. 25–30.

[53] Ericsson, “Ericsson Mobility Report,” November 2019.
[54] Cisco, “Cisco Annual Internet Report (2018–2023),” White Paper,

March 2020.
[55] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

layer procedures,” 3rd Generation Partnership Project (3GPP), Tech.
Specification (TS) 36.213, May 2016.

[56] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

[57] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[58] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning
with Neural Networks,” in Advances Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[59] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[60] S. Hashem and B. Schmeiser, “Improving Model Accuracy Using
Optimal Linear Combinations of Trained Neural Networks,” IEEE Trans.
Neural Netw., vol. 6, no. 3, pp. 792–794, 1995.

[61] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[62] H. Feng and Y. Shu, “Study on Network Traffic Prediction Techniques,”
in Proc. IEEE Int. Conf. Wireless Commun. Netw. Mobile Comput.,
vol. 2, 2005, pp. 1041–1044.

[63] F. Chollet et al., “Keras,” https://keras.io, 2015.
[64] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.
[65] Y. Liao, S. Kodagoda, Y. Wang, L. Shi, and Y. Liu, “Understand

Scene Categories by Objects: A Semantic Regularized Scene Classifier
Using Convolutional Neural Networks,” in Proc. IEEE Int. Conf. Robot.
Automat. (ICRA), 2016, pp. 2318–2325.

[66] R. Cipolla, Y. Gal, and A. Kendall, “Multi-task Learning Using Uncer-
tainty to Weigh Losses for Scene Geometry and Semantics,” in Proc.
IEEE Conf. Comput. Vision Pattern Recognit., 2018, pp. 7482–7491.

Arcangela Rago (S’19) received the M.Sc. de-
gree (with honors) in telecommunication engineer-
ing from Politecnico di Bari, Bari, Italy, in 2018,
where she is currently pursuing the Ph.D. degree
with the Department of Electrical and Information
Engineering. Her main research interests include
machine learning and data analytics for network
optimization. She was a recipient of the Best Poster
Award at SMFC 2019, held in conjunction with
IEEE SMC 2019. She is involved in the Apulia Re-
gion (Italy) Research project INTENTO (36A49H6).

Giuseppe Piro (S’10-M’13) Since November 2018,
he is an Assistant Professor in Telecommunication
at Politecnico di Bari. In March 2018, he held the
habilitation as ”Associate Professor” in Telecom-
munications Engineering, according to the National
Scientific Habilitation procedure (ASN 2016-2018).
He received a first level degree and a second level
degree (both cum laude) in Telecommunications
Engineering from ”Politecnico di Bari”, Italy, in
2006 and 2008, respectively. He received the Ph.D.
degree in Electronic Engineering from ”Politecnico

di Bari”, Italy, on March 2012. His main research interests include secure In-
ternet of Things and Industry 4.0, 5G systems, data-centric and programmable
architectures for the Future Internet, nano-networks, Internet models and
network measurements. His research activity is documented in more than
80 peer-reviewed international journals and conference papers, accounting for
more than 3800 citations and a H-index of 24 (Scholar Google). At the time of
this writing, he is the local investigator of the PRIN project no. 2017NS9FEY
entitled “Realtime Control of 5G Wireless Networks: Taming the Complex-
ity of Future Transmission and Computation Challenges”. Moreover, he is
involved in the European EU H2020 GUARD project. He is also involved
in Italian MIUR PON projects (Pico&Pro, FURTHER, AGREED, RAFAEL)
and in Apulia Region (Italy) Research project INTENTO. He founded 5G-ai-
simulator, LTE-Sim, and NANO-SIM projects and is a developer of Network
Simulator 3. In the past, he was involved in EU H2020 projects, like
FANTASTIC-5G, BONVOYAGE, and symbIoTe, as well as in the “Apulia
Israel joint Accelerator (AIJA)” project. He is also regularly involved as
member of the TPC of many prestigious international conferences. Currently,
he serves as Associate Editor for Sensors journal (MDPI), Internet Technology
Letter (Wiley) and Wireless Communications and Mobile Computing journal
(Hindawi).

Gennaro Boggia (S’99-M’01-SM’09) received,
with honors, the Dr. Eng. and Ph.D. degrees in
electronics engineering, both from the Politecnico
di Bari, Bari, Italy, in July 1997 and March 2001,
respectively. Since September 2002, he has been
with the Department of Electrical and Information
Engineering, Politecnico di Bari, where he is cur-
rently a Full Professor. From May 1999 to Decem-
ber 1999, he was a Visiting Researcher with the
TILab, TelecomItalia Lab, Torino, Italy, where he
was involved in the study of the core network for

the evolution of Third-Generation (3G) cellular systems. In 2007, he was
a Visiting Researcher at FTW, Vienna, Austria, where he was involved in
activities on passive and active traffic monitoring in 3G networks. He has
authored or coauthored more than 150 papers in international journals or
conference proceedings, gaining more than 2300 citations. He is active in
the IETF ICNRG working group and in the IEEE WG 6TiSCH. He is also
regularly involved as a Member of the Technical Program Committee of
many prestigious international conferences. His research interests include the
fields of Wireless Networking, Cellular Communication, Internet of Things
(IoT), Network Security, Security in Iot, Information Centric Networking
(ICN), Protocol stacks for industrial applications, Internet measurements, and
Network Performance Evaluation. Dr. Boggia is currently an Associate Editor
for the IEEE Commun. Mag., the ETT Wiley Journal, and the Springer
Wireless Networks journal.

Paolo Dini received M.Sc. and Ph.D. from the
Università di Roma La Sapienza, in 2001 and 2005,
respectively. He is currently a Senior Researcher
with the Centre Tecnologic de Telecomunicacions
de Catalunya (CTTC). His current research interests
include sustainable networking and computing, dis-
tributed optimization and optimal control, machine
learning and data analytics. He received two awards
from the Cisco Silicon Valley Foundation for his
research on heterogeneous mobile networks, in 2008
and 2011, respectively. He has been involved in more

than 20 research and development projects and is currently the Coordinator
of the EU H2020 MSCA SCAVENGE European Training Network on
sustainable mobile networks with energy harvesting capabilities. He serves
as a TPC in many international conferences and workshops and as a reviewer
for several scientific journals of the IEEE, Springer, Wiley, and Elsevier.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVT.2020.3005724

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

