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Abstract

Recommender Systems (RSs) have become essential tools for alleviating information
overload by providing personalized suggestions across various domains, including
e-commerce, streaming platforms, and social networks. Traditionally, the evaluation
and optimization of RSs have centered on accuracy as the primary success metric.
While accuracy is critical for predicting user preferences, it fails to address broader
dimensions crucial for enhancing user satisfaction, ensuring stakeholder fairness,
and addressing societal impacts. Moreover, when multiple objectives are considered,
conflicts often arise, i.e., improving one objective can detrimentally affect others,
leading to a spectrum of possible optima. These challenges give rise to several critical
questions: How can RSs evolve to balance accuracy with other objectives, such as
diversity, novelty, and fairness, while meeting the needs of multiple stakeholders,
including users, content providers, and platforms? How can we simultaneously
evaluate RS effectiveness across diverse criteria? How can a single optimal solution
be selected from a set of trade-offs? Finally, can we design a generic framework
for optimizing RSs that accounts for multiple, often conflicting objectives? These
questions highlight key open challenges in the field of RS research.

This dissertation addresses these gaps by focusing on two main areas: method-
ologies for multi-objective evaluation of RSs and the challenges associated with
designing Multi-Objective Recommender Systems (MORSs). After an in-depth ex-
ploration of the background of RSs and multi-objective optimization, the thesis
makes significant contributions in the following areas: (i) the application of Pareto
frontiers to conduct a multi-objective evaluation of graph-based RSs, focusing on
fairness aspects; (ii) the introduction of quality indicators for Pareto frontiers to un-
cover the potential of RSs beyond traditional accuracy metrics; (iii) the development
of an analytical framework to assess the sensitivity of RSs to hyper-parameter tuning
in multi-objective scenarios; (iv) a reproducibility study that identifies key challenges
and ambiguities in the design and evaluation of MORSs; (v) the proposal of a novel,
post-hoc Pareto-optimal solution selection strategy tailored explicitly for RS tasks;
(vi) designing a flexible MORS framework incorporating objective-agnostic and
scale-aware loss functions to achieve optimization across diverse recommendation
objectives.
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on x and y axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



i
i

“output” — 2025/2/22 — 18:13 — page 13 — #18 i
i

i
i

i
i

List of Figures 13

A.17 Accuracy/Novelty/Diversity trade-offs onAmazonMusic, assessed through
nDCG/EPC/Gini, for BPRMF and NeuMF. The cutoff is 10. Each point
depicts a model hyper-parameter configuration set in the objective func-
tion space. The filled dots are on the Pareto frontier, while the empty
dots are dominated points. Colors refer to a value of a selected hyper-
parameter. Arrows indicates the optimization direction for each metric
on x and y axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.18 Accuracy/Novelty/Diversity trade-offs onAmazonMusic, assessed through
nDCG/EPC/Gini, for UserKNN and ItemKNN. The cutoff is 10. Each
point depicts a model hyper-parameter configuration set in the objec-
tive function space. The filled dots are on the Pareto frontier, while the
empty dots are dominated points. Colors refer to a value of a selected
hyper-parameter. Arrows indicates the optimization direction for each
metric on x and y axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



i
i

“output” — 2025/2/22 — 18:13 — page 14 — #19 i
i

i
i

i
i

List of Tables

4.1 Categorization of the chosen graph baselines according to the proposed
taxonomy. For eachmodel, we refer to the technical description reported
in the original paper and try to match it with our taxonomy . . . . . . . . . . . . . . 63

4.2 Best metric results (and corresponding graph CF model) for each <di-
mension, value> pair, on the Amazon Men dataset for top-20 lists. Bold
is used to indicate the best result in the pairs having a two-valued dimen-
sion, while † is used only for the “explored nodes” dimension to indicate
also the best results on same and different. The symbols ↑ and ↓ indicate
whether better stands for high or low values. We use “rank” and “rat” as
the UMADrank@k and UMADrat@k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Classical analysis of the baselines’ results in terms of Accuracy, Diver-
sity, Novelty, and Bias of recommendations. The arrows indicates the
descending or ascending order for the best solution. Best values are in
bold. Second best values are underlined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Quality Indicators of the Pareto frontiers results for the identified scenar-
ios. The arrow indicates the descending or ascending order for the best
solution.SP has no specific order of solutions, since its interpretation is
strictly connected with the MS indicator. C counts how many solutions
lay on the Pareto frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Overview of the hyper-parameters tuned for the recommendation base-
lines adopted in this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Mean (i.e., 𝜇) and standard deviation (i.e., 𝜎 ) of the distances among each
hyper-parameter configuration and the Pareto frontier for each model.
The results are categorized into the studied scenarios. For each scenario,
bold and underline stand for best and second-to-best values, respectively 100



i
i

“output” — 2025/2/22 — 18:13 — page 15 — #20 i
i

i
i

i
i

List of Tables 15

6.3 Mean (i.e., 𝜇) and standard deviation (i.e., 𝜎 ) of the distances among
specific hyper-parameter configurations of matrix factorization models
and the Pareto frontier. Then, the 𝜇 and 𝜎 values are inspected for specific
values of the hyper-parameters, categorized into the studied scenarios.
For each model, the best values of 𝜇 and 𝜎 are in bold for each hyper-
parameter type (i.e., factors and learning rate). Among them, the absolute
best values are also underlined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Mean (i.e., 𝜇) and standard deviation (i.e., 𝜎 ) of the distances among
specific hyper-parameter configurations of graph-based models and the
Pareto frontier. Then, the 𝜇 and 𝜎 values are inspected for specific values
of the hyper-parameters, categorized into the studied scenarios. For each
model, the best values of 𝜇 and 𝜎 are in bold for each hyper-parameter
type (i.e., factors, layers, and learning rate). Among them, the absolute
best values are also underlined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Mean (i.e., 𝜇) and standard deviation (i.e., 𝜎 ) of the distances among
specific hyper-parameter configurations of neighborhood-based models
and the Pareto frontier. Then, the 𝜇 and 𝜎 values are inspected for specific
values of the hyper-parameters, categorized into the studied scenarios.
For each model, the best values of 𝜇 and 𝜎 are in bold for each hyper-
parameter type (i.e., number of neighbors and the similarity metric).
Among them, the absolute best values are also underlined . . . . . . . . . . . . . . . . . 107

7.1 Reproducible and non-reproducible state-of-the-artworks regardingMORSs.
112

7.2 Replicated recommendation performance on RC 15 dataset. The results
labeled with “Orig.” are retrieved from the original work, while the ones
labeled with “Repr.” are replicated in this work. Epoch and Step refer to
the best iteration on the validation set on nDCG@10. The best results
are highlighted in bold. Arrows indicate whether better stands for low ↓
or high ↑ values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Replicated recommendation performance on Retailrocket dataset. The
results labeled with “Orig.” are retrieved from the original work, while
the ones labeled with “Repr.” are replicated in this work. Epoch and Step
refer to the best iteration on the validation set on nDCG@10. The best
results are highlighted in bold. Arrows indicate whether better stands
for low ↓ or high ↑ values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Recommendation performance on RC 15 dataset obtained by varying the
weights configurations of SMORL. The best results are highlighted in
bold, the second best results are underlined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 Recommendation performance on Retailrocket dataset obtained by vary-
ing the weights configurations of SMORL. The best results are high-
lighted in bold, and the second-best results are underlined . . . . . . . . . . . . . . . . 121



i
i

“output” — 2025/2/22 — 18:13 — page 16 — #21 i
i

i
i

i
i

List of Tables 16

7.6 Results on Source Bias/Recommendation Bias (Bias Disparity) for differ-
ent categories of items on RC 15 dataset. Values of Bias Disparity closer
to 0 are in bold, assessed for different cutoff@𝑘, with 𝑘 ∈ {5, 10, 20} . . . . . 125

7.7 Results on Source Bias/Recommendation Bias (Bias Disparity) for dif-
ferent categories of items on Retailrocket dataset. Values of Bias Dis-
parity closer to 0 are in bold, assessed for different cutoff@𝑘, with
𝑘 ∈ {5, 10, 20} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.1 Overview of the properties of PDU and other selection strategies. The
symbols ✓ (✗,—) indicate that the method has (does not have, could not
have) the specified property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2 LambdaMART selected solutions for the IR scenario. The objectives are
accuracy (nDCG), efficiency (Seconds), and energy consumption (Joules) . . 143

8.3 Neural Networks selected solutions in the IR scenario. The objectives
are accuracy (nDCG) and efficiency (Seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.4 EASE𝑅 selected solutions (for Goodreads and Amazon Music) in the
RS scenario with Recall and APLT objectives. For APLT, the higher the
better refers to the provider side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.1 Performance comparison between MultiFR w/s and MultiFR w/a as
motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2 Comparison of backbones (see Section 9.4.3) and Flex-MORe perfor-
mance on Amazon Baby, Facebook Books, and Amazon Music. Best and
second-best results are in bold and underlined, respectively. Arrows in-
dicate the descending or ascending order for better values. For statistical
hypothesis testing, we use the paired t-test to compare Flex-MORe and
the backbone (𝑝 < 0.05) and the Bonferroni adjustment to compare
the Flex-MORe variants. Differences are statistically significant, unless
denoted with † (‡ for the Bonferroni test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.3 Performance of Flex-MORe with and without normalizing the objec-
tive’s components in LBPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.4 Training efficiency comparison of Flex-MORe by varying dataset and the
number of objectives. The chosen backbone is BPRMF. The training time
is reported in seconds. The symbol ✓ indicates whether the provider
(PF) or consumer (CF) fairness objectives are involved during the training 169



i
i

“output” — 2025/2/22 — 18:13 — page 17 — #22 i
i

i
i

i
i

Chapter 1

Introduction

Recommender Systems [153] (RSs) are ubiquitous in our daily digital lives. Ordinary
people engagewith RSs unconsciouslywhile shopping on platforms like Amazon [115],
streaming movies on Netflix [23], or listening to music on Spotify [78]. Indeed,
RSs alleviate users from the information overload problem, in which people are
overwhelmed by the massive amount of data they are exposed to on the World Wide
Web. For instance, a usermay prefer shopping onZalando over Asos—or vice versa—
based on how effectively each platform helps her discover desired items. RSs help
online platforms to reach this situation by learning the user profile and suggesting
a ranked list of products or services tailored to individual interests. Consequently,
numerous research efforts have been made to develop adequate recommendation
algorithms, from similarity-based solutions [151, 156] to approaches that rely on
machine and deep learning techniques [84, 105, 122].

Despite the diversity of paradigms available in the realm of RSs, they commonly
share the same predominant purpose: to guide users to relevant items in the context
of information overload [38, 86]. Hence, the core way of operationalizing this purpose
is to learn from data a function that accurately predicts the relevance of an item
for each user. Indeed, traditional RSs aim to learn users’ preferences by minimizing
the rating prediction errors or maximizing the users’ recommendation accuracy.
Consequently, the accuracy of recommendations is considered the gold standard for
measuring the effectiveness of RSs. Generally, an RS is deemed better than another
if it consistently suggests more relevant items to users, achieving overall superior
accuracy performance.

Although providing accurate suggestions to users is crucial, it has been argued
that “being accurate is not enough” for an RS success [126]. For instance, recom-
mending only Swedish House Mafia tracks to their fans might achieve high accuracy.
However, the same recommendation could be perceived as obvious to these users,
thus diminishing its value for them. Potential adverse results of this issue are user
satisfaction erosion and the creation of filter bubbles [181].

Additionally, the end-user is not the only stakeholder involved in the recommen-
dation process [2]. While end-users desire personalized and relevant recommenda-
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tions, online platforms aim to achieve broader business objectives such as increasing
sales, user retention, or content consumption. Simultaneously, item providers, such
as artists or content creators, are directly affected by the exposure and ranking of
their offerings [164]. If a recommendation algorithm predominantly emphasizes con-
nections to popular items, this approach might unintentionally neglect individuals
pursuing careers in niche fields [4]. Consequently, a limited equal visibility for these
items could negatively impact society. An analogous issue can occur also on the
customer side. Unfairness in RSs can lead to unequal utility distribution, where
certain consumers/users are privileged by receiving recommendations with more
quality [61]. This situation could also lead to discrimination when the algorithm
tends to disadvantage user groups based on demographic characteristics such as
ethnicity, gender, age, or socioeconomic status [10].

These observations have led researchers to focus on the beyond-accuracy per-
spectives of the recommendation problem. On the one hand, diversity and novelty
of recommendations have been identified as crucial to shape better the user experi-
ence [98, 184]. On the other hand, extensive research has been conducted on how
RSs may harm consumer and provider fairness [36, 55, 59]. Chapter 2 provides a brief
but comprehensive overview of multiple perspectives of recommendations treated
within this dissertation.

Overall, while predicting the relevance of individual items for users remains a
central and significant challenge, focusing solely on a single objective, i.e., prediction
accuracy and its associatedmetrics,may overly simplify the problem, thereby limiting
the practical impact of academic research. Despite registering a growing interest
in beyond-accuracy perspectives, many works focus exclusively on accuracy and a
limited number of beyond-accuracy dimensions. This limitation applies to both the
evaluation and optimization of RSs.

On the evaluation side, accuracy is consistently prioritized over the other facets of
recommendation. RSs are mainly ranked according to their comparison of accuracy
metrics, albeit some computed beyond-accuracy metrics sometimes accompany this
evaluation. This singular emphasis on accuracy not only constrains the understand-
ing of the full potential of RSs on multiple perspectives but also shapes other facets
of evaluation within the field, such as hyper-parameter tuning and selecting the
best model. In this regard, the multi-objective evaluation paradigm can effectively
audit several objectives simultaneously without prioritizing one. However, this
paradigm is currently overlooked in the recommendation research, lacking rigorous
methodologies to measure RS performance quantitatively.

On the optimization side, a growing interest has emerged in Multi-Objective
Recommender Systems (MORSs) [89, 218, 224]. These systems are built by blending
multiple objectives through multi-objective optimization [224]. Therefore, research
efforts focus on designing (differentiable) loss functions for specific objectives or
optimization problems where several objectives are considered through constraints.
However, the published works about MORSs are less than scientific papers about
traditional RSs that improve accuracy performance. Indeed, many challenges and
limitations in developing MORSs remain unsolved [224].
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1.1 Thesis Statement

This dissertation advances the field of Recommender Systems (RSs) by proposing
novel methodologies for their multi-objective evaluation and optimization, moving
beyond the traditional focus on accuracy to enhance beyond-accuracy perspectives
such as diversity, novelty, and fairness. The contents of this thesis are organized into
four parts. The second and third parts include themain research contributions of this
work. They are constituted of chapters reporting notions, analyses, and proposals
devised from the scientific papers to which they refer.

The first part includes two chapters. These chapters provide helpful background
notions and definitions regarding RSs and Multi-Objective Optimization (MOO).
MOO-related notions lay the foundational concepts for multi-objective evaluation
and optimization of RSs, e.g., the formal definition of MOO problems and Pareto
optimality.

The second part focuses on methodologies for multi-objective evaluation of RSs,
spanning into three chapters. Chapter 4 uses the lack of analysis in the literature on
fairness aspects of graph-based collaborative filtering approaches as a showcase to
conduct a qualitative evaluation exploiting Pareto frontiers. In this regard, Chapter 5
makes a step forward by employing quality indicators of Pareto frontiers fromMOO
theory to quantitatively unveil the beyond-accuracy perspectives of RSs without
prioritizing accuracy. Finally, Chapter 6 provides a rigorous analytical framework to
assess the sensitivity to hyper-parameter tuning of RSs in a multi-objective scenario.

The third part addresses some challenges and limitations of the current devel-
opment of Multi-Objective RSs (MORSs). Chapter 7 highlights some practical chal-
lenges in the design and reproducibility of MORSs through a reproducibility study.
From these observations, given the frequent detail omission about the selection strat-
egy of the best model in MORS works, Chapter 8 proposes a theoretically justified
technique to select Pareto optimal solutions specifically tailored to the recommen-
dation task. Finally, Chapter 9 proposes a flexible multi-objective recommendation
framework that injects an objective-agnostic and objective scale-aware additional
loss function term in the training of an RS.

To end, Chapter 10 concludes this thesis by synthesizing the insights and advance-
ments discussed within this dissertation.

1.2 Research Contributions

This section provides a concise yet comprehensive overview of the research contri-
butions presented in this thesis, organized by thematic chapters. For each chapter, a
brief summary of the content is provided, along with details about the related publi-
cations and the role of the Ph.D. candidate, Vincenzo Paparella, in the contributions
to these works.



i
i

“output” — 2025/2/22 — 18:13 — page 20 — #25 i
i

i
i

i
i

Introduction 20

1.2.1 Ch. 4: Assessing Consumer and Provider Fairness in Graph
Collaborative Filtering through Pareto frontiers

Contributions. Chapter 4 explores the evaluation of graph-based recommendation
models, addressing a critical gap in the literature regarding the analysis of fairness
in graph-based Collaborative Filtering (CF) approaches, which are predominantly
assessed on accuracy metrics. We compare the performance of graph-based CF
models against two classical CF baselines using consumer and provider fairness
metrics within a single-objective evaluation framework. Our findings reveal that
the superior accuracy of graph-based CF models often comes at the expense of
user fairness, item exposure, and the equilibrium between these dimensions. To
provide a more comprehensive perspective, we introduce a novel taxonomy for
graph-based CF, identifying node representation and neighborhood exploration
as the two primary dimensions influencing fairness and accuracy. Their individual
and combined impacts are systematically analyzed. Shifting to a multi-objective
evaluation paradigm, we leverage Pareto frontiers to visualize trade-offs between
competing objectives across various hyper-parameter configurations. Specifically,
we examine three 2-dimensional spaces: accuracy vs. item exposure, accuracy vs. user
fairness, and item exposure vs. user fairness. The use of Pareto frontiers facilitates a
qualitative analysis that simultaneously considers beyond-accuracy objectives and
their interplay with recommendation relevance, offering deeper insights into the
complex dynamics of multi-objective evaluation in recommender systems.

Publications. The chapter covers the topic explored in “Auditing Consumer- and
Producer-Fairness in Graph Collaborative Filtering” [15], published at the 45th Eu-
ropean Conference on Information Retrieval (ECIR 2023). A condensed version
of the work has been published at the 13th edition of the Italian Information Re-
trieval Workshop (IIR) 2023 in the discussion paper titled “Examining Fairness in
Graph-Based Collaborative Filtering: A Consumer and Producer Perspective” [58].

Ph.D. Candidate’s role. The Ph.D. candidate was responsible for designing and
conducting the experiments and leading the analysis of trade-offs among accuracy,
consumer fairness, and item exposure. Additionally, the candidate contributed to
the writing and development of the paper.

1.2.2 Ch. 5: Quality Indicators of Pareto frontiers for
Multi-Objective Evaluation of Recommendations

Contributions. InChapter 5, we highlight that traditional evaluation of Recommeder
Systems (RSs) consistently prioritizes their accuracy. Indeed, the accuracy is the
primary metric for selecting the best-performing model. With a motivating example,
we show that this procedure undermines a comprehensive understanding of the
potential of RSs across beyond-accuracy perspectives. Hence, we broad RS evalu-
ation by introducing a multi-objective evaluation that leverages Pareto frontiers
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formed by different hyper-parameter model configurations assessed under multiple
dimensions. In contrast to the previous chapter, we enable a quantitative approach
by employing the Quality Indicators from the multi-objective optimization theory
to evaluate the Pareto frontiers. The experiments reveal that this multi-objective
evaluation overturns the ranking of performance among RSs.

Publications. The chapter covers the topic explored in “Broadening the Scope: Eval-
uating the Potential of Recommender Systems beyond prioritizing Accuracy” [191],
published and presented at the 17th ACM Conference on Recommender Systems
(RecSys 2023). A condensed version of the work has been published at the 14th edition
of the Italian Information Retrieval Workshop (IIR) 2024 in the discussion paper
titled “Unveiling the Potential of Recommender Systems through Multi-Objective
Metrics” [190].

Ph.D. Candidate’s role. The Ph.D. candidate is the corresponding author of all the
referenced papers [190, 191].

1.2.3 Ch. 6: Sensitivity of Recommender System to
Hyper-parameter Tuning in Multi-objective Scenarios

Contributions. In Chapter 6, we address the challenge of understanding how
Recommender Systems (RSs) performance can be affected by hyper-parameters
tuning, particularly when considering multiple objectives. As RSs are increasingly
required to balance accuracy with other important factors such as fairness, diversity,
and novelty, it becomes crucial to understand the sensitivity of these systems to hyper-
parameters adjustments. While the development of Multi-Objective Recommender
Systems (MORSs) offers a practical framework for balancing these diverse objectives,
online platforms cannot afford to completely overhaul their existing systems by
implementing MORSs from scratch. Instead, they must find ways to incorporate
beyond-accuracy objectives into their current models with minimal disruption.
To address this challenge, we investigate the sensitivity of existing RS models to
hyper-parameter tuning under different trade-offs between accuracy and beyond-
accuracy objectives, such as novelty, diversity, and bias mitigation. We propose a
novel evaluation framework that utilizes Pareto optimality to assess the robustness
ofmodel performance under varying hyper-parameters configurations. Through this
framework, we identify how different hyper-parameters influence the consistency
of achieving Pareto optimal solutions and examine the level of precision required in
tuning to maintain performance. This contribution provides a deeper understanding
of the stability of RS models in multi-objective contexts. It offers insights into
how hyper-parameters tuning can be more effectively managed to balance multiple
objectives without incurring excessive computational costs.

Publications. The chapter covers the topic explored in “A Framework for Hyper-
parameter Tuning Sensitivity Analysis in Recommender Systems Considering Mul-
tiple Objectives”, a paper to sumbit to the Information Processing and Management
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(IPM) journal.

Ph.D. Candidate’s role. The Ph.D. candidate is the corresponding author of the
paper under review.

1.2.4 Ch. 7: A Reproducibility Study of Multi-Objective
Recommendation

Contributions. In Chapter 7, we examine the reproducibility landscape of Multi-
Objective Recommender Systems (MORSs) and find that most published studies
in this domain are not accompanied by accessible source code or datasets, render-
ing replication and validation of their findings challenging. To deal with this issue,
we select and reproduce a state-of-the-art MORS study, aiming to investigate the
barriers to reproducibility and identify shortcomings in existing research practices.
Our analysis reveals critical limitations in the experimental design of the repro-
duced study. Notably, the criteria for selecting the best-performing models are not
mentioned, and performance evaluations are confined to the objectives explicitly
optimized within the MORS framework. These limitations highlight the need for
more comprehensive and transparent methodologies in MORS research. Our exper-
iments led to new insights into the challenges of MORSs, including issues related
to perspective trade-offs, the inherent difficulty of managing multiple conflicting
objectives, and the recognition that recommendations are inherently multi-sided,
affecting various stakeholders differently.

Publications. The chapter covers the topic explored in “Reproducibility of Multi-
Objective Reinforcement Learning Recommendation: Interplay between Effective-
ness and Beyond-Accuracy Perspectives” [188], published and presented at the 17th
ACM Conference on Recommender Systems (RecSys 2023).

Ph.D. Candidate’s role. The Ph.D. candidate is the corresponding author of the
referenced paper [188].

1.2.5 Ch. 8: A novel strategy to select Pareto Optimal Solutions
in Multi-Objective Recommendation Problems

Contributions. In Chapter 8, we recognize the evolution of the recommendation
task from optimizing a single objective to addressing multi-objective problems,
which yield a set of Pareto optimal solutions. Although the need to identify a single
Pareto optimal solution for deployment is critical, no strategies specifically tailored
to the unique requirements of Recommender Systems (RSs) have been proposed. This
chapter bridges this gap by introducing “Population Distance from Utopia” (PDU),
a novel, post-hoc, and theoretically grounded strategy for selecting a single Pareto
optimal solution from the Pareto frontier in the context of RSs. Unlike conventional
methods derived from multi-objective optimization theory, which rely solely on
mean performance values across objectives, PDU establishes a utopia point for each
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individual sample in the dataset. This fine-grained approach allows for a “calibrated”
selection process that considers not only the overall (“global”) performance of an RS
model but also the distribution and consistency of its performance at the sample
level across multiple quality criteria. We conduct a comprehensive qualitative and
empirical evaluation of PDU, comparing it to state-of-the-art selection strategies.
Our results demonstrate that the innovative formulation and calibration feature of
PDU significantly influence the selection process.

Publications.The chapter covers the topic explored in “Post-hoc Selection of Pareto-
Optimal Solutions in Search and Recommendation” [189], published and presented
at the 32nd ACM Conference on Information and Knowledge Management (CIKM
2023).

Ph.D. Candidate’s role. The Ph.D. candidate is the corresponding author of the
referenced paper [189].

1.2.6 Ch. 9: A Flexible Framework for Multi-Objective
Recommendation

Contributions. Chapter 9 introduces Flex-MORe, a Flexible multi-objective rec-
ommendation framework that extends the training of Recommender Systems (RSs).
While state-of-the-art multi-objective RSs employing scalarization approaches can
address specific recommendation scenarios effectively, they often lack generalization.
A key limitation lies in their tendency to overlook the scale of the loss functions,
leading to potential dominance by the objective with the largest scale of values.
Flex-MORe overcomes these limitations by incorporating an objective-agnostic
and scale-aware loss function in the training procedure of a recommendation base-
line. To achieve objective agnosticism, Flex-MORe introduces a novel smoothing
approach that renders ranking-based metrics differentiable, enabling their seamless
integration into the training process of RS models. Through extensive experimental
analysis, we demonstrate that Flex-MORe achieves state-of-the-art performance
while effectively balancing diverse objectives. Additionally, the framework offers
the flexibility to adjust the weights of objectives in the loss function, allowing fine-
grained control over their influence while maintaining competitive accuracy.

Publications. The chapter covers the topic explored in “Flex-MORe: A Flexible
Multi-Objective Recommendation Framework”, a paper currently under review.

Ph.D. Candidate’s role. The Ph.D. candidate is the corresponding author of the
paper under review.

1.3 Bibliographical Notes

This section outlines the research articles published during the Ph.D. that are not
extensively discussed in the dissertation. These works emerged as parallel investiga-
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tions, addressing research questions identified while exploring the broader literature.
Closely aligned with the topic of this dissertation, the Ph.D. candidate partici-

pated in the Doctoral Symposium at the 16th ACM Conference on Recommender
Systems (RecSys 2022), presenting the paper “Pursuing Optimal Trade-Off Solutions in
Multi-Objective Recommender Systems” [187]. This paper encapsulates the initial Ph.D.
proposal developed during the first year of study, with its stated research questions
subsequently examined in Chapters 6, 8, and 9 of this dissertation.

Two additional papers were co-authored in the broader domain of recommender
systems. The first paper, “An Analysis of Local Explanation with LIME-RS” [12], was
presented at the 12th Italian Information Retrieval (IIR)Workshop in 2022. This work
focuses on explanations of recommendations, specifically analyzing the post-hoc
approach of LIME-RS. The study reveales that explanations generated by local sur-
rogate models often lack consistency with user and item characteristics, potentially
leading to explanations that are ineffective or misaligned with user needs.

The second, “Knowledge Graph Datasets for Recommendation” [192], was published
in the 5th Knowledge-aware and Conversational Recommender Systems Workshop,
co-located with the 17th ACM Conference on Recommender Systems (RecSys 2023).
This paper introduces two enriched versions of theMovielens25M and LibraryThing
datasets. A novel linking methodology is developed to map items in these datasets
to entities in the DBpedia, Wikidata, and Freebase Knowledge Graphs (KGs). Then,
we retrieve the triples having these entities as subjects up to two hops. The linking
methodology is then rigorously evaluated against a state-of-the-art entity linker,
highlighting its effectiveness.

Finally, the candidate appliedmulti-objective optimization theory expertise to the
Mild Cognitive Impairment (MCI) prediction task. In the paper “A Pareto-Optimality-
Based Approach for Selecting the Best Machine Learning Models in Mild Cognitive
Impairment Prediction” [166], published in the IEEE International Conference on
Systems, Man, and Cybernetics (SMC 2023), the authors propose a novel method
for selecting classifiers. The approach evaluates classifiers based on accuracy and
their ability to correctly identify MCI subjects, demonstrating the value of Pareto
optimality in medical predictive modeling.
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Chapter 2

Recommender Systems

Recommender Systems (RSs) are a class of software tools and algorithms designed
to assist users in identifying items of interest by predicting their preferences [153].
By analyzing past user interactions, demographic data, or contextual information,
these systems aim to deliver personalized recommendations across a wide range
of domains, such as e-commerce, streaming services, and social networks. This
definition reveals that RSs can exploit different kinds of data to produce their recom-
mendations. However, three fundamental components devise any recommendation
data:

• Users: the set of individuals or entities that receive and consume the recommen-
dations. Users may have associated metadata, such as demographic information,
preferences, or historical behavior.

• Items: the objects or services available for recommendation. An item can represent
products, movies, songs, or any entity relevant to the application domain. Each
item may have associated features or descriptive attributes (e.g., price, genre, or
keywords).

• Interactions: the set of observable relationships between users and items, repre-
senting user behavior or preferences. The interactions, also called transactions, can
be expressed by explicit and implicit feedback. On the one hand, explicit feedback
is in the form of binary like/dislike relation or discrete values in a defined range
(e.g., {1, . . . , 5}). On the other hand, implicit feedback usually catches only positive
feedback (e.g., purchases, plays, clicks) without any information about what the
user dislikes. For this reason, this kind of rating is usually also called unary rating.
Interactions can be represented as a matrix, where each entry denotes the user’s
observed preference or interaction value with the item.

2.1 Definition of the Recommendation Problem

Formally, letU be the set of users in the system and I the set of items in the catalog.
Then, R ∈ ℝ|U|×|I| is the user-item preference matrix, where 𝑟𝑢,𝑖 ∈ R contains either
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2 4 . . . 3 5
3 3 . . . 5 2
. . . . . . . . . . . . . . .

3 4 . . . 5 2
2 3 . . . 2 5


(a) Full user-item matrix.


2 ? . . . 3 5
3 ? . . . ? 2
. . . . . . . . . . . . . . .

3 ? . . . 5 2
2 3 . . . ? ?


(b) Missing ratings.

Figure 2.1. An example of rating prediction. On the left, we have a full user-item matrix R
that holds the rating for each user 𝑢 and each item 𝑖 at 𝑅𝑢,𝑖. On the right, we have a real case
in which some ratings are missing, and the recommendation task is defined as the prediction
of these missing ratings.


1 0 . . . 1 1
1 0 . . . 0 1
. . . . . . . . . . . . . . .

1 0 . . . 1 1
1 1 . . . 0 0


(a) Full user-item matrix.


1 ? . . . 1 1
1 ? . . . ? 1
. . . . . . . . . . . . . . .

1 ? . . . 1 1
1 1 . . . ? ?


(b) Missing interactions.

Figure 2.2. An example of interaction prediction. On the left, we have a user-item matrix R
that holds the interaction for user 𝑢 and item 𝑖 at 𝑅𝑢,𝑖. On the right, some interactions are
missing, and the recommendation task is defined as the prediction of top-𝑘 items.

explicit or implicit feedback of user 𝑢 for the item 𝑖. Figure 2.1a shows an example of
a user-item matrix with explicit feedback, while Figure 2.2a visualizes the case of an
implicit user-item matrix. In real-world scenarios, obtaining a complete user-item
matrix is not feasible, especially as the size of the item catalog grows [86]. Therefore,
a recommendation algorithm’s primary objective is to find a utility function to
predict which items a user might prefer without directly asking the user for this
information [156].

Definition 2.1 (Recommendation Problem). Given a utility function 𝑓 : U×I → ℝ,
the recommendation problem is defined as:

∀𝑢 ∈ U, 𝑖′ = arg max
𝑖∈I

𝑓 (𝑢, 𝑖), (2.1)

where 𝑖′ ∈ I/I+
𝑢 is not in the list of (positive) already consumed items I+

𝑢 by the user 𝑢.

The formal definition above can vary according to the type of utility function
that underlines the RS. In the case of explicit feedback, the utility function typically
generates predicted ratings for each user-item pair, aiming to reconstruct the rating
matrix (see Figure 2.1b). Here, the primary goal of the RS is to estimate the rating a
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user would give to an item, making the recommendation task essentially a rating
prediction task. In contrast, for implicit feedback, the utility function focuses on
predicting missing interactions rather than ratings (see Figure 2.2b) and sorting these
interactions in descending order of assigned scores. Therefore, the recommendation
task becomes a top-k prediction task, where an ordered list of 𝑘 un-interacted items
is generated. However, it becomes evident that these tasks may overlap. Indeed, the
top-𝑘 recommendation task can be seen as a natural progression after the rating
prediction task, where items are reordered for each user based on their predicted
scores.

In conclusion, RSs, in their most basic form, can be described as tools designed
to generate ranked lists of items to users. These systems utilize explicit or implicit
data reflecting user preferences, often augmented with supplementary information
about items, other users, contextual factors, and the user’s historical interactions to
produce personalized recommendations.

Historically, recommendation tasks were initially focused on explicit feedback
settings. Solving the rating prediction task proved highly successful and dominated
the field for many years. The research community retained this setting up to the
Netflix Prize competition [23], where the video streaming service offered a one
million USD prize to the team that could minimize the Root Mean Square Error
by the end of the competition. However, obtaining a suitable dataset with explicit
ratings can be challenging, as repeatedly asking users to rate items may negatively
impact the user experience. Moreover, research has indicated that ratings obtained
from online systems do not always reliably reflect users’ actual preferences for
items [126]. These findings have led to adopting the implicit feedback setting and the
top-𝑘 prediction task [49], the predominant objective in RSs today.

2.2 Recommendation Techniques

The Recommender Systems (RSs) field has witnessed the development of various
methodologies, many of which have emerged as state-of-the-art solutions within the
research community. These methodologies address the recommendation problem,
each grounded in distinct assumptions about user behavior. For example, some
approaches hypothesize that users evaluate new items based on their similarity
to previously consumed items. In contrast, others suggest that the preferences or
behaviors of similar users influence user decisions. Broadly, these techniques are
categorized into three main paradigms: (i) collaborative filtering, (ii) content-based
filtering, and (iii) hybrid methods [153]. The following sections provide a concise yet
comprehensive overview of these recommendation approaches and their classifica-
tion.
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2.2.1 Collaborative Filtering Approaches

Collaborative Filtering (CF) remains one of the most widely adopted paradigms in
RSs, leveraging the principle that “users who have agreed in the past are likely to
agree in the future” [151]. This principle implies that a user’s rating for a new itemwill
likely align closely with the ratings of other users with similar interaction patterns.
A key advantage of CF is its independence from auxiliary data sources, such as item
attributes, relying solely on user-item interaction data. However, its performance
is highly dependent on the availability and density of these interactions, making it
susceptible to sparsity and cold-start challenges.

CF methods are broadly categorized into memory-based and model-based ap-
proaches [153]. Memory-based methods use historical user-item interaction data to
directly predict unknown ratings, while model-based methods aim to learn latent
representations of users and items to make predictions.

Memory-based Collaborative Filtering

Memory-based CF algorithms operate directly on the user-item interaction matrix,
typically using similarity measures to identify relationships between users or items.
The most prominent example is the 𝑘-Nearest Neighbors (𝑘NN) algorithm, which
computes a similarity matrix to determine the most similar entities (users or items).
The specific schema of the 𝑘NN algorithm depends on whether the similarity is
computed across users or items:

• User 𝑘NN [151]: the utility function 𝑓 estimates the interaction score for a given
user-item pair (𝑢, 𝑖) based on the similarity between user 𝑢 and other users who
have interacted with item 𝑖:

𝑓User𝑘NN(𝑢, 𝑖) =
∑︁
𝑣∈U+

𝑢

𝑠𝑖𝑚(𝑢, 𝑣), (2.2)

where 𝑠𝑖𝑚(·) is a similarity function and U+
𝑢 is the set of users that interacted

with the item 𝑖. This approach is particularly effective in capturing shared prefer-
ences among similar users. However, as the number of users in the system grows,
the computational cost of similarity calculations increases, leading to scalability
challenges.

• Item 𝑘NN [156]: to address the scalability limitations of user-based methods,
the utility function 𝑓 of item 𝑘NN focuses on item-item similarities. Here, the
algorithm predicts the likelihood of interaction between user 𝑢 and item 𝑖 based
on the similarity between item 𝑖 and other items previously interacted with by 𝑢:

𝑓 Item𝑘NN(𝑢, 𝑖) =
∑︁
𝑗∈I+

𝑢

𝑠𝑖𝑚(𝑖, 𝑗), (2.3)

where 𝑠𝑖𝑚(·) is a similarity function and I+
𝑢 is the set of items interacted by the

user 𝑢. By shifting the computational focus from users to items, item 𝑘NN achieves
greater scalability in systems with many users.
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User-item matrix

≈

E𝑇
𝑖

×

E𝑢

Figure 2.3. Exemplification of latent factor models. These model learn latent representations
(embeddings) of users and items. Then, the user-item matrix is estimated by computing the
dot product of each user-item embeddings pair.

While memory-based methods are intuitive and interpretable, their reliance on
explicit similarity measures makes them sensitive to data sparsity and limits their
ability to generalize in complex scenarios. These limitations have driven the develop-
ment of more sophisticated, model-based approaches that can better capture latent
structures in the data.

Model-based Collaborative Filtering

The advent of machine learning and deep learning has significantly advanced model-
based Collaborative Filtering (CF), enabling these methods to dominate personalized
recommendation tasks. This shift gainedmomentum following theNetflix Prize com-
petition in 2006, where model-based approaches, particularly matrix factorization
methods, demonstrated superior accuracy compared to memory-based counterparts
[104]. Model-based CF approaches leverage sophisticated algorithms to uncover
latent relationships within user-item interaction data, leading to more nuanced and
effective recommendations.

Among the diverse techniques under the model-based approach,Matrix Factor-

ization (MF) methods [105], often referred to as latent factor models, have emerged
as the most prominent. These models analyze the user-item interaction matrix to
identify latent factors, i.e., abstract features representing user preferences and item
attributes. By learning these latent representations, MF captures complex user-item
relationships that are not directly observable. Figure 2.3 exemplifies how latent factor
models work.

In MF, users and items are represented as embeddings in a shared latent space,
with their interactions modeled through these embeddings. Formally, let e𝑢 ∈ R𝑑

and e𝑖 ∈ R𝑑 represent the 𝑑-dimensional latent embeddings of user 𝑢 and item
𝑖, respectively, with 𝑑 << |U| and 𝑑 << |I |. The matrices E𝑢 ∈ ℝ|U|×𝑑 and
E𝑖 ∈ ℝ|I |×𝑑 aggregate these embeddings for all users 𝑢 ∈ U and item 𝑖 ∈ I,
respectively. These embeddings constitute the learnable parameters Θ. Hence, the
utility function 𝑓 to estimate the interaction score for a given user-item pair (𝑢, 𝑖) is:

𝑓MF(𝑢, 𝑖) = 𝜇 + 𝑏𝑢 + 𝑏𝑖 + e𝑇𝑖 e𝑢, (2.4)

where 𝜇 represents the global average score, 𝑏𝑢, and 𝑏𝑖 are the biases associated with
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user 𝑢 and item 𝑖, respectively, and e𝑇
𝑖

e𝑢 is the dot product of the user and item
embeddings.

Building on the success of MF, numerous extensions have been proposed to
enhance its flexibility and predictive power. For example, Neural Collaborative
Filtering (NCF) [85] replaces the dot product operation with a multi-layer percep-
tron, enabling the model to learn more complex interaction patterns. Conversely,
SimpleX [122] introduces a simplified framework that focuses on explicit disentan-
glement of user preferences and item characteristics, improving interpretability and
efficiency. These extensions share the fundamental principle of learning latent user
and item representations but differ in how the interaction score is modeled through
the utility function 𝑓 .

Despite their success, model-based CF methods face several challenges. Firstly,
training and inference become computationally expensive as the number of users
and items grows, thus showing scalability issues. Secondly, these methods struggle
with new users and items lacking sufficient interaction data, facing the cold-start
problem. Finally, complex models risk overfitting sparse data, necessitating robust
regularization techniques.

2.2.2 Content-based Approaches

Content-Based Filtering (CBF) methods leverage item and user attributes to gen-
erate personalized recommendations by aligning the characteristics of items with
the preferences of target users [140]. The central premise is that recommendations
can be derived by analyzing content information that describes the items and their
properties. However, effectively characterizing items with rich, structured content is
often non-trivial. Traditionally, item attributes have been represented as simple key-
words extracted from metadata or textual descriptions. In recent years, the research
community has increasingly adopted concept-based approaches, where items are
characterized through semantic representations derived from structured knowledge
sources such as Wikipedia, DBpedia, and Freebase. These methods enable a deeper
understanding of the items’ meaning beyond surface-level keywords.

The process of content-based recommendation typically involves three key com-
ponents [153]:

• Content Analyzer: this module processes item-related information from diverse
sources and represents the items within a specific description space (e.g., a vector
space model or semantic embeddings).

• Profile Learner: this component gathers user preference data (e.g., ratings, inter-
action history) and uses probabilistic techniques, relevance feedback mechanisms,
or similarity-based methods to construct and generalize user profiles. The profiles
encapsulate the users’ preferences in the same feature space as the items.

• Filtering Component: given the user profile, this module matches the user-
learned representations with item descriptions to suggest the most relevant items,
thereby producing the lists of recommendations.
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Thanks to their design, CBF offers several compelling advantages. CBF systems
can inherently explain recommendations by highlighting item attributes that align
with the user’s preferences, thereby increasing trust and interpretability. In addition,
unlike collaborative filtering approaches, CBF systems do not require historical user-
item interactions to make recommendations, allowing them to handle new items
effectively and solve cold-start problems. However, CBFmethods tend to overfit user
preferences, leading to a lack of diversity or serendipity, as the suggested items are too
similar to those previously consumed. This problem is often named overspecialization.
Moreover, the quality of recommendations heavily depends on the availability and
richness of structured knowledge about the domain. In scenarios where semantic
or content-rich data is unavailable, the performance of CBF methods can degrade.
In this regard, we have provided the augmentation of two well-known datasets, i.e.,
Movielens25M and LibraryThing [192]. The items in the dataset have been linked
with their corresponding entities in the Wikidata and DBpedia knowledge graphs.
Then, we retrieved triples from DBpedia and Wikidata up to two hops, enabling the
collection of structured information linked to these resources.

2.2.3 Hybrid Approaches

The limitations inherent in Collaborative Filtering (CF) and Content-Based Filter-
ing (CBF) methods have motivated the development of hybrid recommendation
approaches, combining the strengths of both techniques to address their weaknesses.
Hybrid recommenders aim to enhance recommendation accuracy, robustness, and
diversity by synergistically leveraging collaborative signals and content information.

Several strategies can be employed to design hybrid recommender systems. These
include [9]:

• Parallel integration: CF and CBF methods are implemented independently, and
their results are combined using an aggregation function (e.g., weighted sum,
ranking fusion, or ensemble techniques) to produce the final recommendations.

• Sequential integration: one approach is used to pre-filter or post-filter the
candidate recommendations generated by the other. In other words, some CBF
characteristics are incorporated into CF approaches or vice versa.

• Unified models: a single model is designed to exploit collaborative and content
information simultaneously.

By effectively merging these information sources, hybrid approaches can address
key challenges of both CF and CBF approaches, such as the cold-start problem, the
overspecialization issue, and scalability drawbacks. Overall, hybrid recommendation
systems represent a powerful paradigm that balances the advantages of multiple
techniques, offering flexibility and improved performance across diverse domains
and scenarios.
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2.3 Recommendation Pipeline

Practical Recommender Systems (RSs) development relies on a well-defined work-
flow that organizes and streamlines the key stages of model creation, training, and
evaluation. Given the diversity of recommendation strategies and the growing
complexity of modern approaches, a standardized pipeline is critical to ensure
reproducibility and fair comparison across models [51, 176].

A typical recommendation pipeline, especially for model-based approaches, en-
compasses three primary phases: (i) input pre-processing, (ii) model optimization, and
(iii) model evaluation. In the following, we briefly describe each stage.

2.3.1 Input Pre-processing

The input pre-processing phase is a critical foundation for any RS, as input data
quality, consistency, and structure directly influence the model’s accuracy and per-
formance. This stage primarily involves collecting raw data comprising user-item
interactions, transforming them into a structured format (e.g., user-item interaction
matrices), and preparing additional metadata when applicable. Metadata, such as
item attributes or user profiles, are essential for content-based and hybrid recom-
mendation systems. Additionally, some pre-processing operations may be applied
to the user-item interaction data.

Converting Explicit Feedback into Implicit Signals

As highlighted in section 2.1, the interactions can be categorized into two types:
explicit feedback (e.g., numerical ratings) and implicit feedback (e.g., clicks, purchases,
or views). Hence, when the utility function 𝑓 is designed for a top-𝑘 recommendation
task, the pre-processing step often involves converting eventual explicit ratings into
implicit signals. From a visual perspective, this operation reshapes a user-itemmatrix
as illustrated in Figure 2.1b into a user-item matrix exemplified in Figure 2.2b. For
example, explicit ratings are converted into binary signals based on a predefined
threshold:

𝑦𝑢,𝑖 =

{
1 if 𝑟𝑢,𝑖 ≥ 𝜏,
0 otherwise,

where 𝑟𝑢,𝑖 represents the explicit rating provided by user 𝑢 for item 𝑖, and 𝜏 is the
threshold. Ratings equal to or higher than 𝜏 indicate a positive interaction, while
lower ratings are treated as non-interactions. It is worth noticing that setting 𝜏 = 1
retains all the interactions.

P-core Filtering

To ensure data sparsity does not hinder model training and evaluation, 𝑝-core
pre-processing is often applied. The 𝑝-core filtering technique retains only those
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users and/or items with a minimum number 𝑝 of interactions. Formally, for a given
interaction matrix, the pre-processed data satisfies the following condition:

deg(𝑢) ≥ 𝑝 and/or deg(𝑖) ≥ 𝑝, ∀𝑢 ∈ U, 𝑖 ∈ I,

where deg(𝑢) and deg(𝑖) represent the number of interactions (degree) of user 𝑢 and
item 𝑖, respectively, and 𝑝 is the minimum interaction threshold. This pre-processing
strategy helps to avoid the cold start issue during model training, especially when
dealing with this problem is out of the scope of the research. Indeed, users and items
can be classified as warm or cold based on the predefined interaction threshold 𝑝.
Specifically, warm users are those with more than 𝑝 interactions, indicating they
are the most active users on the platform. In contrast, cold users have fewer than
𝑝 interactions, making them the least active. A similar definition applies to items:
warm items are those with interactions exceeding 𝑝, reflecting their popularity, while
cold items fall below this threshold, indicating limited engagement.

2.3.2 Model Optimization

Once pre-processed data is available, the focus shifts to building and optimizing
the recommendation model. Specifically, this phase is involved solely in the case of
model-based RSs, in which latent representations of users and items encompassing
the parameters Θ of the model are learned (see section 2.2.1). The parameters Θ are
learned by optimizing a loss function that reflects the recommendation task and the
underlying assumptions.

For explicit feedback scenarios, theMean Squared Error (MSE) loss [195] is com-
monly used to minimize the difference between predicted and true ratings:

LMSE =
∑︁

(𝑢,𝑖)∈D
(𝑟𝑢,𝑖 − 𝑓 (𝑢, 𝑖))2, (2.5)

where 𝑟𝑢,𝑖 denotes the actual rating for user 𝑢 and item 𝑖,D is the set of observed
interactions, and 𝑓 (𝑢, 𝑖) is the predicted rating for the pair (𝑢, 𝑖).

The Bayesian Personalized Ranking (BPR) loss function [149] is widely adopted
for implicit feedback scenarios. BPR optimizes the ranking of items by encouraging
that, for each user 𝑢 ∈ U , an observed (positive) item 𝑖+ ∈ S+ is ranked higher than
an unobserved (negative) item 𝑖− ∈ S− := I \ S+:

LBPR =
∑︁

(𝑢,𝑖+,𝑖− )∈D
− ln 𝜎 (𝑓 (𝑢, 𝑖+) − 𝑓 (𝑢, 𝑖−)), (2.6)

where 𝜎 (·) is the sigmoid function, and 𝑓 (𝑢, 𝑖+) and 𝑓 (𝑢, 𝑖−) are the predicted scores for
the pairs of user 𝑢with the positive item 𝑖+ andwith the negative item 𝑖−, respectively.
It is evident that, when adopting a loss function like BPR, negative sampling strategies
are needed, i.e., strategies to pair an observed item with an unobserved item. The
common approach is to sample a subset of negative items for each user. Indeed,
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Rendle et al. [149] suggest sampling only one negative item for each pair of user-
positive items for that user.

The availability of loss functions to minimize in the RS literature is not limited
to the abovementioned criteria. Other examples are the Pairwise Hinge (PH), Binary
Cross-Entropy (BCE), Softmax Cross-Entropy (SCE), and contrastive losses.

2.3.3 Model Evaluation

Once the recommendation algorithm computes scores for user-item pairs, the next
critical step is inference. Inference involves generating recommendation lists tailored
to individual users based on these scores. These lists are subsequently evaluated
to assess the algorithm’s effectiveness. Recommendation evaluation can be broadly
categorized into two approaches: (i) offline evaluation, predominantly utilized in
academic research, and (ii) online evaluation, primarily employed in industry settings.
In this section, we focus on offline evaluation, as it is the framework used to validate
the methodologies discussed in this dissertation. Specifically, we examine key aspects
of offline evaluation, including (i) dataset splitting, (ii) hyper-parameter tuning, and
(iii) evaluation metrics.

Data Splitting

Following data pre-processing, the next step is to partition the dataset of user-item
interactions into subsets designated for training, validation, and testing. Each subset
serves a distinct purpose: the training set is used to fit the model, the validation
set is employed for hyper-parameter tuning and early stopping, and the test set is
used to assess model performance. Best practices in machine learning emphasize
the importance of maintaining these separate datasets to ensure the internal validity
of experimental results. However, studies [50, 172, 175] have shown that some offline
evaluations bypass the validation set, directly tuning hyper-parameters or applying
early stopping on the test set. Such practices risk inflating performance metrics and
reducing reproducibility.

Below, we summarize the literature’s most commonly used dataset splitting
strategies.
RandomSplitting.Themajority of works adopts random splittingmethods [95, 175],
where a user’s interactions are distributed across training, validation, and test sets
in a randomized manner, often using predefined proportions (e.g., 80% for training,
10% for validation, and 10% for testing). While simple and computationally efficient,
random splitting has a significant drawback. It disregards the temporal order of
interactions, possibly resulting in scenarios where future interactions are used to
predict past behaviors. Such an approach constitutes an unrealistic assumption in
real-world settings. The risk is undermining the evaluation’s internal validity unless
we can assume that user preferences are entirely static and independent of time.
These assumptions, however, rarely hold in real-world recommender systems.
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Time-Aware Splitting. Time-aware splitting considers the temporal sequence of
user interactions to address the limitations of random splitting. Under this approach,
interactions occurring before a specific timestamp 𝑡 are assigned to the training
and validation sets, while interactions after 𝑡 are reserved for testing. This method
ensures that the test set reflects future interactions relative to the training data,
aligning more closely with real-world scenarios.

Despite its advantages, time-aware splitting introduces its challenges. For instance,
it may result in small sample sizes for specific users, as many users exhibit transient
engagement with platforms, often remaining active for only short periods. This issue
is particularly pronounced in long-period datasets, where users may contribute only
a few interactions within the recorded time frame. Additionally, time-aware splitting
requires precise timestamp information for each interaction, often unavailable in
publicly accessible datasets, especially those used in academic research.

Hyper-parameter Tuning

Hyper-parameter tuning is a crucial aspect of developing and evaluating recom-
mendation algorithms. However, it has been frequently observed that many offline
evaluation experiments unfairly favor newly proposed algorithms by meticulously
optimizing their hyper-parameters while neglecting to apply the same rigor to base-
line models [48, 50, 162]. Furthermore, unlike other experimental details, such as
datasets and data splits, the range of hyper-parameters explored and the methods
used for tuning are rarely documented [162, 223]. This lack of transparency under-
mines the reproducibility and fairness of such comparisons.

Three hyper-parameter optimization strategies are utilized for offline recommen-
dation experimentation: (i) grid search, (ii) Bayesian optimization using Tree-structured
Parzen Estimators, and (iii) random search. Among these, grid search is themost widely
reported in the literature [177]. Indeed, throughout this dissertation, we will mainly
use this approach.

Grid search involves defining a finite set of candidate values for each hyper-
parameter, combined to create a Cartesian product representing all possible config-
urations [65]. Each configuration corresponds to a unique set of hyper-parameters,
and models are trained for all configurations. This exhaustive exploration ensures
comprehensive coverage of the hyper-parameter space.

Once all models have been trained, the best-performing configuration should
be chosen for at least two reasons. Firstly, only one optimized recommendation
model is ultimately deployed in real-world applications. Secondly, the performance
of the best models is reported within the research papers to be compared with the
baselines.

It is critical that hyper-parameter tuning and the subsequent selection of the
best-performing model are conducted using the validation set, which must remain
separate from the test set used for reporting final experimental results. This separa-
tion ensures that the evaluation remains unbiased and prevents overfitting to the
test data.
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To identify the optimal configuration, a target metric must be defined. Typically,
this metric reflects the recommendation algorithm’s accuracy in generating relevant
suggestions, such as nDCG@10. The best-performing model is thus the one that
achieves the highest value for the chosen target metric on the validation set.

While offline hyper-parameter tuning is essential for identifying promising con-
figurations, it is important to acknowledge its limitations. There is no guarantee
that the hyper-parameters optimized for offline evaluations will also yield the best
performance in online environments [220]. Offline experiments are, by nature, static
and may not fully capture the dynamics of real-world interactions. As such, practi-
tioners must remain cognizant of a recommendation algorithm’s sensitivity to small
changes in hyper-parameter values. This robustness can significantly influence the
practical applicability of the algorithm.

Measuring the Relevance of Recommendations

The final step in designing an offline evaluation experiment in Recommender Sys-
tems (RSs) is selecting appropriate metrics to evaluate the generated recommenda-
tions using the test set. Metrics provide a quantitative means to assess the outputs of
a recommendation algorithm concerning the stated objective. In the context of RSs,
the common goal of helping users discover relevant items is typically operationalized
as the ability to accurately rank items from most to least relevant for a user. Various
accuracy-oriented metrics are employed to evaluate whether this objective has been
achieved, depending on the specific recommendation task (e.g., rating prediction or
top-𝑘 recommendation).

For rating prediction tasks, metrics such as Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Root Mean Square Error (RMSE) are commonly used.
However, this section focuses on metrics designed to evaluate the top-𝑘 ranking pre-
diction task, as these are more widely adopted in the literature and this dissertation.
Top-𝑘 metrics are particularly well-suited to measuring the accuracy of ranking
predictions, aligning closely with the practical goals of most RSs.

Accuracy metrics for top-𝑘 recommendation evaluate the presence of relevant
items within the top-𝑘 entries of a recommended list, where 𝑘 is typically chosen
from the set 𝑘 ∈ {1, 5, 10, 20, 50}. Then, these metrics apply a cutoff, focusing only
on the first 𝑘 items of the list when it contains more than 𝑘 elements.

Given the set of users U, the recommendation list L𝑢 for the user 𝑢, its top-
𝑘 items L(1,...,𝑘)

𝑢 , and the relevant items in the test set I+,test
𝑢 , we outline the most

commonly used accuracy-oriented metrics for evaluating top-𝑘 recommendation
tasks below.

Definition 2.2 (Precision@𝑘). The precision (Precision@𝑘) is defined as the average,
over all the users, of the proportion of items in the top-𝑘 that are relevant to each user:

Precision@𝑘 =
1
|U|

∑︁
𝑢∈U

|L(1,...,𝑘)
𝑢 ∩ I+,test

𝑢 |
𝑘

. (2.7)
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Definition 2.3 (Recall@𝑘). The recall (Recall@𝑘) is the average of the proportion of
relevant items retrieved in the top-𝑘 of each user:

Recall@𝑘 =
1
|U|

∑︁
𝑢∈U

|L(1,...,𝑘)
𝑢 ∩ I+,test

𝑢 |
|I+,test
𝑢 |

. (2.8)

Definition 2.4 (normalizedDiscount Cumulative Gain@𝑘). The normalized Discount
Cumulative Gain (nDCG@𝑘) supposes that the items appearing earlier in the list are
more valuable to users than those ranked lower:

nDCG@𝑘 =
1
|U|

∑︁
𝑢∈U

1
IDCG@𝑘

∑︁
𝑖∈L(1,...,𝑘)

𝑢

2rel𝑖 − 1
log2(𝑖 + 1)

, (2.9)

where rel𝑖 = 1 if the item at rank 𝑖 ∈ 1, . . . , 𝑘 is relevant for the user, zero otherwise.
IDCG@𝐾 =

∑𝑘
𝑖=1

1
log2(𝑖+1) is the ideal DCG, representing the best possible ranking of the

𝑘 most relevant items.

Definition 2.5 (Hit Ratio). The Hit Ratio (HR@k) measures the number of times that
at least a relevant item is within a user’s recommendation list:

𝐻𝑅@𝑘 =
|Uhits@𝑘|
|U| , (2.10)

where |Uhits@𝑘| is the number of users for whom a relevant item is included in L(1,...,𝑘)
𝑢 .

The higher the value is, the more accurate the recommendations are.

2.4 Multiple Perspectives of Recommendation

Recommender Systems (RSs) have traditionally focused on optimizing a single objec-
tive, i.e., providing relevant content to users. However, while accuracy is crucial for
fostering user trust and engagement, overemphasizing relevance can lead to unin-
tended consequences. On the one hand, adverse side effects entail users confined into
filter bubbles [181], with limited novel or diverse suggested items. On the other hand,
adverse results overlook the needs of other stakeholders, such as businesses and
content creators. For instance, biases in item exposure can lead to unfair outcomes
for content providers, promoting disparities in visibility. Hence, while predicting
the relevance of individual items for users remains a central objective, this approach
risks oversimplifying the problem and neglecting the multiple perspectives of rec-
ommendation. For this reason, many researchers have focused on enhancing these
multiple perspectives, both from the optimization and evaluation points of view.

This section is devoted to briefly describing beyond accuracy aspects of recom-
mendations that are treated within this dissertation and how to evaluate them. We
categorize these aspects in (i) user-centric and (ii) multi-stakeholder objectives.
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Figure 2.4. Illustration of a long-tail distribution. The curve demonstrates a small number of
high-frequency items (the head) transitioning into a large number of low-frequency items
(the tail). The dashed line marks the boundary between these regions.

2.4.1 User-Centric Objectives

User-centric objectives are quality metrics historically introduced to improve recom-
mendations for the users who consume the suggestions. Indeed, designing algorithms
that surface more relevant items in the recommendation list could not be valuable
enough for the users. Evident and monotonous suggestions are tedious from the
user’s perspective, who needs to experience a broader and less widely known offer
of items. In other words, the user should be presented with items that are not only
relevant but also diverse and novel, respectively.

Novelty

The novelty of an item for a user refers to how different it is compared to what the
user has previously seen or known. Some works distinguish novelty and serendipity,
where an item is serendipitous if it is both novel and surprising [86, 126]. To better
differentiate these two objectives, novelty is often defined in a user-independent
manner. Indeed, item novelty is quantified as the inverse of its popularity, such as
the number of ratings it has received [98]. Then, novel items belong to the long-tail,
in contrast to popular items in the short-head (Figure 2.4).

Given the set of usersU , the recommendation listL𝑢 for the user 𝑢, and its top-𝑘
items L(1,...,𝑘)

𝑢 , in the following, we define two metrics to measure the novelty of
recommendations, i.e., Expected Popularity Complement (EPC) [42] and Expected
Free Discovery (EFD) [42].

Definition 2.6 (Expected Popularity Complement). Expected Popularity Complement
(EPC) measures the expected number of relevant items belonging to the long-tail:

EPC@𝑘 =
𝑐

|U|
∑︁
𝑢∈U

∑︁
𝑖𝑘∈L(1,...,𝑘)

𝑢

𝑝(seen | 𝑘, 𝑢,L(1,...,𝑘)
𝑢 ) 𝑝(rel | 𝑖𝑘, 𝑢) (1 − 𝑝(seen | 𝑖𝑘)), (2.11)

where 𝑐 is a normalizing constant, and 𝑝(seen | ·) and 𝑝(rel | ·) are the probability of an
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item to be seen and relevant, respectively. Higher values demonstrate a higher presence of
long-tail relevant items.

Definition 2.7 (Expected Free Discovery). Expected Free Discovery (EFD) is a measure
based on the expected inverse collection frequency that expresses the ability of an algorithm
to recommend relevant long-tail items:

EFD@𝑘 =
𝑐

|U|
∑︁
𝑢∈U

∑︁
𝑖𝑘∈L(1,...,𝑘)

𝑢

𝑝(seen | 𝑘, 𝑢,L(1,...,𝑘)
𝑢 ) 𝑝(rel | 𝑖𝑘, 𝑢) (−𝑙𝑜𝑔2(𝑝(𝑖 | seen)),

(2.12)
where 𝑐 is a normalizing constant, and 𝑝(seen | ·) and 𝑝(rel | ·) are the probability of an
item to be seen and relevant, respectively. 𝑝(𝑖 | seen) reflects a factor of item popularity,
whereby high novelty values correspond to long-tail items few users have interacted with,
and low novelty values correspond to popular head items. Higher values demonstrate a
higher presence of long-tail relevant items.

Diversity

In contrast to novelty, diversity generally applies to a set of items. The diversity
of a set of items refers to how different the items are compared to each other. Gen-
erally, diversity is categorized into (i) individual diversity and (ii) aggregate diversity.
Individual diversity accounts for how different the items in the recommendation
list of a single user are. Conversely, aggregate diversity represents the total amount
of different items a recommendation algorithm can provide to the whole set of
users. Given the set of users U, the recommendation list L𝑢 for the user 𝑢, and
its top-𝑘 items L(1,...,𝑘)

𝑢 , we define two metrics to assess the aggregate diversity of
recommendations, i.e., the Gini Index (Gini) [42] and the Item Coverage (IC).

Definition 2.8 (Gini Index). Gini Index (Ĝini@𝑘) is a measure of aggregate diversity
used to measure the distributional inequality, i.e., how unequally different items are
chosen by users when a particular recommendation algorithm is used:

Ĝini@𝑘 =
1
|U|

∑︁
𝑢∈U

1
𝑘 − 1

∑|L(1,...,𝑘)
𝑢 |

𝑖=1 (2𝑖 − |L(1,...,𝑘)
𝑢 | 𝑡𝑖𝑚𝑒𝑠(𝑖))∑|L(1,...,𝑘)

𝑢 |
𝑖=1 𝑡𝑖𝑚𝑒𝑠(𝑖)

, (2.13)

where 𝑡𝑖𝑚𝑒𝑠(𝑖) is a function returning the number of times the item 𝑖 appears in the
recommendation lists. Ĝini@𝐾 is 0 when all items are equally chosen, while Ĝini@𝐾 is
1 when the recommender always selects the same item.

To adhere to the principle that higher is better, in the remainder of this dissertation,
we will refer to the version Gini@𝐾 = 1 − Ĝini@𝐾 .
Definition 2.9 (Item Coverage). The Item Coverage (IC@k) computes the number of
items that are shown to at least one user in the recommendation lists:

𝐼𝐶@𝑘 =

�����⋃
𝑢∈U
L(1,...,𝑘)
𝑢

����� . (2.14)
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A higher value of item coverage implies a higher diversity of the items within the recom-
mendation lists.

2.4.2 Multi-Stakeholder Objectives

While end-user perspectives remain central in Recommender Systems (RSs), broad-
ening the scope of evaluation to include additional stakeholders that can affect or be
affected by the delivery of recommendations is crucial. Diverse types of stakeholders
involved in the recommendation process are categorized in [2] as follows:

• Consumers represent the end-users who interact with the platform and receive
recommendations. These individuals engagewith the system to address their needs
by expecting the recommendations to provide relevant and satisfactory solutions.

• Providers are entities associated with the recommended items. Their definition
can vary depending on the domain and the focus of analysis. For instance, in the
context of movie recommendations, providers could include production studios,
directors, actors, or even the countries of production. Providers play a critical role
in shaping the pool of recommended items and their perceived quality.

• System refers to the organization responsible for developing and maintaining
the recommender platform. This entity serves as the intermediary that connects
consumers with items, such as a retailer, e-commerce platform, broker, or another
type of venue.

RSs ideally aim to “create value in parallel for all involved stakeholders,” [93] with a
value reflecting the “goodness” of recommendations from the perspective of each
stakeholder. However, the nature of this value depends heavily on the context and
domain in which the system operates, often aligning with either economic and
business-related values or societal and human-centric values [22].

This discussion focuses on societal and human-centric values relevant to the
stakeholders outlined earlier. These values emphasize the fairness of recommenda-
tions, which can manifest differently depending on the specific stakeholder being
considered during evaluation. Closely tied to the notion of fairness is the critical
issue of algorithmic bias, which plays a central role in assessing and ensuring equitable
outcomes for all stakeholders.

Fairness

Understanding fairness in RSs is intricate as it requires considering a complex
ecosystem of various entities and interconnected concepts. Nonetheless, we seek to
provide a brief but comprehensive overview of fairness in RSs and how to evaluate
it.

Fairness is crucial when deploying RSs, particularly when the risk of harmful
discrimination arises. Fairness can be categorized according to the stakeholder it
concerns [61]:
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• Consumer-Side Fairness: this dimension focuses on ensuring that consumers are
treated equally in both the quantitative and qualitative aspects of their interaction
with the system.

• Provider-Side Fairness: this perspective addresses fairness for item providers,
ensuring that the entities represented by the recommended items receive equitable
treatment.

When consumer and provider fairness are considered simultaneously, we talk about
multi-sided fairness [34]. Fairness is frequently conceptualized along the dimensions
of individual fairness and group fairness [60]. On the one hand, individual fairness
seeks to ensure that similar individuals are treated similarly, emphasizing fairness at
the granular, individual level, focusing on consistency in treatment based on relevant
characteristics. On the other hand, group fairness aims to achieve equitable treatment
across groups, ensuring that no systemic disparities exist between them.

In the following, we provide some metrics to assess the recommendation perfor-
mance of an algorithm under the lens of consumer and provider fairness.
Consumer Fairness. Here, we are interested in measuring the unfair distribution
of the utility of recommendations among users. The idea is that the users on the
platform should receive recommendations having the same quality in terms of
relevance. This assessment could be performed in terms of individual fairness and
group fairness. We start by measuring the individual consumer fairness with the
variance of accuracy metric values over a set of users [210].

Definition 2.10 (Variance). Let 𝑄𝑢 be the quality of the recommendation provided to
the user 𝑢 measured using a suitable accuracy metric (e.g., nDCG) and let Q be the set
containing 𝑄𝑢 ∀𝑢 ∈ U. The variance of users’ recommendation quality 𝜎 2(𝑄) measures
the consistency of recommendation quality across different customers:

𝜎 2(𝑄) =
1
|U|

∑︁
(𝑄𝑢 − Q), (2.15)

where Q is the mean of the set Q. A low variance indicates that recommendation quality
is consistent across users, suggesting individual customer-level fairness. Conversely, a
high variance reveals disparities in the quality of recommendations, potentially indicating
unfair treatment of certain users.

Then, we move to measure group-based consumer fairness. Group-based cus-
tomer fairness requires dividing users into two groups or more. The group definition
often involves comparing outcomes for a protected group, typically representing
individuals who are vulnerable or disadvantaged, with an unprotected group (i.e.,
the dominant group). The objective is to ensure that protected group members
receive treatment comparable to their unprotected counterparts, thereby mitigating
structural biases and promoting equity. In this regard, we define the Mean Absolute
Deviation (MAD) [55].
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Definition 2.11 (Mean Absolute Deviation). Let 𝑄𝑢 be the quality of the recommenda-
tion provided to the user 𝑢 measured using a suitable accuracy metric (e.g., nDCG). Let
U𝑥 andU𝑦 be two distinct groups of users. The mean absolute deviation (MAD) of the
recommendation qualities Q(U𝑥 ) and Q(U𝑦 ) between the groupsU𝑥 andU𝑦 measures
the disparity in recommendation quality between different user groups:

𝑀𝐴𝐷

(
Q(U𝑥 ),Q(U𝑦 )

)
=

�����∑𝑥∈U𝑥
𝑄𝑥

|U𝑥 |
−

∑
𝑦∈U𝑦

𝑄 𝑦��U𝑦

��
����� . (2.16)

A smaller MAD value indicates that the average recommendation quality across user
groups is closer to the overall mean, suggesting equitable treatment of groups. A higher
MAD value highlights disparities in recommendation quality across groups, pointing to
potential group-level unfairness.

When more than two groups are defined, the MAD values of all possible group
pair combinations are computed. Then, the final metric value is the average of all
the MAD values.
Provider Fairness. Here, we are interested in measuring the disparity of item
exposure. The position in the list significantly influences the exposure of items
in a recommendation list. Indeed, the position determines the item probability of
being noticed and interacted with by the users [26, 164]. Consequently, the position
of items in the ranked list impacts the visibility and consumption of individual
items or groups of them. This dynamic has profound implications for equitable
representation, as disparities in exposure can lead to unequal opportunities for
certain items or groups to be consumed or appreciated by users. We provide two
metrics to assess the exposure disparity of item groups: Ranking-based Statistical
Parity (RSP) [228] and Ranking-based Equal Opportunity (REO) [228].

Definition 2.12 (Ranking-based Statistical Parity). This metric is based on statistical
parity, which forces the ranking probability distributions of different item categories 𝑐𝑖,
with 𝑖 ∈ {1, . . . , 𝑛}, to be the same in a ranking task. Therefore, RSP formally encourages
𝑃 (𝑅@𝑘 | 𝑐1) = 𝑃 (𝑅@𝑘 | 𝑐2) = . . . = 𝑃 (𝑅@𝑘 | 𝑐𝑛), where 𝑅@𝑘 represents "the item
being ranked in top-𝑘", and 𝑃 (𝑅@𝑘 | 𝑐𝑖) is the probability of items belonging to the
category 𝑐𝑖 being ranked in top-𝑘. In the end, 𝑅𝑆𝑃@𝑘 is computed as:

𝑅𝑆𝑃@𝑘 =
𝑠𝑡𝑑 (𝑃 (𝑅@𝑘 | 𝑐1) , . . . , 𝑃 (𝑅@𝑘 | 𝑐𝑛))
𝑚𝑒𝑎𝑛 (𝑃 (𝑅@𝑘 | 𝑐1) , . . . , 𝑃 (𝑅@𝑘 | 𝑐𝑛))

, (2.17)

where 𝑠𝑡𝑑(·) and 𝑚𝑒𝑎𝑛(·) are the standard deviation and mean operator, respectively.
Lower values of RSP indicate a fairer exposure of items in terms of statistical parity.

Given a generic category 𝐶𝐴 of items, the probability 𝑃(𝑅@𝑘|𝐶𝐴) is computed as
follows:

𝑃 (𝑅@𝑘 | 𝐶 = 𝐶𝐴) =
∑𝑚
𝑢=1

∑𝑘
𝑖=1 𝜂𝐶𝐴

(
𝑅𝑢,𝑖

)∑𝑚
𝑢=1

∑
𝑖∈I\I+

𝑢
𝜂𝐶𝐴(𝑖)

,
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where
∑𝑘
𝑖=1 𝜂𝐶𝐴

(
𝑅𝑢,𝑖

)
calculates how many un-interacted items from group 𝐶𝐴 are

ranked in top-𝑘 for user 𝑢, while
∑
𝑖∈I\I+

𝑢
𝜂𝐶𝐴(𝑖) calculates how many un-interacted

items belong to group 𝐶𝐴 for user 𝑢.

Definition 2.13 (Ranking-based Equal Opportunity). This metric is based on equal
opportunity. In a ranking task, this concept is defined as the need for the ranking-based
true positive rate (TPR) to be the same for different item categories 𝑐𝑖, with 𝑖 ∈ {1, . . . , 𝑛}.
In this case, TPR is defined as the probability of an item belonging to a category to be
ranked in the top-𝑘 given the ground truth that the user likes, i.e., 𝑃 (𝑅@𝐾 |𝑐𝑖, 𝑦 = 1),
where 𝑦 = 1 represents users like items. In the end, 𝑅𝐸𝑂@𝑘 is computed as:

𝑅𝐸𝑂@𝑘 =
𝑠𝑡𝑑 (𝑃 (𝑅@𝑘 | 𝑐1, 𝑦 = 1) , . . . , 𝑃 (𝑅@𝑘 | 𝑐𝑛, 𝑦 = 1))
𝑚𝑒𝑎𝑛 (𝑃 (𝑅@𝑘 | 𝑐1, 𝑦 = 1) , . . . , 𝑃 (𝑅@𝑘 | 𝑐𝑛, 𝑦 = 1)) , (2.18)

where 𝑠𝑡𝑑(·) and 𝑚𝑒𝑎𝑛(·) are the standard deviation and mean operator, respectively.
Lower values of REO indicate a fairer exposure of items in terms of equal opportunity.

Given a generic category 𝐶𝐴 of items, the probability 𝑃(𝑅@𝑘|𝐶 = 𝐶𝐴, 𝑦 = 1) is
computed as follows:

𝑃 (𝑅@𝑘 | 𝐶 = 𝐶𝑎, 𝑦 = 1) =
∑𝑚
𝑢=1

∑𝑘
𝑖=1 𝜂𝐶𝐴

(
𝑅𝑢,𝑖

)
𝑌

(
𝑢, 𝑅𝑢,𝑖

)∑𝑚
𝑢=1

∑
𝑖∈I\I+

𝑢
𝜂𝐶𝐴(𝑖)𝑌 (𝑢, 𝑖)

, (2.19)

where 𝑌 (𝑢, 𝑅𝑢,𝑖) returns 1 if the item 𝑅𝑢,𝑖 ranked in position 𝑖 in the recommendation
list of user 𝑢 is liked by the user, 0 otherwise. The quantity

∑𝑘
𝑖=1 𝜂𝐶𝐴

(
𝑅𝑢,𝑖

)
𝑌

(
𝑢, 𝑅𝑢,𝑖

)
counts how many items in test set from category 𝐶𝐴 are ranked in top-𝑘 for user
𝑢, while

∑
𝑖∈I\I+

𝑢
𝜂𝐶𝐴(𝑖)𝑌 (𝑢, 𝑖) counts the total number of items from category 𝐶𝐴 in

test set for user 𝑢.

Algorithmic Bias

Algorithmic Bias in RSs refers to systematic and unfair patterns in the behavior
of recommendation algorithms that disadvantage specific individuals, groups, or
items [121]. This bias can arise at various stages of the recommendation process,
from data collection and model training to the system’s deployment. Addressing
algorithmic bias is crucial to ensuring fairness and trustworthiness in RSs.

Awell-known formof bias in the recommendation domain is thepopularity bias.
This phenomenon generates a situation in which RSs over-suggest popular items,
leading to the under-representation and reduced visibility of long-tail items [24].
Given the set of usersU, the recommendation list L𝑢 for the user 𝑢, and its top-𝑘
items L(1,...,𝑘)

𝑢 , we define two metrics to evaluate to what extent a recommendation
algorithm suffers from popularity bias: Average Percentage of items in the Long-Tail
(APLT) [3] and Average Recommendation Popularity (ARP) [214].

Definition 2.14 (Average Percentage of items in the Long-Tail). The Average Percent-
age of items in the Long-Tail (APLT@k) measures precisely in what proportion unpopular
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items are recommended in users’ recommendation lists:

𝐴𝑃𝐿𝑇@𝑘 =
1
|U|

∑︁
𝑢∈U

|{𝑖, 𝑖 ∈ (L(1,...,𝑘)
𝑢 ∩ Γ)}|

|L(1,...,𝑘)
𝑢 |

(2.20)

where Γ is the set of long-tail items. Higher values indicate a higher presence of long-tail
items in the recommendation lists.

Definition 2.15 (Average Recommendation Popularity). The Average Recommenda-
tion Popularity (ARP@k) measures the average popularity of the recommended items:

𝐴𝑅𝑃@𝑘 =
1
|U|

∑︁
𝑢∈U

∑
𝑖∈L(1,...,𝑘)

𝑢
𝜑(𝑖)

|L(1,...,𝑘)
𝑢 |

(2.21)

where 𝜑(𝑖) is the number of interactions recorded for item 𝑖. Lower values indicate a
higher presence of long-tail items in the recommendation lists.

Although popularity bias is a central issue faced in the literature of RSs, we may
be interested in evaluating more generic phenomena concerning bias. For instance,
sometimes, a user group’s preferences on various item categories are not fairly
reflected in the recommendations the group receives. Consequently, the recom-
mendation algorithms are leading to a situation in which existing biases in the data
source are amplified in the output of recommendations. Bias Disparity [182] helps
to measuring this phenomenon. To formally define the bias disparity, we consider
a set of users U, a set of items I, and the implicit feedback user-item matrix 𝑆,
where 𝑆(𝑢, 𝑖) = 1 if user 𝑢 has selected item 𝑖, and zero otherwise. We assume that
the users are partitioned into a set 𝐺 of groups, while the items are divided into a
set 𝐶 of categories. We define the input preference ratio 𝑃𝑅𝑆(𝑔, 𝑐) of a group 𝑔 ∈ 𝐺
for category 𝑐 ∈ 𝐶 as the fraction of interactions between users from group 𝑔 with
items belonging to category 𝑐:

𝑃𝑅𝑆(𝑔, 𝑐) =
∑
𝑢∈𝑔

∑
𝑖∈𝑐 𝑆(𝑢, 𝑖)∑

𝑢∈𝑔
∑
𝑖∈𝐼 𝑆(𝑢, 𝑖)

. (2.22)

Then, we define the source bias 𝐵𝑆(𝑔, 𝑐) of group 𝑔 for category 𝑐 as:

𝐵𝑆(𝑔, 𝑐) =
𝑃𝑅𝑆(𝑔, 𝑐)
𝑃(𝑐)

, (2.23)

where 𝑃(𝑐) = |𝑐|/𝑚 is the probability of selecting an item from category 𝑐 uniformly
at random. Values of 𝐵𝑆(𝑔, 𝑐) less than 1 denote negative bias, i.e., the group 𝑔 on
average tends to select less often from category 𝑐. Values of 𝐵𝑆(𝑔, 𝑐) greater than
1 denote positive bias, i.e., the group 𝑔 prefers category 𝑐 disproportionately to its
size. By assuming the recommendation algorithm’s outputs for each user 𝑢 as a
ranked list of 𝑟 items, we define the binary matrix 𝑅, where 𝑅(𝑢, 𝑖) = 1 if item 𝑖 is
recommended for user 𝑢, and zero otherwise. Given the matrix 𝑅, we compute the
output preference ratio of the recommendations, 𝑃𝑅𝑅(𝑔, 𝑐), of group 𝑔 for category 𝑐
with Equation 2.22, and the recommendation bias 𝐵𝑅(𝑔, 𝑐) of group 𝑔 for category 𝑐
with Equation 2.23. Then, we can define the bias disparity metric.
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Definition 2.16 (Bias Disparity). The Bias Disparity (BD) of a group 𝑔 for a category 𝑐
between the source data 𝑆 and the output recommendations 𝑅, that is, the relative change
of the bias value, is:

𝐵𝐷(𝑔, 𝑐) =
𝐵𝑅(𝑔, 𝑐) − 𝐵𝑆(𝑔, 𝑐)

𝐵𝑆(𝑔, 𝑐)
.

The closer the BD values are to 0, the more the output recommendation bias does not
deviate from the source bias.
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Chapter 3

Background of Multi-Objective

Evaluation and Optimization of

Recommender Systems

Accuracy has traditionally been the primary objective in the development of Recom-
mender Systems (RSs). This focus is particularly evident during both the optimization
and evaluation phases of the recommendation pipeline (see Section 2.3). However, in
real-world applications, recommendations are influenced by factors beyond accuracy
alone, which may include user-centric considerations, multi-stakeholder dynamics,
or the need to address multiple tasks (see Section 2.4). These considerations highlight
the necessity for a more comprehensive perspective on RS operations.

To foster a holistic understanding of a RS, it is essential to account for the diverse
perspectives that influence recommendations during both model optimization and
performance evaluation. This approach underpins two key concepts explored in
this dissertation: (i) the multi-objective evaluation of RSs and (ii) the design and
implementation of multi-objective RSs.

3.1 Multi-Objective Evaluation of RSs

In the evaluation of Recommender Systems (RSs), a wide array of metrics has been
proposed to assess the performance of recommendation algorithms across multi-
ple perspectives. Section 2.4 defines several widely used beyond-accuracy metrics,
reflecting a growing recognition of the need for broader evaluation criteria in the
literature. While recent studies often complement accuracy evaluations with metrics
that capture additional dimensions, these are typically presented in tables or graphs
where accuracy remains disproportionately emphasized. A significant limitation in
current evaluation practices is the tendency to assess each metric independently,
rather than viewing them simultaneously. This fragmented approach undermines
the development of a holistic understanding of RS performance and perpetuates the
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overemphasis on accuracy at the expense of other critical aspects.
Multi-objective evaluation of RSs can be a pivotal approach to addressing the

limitations of traditional, single-metric evaluations. A multi-objective evaluation si-
multaneously assesses the quality of recommendations across multiple perspectives. These
perspectives are often context-dependent, as different domains, recommendation
tasks, and scenarios necessitate specific metrics and tailored evaluation setups. How-
ever, the complexity of multi-objective evaluation increases with the number of
perspectives considered.

The first step in performing a multi-objective evaluation is defining a set of
appropriate metrics, denoted as (𝑚1, . . . , 𝑚𝑛), which collectively capture the key
considerations across the relevant perspectives. Then, how determine the overall
(i.e., multi-objective) performance of the algorithm poses an important challenge. In
addition, how to rank several algorithms performance is not straightforward. For
instance, consider two metrics, 𝑚1 and 𝑚2 and two RSs 𝑅𝐴 and 𝑅𝐵. If 𝑅𝐴 outper-
forms 𝑅𝐵 on 𝑚1, but 𝑅𝐵 excels on 𝑚2, it becomes non-trivial to determine which
system performs better overall. This scenario necessitates strategies for aggregating
performance across metrics and redefining the notion of optimality.

According to Bauer et al. [22], several strategies can be employed to develop
multi-objective evaluation mechanisms, including:

• Weighted (typically linear) aggregation of individual metrics [30] into a single nu-
meric score, facilitating a more straightforward comparison of candidate systems
by consolidating multiple performance dimensions into one measure of overall
performance.

• Dimensionality reduction of metrics by transforming certain individual metrics
into constraints [217], thereby simplifying the evaluation while still capturing
essential performance aspects.

• Identification of the Pareto frontier of multidimensional performance vectors
across different candidate systems, providing insights into the trade-offs between
competing objectives and helping to identify optimal solutions in a multi-objective
context.

Among them, the visualization of Pareto frontiers is the most widely used method [15,
19, 74]. However, these visualizations are typically assessed from a qualitative per-
spective, lacking a rigorous and quantitative evaluation framework.

Overall, we believe that the multi-objective evaluation paradigm is often over-
looked in the recommendation domain, where the literature predominantly empha-
sizes the relevance of recommendations as the gold standard. This narrow focus on
accuracy not only limits the understanding of RSs’ full potential but also influences
other aspects of evaluation in this field (see Section 2.3.3). For instance, the selection
of the best model is typically based on accuracy performance within a validation
set, which may hinder a comprehensive understanding of RS capabilities beyond
accuracy. Furthermore, while numerous studies have explored the sensitivity of
algorithms to hyper-parameter tuning [20, 162], these investigations primarily center
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on accuracy performance, leaving the models’ behavior under a multi-objective
evaluation largely unexplored.

In the chapters 4, 5, and 6 of this dissertation, we delve into the multi-objective
evaluation of RSs, aiming to uncover its unexamined potential to provide a holistic
understanding of RS performance and to disentangle the complex interplay of
multiple facets within these systems.

3.2 Multi-Objective Recommender Systems

While predicting the relevance of individual items for users remains a central prob-
lem in RSs, focusing solely on a single objective, i.e., prediction accuracy, and its
corresponding metrics may oversimplify the complexity of real-world scenarios.

Hence, it is crucial to embrace a more comprehensive perspective that incorpo-
rates multiple optimization goals, diverse stakeholder objectives, and their inherent
trade-offs [91]. This shift has catalyzed the rising interest in Multi-Objective Recom-
mender Systems (MORSs) [5].MORSs are designed to balance multiple objectives by
employing multi-objective optimization techniques [224]. However, handling multiple
objectives introduces significant challenges, as conflicts between objectives often
arise. For example, improving one objective may adversely affect another due to
the trade-offs intrinsic to real-world applications. Such trade-offs are particularly
evident when incorporating beyond-accuracy aspects in the optimization process.
For instance, the RSs that achieves the highest accuracy may perform poorly in terms
of novelty and diversity, and vice versa [152]. The presence of trade-offs implies that
a multi-objective optimization process may yield more than one optimal solution,
i.e., a solution in which no objective can be further improved without hurting the
other ones [114].

Zheng et al. [224] highlight several limitations in the current development and
evaluation practices of MORSs. Although the next sections of this chapter provide
the basis for understanding the technical background of MORSs, we deal with some
of these challenges in Chapters 7, 8, and 9.

3.3 Multi-Objective Optimization Problem

Multi-Objective Recommender Systems (MORSs) are fundamentally grounded in
the principles of Multi-Objective Optimization (MOO). Additionally, many core
concepts from MOO can be effectively applied to the multi-objective evaluation of
generic RSs. To lay the foundation for the discussions in this dissertation, we provide
a comprehensive overview of MOO problems, introducing the essential notions that
underpin our works. We begin with a formal definition of a MOO problem.

A MOO problem involves multiple objective functions, each of which needs to
be minimized or maximized. The general form of a MOO problem can be expressed
as follows:
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D ⊂ ℝ2

x

𝑥1

𝑥2

(a) Decision Variable Space.

Z ⊂ ℝ3

f (x)

𝑓1

𝑓2

𝑓3

(b) Objective Function Space.

Figure 3.1. Search spaces in multi-objective optimization problems. For a solution x in the
decision variable spaceD , there exists a point f (x) in the objective function spaceZ.

Definition 3.1 (Multi-Objective Optimization Problem). A Multi-Objective Opti-
mization (MOO) problem is defined as:

min
x

𝑓𝑚(x) 𝑚 = 1, 2, . . . , 𝑀

subject to g𝑗(x) ≤ 0 𝑗 = 1, 2, . . . , 𝐽
h𝑘(x) = 0 𝑘 = 1, 2, . . . , 𝐾

𝑥
(𝐿)
𝑖
≤ 𝑥𝑖 ≤ 𝑥(𝑈 )

𝑖
𝑖 = 1, 2, . . . , 𝑁

(3.1)

The vector x = {x1, x2, . . . , xN}T is formed by 𝑛 independent variables called
decison variables. The last constraint restricts these decision variables to take a value
within a lower 𝑥(𝐿)

𝑖
and an upper 𝑥(𝑈 )

𝑖
bound, that constitute the decision variable

spaceD ⊆ ℝ𝑁 .
The terms 𝑔 𝑗(x) and ℎ𝑘(x) define the set of 𝐽 equality and 𝐾 inequality constraints,

respectively. On the one hand, a solution x that does not satisfy all of the 𝐽 + 𝐾

constraints and the 2𝑁 variable bounds stated above is called an infeasible solution.
On the other hand, if any solution x satisfies all constraints and variable bounds, it
is known as a feasible solution.

There are 𝑀 objective functions f (x) = {𝑓1(x), 𝑓2(x), . . . , 𝑓𝑀 (x)}𝑇 considered in
the above definition. For each solution x ∈ D, there exist a point f (x) = z =
{𝑧1, 𝑧2, . . . , 𝑧𝑀}𝑇 , composing the set Z ⊆ ℝ𝑀 called objective function space. Fig-
ure 3.1 illustrates the decision variable and the objective function spaces.

It is worth mentioning that the definition of a MOO problem in Eq. (3.1) supposes
that all the 𝑀 objective functions f (x) are to be minimized. However, each objective
function can be generally either minimized or maximized. In the optimization
context, the duality principle suggests that we can convert a minimization problem
into a maximization one by multiplying the objective function by -1. Without loss of
generality, in the remainder of this chapter, we will refer to optimization problems
in which all the objective functions are to be minimized. Indeed, when an objective
is required to be maximized by using such an algorithm, the duality principle can
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be used to transform the original objective for maximization into an objective for
minimization.

3.4 Notions of Optimality in MOO problems

To precisely define the Multi-Objective Optimization (MOO) problem, it is essential
to establish the meaning of minimization in ℝ𝑀 . This requires determining how
the objective vectors f (x) ∈ ℝ𝑀 are compared for different solutions x ∈ ℝ𝑁 .

In single-objective optimization, the “less than or equal to” (≤) relation is used
to compare the scalar values of objective functions. Indeed, in these problems, the
goal is to optimize a single scalar-valued objective function 𝑓 : ℝ𝑁 → ℝ. The
relation ≤ leads to a unique optimal solution x★ ∈ D , such that: 𝑓 (x★) = minx∈D 𝑓 (x).
Therefore, this relation induces a total order in ℝ, guaranteeing that all solutions
can be ranked according to their objective values.

In contrast, MOO problems involve the simultaneous optimization of multiple—
often conflicting—objectives f (x), where f : ℝ𝑁 → ℝ𝑀 . There is no natural way to
rank all solutions using a single scalar criterion in ℝ𝑀 , as the objective functions
may often conflict. Hence, weaker order definitions are required to compare vectors
inℝ𝑀 . Typically, one way to compare the various solutions in a MOO problem is to
use the concept of Pareto dominance, generalized by the French-Italian economist
Vilfredo Pareto in 1896.

Definition 3.2 (Pareto dominance relation). A solution x1 Pareto-dominates a solution
x2, denoted by x1 ≺ x2, if and only if the following conditions are true:

1. 𝑓𝑖(x1) ≤ 𝑓𝑖(x2)∀𝑖 ∈ {1, . . . , 𝑀};
2. ∃ 𝑖 ∈ {1, . . . , 𝑀} | 𝑓𝑖(x1) < 𝑓𝑖(x2).

The above definition practically says that a solution x1 dominates a solution x2
if x1 is no worse than x2 in all objectives and x1 is strictly better than x2 in at least
one objective. The Pareto dominance relation is transitive because if x1 ≺ x2 and
x2 ≺ x3, then x1 ≺ x3. A binary relation must at least satisfy transitivity to qualify as
an ordering relation. Thus, the dominance relation qualifies as an ordering relation.
However, since the Pareto dominance relation is not reflexive and antisymmetric, it
is only a strict partial-order relation.

Given a finite set of solutions {𝑥1, 𝑥2, . . . , 𝑥𝑁 }, we can perform all possible pair-
wise comparisons to determine which solution dominates which and identify the
non-dominated solutions relative to each other. Ultimately, we aim to have a set of
solutions, any two of which dominate each other. This set is called Pareto optimal set,
which contains the Pareto optimal solutions, formally defined as follows.

Definition 3.3 (Pareto Optimality). A solution x★ ∈ D is Pareto optimal if:

� x ∈ D | x ≺ x★. (3.2)
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D ⊂ ℝ2

𝑥1

𝑥2

(a) Decision Variable Space.

Z ⊂ ℝ3

𝑓1

𝑓2

𝑓3

(b) Objective Function Space.

Figure 3.2. Illustration of the Pareto optimal set (blue points on the left) and its image, i.e.,
the Pareto frontier (blue points on the left). The red points are the dominated solutions.

Definition 3.4 (Pareto Optimal Set). The Pareto optimal set P★ is defined as:

P★ = {x★ ∈ D | � x ∈ D : x ≺ x★}. (3.3)

Algorithms often produce solutions that, while not strictly Pareto optimal, fulfill
other criteria, making them valuable for practical applications. For example, a weakly
Pareto optimal solution is defined as follows.

Definition 3.5 (Weak Pareto Optimality). A solution x★ ∈ D is weakly Pareto optimal
if:

� x ∈ D | f (x) < f (x★)∀𝑖 ∈ {1, 2, . . . , 𝑀}. (3.4)

A point is considered weakly Pareto optimal if no other point exists that improves
all objective functions simultaneously. In contrast, a point is Pareto optimal if no
other point can improve at least one objective function without causing a deterio-
ration in another. While all Pareto optimal points are also weakly Pareto optimal,
the reverse is not necessarily true, i.e., weakly Pareto optimal points are not always
Pareto optimal.

The image in the objective function space of the Pareto optimal set P★ is called
Pareto frontier.

Definition 3.6 (Pareto Frontier). For a Pareto optimal set P★, the Pareto frontier
PF ★ is defined as:

PF ★ = {f (x★) ∈ Z | x★ ∈ P★}. (3.5)

Figure 3.2 illustrates the concept of Pareto optimal set and its corresponding
Pareto frontier.

3.5 Special points

We now define some special points often exploited in multi-objective optimization
algorithms, i.e., the utopia point and the nadir point.
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Once a Pareto optimal set P★ for the problem in Equation (3.1) is obtained, most
real-world applications require selecting a single optimal solution. Generally, the
utopia point helps to implement this process.

Definition 3.7 (Utopia Point). A point f⋄ ∈ ℝ𝑀 is a utopia point if and only if
f⋄𝑖 = minx f𝑖(x) | x ∈ D ∀𝑖 ∈ {1, 2, . . . , 𝑀}.

Generally, the utopia point is the ideal point in ℝ𝑀 that is unattainable. Hence, a
common approach consists of reaching the closest solution to the utopia point as the
best one, where, in most of the cases, the term closest refers to the solution which
minimizes the Euclidean distance to the utopia point.

Along with the utopia point, the nadir point also helps select a solution from the
Pareto frontier. Dually to the utopia point, the nadir point represents the point in
the objective function space having the worst possible values for each objective.

Definition 3.8 (Nadir Point). A point f△ ∈ ℝ𝑀 is a nadir point if and only if
f△𝑖 = maxx f𝑖(x) | x ∈ D ∀𝑖 ∈ {1, 2, . . . , 𝑀}.

Compared to the utopia point, determining the nadir point can be challenging,
even for simple problems [109].

3.6 Two Approaches to MOO Problems

Single-Objective Optimization (SOO) focuses on optimizing a single criterion, where
the goal is to identify the solution that minimizes the objective function. In contrast,
Multi-Objective Optimization (MOO) involves simultaneously optimizing multiple
objectives. From this distinction, it is evident that SOO and MOO differ in several
key aspects:

• The cardinality of optimal solutions in MOO is typically greater than one, as
multiple trade-offs often exist among conflicting objectives.

• MOO involves multiple, distinct goals that require simultaneous consideration.
• MOO operates across two search spaces: the decision space (possible solutions)
and the objective space (resulting trade-offs).

Although the primary distinction between SOO and MOO lies in the cardinality of
the optimal set, a system designer requires only one actionable solution in practice.
However, in the context of MOO, this operational need presents a challenge: which
solution should a system designer choose among the Pareto optimal set?

To illustrate, consider the problem of recommending movies on a streaming
platform. The recommendation system must balance multiple objectives, such as
(i) matching user preferences, (ii) promoting diverse genres of movies, (iii) evenly
exposing the movies of different producers, and (iv) maximizing the revenue of
the platform. These objectives often conflict, leading to different trade-offs. For
instance, maximizing the platform’s revenue could negatively affect the relevance



i
i

“output” — 2025/2/22 — 18:13 — page 54 — #59 i
i

i
i

i
i

Background of Multi-Objective Evaluation and Optimization of Recommender Systems 54

of the recommendation. Conversely, optimizing for engagement could come at the
expense of immediate revenue. Hence, some questions emerge: should the system
favor short-term revenue at the risk of diminishing user retention? Or should it
prioritize user engagement even if it reduces profitability?

Selecting a single solution in such scenarios becomes complex and depends on
whether precise preferences among the objectives are known. If a preference factor
among objectives is unavailable or unclear, the solution selection processmay involve
many other considerations, often non-technical, qualitative, or experience-driven.

In this case, the priority shifts to finding diverse trade-off solutions by treating
all objectives equally important. Once this Pareto optimal set is obtained, system
designers can apply higher-level qualitative assessments or mathematical methods
to select a single solution. This procedure leads to a foundational principle for an
ideal multi-objective optimization procedure:

1. Identify multiple trade-off solutions that capture a wide range of objective values.
2. Use higher-level information or mathematical techniques to select one solution

from the trade-off set.

This approach ensures a methodical and practical framework, reducing subjec-
tivity in decision-making. However, it can be computationally expensive, as it may
require training multiple algorithms to generate the Pareto frontier or developing a
single algorithm capable of efficiently discovering multiple solutions.

Then, when a reliable relative preference vector is available, there is no reason to
find other trade-off solutions, and the selection process can be significantly stream-
lined. A preference-based approach becomes sufficient in such a case. Indeed, each
trade-off solution corresponds to a specific order of importance of the objectives. A
simple method would be to design a composite objective function as the weighted
sum of the objectives, where a weight for an objective is proportional to the prefer-
ence factor assigned to that objective. This scalarization converts the MOO problem
into an SOO problem, enabling the system to directly optimize the composite ob-
jective and find a single trade-off solution aligned with the provided preferences.
Furthermore, multiple trade-off solutions can still be obtained by varying the prefer-
ence vector and repeating the optimization. It is intuitive to realize that determining
a reliable preference vector is inherently subjective and challenging, especially when
there is minimal or no prior knowledge about the trade-off space.

3.7 MOOMethods

The previous section outlined two widely adopted approaches to addressing Multi-
Objective Optimization (MOO) problems. The choice between these approaches
depends on the availability of explicit preferences among objectives. On the one
hand, when no clear hierarchy or preference factor exists among the objectives,
generating a Pareto optimal set is systematic. This set provides diverse trade-off
solutions from which a single actionable solution can later be selected based on
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higher-level considerations. On the other hand, if a systemdesigner knows an explicit
preference factor for each objective, the MOO problem can be reformulated into a
Single-Objective Optimization (SOO) problem. This procedure is typically achieved
by creating a composite objective function through a weighted summation of the
individual objectives, where the weights reflect their relative importance.

These two approaches directly lead to a classification of MOO methods based on
their underlying optimization strategies:

1. Scalarization methods: these methods transform a MOO problem into an SOO
problem by assigning preference weights to objectives and combining them into
a single composite objective function, typically using a weighted sum.

2. Population-Based Heuristic methods: these methods employ heuristic search
strategies to directly explore the Pareto frontierwithout requiring predefined pref-
erence weights. Among these, Multi-Objective Evolutionary Algorithms (MOEAs)
are the most prominent. MOEAs leverage population-based search techniques
to simultaneously optimize multiple objectives, offering a diverse set of Pareto-
optimal solutions.

3.7.1 Scalarization methods

As the name implies, the scalarization method transforms a MOO problem into a
SOO problem by scalarizing the objectives. The scalarization is achieved by mul-
tiplying each objective function with a predefined weight that reflects its relative
importance and then summing them into a single composite objective. This specific
method of combining each objective function is called weighted sum method.
Formally, the MOO problem defined in Eq. (3.1) becomes:

min
x

𝐹(x) =
∑︁
𝑚

𝑤𝑚𝑓𝑚(x) 𝑚 = 1, 2, . . . , 𝑀

subject to g𝑗(x) ≤ 0 𝑗 = 1, 2, . . . , 𝐽
h𝑘(x) = 0 𝑘 = 1, 2, . . . , 𝐾

𝑥
(𝐿)
𝑖
≤ 𝑥𝑖 ≤ 𝑥(𝑈 )

𝑖
𝑖 = 1, 2, . . . , 𝑁

(3.6)

Here, 𝑤𝑚, with 𝑚 ∈ {1, 2, . . . , 𝑀}, is the weight of the 𝑚-th objective function. It is a
usual practice to set the weights such that their sum is one, i.e.,

∑𝑀
𝑚=1 𝑤𝑚 = 1. The

following theorem indicates how to mathematically define these weights [127].

Theorem 3.1. The solution to the problem represented by equation (3.6) is Pareto-optimal
if the weight is positive for all objectives.

This theorem holds for any MOO problem. When a positive weight vector is
used, the optimal solution to the scalarized problem in Eq.(3.6) is guaranteed to be
a Pareto-optimal solution. However, this does not imply that all Pareto-optimal
solutions can be obtained using positive weight vectors. The following theorem
confirms this result for convex problems [127].



i
i

“output” — 2025/2/22 — 18:13 — page 56 — #61 i
i

i
i

i
i

Background of Multi-Objective Evaluation and Optimization of Recommender Systems 56

Theorem 3.2. Suppose x★ is a Pareto-optimal solution of a convex multi-objective
optimization problem. In that case, there exists a non-zero positive weight vector w such
that x★ is a solution to the problem given by equation (3.6).

The theorem above states that multiple Pareto-optimal solutions can be obtained
by solving the scalarized problem in Eq. (3.6) with various positive preference vectors,
each used independently. Each solution corresponds to a distinct Pareto-optimal
point. This result can be extended to non-convex MOO problems, especially in cases
where the Pareto front exhibits convexity.

Moreover, determining an appropriate weight vector also depends on the scaling
of each objective function. Objectives often differ in their orders of magnitude, which
can disproportionately influence the optimization process. Therefore, it is advisable
to normalize the objectives to ensure comparability and balanced contributions to
the composite objective function.

Finally, in addition to the weighted summethod, there are many variations for the
scalarization approach [224], such as theweighted exponential summethod, weighted
product, weighted metric method, weighted Chebyshev method, and exponential
weighted criterion. These variations retain the practice of multiplying the objective
functions with their corresponding preference factors. However, they mainly differ
in the aggregation function of the objectives.

3.7.2 Population-based heuristic methods

The previous section emphasized two key characteristics of scalarization methods.
Firstly, these methods typically require multiple executions to identify various points
on the Pareto optimal set. Secondly, many of them depend on preference information
among the objectives.

In contrast, alternative approaches to directly generate Pareto frontiers and
implement the ideal multi-objective optimization procedure rely onMulti-Objective
Evolutionary Algorithms (MOEAs). MOEAs extend the framework of Evolutionary
Algorithms (EAs), which are stochastic search and optimization techniques inspired
by the natural process of evolution.

EAs begin with a population of candidate solutions, often generated randomly
within predefined bounds for each variable. However, when prior knowledge about
desirable solution characteristics is available, it can be advantageous to incorporate
this information into the initial population generation. Following initialization, EAs
proceed through an iterative process of population updating to refine the solutions
over successive generations.

The population update in EAs involves three main phases:

• Selection: this phase identifies parent individuals from the current population
based on their fitness value, determined using a fitness function. Selection typically
involves a stochastic process where higher fitness values increase the likelihood of
selection.
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• Variation: it is achieved through two operators, i.e., crossover andmutation, which
generate a modified population. The crossover operator combines information
from selected parent solutions to create offspring, with a specified crossover
probability dictating the proportion of individuals participating in this process.
The remaining fraction of the population is carried over unmodified. Offspring
produced by crossover are further perturbed using a mutation operator, where
each variable is modified with a mutation probability.

• Elite Preservation: the elitism operator combines the current and newly gen-
erated populations, retaining only the most promising solutions. This operation
ensures that the algorithm maintains a non-decreasing performance trend across
generations.

Fitness value evaluation is pivotal in the evolutionary process, assigning a scalar
fitness value to each individual. The fitness assignment typically involves ranking
individuals according to a preference relation and assigning fitness values based on
their rank, enabling straightforward sorting of solutions from best to worst.

MOEAs differ from traditional EAs in their fitness assignment and population
ranking handling. While retaining the fundamental phases of EAs, MOEAs incor-
porate multiple fitness functions, each corresponding to a specific objective. Con-
sequently, population ranking in MOEAs is based on a dominance principle, like
the Pareto dominance relation, which accounts for the simultaneous optimiza-
tion of multiple objectives. Most known evolutionary algorithms are MOGA [67],
NSGA [167] and NGSA-II [52], SPEA [229] and SPEA2 [232], PAES [103], and PESA [47]
and PESA-II [46]. Although these approaches can deal with convex and non-convex
Pareto frontiers, they do not always guarantee a Pareto optimal set, but only a good
approximation. Furthermore, the computation cost may increase depending on the
data size and the number of parameters to be learned.
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Chapter 4

Auditing Consumer- and Producer-

Fairness in Graph Collaborative

Filtering

To date, graph collaborative filtering (CF) strategies have been shown
to outperform pure CF models in generating accurate recommenda-
tions. Nevertheless, recent works have raised concerns about fairness
and potential biases in the recommendation landscape since unfair rec-
ommendations may harm the interests of Consumers and Producers
(CP). Acknowledging that the literature lacks a careful evaluation of
graph CF on CP-aware fairness measures, we initially evaluated the
effects on CP-aware fairness measures of eight state-of-the-art graph
models with four pure CF recommenders. Unexpectedly, the observed
trends show that graph CF solutions do not ensure a large item ex-
posure and user fairness. To disentangle this performance puzzle, we
formalize a taxonomy for graph CF based on the mathematical foun-
dations of the different approaches. The proposed taxonomy shows
differences in node representation and neighbourhood exploration as
dimensions characterizing graph CF. Under this lens, the experimental
outcomes become clear and open the doors to a multi-objective CP-
fairness analysis. To perform this multi-objective analysis, we employ
Pareto frontiers to qualitatively audit to what extent the graph CF can
balance the trade-off among accuracy, item exposure, and user fairness.
Hence, in this chapter we show how Pareto frontiers can be exploited
to perform a multi-objective evaluation of RSs. Codes are available
at: https://github.com/sisinflab/ECIR2023-Graph-CF.1

1. This chapter is based on the work published in the Proceedings of the 45th European Conference on
Information Retrieval (ECIR 2023) “AuditingConsumer- and Producer-Fairness inGraphCollaborative
Filtering”.

https://github.com/sisinflab/ECIR2023-Graph-CF
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4.1 Introduction and Motivations

Recommender systems (RSs) are ubiquitous and utilized in a wide range of domains
from e-commerce and retail to media streaming and online advertising. Personaliza-
tion, or the system’s ability to suggest relevant and engaging products to users, has
long served as a key indicator for gauging the success of RSs. In recent decades, col-
laborative filtering (CF) [62], the predominant modeling paradigm in RSs, has shifted
from neighborhood techniques [62, 151, 156] to frameworks based on the learning
of users’ and items’ latent factors [105, 150, 211]. More recently, deep learning (DL)
models have been proposed to overcome the linearity of traditional latent factors
approaches.

Among these DL algorithms, graph-based methods view the data in RSs from
the perspective of graphs. By modeling users and items as nodes with latent repre-
sentations and their interactions as edges, the data can be naturally represented as a
user-item bipartite graph. By iteratively aggregating contributions from near- and
long-distance neighborhoods, the so-called message-passing schema updates nodes’
initial representations and effectively distills the collaborative signal [200]. Early
works [25, 215] adopted the vanilla graph convolutional network (GCN) [101] archi-
tecture and paved the way to advanced algorithms lightening the message-passing
schema [45, 84] and exploring different graph sampling strategies [206]. Recent ap-
proaches propose simplified formulations [123, 141] that optionally transfer the graph
CF paradigm to different spaces [163, 173]. As some graph edges may provide noisy
contributions to the message-passing schema [186], a research line focuses on mean-
ingful user-item interactions [180, 199, 203]. In this context, explainability is the
natural next step [117] towards the disentanglement of user-item connections into a
set of user intents [201, 207].

On the other side, the adoption of DL (and, often, black-box) approaches to the
recommendation task has raised issues regarding the fairness of RSs. The concept
of fairness in recommendation is multifaceted. Specifically, the two core aspects to
categorize recommendation fairness may be summarized as (1) the primary parties
engaged (consumers vs. producers) and (2) the type of benefit provided (exposure
vs. relevance). Item suppliers are more concerned about exposure fairness than cus-
tomers because theywant tomake their products better known and visible (Producer
fairness). However, from the customer’s perspective, relevance fairness is of utmost
importance, and hence system designers must ensure that exposure of items is
equally effective across user groups (Consumer fairness). A recent study highlights
that nine out of ten publications on recommendation fairness concentrated on either
C-fairness or P-fairness [131], disregarding the joint evaluation between C-fairness,
P-fairness, and the accuracy.

The various graph CF strategies described above have historically centered on
the enhancement of system accuracy, but, actually, never focused on the recom-
mendation fairness dimensions. Despite some recent graph-based approaches have
specifically been designed to address C-fairness [69, 108, 146, 193, 197, 208] and P-
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fairness [28, 119, 120, 174, 222, 225], there is a notable knowledge gap in the literature
about the effects of the state-of-the-art graph strategies on the three objectives of
C-fairness, P-fairness, and system accuracy. This work intends to complement the
previous research and provide answers to pending research problems such as how
different graph models perform for the three evaluation objectives. By measuring
these dimensions in terms of overall accuracy, user fairness, and item exposure,
we observe these aspects in detail2.
Motivating example. A preliminary comparison of the leading graph and classical
CF models is carried out to provide context for our study. The graph-based models
include LightGCN [84], DGCF [201], LR-GCCF [45], and GFCF [163], which are
tested against two classical CF baselines, namely BPRMF [149] and RP3𝛽 [139], on the
Baby, Boys & Girls, and Men datasets from the Amazon catalog [134]. We train each
baseline using a total of 48 unique hyper-parameter settings and select the optimal
configuration for each baseline as the one achieving the highest accuracy on the
validation set (as in the original papers). Overall accuracy, user fairness, and item
exposure (as introduced above) are evaluated. Figure 4.1 displays the performance of
the selected baselines on the three considered recommendation objectives. For better
visualization, all values are scaled between 0 and 1 using min-max normalization,
and, when needed, they are replaced by their 1’s complement to adhere to the “higher
numbers are better” semantics. As a result, in each of the three dimensions, the
values lay in [0, 1] with higher values indicating the better. Please, note that such an
experimental evaluation is not the main focus of this work but it is the motivating
example for the more extensive analysis we present later. The interested reader may
refer to Section 4.3 for a presentation of the full experimental settings to reproduce
these results and the ones reported in the following sections of the chapter.

First, according to Figure 4.1, graph CF models are significantly more accurate
than the classical CF ones, even if the latter perform far better in terms of item
exposure. Moreover, the displayed trends suggest there is no clear winner on the
user fairness dimension: classical CF models show promising performance, while
some graph CF models do not achieve remarkable results. As a final observation, an
underlying trade-off between the three evaluation goals seems to exist, and it might
be worth investigating it in-depth. Such outcomes open to a more complete study
on how different strategy patterns recognized in graph CF may affect the three
recommendation objectives, which is the scope of this work.
Research questions and contributions. In the remainder of this chapter, we
therefore attempt to answer the following two research questions (RQs):

RQ1. Given the different graph CF strategies, the raising question is: “Can we explain
the variations observed when testing several graph models on overall accuracy, item ex-
posure, and user fairness separately?” According to a recent benchmark that identifies
some state-of-the-art graph techniques [227], the suggested graph CF taxonomy (Ta-

2. In the rest of the chapter, when no confusion arises, we will refer to C-fairness with user fairness,
to P-fairness with item exposure, and to their combination as CP-fairness.
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O-Acc

I-Exp

U-Fair

(a) Baby.

O-Acc

I-Exp

U-Fair

(b) Boys & Girls.

O-Acc

I-Exp

U-Fair

(c) Men.

BPRMF RP3𝛽 LightGCN DGCF LR-GCCF GFCF

Figure 4.1. Kiviat diagrams indicating the performance of selected pure and graph CF rec-
ommenders on overall accuracy (i.e., O-Acc, calculated with the nDCG@20), item exposure
(i.e., I-Exp, calculated with the APLT@20 [3]), and user fairness (U-Fair, calculated with the
UMADrat@20 [55]). Higher means better.

ble 4.1) extends the set of graph-based models introduced in the motivating example
by examining eight state-of-the-art graph CF baselines through their strategies for
nodes representation and neighborhood exploration. We present a more nuanced view
of prior findings by analyzing the impact of each taxonomy dimension on overall
accuracy and CP-fairness.
RQ2. The demonstrated performance prompts the questions: “How and why nodes
representation and neighborhood exploration algorithms can strike a trade-off between
overall accuracy, item exposure, and user fairness?” We employ the Pareto optimality
to determine the influence of such dimensions in two-objective scenarios, where
the objectives include overall accuracy, item exposure, and user fairness. The Pareto
frontier is computed for three 2-dimensional spaces: accuracy/item exposure, accu-
racy/user fairness, and item exposure/user fairness.

4.2 Nodes Representation and Neighborhood Ex-

ploration in Graph Collaborative Filtering: A

Formal Taxonomy

4.2.1 Preliminaries

LetU be the set of |U| users, and I the set of |I | items in the system, respectively.
We represent the observed interactions between users and items in a binary format
(i.e., implicit feedback). Specifically, let R ∈ ℝ|U|×|I| be the user-item feedback
matrix, where 𝑟𝑢,𝑖 = 1 if user 𝑢 ∈ U and item 𝑖 ∈ I have a recorded interaction,
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Table 4.1. Categorization of the chosen graph baselines according to the proposed taxonomy.
For each model, we refer to the technical description reported in the original paper and try
to match it with our taxonomy.

Models

Nodes

Representation

Neighborhood

Exploration

Latent

representation

Weighting

Explored

nodes

Message

passing

low high weighted unweighted same different implicit explicit

GCN-CF* [101] ✓ ✓ ✓ ✓
GAT-CF* [186] ✓ ✓ ✓ ✓
NGCF [200] ✓ ✓ ✓ ✓
LightGCN [84] ✓ ✓ ✓ ✓
DGCF [201] ✓ ✓ ✓ ✓
LR-GCCF [45] ✓ ✓ ✓ ✓ ✓
UltraGCN [123] ✓ ✓ ✓ ✓
GFCF [163] ✓ ✓
*The postfix -CF indicates that we re-adapted the original implementations (tailored
for the task of node classification) to the task of personalized recommendation.

𝑟𝑢,𝑖 = 0 otherwise. Following the above preliminaries, we introduce G = (U ,I,R)
as the bipartite and undirected graph connecting users and items (the graph nodes)
when there exists a recorded bi-directional interaction among them (the graph edges).
Nodes features for user 𝑢 ∈ U and 𝑖 ∈ I are suitably encoded as the embeddings
e𝑢 ∈ ℝ𝑑 and e𝑖 ∈ ℝ𝑑 , with 𝑑 << 𝑁, 𝑀. Given the dual nature of user and item
derivations, we only report user-side formulas.

4.2.2 Updating node representation through message-passing

The representation of users’ and items’ nodes are updated by leveraging the graph
topology from G. In this respect, the message-passing schema has recently gained
attention in the literature. The algorithm works by aggregating the information (i.e.,
themessages) from the neighbor nodes into the ego node, and the process is recursively
performed formultiple hops thus exploringwider neighborhood portions. In general,
the message-passing for 𝑙 hops is:

e(𝑙)
𝑢 = 𝜔

({
e(𝑙−1)
𝑖′ ,∀𝑖′ ∈ N (𝑢)

})
, (4.1)

where 𝜔(·) andN (·) are the aggregation function and neighborhood node set, respec-
tively, while 𝑙 is in 1 ≤ 𝑙 ≤ 𝐿, where 𝐿 is a hyper-parameter. Note that the following
statements hold: e(0)

𝑢 = e𝑢 and e(0)
𝑖

= e𝑖. A reworking of Equation (4.1) for 𝑙 ∈ {2, 3}
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allows same- and different-type node representation emerge [16]:

Same-type
node
representation


e(2)
𝑢︸︷︷︸

(user)

= 𝜔

({
𝜔

({
e(0)
𝑢′′︸︷︷︸

(user)

,∀𝑢′′ ∈ N (𝑖′) \ {𝑢}
})
,∀𝑖′ ∈ N (𝑢)

})

Different-type
node
representation


e(3)
𝑢︸︷︷︸

(user)

= 𝜔

({
𝜔

({
𝜔

({
e(0)
𝑖′′′︸︷︷︸

(item)

,∀𝑖′′′ ∈ N (𝑢′′) \ {𝑖′′}
})
,

∀𝑢′′ ∈ N (𝑖′) \ {𝑢′′}
})
,∀𝑖′ ∈ N (𝑢)

})
.

(4.2)

To better clarify the extent of Equation (4.2), after an even and an odd number
of explored hops, ego node updates leverage by design same- and different-type
node connections, i.e., user-user/item-item and user-item/item-user as evident
from Equation (4.2). While the existing literature does not always consider the two
scenarios as distinct, we underline the importance of investigating the influence
of different node-node connections explored during the message-passing. In light
of the above, we will count the number of explored hops as follows: e(2𝑙)

∗ ,∀𝑙 ∈
{1, 2, . . . , 𝐿2 } as obtained through 𝑙 same-type node connections (denoted as same-l),
and e(2𝑙−1)

∗ ,∀𝑙 ∈ {1, 2, . . . , 𝐿2 } as obtained through 𝑙 different-type node connections
(denoted as different-l). In the following, we introduce the graph convolutional
network (GCN) and its recent CF applications.

The baseline: graph convolutional network (GCN). The standard graph con-
volutional network from Kipf et al. [101] performs feature transformation, message
aggregation, application of a one-layer neural network, element-wise addition, and
ReLU activation, respectively. Let us consider W(𝑙) ∈ ℝ𝑑𝑙−1×𝑑𝑙 and b(𝑙) ∈ ℝ𝑑𝑙 as the
weight matrix and the bias for the 𝑙-th explored hop. The message-passing for user
𝑢 is:

e(𝑙)
𝑢 = ReLU

( ∑︁
𝑖′∈N(𝑢)

(
W(𝑙)e(𝑙−1)

𝑖′ + b(𝑙)
))
. (4.3)

GCN for collaborative filtering. Inspired by the GCN message-passing ap-
proach, the authors from Wang et al. [200] propose neural graph collaborative
filtering (NGCF). At each hop exploration, the model aggregates the neighborhood
information and the inter-dependencies among the ego and the neighborhood nodes.
Formally, the aggregation could be formulated as follows:

e(𝑙)
𝑢 = LeakyReLU

( ∑︁
𝑖′∈N(𝑢)

(
W(𝑙)

neighe(𝑙−1)
𝑖′ + W(𝑙)

inter

(
e(𝑙−1)
𝑖′ ⊙ e(𝑙−1)

𝑢

)
+ b(𝑙)

))
, (4.4)

where LeakyReLU is the activation function, W(𝑙)
neigh ∈ ℝ

𝑑𝑙−1×𝑑𝑙 and W(𝑙)
inter ∈ ℝ𝑑𝑙−1×𝑑𝑙

are the neighborhood and inter-dependencies weight matrices, respectively, while
⊙ is the Hadamard product.

He et al. [84] propose a light convolutional network, namely LightGCN, with the
rationale to simplify themessage-passing schema fromGCN andNGCF by dropping
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feature transformations (i.e., the weight matrices and biases) and the non-linearity
applied after the message aggregation. Specifically, they implement:

e(𝑙)
𝑢 =

∑︁
𝑖′∈N(𝑢)

e(𝑙−1)
𝑖′ . (4.5)

The variation shows superior accuracy to the state-of-the-art. A slightly different
solution [45] can outperform LightGCN regarding the accuracy level.

4.2.3 Weighting the importance of graph edges

The message-passing schema is inherently designed to aggregate into the ego node all
messages coming from its neighborhood. Nevertheless, the binary nature of the user-
item feedback (i.e., 0/1) would suggest that not all recorded user-item interactions
necessarily hide the same importance to the nodes they involve.

In general, let 𝑎(𝑙)
𝑦−→𝑥

be the importance of the neighbor node 𝑦 on its ego node 𝑥
after 𝑙 explored hops. We re-write the formulation of the message-passing after 𝑙
explored hops (presented in Equation (4.1)) as:

e(𝑙)
𝑢 = 𝜔

({
𝑎

(𝑙)
𝑖′−→𝑢

e(𝑙−1)
𝑖′ ,∀𝑖′ ∈ N (𝑢)

})
. (4.6)

The baseline: graph attention network (GAT). Attention mechanisms have
reached considerable success in the GCN-related literature to weight the contribu-
tion of neighbor messages before aggregation. The original study [186] proposes the
following message-passing formulation:

e(𝑙)
𝑢 =

∑︁
𝑖′∈N(𝑢)

(
𝑎

(𝑙)
𝑖′−→𝑢

W(𝑙)
neighe(𝑙−1)

𝑖′ + b(𝑙)
)

=
∑︁

𝑖′∈N(𝑢)

(
𝛼

(
e(𝑙−1)
𝑖′ , e(𝑙−1)

𝑢

)
W(𝑙)

neighe(𝑙−1)
𝑖′ + b(𝑙)

)
,

(4.7)

where 𝛼(·) is the importance function depending on the lastly-calculated embeddings
of the neighbor and the ego nodes, e.g., 𝑎(𝑙)

𝑖′−→𝑢
= 𝛼

(
e(𝑙−1)
𝑖′ , e(𝑙−1)

𝑢

)
.

GAT for collaborative filtering. The authors fromWang et al. [201] design
a message-passing schema that calculates the importance of neighborhood nodes
for ego nodes by disentangling the intents underlying each user-item interaction.
Similarly to He et al. [84] and Chen et al. [45], they therefore propose the following
embedding update formulation:

e(𝑙)
𝑢 =

∑︁
𝑖′∈N(𝑢)

𝑎
(𝑙)
𝑖′−→𝑢

e(𝑙−1)
𝑖′

=
∑︁

𝑖′∈N(𝑢)
𝛼

(
e(𝑙−1)
𝑖′ , e(𝑙−1)

𝑢 , 𝐾, 𝑇

)
e(𝑙−1)
𝑖′ ,

(4.8)

where 𝛼 (·, 𝐾, 𝑇) is the importance function of the lastly-calculated embeddings
from the neighbor and the ego nodes, e.g., 𝑎(𝑙)

𝑖′−→𝑢
= 𝛼

(
e(𝑙−1)
𝑖′ , e(𝑙−1)

𝑢 , 𝐾, 𝑇

)
, 𝐾 is the

total number of intents, and 𝑇 is the total number of routing iterations to repeat the
disentangling procedure.
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4.2.4 Going beyond message-passing

The recent graph learning literature [44, 226] has outlined the phenomenon of over-
smoothing, that leads node representations to become more similar as more hops are
explored. The issue is generally tackled by limiting the neighborhood exploration to
(maximum) three hops, and to two hops when attention mechanisms are introduced.
However, the idea of improving accuracy by restricting the number of explored
neighborhoods is counter-intuitive and “conflicts” with the rationale behind col-
laborative filtering [17]. This awareness led works such as Mao et al. [123] and Shen
et al. [163] to surpass and simplify the traditional concept of message-passing. Ul-
traGCN [123] adopts negative sampling to contrast over-smoothing and additional
objective terms to (i) approximate the infinite neighborhood exploration and (ii)
mine relevant “unexpected” node-node interactions such as the item-item ones.
Conversely, GFCF [163] translates the graph-based recommendation task into the
graph signal processing domain to obtain a closed-form formulation for approximat-
ing the infinite neighborhood exploration. Given that such recent strategies do not
explicitly perform the message-passing schema as presented above, in the remaining
sections of this chapter, we will adopt the terms explicit and implicitmessage-passing
as shorthands to denote the two model families, respectively.

4.2.5 A taxonomy of graph CF approaches

We propose (see Table 4.1) a taxonomy to classify the state-of-the-art graph models.
The taxonomy considers the recurrent strategy patterns as emerged by conducting
an in-depth review and analyzing the different graph CF approaches.

• Node representation indicates the representation strategy to model users’ and
items’ nodes. It involves the dimensionality of node embeddings, and the possibility
of weighting the neighbor node contributions.
• Neighborhood exploration refers to the procedure for exploring the multi-hop
neighborhoods of each node to update the node latent representation. It involves
the type of node-node connections which are explored, and the message-passing
schema (i.e., explicit or implicit as previously defined).

In the next two sections, we will assess the performance of the graph CF models
from the taxonomy in Table 4.1. Thus, we consider GCN-CF [101], GAT-CF [186],
NGCF [200], LightGCN [84], DGCF [201], LR-GCCF [45], UltraGCN [123], and
GFCF [163] for a total of eight graph CF solutions.

4.3 Experimental Settings and Protocols

In this section, we present the experimental details to conduct our analysis.
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Datasets

As a pre-processing stage, for each dataset, we randomly sample 60k interactions
and drop users and items with less than five interactions to avoid the cold-start
effect [82, 83]. The final dataset statistics are: (1) Baby has 5,842 users, 7,925 items,
35,475 interactions; (2) Boys & Girls has 3,042 users, 12,912 items, 35,762 interactions;
(3) Men has 3,909 users, 27,656 items, 51,519 interactions.

Reproducibility

Datasets are split using the 70/10/20 train/validation/test hold-out strategy. Base-
lines are trained through grid search (48 explored configurations), with a batch size
of 256 and 400 epochs. Datasets and codes (implemented with Elliot [11]) are available
at this link: https://github.com/sisinflab/ECIR2023-Graph-CF.

Evaluation

As for the overall accuracy, we use the recall (𝑅𝑒𝑐𝑎𝑙𝑙@𝑘) and the normalized dis-
counted cumulative gain (𝑛𝐷𝐶𝐺@𝑘). Concerning the item exposure, we focus on: (1)
item novelty [184, 185] through the expected free discovery (𝐸𝐹𝐷@𝑘) measuring the
expected portion of relevantly-recommended items that have already been seen by
the users; (2) item diversity [160] with the 1’s complement of the Gini index (𝐺𝑖𝑛𝑖@𝑘),
a statistical dispersion measure which estimates how a model suggests heteroge-
neous items to users; (3) the average percentage of items from the long-tail (APLT@k)
which are recommended in users’ lists [3] to calculate recommendation’s bias towards
popular items. User fairness indicates how equally each user group receives accurate
recommendations. Users are split into quartiles based on the number of items they
interactedwith.We thenmeasureUMADrat@k and theUMADrank@k [55], where the
former stands for the average deviation in the predicted ratings among users groups,
while the latter represents the average deviation in the recommendation accuracy
(calculated in terms of nDCG@k) among users groups. The best hyper-parameter
configurations are found by considering Recall@20 on the validation.

4.4 Taxonomy-aware evaluation

This section aims to answer RQ1 (“Can we explain the variations observed when testing
several graph models on overall accuracy, item exposure, and user fairness separately?”)
by showing how the proposed taxonomy of graph strategies can explain the recom-
mendation evaluation on CP-Fairness and overall accuracy. We experiment with 48
hyper-parameter configurations to investigate various combinations of graph CF
techniques for message-passing, explored nodes, edge weighting, and latent representa-
tions. Results refer to the Amazon Men dataset and top-20 lists (Table 4.2). Please
note that we report the best metric result for each <dimension, value> pair (the

https://github.com/sisinflab/ECIR2023-Graph-CF
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Table 4.2. Best metric results (and corresponding graph CF model) for each <dimension,
value> pair, on the Amazon Men dataset for top-20 lists. Bold is used to indicate the best
result in the pairs having a two-valued dimension, while † is used only for the “explored
nodes” dimension to indicate also the best results on same and different. The symbols ↑
and ↓ indicate whether better stands for high or low values. We use “rank” and “rat” as the
UMADrank@k and UMADrat@k.

Dimensions Values

Overall Accuracy Item Exposure User Fairness

Recall↑ nDCG↑ EFD↑ Gini↑ APLT↑ rank↓ rat↓

Message

passing

implicit 0.1222
(GFCF)

0.0911

(GFCF)

0.2615

(GFCF)

0.2871
(UltraGCN)

0.1808
(UltraGCN)

0.0123
(UltraGCN)

0.0022

(UltraGCN)

explicit 0.1223

(LR-GCCF)

0.0884
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090

(LR-GCCF)

0.3823

(GAT-CF)

0.0002

(DGCF)

0.0169
(LightGCN)

Explored

nodes

same-1 0.1221†

(LR-GCCF)

0.0884†

(LR-GCCF)

0.2500†

(LR-GCCF)

0.4377
(LR-GCCF)

0.3433
(GAT-CF)

0.0002
†

(DGCF)

0.0022
†

(UltraGCN)

same-2 0.1184
(LightGCN)

0.0841
(LightGCN)

0.2380
(LightGCN)

0.5090
†

(LR-GCCF)

0.3823
†

(GAT-CF)

0.0002
†

(DGCF)

0.0209
(NGCF)

different-1 0.1222
†

(GFCF)

0.0911
†

(GFCF)

0.2615
†

(GFCF)

0.4093
(NGCF)

0.3424
(GAT-CF)

0.0002
†

(DGCF)

0.0022
†

(UltraGCN)

different-2 0.1210
(DGCF)

0.0850
(DGCF)

0.2407
(LightGCN)

0.4934†

(LR-GCCF)

0.3438†

(LR-GCCF)

0.0002
†

(DGCF)

0.0388
(LightGCN)

Weighting

weighted 0.1210
(DGCF)

0.0857
(DGCF)

0.2428
(DGCF)

0.3240
(DGCF)

0.3823

(GAT-CF)

0.0002

(DGCF)

0.0301
(DGCF)

unweighted 0.1223

(LR-GCCF)

0.0884

(LR-GCCF)

0.2536

(LR-GCCF)

0.5090

(LR-GCCF)

0.3438
(LR-GCCF)

0.0101
(GCN-CF)

0.0169

(LightGCN)

Latent

representations

emb-64 0.1193
(LR-GCCF)

0.0871
(LR-GCCF)

0.2479
(LR-GCCF)

0.5090

(LR-GCCF)

0.3627
(GAT-CF)

0.0002

(DGCF)

0.0054
(UltraGCN)

emb-128 0.1221
(LR-GCCF)

0.0883
(LR-GCCF)

0.2536

(LR-GCCF)

0.5090

(LR-GCCF)

0.3644
(GAT-CF)

0.0002

(DGCF)

0.0111
(UltraGCN)

emb-256 0.1223

(LR-GCCF)

0.0884

(LR-GCCF)

0.2532
(LR-GCCF)

0.5038
(LR-GCCF)

0.3823

(GAT-CF)

0.0002

(DGCF)

0.0022

(UltraGCN)

corresponding best graph recommendation model is displayed below each metric
result) to ease the interpretation of results and provide meaningful insights.

• Message-passing.We investigate the two widely-recognized message-passing
strategies: implicit and explicit. The most obvious pattern indicates that both sets
have almost the same number of top-performing models in each of the evaluation
criteria. Explicit graph approaches perform better on item exposure, where they
outperform implicit techniques (i.e., on Gini and APLT) two out of three times by
a significant margin. On the one hand, this tendency may be due to the absence of
a direct message (information) propagating along the user-item graph in implicit
techniques, which prevents the user node from exploring vast item segments. On
the other hand, it appears that models from both families perform similarly on
accuracy and user fairness, indicating that there is no obvious reason to favor
implicit over explicit or vice versa.
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• Explored nodes. Here, we examine four methods to explore nodes (adopting the
message-passing re-formulation from Equation (4.2)): same and different, with 1
and 2 hops. Similarly to the trend found for the message-passing dimension, the
results demonstrate that the two primary categories (same and different) are nearly
equally performing across all measurements, with same-2 and different-1 being the
prominent ones. In detail, the different-1 exploration outperforms the same-2 on
the overall accuracy level (GFCF is the leading model here). Conversely, same-2
is the best strategy for item exposure (with LR-GCCF and GAT-CF leading). As
observed for the message-passing, user fairness does not give a reason to choose
between same and different. The exploration of 1 hop in same and different settings is
the preferable technique, even if 2 hops connections lead to a better item exposure.
• Weighted. This study examines weighted and unweighted graph CF techniques.
Differently from above, we observe that unweighted solutions provide the best
performance on almost all CP-fairness metrics, with LR-GCCF steadily being the
superior approach. The only trend deviation refers to GAT-CF (i.e., a weighted
method) surpassing unweighted solutions on the APLT level, that is, recommending
items from the long-tail. The behavior is likely attributable to the design ofweighted
techniques, which can investigate farther neighbors of the ego node (observe the
performance of GAT-CF on the same-2 dimension), leading user profiles to match
distant (and possibly niche) products in the catalog. On the contrary, it is interesting
to notice how the other twometrics accounting for item exposure (i.e., EFD as item
novelty measure and Gini as item diversity measure) seem to privilege unweighted
graph techniques (i.e., LR-GCCF). The observed behaviors differ as the three
metrics provide completely different perspectives of the item exposure, and thus
they are uncorrelated.
• Latent representations.We compare the performance of graph CF techniques
adopting latent representations with 64, 128, and 256 features, respectively. It is
worth noticing that higher latent representations (i.e., 128 and 256) result in better
performance on all measurements. Specifically, it appears that the 128 dimension
is the turning point after which the trend becomes stable (i.e., the metric values for
128 and 256 are frequently comparable). This may be an important insight since
the majority of research works in recent literature tend to employ 64-embedded
representations of nodes without exploring further dimensionalities (see Table 4.1
as a reference).

4.5 Trade-off Analysis

This section analyses how the graph CF baselines balance the trade-off among ac-
curacy, item exposure, and user fairness, and aims to answer RQ2 (“How and why
nodes representation and neighborhood exploration algorithms can strike a trade-off
between overall accuracy, item exposure, and user fairness?”). We report the results
only for the Amazon Men dataset. The negative Pearson correlation values for accu-
racy/item exposure (nDCG/APLT) and accuracy/user fairness (nDCG/UMADrank)
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Figure 4.2. Overall Accuracy/Item Exposure, Overall Accuracy/User Fairness, and Item
Exposure/User Fairness trade-offs on Amazon Men, assessed through nDCG/APLT,
nDCG/UMADrank, and APLT/UMADrank, respectively. Each point depicts a model hyper-
parameter configuration set belonging to the corresponding Pareto frontier. Colors refer
to a particular baseline, while lines styles discern their technical strategies based on the
proposed taxonomy. Arrows indicates the optimization direction for each metric on x and y
axes.
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suggest that a trade-off may be necessary, and desirable. In addition, the same cor-
relation metric indicates the necessity of a trade-off for item exposure/user fair-
ness (APLT/UMADrank). Among the strategy patterns identified in the proposed
taxonomy (see Table 4.1), we select the most important architectural dimensions,
message-passing andweighting of graph edges, to conduct this study. In detail, the
analysis studies three combined categories: (1) models with implicit message-passing
(denoted as implicit); (2) models with explicit message-passing and neighborhood
weighting (denoted as explicit/weighted); (3) models with explicit message-passing
without neighborhood weighting (denoted as explicit/unweighted). For each analyzed
trade-off, we select the Pareto optimal solutions of the baselines laying on the model-
specific Pareto frontier [187]. Figure 4.2 plots graph models Pareto frontiers in the
common objective function spaces related to the considered trade-offs. The careful
reader may notice the different axis’ scales across the graphics due to the metric
values. The colors of Pareto optimal solutions are model-specific, while the line
style is used to distinguish the categories: dotted lines for implicit, dash-dot lines for
explicit/weighted, and dashed lines for explicit/unweighted.

• Accuracy/Item Exposure. Figure 4.2a shows that the explicit/weightedmodels
exhibit a trade-off, as they maximize either nDCG (i.e., DGCF) or APLT (i.e., GAT-
CF), but not both. This is expected since DGCF is designed as a version of GAT-CF
with improved accuracy. It is worth mentioning that DGCF’s trade-off is reached
at the expense of item exposure. In contrast to these models, explicit/unweighted
baselines show a balanced trade-off because they do not prioritize accuracy or item
exposure exclusively. In detail, LR-GCCF provides the best performance in terms
of nDCG and APLT simultaneously. From a visual inspection, LR-GCCF’s Pareto
frontier dominates those of the other explicit/unweighted models. Conversely,
GCN-CF exhibits the worst trade-off because it is neither ideal for nDCG nor
APLT. As for the implicit models, they appear to prioritize precision over the
provision of long-tail items.

Under this lens, the latest (i.e., implicit) approaches seem to increase accuracy, even
if this is to the detriment of the niche items exposure.
• Accuracy/User Fairness. To ease the interpretation of Figure 4.2b, we recall
that UMADrank (used to measure User Fairness) measures to what extent the
model ranking performance differs among the user groups (partitioned based on
their activity on the platform). Figure 4.2b shows that, for GAT-CF and GCN-
CF, the poor performance in terms of nDCG is associated with high variability
in terms of user fairness. In fact, for these two models, the UMADrank value
indicates high variability across user groups. Something different emerges for
models such as NGCF, LightGCN, LR-GCF, and GFCF. These models, GFCF
in particular, exhibit valuable recommendation accuracy with better stability in
terms of ranking performance across the different user groups. As a consequence,
the Pareto frontiers associated with these models dominate the others. In detail,
GFCF is the best-performing one regarding this trade-off. Conversely, UltraGCN
and DCGF do not show consistent behavior demonstrating a strong sensitivity to
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the chosen hyper-parameters set.
In this setting, no graph CF strategy emerges as the absolute winner. Specifically,

every graph CF strategy is not enough to guarantee adequate fairness among different
user groups. Then, the positive results are associated with particular configurations of
some models and are lost when the hyper-parameter set changes.
• Item Exposure/User Fairness. The trade-off indicates to what extent graph
CF models can treat final users fairly and recommend items from the long tail.
In Figure 4.2c, it is possible to identify two groups of baselines: the models that
show poor performance in terms of item exposure (UltraGCN, DGCF, GCN-CF,
and GFCF) and the models that exhibit an acceptable exposure for long-tail items
(LightGCN, NGCF, LR-GCCF, and GAT-CF). In detail, a cluster of models that
belong to the explicit/unweighted category stands out in this second group. Not
only are these models able to recommend niche items, but also they are stable
(among the user groups) in terms of accuracy. On the contrary, although GAT-CF
lies close to the utopia point, it exhibits greater variability regarding the accuracy
metric. Indeed, comparing Figure 4.2c with Figure 4.2a, GAT-CF demonstrates to
achieve adequate user fairness, but its performance is still very poor in terms of
accuracy.

To summarize, even if a system designer could bemore interested in promotingmodels
solely guaranteeing the best value for APLT (Producer Fairness), the explicit/unweighted
strategies can generally ensure a satisfactory (for Consumers and Producers) trade-off
between user fairness and item exposure.

4.6 Summary

In this chapter, we assess the performance of graph CF models on Consumer and
Producer (CP)-fairness metrics showing that their superior accuracy capabilities
is reached at the expense of user fairness, item exposure, and their combination.
By recognizing nodes representation and neighborhood exploration as the two
main dimensions of a novel graph CF taxonomy, we study their influence on CP-
fairness and overall accuracy separately and simultaneously. The outcomes raise
concerns about the effective application of recent approaches in graph CF (e.g.,
implicit message-passing techniques). On such basis, we are performing further
investigations on other datasets and algorithms, and we are working on new graph
models balancing accuracy and CP-Fairness.
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Chapter 5

Unveiling the Potential of

Recommender Systems without

Prioritizing Accuracy

Although beyond-accuracy metrics have gained attention in the last
decade, the accuracy of recommendations is still considered the gold
standard to evaluate Recommender Systems (RSs). This approach pri-
oritizes the accuracy of recommendations, neglecting the quality of
suggestions to enhance user needs, such as diversity and novelty, as well
as trustworthiness regulations in RSs for user and provider fairness. As a
result, singlemetrics determine the success of RSs, but this approach fails
to consider other criteria simultaneously. A downside of this method is
that the most accurate model configuration may not excel in addressing
the remaining criteria. This study seeks to broaden RS evaluation by
introducing a multi-objective evaluation that considers all model con-
figurations simultaneously under several perspectives. To achieve this,
several hyper-parameter configurations of an RS model are trained, and
the Pareto-optimal ones are retrieved. While in the previous chapter we
have utilized the Pareto frontiers to qualitatively discuss about multi-
objective evaluation of graph-basedmethods,we knowemploy theQual-
ity Indicators (QI) of Pareto frontiers. QIs enable quantitatively evaluat-
ing the model’s performance by considering various configurations and
giving the same importance to each metric. The experiments show that
this multi-objective evaluation overturns the ranking of performance
among RSs, paving the way to revisit the evaluation approaches of the
RecSys research community. We release codes and datasets in the follow-
ing GitHub repository: https://github.com/sisinflab/RecMOE.1

1. This chapter is based on the work published in the Proceedings of the 17th ACM Conference on
Recommender Systems (RecSys 2023) “Broadening the Scope: Evaluating the Potential of Recommender
Systems beyond prioritizing Accuracy”.

https://github.com/sisinflab/RecMOE
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5.1 Introduction and Motivation

The success of Recommender Systems (RSs) is often measured by its ability to ac-
curately predict a user’s preferences and suggest relevant items. However, other
beyond-accuracy metrics have been proposed to capture different aspects of recom-
mendation quality, such as diversity and novelty of suggestions [152, 168, 185], and
fairness issues [29, 111, 228]. While beyond-accuracy metrics have gained momen-
tum in the RecSys research community, accuracy of suggestions is still consistently
prioritized over the other facets of recommendation [14, 20]. The common practice
is to select the best model solely based on the accuracy metrics (e.g., nDCG, Recall,
or Precision), which limits the consideration of performance on beyond-accuracy
metrics. Consequently, the best model in terms of accuracy may not guarantee the
best performance in terms of diversity, novelty, or fairness, and vice versa. This
limitation in choosing the best models may result in a lack of information on the
actual behavior of RS models across multiple perspectives of recommendation. In
this regard, we provide a motivating example by training 32 hyper-parameter set-
tings of three baselines (i.e., EASE𝑅 [171], RP3𝛽 [139], and UserKNN [151]) on the
Goodreads dataset2. Figure 5.1 shows the min-max normalized values of recommen-
dation algorithm performance by selecting the best hyper-parameter settings for
each baseline. We do this based on the best values of various metrics representing
accuracy (nDCG), novelty (EPC) [185], diversity (1 - Gini coefficient) [92], and algo-
rithmic bias (APLT) [4] evaluation perspectives. When selecting the model based
on the highest value of a given metric, a larger shape area on the resulting graph
indicates reasonably high values of the other metrics. As expected, we find that the
selection strategy for the best model tremendously impact the other metrics. Namely,
selecting the best hyper-parameter setting according to accuracy guarantees the
best value of novelty, but leads to sub-optimal value of diversity and worse value
of algorithmic bias, and vice versa. Then, assessing a model’s performance for each
metric, for example after selecting it based solely on accuracy, results in a lack of
knowledge about the potential of the model on beyond-accuracy metrics. Hence,
the need of a multi-objective evaluation emerges to simultaneously assess the models’
performance on several criteria, even though the training of such models could still
aim to maximize the accuracy of recommendation (e.g., to choose the best iteration,
or trigger a stopping condition in the training phase).

To address this problem of multi-objective evaluation, we exploit the definition
of Pareto optimality from the Multi-Objective Optimization (MOO) theory [124].
Given a set of objectives to maximize, we define a specific hyper-parameter setting of
a model as a Pareto-optimal solution if there is no other setting that improves at least
one objective function without hurting another one. The set of such Pareto-optimal
configurations composes the so-called Pareto frontier [204]. An approach to consider
simultaneously more metrics in the evaluation would be to select a solution from
the Pareto frontier through well-known methods (e.g., hypervolume [224]). However,

2. More details on the experimental settings will be provided in Section 5.3.
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Figure 5.1. Kiviat diagrams indicating the performance of the models on the Goodreads
dataset. The models are selected according to different metrics for each objective (i.e., Accu-
racy/Novelty, Diversity, and Bias). Higher means better.

evaluating a specific configuration of a model only provides information on that
particular setting and fails to provide insights into the overall potential of the model.
Therefore, to enhance the multi-objective evaluation of RSs, we need to assess the
entire set of Pareto-optimal configurations of a model. Simply visualizing the Pareto
frontier only enables qualitative analysis, being challenging when multiple objectives
are involved. We propose to introduce in RSs research the Quality Indicators,
previously adopted in the literature of MOO [109], which are designed to evaluate
Pareto frontiers by providing a real number to quantify and rank the performance
of a model corresponding to a Pareto frontier under different perspectives. To the
best of our knowledge, QIs have already been exploited to evaluate Pareto frontiers
— mostly their relative dominance — generated by evolutionary algorithm [43, 71,
76] applied in the context of Multi-Objective RSs [218, 224]. In contrast, we aim to
use them to offer insights into unexplored aspects of traditional RSs. In detail, the
contributions of our work are:

• We experimentally show the negative impact of prioritizing recommendation
accuracy over other important metrics and motivate the need of a multi-objective
evaluation of RSsmodels. The results emphasize the importance of a more compre-
hensive evaluation approach to ensure a thorough understanding of RS behavior
across multiple dimensions.

• We train 32 hyper-parameter settings of 5 state-of-the-art recommendationmodels
using 3 public datasets. We compute the Pareto frontier in two multi-objective
scenarios to provide a exhaustive evaluation of the recommendation models.

• To enhance the multi-objective evaluation of RSs, we evaluate various models
under different scenarios simultaneously by utilizing the Quality Indicators of
Pareto frontiers to enable an even more comprehensive analysis of RSs.
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5.2 Quality Indicators

In this section, we present the Quality Indicators (QIs) to assess the Pareto fron-
tiers corresponding to an RS model. Indeed, we aim to perform a multi-objective
evaluation of RSs. QIs are devised to measure multiple quality facets of a Pareto
frontier. Hence, they can be classified according to the quality they assess. Among
the selected QIs for this work, they can be divided as follows [110]: (i) QIs for spread,
(ii) QIs for uniformity, (iii) QIs for cardinality, and (iv) QIs that consider all these
quality aspects.

Spread QIs

The QIs for Spread indicate the range of the Pareto-optimal solutions on the Pareto
frontier. For our study, we use the Maximum Spread (MS) [231]. Specifically, this
spread indicatormeasures the range of a Pareto frontier by considering themaximum
extent of each objective.

Definition 5.1 (Maximum Spread). Given the Pareto-optimal solutions set 𝐴 and the
number of objectives 𝑚,MS is defined as:

MS(𝐴) =

√︄
𝑚∑︁
𝑗=1

max
𝑎,𝑎′∈𝐴

(𝑎𝑗 − 𝑎′𝑗)2, (5.1)

where 𝑎 and 𝑎′ are solutions belonging to 𝐴. The higher the value, the better the exten-
siveness of the curve.

Uniformity QIs

The uniformity of a Pareto frontier provides information about the distribution of
the solutions. A higher uniformity of the curve denotes that the solutions are less
dispersed, while a low uniformity indicates more diversity within the set. In the case
of RSs, having low uniformity leads to a wide range of options for decision-makers.
Specifically, we employ the Spacing metric (SP) [157] that measures the variation in
the Manhattan distances between the Pareto-optimal solutions.

Definition 5.2 (Spacing). Given the 𝑁 Pareto-optimal solutions 𝑎𝑖 ∈ 𝐴 and the number
of objectives 𝑚, SP is defined as:

SP(𝐴) =

√√
1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝑑 − 𝑑1(𝑎𝑖, 𝐴/𝑎𝑖))2, (5.2)

with 𝑑1(𝑎𝑖, 𝐴/𝑎𝑖) = min𝑎∈𝐴/𝑎𝑖
∑𝑚
𝑗=1

��𝑎𝑖 𝑗 − 𝑎𝑗��, where 𝑑 is the mean of all the Manhattan
distances 𝑑1(𝑎1, 𝐴/𝑎1)), . . . , 𝑑1(𝑎𝑁 , 𝐴/𝑎𝑁 )) and 𝑎𝑖 𝑗 represents the 𝑗-th objective of the
solution 𝑎𝑖. The lower the value, the more concentrated the solutions are on the Pareto
frontier. However, an SP = 0 indicates that all the solutions could be equidistant.

The interpretation of SP is strictly related toMS.
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Cardinality QIs

Given a set of generic solutions, the QIs for cardinality determine the proportion of
Pareto-optimal solutions in this set. A well-known QI for cardinality is the Specifi-
cally, Error Ratio (ER) [183].

Definition 5.3 (Error Ratio). Given 𝐾 generic solutions belonging to the set 𝐵, ER is
defined as:

ER(𝐵) =
∑
𝑏∈𝐵 𝑒(𝑏)
𝐾

, (5.3)

with 𝑒(𝑏) = 1 if 𝑏 is a Pareto-optimal solution, 0 otherwise. A higher ER value indicates
greater Pareto-optimal solutions in the set 𝐵.

All quality aspects QI.

The QIs included in this category provide insights into the spread, uniformity, and
cardinality of the Pareto frontiers simultaneously. Among them, the Hypervolume
(HV) [233] is a volume-based QI that measures the volume of the objective function
space dominated by the Pareto frontier.

Definition 5.4 (Hypervolume). Given the Pareto-optimal solutions 𝑎 ∈ 𝐴 and a
reference point 𝑟,HV is defined as:

HV(𝐴) = 𝜆

(⋃
𝑎∈𝐴
{𝑥 | 𝑎 ≺ 𝑥 ≺ 𝑟}

)
, (5.4)

where 𝜆 denotes the Lebesgue measure. The larger the hypervolume, the better the solution
set is.

5.3 Experiments

Given a set of multiple metrics to assess simultaneously, we aim to answer the
following research questions:

RQ1: To what extent can the models provide Pareto-optimal configurations? Are
these configurations uniformly distributed, or are they dispersed enhancing
diverse solutions to the trade-off?

RQ2: Whichmodel has the Pareto frontier that simultaneously offers better solutions
on multiple metrics?

5.3.1 Experimental Setup

We now provide details about the experimental setup to conduct the experiments of
this work.
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Datasets

We select three different datasets to cover several domains. Specifically, we use
Amazon Music (music domain), Goodreads [196] (book domain), andMovielens1M [81]
(movie domain). Regarding Goodreads (18892 users, 25475 items, 1378033 interactions,
0.99 sparsity) and Movielens1M (6040 users, 3706 items, 1000209 interactions, 0.95
sparsity), we do not apply any pre-processing step, while we obtain a pre-processed
version of the Amazon Music dataset from work by Anelli et al. [13] (14354 users,
10027 items, 145523 interactions, 0.99 sparsity).

Baselines and Hyper-parameters Settings Exploration

We train five recommendation algorithms, i.e., EASE𝑅 [171], MultiVAE [112], Light-
GCN [84], RP3𝛽 [139], and UserKNN [151]. Specifically, we train 32 hyper-parameter
values combinations of each model by exploiting the Elliot framework [11]. We define
the set of hyper-parameters values for these baselines from previous works [14, 15].
We provide complete information on the explored values in the GitHub repository.
We set nDCG@10 as the optimization target. MultiVAE and LightGCN are trained
with a batch size of 256 and 300 epochs by applying the early stopping strategy with
patience of 10.

Metrics

We assess the baselines’ performance under several perspectives. We compute nDCG,
Precision, and Recall for the accuracy of recommendations. From the final user
point of view, we evaluate the diversity (with Gini index [92] and Item Coverage)
and novelty (with EPC and EFD [185]). Finally, we measure the popularity bias of the
recommendations with APLT [4] – the greater, the better – and ARP [92] – the less,
the better. All these metrics refer to cutoff 10.

Multi-Objective Evaluation Methodology

We clarify how we obtain the Pareto frontiers corresponding to each baseline to
evaluate them through the quality indicators described in Section 5.2. Given the
experimental setup described above, we can identify a subset of the computed
metrics to compose a multi-dimensional objective function space. Each single hyper-
parameters configuration of a model represents a solution in this space since we
have computed their performance values regarding such metrics. As a result, we
obtain 32 points in the objective function space for each baseline. Among these
points, we can identify the Pareto-optimal configurations, which lay on the Pareto
frontier. Consequently, given an objective function space designated by a set of
metrics, we gather five Pareto frontiers, each corresponding to one trained baseline.
Once the Pareto-optimal solutions composing the Pareto frontiers are identified, we
can exploit the QIs to evaluate the Pareto frontiers of the models.

https://github.com/sisinflab/RecMOE
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Figure 5.2. Pareto optimal solutions plots for Amazon Music, Goodreads, and MovieLens1M.
The first row refers to the nDCG/Gini/EPC scenario, and the second row refers to the
nDCG/APLT scenario. The arrows indicate the optimal directions.
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Table 5.1. Classical analysis of the baselines’ results in terms of Accuracy, Diversity, Novelty,
and Bias of recommendations. The arrows indicates the descending or ascending order for
the best solution. Best values are in bold. Second best values are underlined.

Model nDCG↑ Recall↑ Precision↑ Gini↑ IC↑ EPC↑ EFD↑ APLT↑ ARP↓

Amazon Music

EASE𝑅 0.07560 0.09481 0.02049 0.25846 8891 0.02863 0.34370 0.08196 37.6760
UserKNN 0.07329 0.09424 0.02004 0.21426 8361 0.02741 0.32669 0.07363 42.7840
MultiVAE 0.04446 0.06264 0.01269 0.22379 6556 0.01606 0.19478 0.05773 28.4834
LightGCN 0.06433 0.08632 0.01797 0.33387 9121 0.02355 0.28666 0.12980 28.1607
RP3𝛽 0.04136 0.05070 0.01071 0.44327 8973 0.01521 0.20087 0.78420 4.46494

Goodreads

EASE𝑅 0.12685 0.08278 0.09680 0.04144 6842 0.10599 1.23522 0.00882 475.874
UserKNN 0.09842 0.06533 0.07416 0.02873 6434 0.08117 0.92929 0.01021 587.527
MultiVAE 0.07090 0.04812 0.05718 0.05126 7387 0.05974 0.69948 0.05533 443.142
LightGCN 0.06896 0.04835 0.05352 0.06434 7729 0.05722 0.68752 0.01176 356.040
RP3𝛽 0.06645 0.04177 0.05066 0.19076 14941 0.05759 0.78194 0.71016 64.3545

Movielens1M

EASE𝑅 0.36075 0.15574 0.32462 0.06152 980 0.27472 3.22977 0.00260 1198.44
UserKNN 0.34603 0.14980 0.31189 0.04556 920 0.25320 3.01901 0.00462 1305.30
MultiVAE 0.32223 0.14189 0.29147 0.12550 1836 0.25631 3.00231 0.03657 1002.73
LightGCN 0.31087 0.13204 0.28113 0.09899 1481 0.24170 2.84602 0.02806 1046.17
RP3𝛽 0.28403 0.12287 0.27017 0.09266 1588 0.21789 2.58115 0.17851 961.877

We carry out the multi-objective evaluation by identifying two different evalua-
tion scenarios. On the one hand, we focus on user-centered objectives (accuracy, di-
versity, and novelty of recommendations). This scenario leads to a three-dimensional
space in which the axes are nDCG, Gini index, and EPC. On the other hand, we
compare the accuracy of recommendations against the algorithmic bias, by obtaining
a two-dimensional objective function space (nDCG vs. APLT). Figure 5.2 depicts
the Pareto frontiers of the models trained on each datasets for the two evaluation
scenarios.

5.3.2 Results and Discussion

To commence the experimental assessment, we establish a benchmark for the up-
coming investigation. In detail, a preliminary analysis of the baselines’ performance
is conducted by reporting the results of the best configurations according to the
values of nDCG@10 in Table 5.1. This analysis serves as context and motivates the
subsequent exploration where QIs of the Pareto frontiers are utilized to answer the
research questions (Table 5.2).

A “traditional” analysis of recommendation performance

The results in Table 5.1 corroborate the recent literature findings [13, 50]. For the
three datasets, EASE𝑅 and UserKNN are the models providing the most accurate
recommendations. Observing the novelty metrics, the accuracy and novelty of rec-
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ommendations exhibit a positive correlation. However, we arrive at very different
conclusions by examining the other beyond-accuracy metrics. On the one hand,
concerning the diversity of recommendations, the remaining models (LightGCN,
MultiVAE, RP3𝛽) generally perform better than EASE𝑅 and UserKNN across all
datasets. On the other hand, RP3𝛽 consistently outperforms its competitors in ad-
dressing the popularity bias. This peculiar performance puzzle does not offer insight
into the general behaviour of the model or whether other instances of it follow
a similar performance trend. To unravel this puzzle, we shift to a multi-objective
evaluation-based analysis aimed at assessing the recommendation performance
under several criteria simultaneously.

Distribution of Pareto-optimal configurations

To answer RQ1, we examine the values of Error Ratio (ER),Maximum Spread

(MS), and Spacing metric (SP). Different scenarios may arise when examining
the behaviour of a model. Firstly, when the model yields higher ER ,MS, and SP
values, it suggests that the model’s configurations are widely spread and varied,
implying that it can provide multiple solutions on the Pareto frontier. Secondly,
suppose the model exhibits higher ER andMS values but lower SP values. In that
case, it indicates that the model’s settings are dispersed but concentrated in certain
areas of the objective function space. This behaviour could result in fewer solutions
on the Pareto frontier. Thirdly, if the model has higher values of ER and lower
values ofMS and SP , it implies that the model can offer various Pareto-optimal
settings, which are all concentrated in the same area of the objective function space.
Finally, a low number of Pareto-optimal configurations can indicate some issues
with the solutions’ characteristics, regardless of theMS and SP values.

Our investigation begins with the nDCG/APLT metrics for the Movielens1M
dataset (as shown in Table 5.2), with Figure 5.2f illustrating the results for a better
understanding. Within this context, RP3𝛽 provides a broad range of acceptable solu-
tions (ER=0.47) with a wide dispersion (highest value ofMS), and the solutions are
dispersed along the entire Pareto frontier (highest value of SP). Therefore, RP3𝛽

offers various solutions for an optimal trade-off between recommendation accuracy
and algorithmic bias. UserKNN exhibits similar behaviour, with the second highest
values for ER,MS, and SP (0.5, 0.53, and 0.02, respectively). In contrast, EASE𝑅

offers a limited choice, featuring a not extensive and highly concentrated frontier
(low values ofMS and SP), despite having numerous solutions on the frontier
(highest value of ER). Finally, MultiVAE and LightGCN present a limited number
of Pareto-optimal configurations (lowest ER values), which influence the quality
of their Pareto frontiers regarding range and spacing. As illustrated in Figure 5.2f,
QIs provide an adequate and quantitative depiction of the models’ behaviour. We
can then extend our scrutiny to the remaining datasets. UserKNN, RP3𝛽, Light-
GCN, and MultiVAE maintain their respective performance across the Amazon
Music (Figure 5.2d) and Goodreads (Figure 5.2e) datasets. Upon examination of Ta-
ble 5.2, for these datasets, EASE𝑅 demonstrates higherMS values than the one
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Table 5.2. Quality Indicators of the Pareto frontiers results for the identified scenarios. The
arrow indicates the descending or ascending order for the best solution. SP has no specific
order of solutions, since its interpretation is strictly connected with the MS indicator. C
counts how many solutions lay on the Pareto frontier.

Model

Objectives

Accuracy / Novelty / Diversity Accuracy / Bias

HV ↑ ER ↑ MS ↑ SP C ↑ HV ↑ ER ↑ MS ↑ SP C ↑

Amazon Music

EASE𝑅 0.00095 0.46875 0.24986 0.01476 15 0.01355 0.43750 0.11886 0.00669 14

UserKNN 0.00082 0.34375 0.29452 0.00496 11 0.01448 0.34375 0.17871 0.00980 11
LightGCN 0.00051 0.06250 0.01335 0.00000 2 0.00835 0.03125 0.00000 0.00000 1
MultiVAE 0.00022 0.12500 0.09656 0.01738 4 0.00468 0.15625 0.05629 0.00351 5
RP3𝛽 0.00039 0.18750 0.20753 0.05888 6 0.03489 0.21875 0.11336 0.01173 7

Goodreads

EASE𝑅 0.00074 0.59375 0.09910 0.00227 19 0.00439 0.65625 0.09433 0.00214 21
UserKNN 0.00110 0.31250 0.19889 0.01287 10 0.02267 0.71875 0.48042 0.01471 23

LightGCN 0.00051 0.18750 0.06743 0.00783 6 0.00696 0.18750 0.09180 0.01536 6
MultiVAE 0.00043 0.06250 0.05022 0.00000 2 0.00521 0.06250 0.01827 0.00000 2
RP3𝛽 0.00083 0.12500 0.05584 0.01213 4 0.05544 0.28125 0.29529 0.02657 9

Movielens1M

EASE𝑅 0.00865 0.68750 0.09833 0.00446 22 0.00281 0.65625 0.06001 0.00196 21

UserKNN 0.01296 0.28125 0.30929 0.03641 9 0.08191 0.50000 0.52723 0.01810 16
LightGCN 0.00807 0.18750 0.01012 0.00287 6 0.00974 0.15625 0.00617 0.00181 5
MultiVAE 0.01216 0.21875 0.03419 0.00427 7 0.01639 0.18750 0.02528 0.00293 6
RP3𝛽 0.00839 0.06250 0.03796 0.00000 2 0.14014 0.46875 0.86913 0.03228 15

for Movielens1M. The corresponding Pareto frontiers are broader (higherMS),
but the solutions are concentrated into two well-separated clusters (lower SP).
This outcome emphasizes that EASE𝑅 leaves the intermediate area between these
clusters uncovered, being incapable of offering a balanced optimal trade-off between
the two objectives. Let us focus on the user-centric scenario, where our objectives
include nDCG/Gini/EPC, as shown in Figures 5.2a, 5.2b, and 5.2c. It is worth not-
ing that UserKNN has proven its proficiency in generating several well-diversified
hyper-parameter configurations across all datasets. This model boasts the best or
second-best values of ER andMS, along with high SP values, particularly for the
Goodreads and Movielens1M datasets. However, LightGCN and MultiVAE exhibit
subpar performance considering the number of Pareto-optimal configurations and
their distribution, while EASE𝑅 boasts a wide Pareto frontier but is confined to
specific regions, failing to cover the central (and more balanced) area. In contrast,
RP3𝛽 behaves differently from the previous scenario, providing fewer solutions on
the Pareto frontier for the accuracy/diversity/novelty trade-off.

In summary, in response to RQ1, we can assert that UserKNN provides several diversi-
fied optimal solutions that effectively balance the two scenarios. Conversely, EASE𝑅, while
offering numerous optimal solutions, tends to provide solutions that are concentrated and
clustered. RP3𝛽 is effective in balancing accuracy and bias but struggles in disentangling
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user-centred metrics. Finally, it is worth noting that LightGCN and MultiVAE yield
inferior performance in this regard.

Performance on all quality metrics

In response to RQ2, we can utilize the Hypervolume (HV) measure.HV evalu-
ates the performance of models from multiple objectives simultaneously, as shown
in Table 5.2. By considering the cardinality and dispersion of the Pareto-optimal
solutions and the dominance among the Pareto frontiers, HV provides us with
valuable insights. The higher the volume or area under the frontier, the greater the
HV . The results show that UserKNN outperforms the other models by achieving
the best or second-best values of HV for all datasets and scenarios. This result
indicates that UserKNN generates an extensive and diversified Pareto frontier while
performing well across all metrics. While EASE𝑅 has the highest value ofHV for
the Amazon Music dataset in the user-centred scenario, it does not dominate or get
dominated in the remaining cases. This result highlights the model’s limited reliance
on accounting for multiple metrics. LightGCN shows no distinctive trends, while
MultiVAE’sHV decreases when dealing with sparser datasets. RP3𝛽 confirms its
capability in managing the nDCG/APLT trade-off by achieving the highest values of
HV and visual dominance of its Pareto frontiers against the others in Figures 5.2d,
5.2e, and 5.2f.

In summary, to answer RQ2, our findings indicate that in terms of multi-objective
evaluation, UserKNN is the superior model overall. However, when considering the
accuracy/bias trade-off, RP3𝛽 emerges as a noteworthy contender.

Final observations

In evaluating recommendation systems, accuracy is typically given top priority.
Thus, in our initial analysis, EASE𝑅 emerged as the frontrunner due to its impressive
accuracy. However, when subjected to our multi-objective evaluation, EASE𝑅 was
often outperformed by other models. UserKNN, on the other hand, demonstrated
superior performance across diversemetrics. Surprisingly, RP3𝛽 ranked the lowest in
terms of accuracy but proved to be particularly effective in finding a balance between
nDCG andAPLT (bias) performance. These findings challenge the traditional ranking
of recommendation systems, paving the way for new research in model evaluation.

5.4 Summary

In our study, we utilize Quality Indicators of Pareto frontiers to conduct a multi-
objective evaluation of Recommender Systems (RSs). Our experiments aim to assess
RSs with three (Accuracy / Novelty / Diversity) and two (Accuracy / Bias) conflicting
objectives. While EASE𝑅 exhibits superior accuracy, our evaluation has unveiled a
new ranking of the baselines. UserKNN stands out as it provides several diverse
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solutions which perform well in both multi-objective scenarios. Additionally, RP3𝛽

proved to be highly effective in the accuracy/algorithmic bias scenario. Moving
forward, we plan to extend this evaluation to other baselines. Furthermore, we
intend to leverage the Pareto frontiers’ quality indicators to evaluate the impact of
the models’ hyper-parameters in a multi-objective scenario.
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Chapter 6

Hyper-parameter Tuning Sensitivity

in Recommender Systems with

Multiple Objectives

Recommender systems (RSs) are integral to digital platforms, deliver-
ing personalized experiences that drive user engagement across vari-
ous domains. Traditionally, RSs have prioritized optimizing accuracy,
yielding significant business advantages. However, this singular focus
overlooks critical beyond-accuracy objectives, such as fairness, diversity,
novelty, and bias mitigation, which are essential for addressing multi-
stakeholder interests and promoting ethical, inclusive recommendations.
Multi-Objective Recommender Systems (MORSs) provide a promising
framework for balancing competing objectives but pose challenges in
adapting traditional accuracy-based RSs without extensive redesign.

This chapter investigates the sensitivity of traditional RS models
to hyper-parameter tuning in multi-objective scenarios. We propose a
novel evaluation framework leveraging Pareto optimality to assess the
impact of hyper-parameter configurations on balancing accuracy with
beyond-accuracy goals. Through comprehensive experiments on six
diverse RS models, spanning neighborhood-based, factorization-based,
and graph-basedmethods, across 32 hyper-parameter configurations, we
analyze the sensitivity of these models under two scenarios: (i) balanc-
ing accuracy, novelty, and diversity, and (ii) mitigating popularity bias
alongside accuracy. We also provide insights into the role of individual
hyper-parameters, offering practical guidance for minimizing tuning
effort while balancing competing objectives. These contributions bridge
the gap between traditional RS models and the demands of modern,
multi-objective environments. 1

1. This chapter is based on the work “A Framework for Hyper-parameter Tuning Sensitivity Analysis
in Recommender Systems Considering Multiple Objectives”, to submit to the Information Processing
and Management (IPM) journal.
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6.1 Introduction

Recommender systems (RSs) are pivotal to modern digital platforms, delivering per-
sonalized experiences that drive user engagement across domains like e-commerce,
entertainment, and travel. Traditionally, the primary focus of RSs has been optimiz-
ing accuracy, ensuring that recommendations closely align with users’ preferences.
This focus on relevance has yielded significant business advantages, including in-
creased sales, enhanced user satisfaction, and improved retention rates, thereby
establishing accuracy as the dominant evaluation metric in the field [93]. However,
the singular emphasis on accuracy has revealed critical shortcomings since RSs
are increasingly deployed in complex, multi-stakeholder environments. Emerging
research highlights the need to move “beyond accuracy” by addressing objectives
such as fairness, diversity, novelty, and bias mitigation. For instance, racial minority
hosts on Airbnb earn less and attract fewer customers compared to white hosts2.
In the music industry, legitimate artists often struggle for fair compensation due
to manipulative practices by distributors, bots, and streaming platforms3. Gender
biases in hiring algorithms, exemplified by Amazon’s recruiting tool, further illus-
trate how algorithmic decisions can reinforce societal inequities4. These examples
underscore how ostensibly neutral systems can inadvertently perpetuate inequities,
revealing the urgent need to consider fairness and inclusivity in algorithmic design
and evaluation. Incorporating beyond-accuracy objectives is increasingly essential
for platforms that reflect diverse stakeholder interests and uphold ethical values.
Properties like novelty and diversity not only enhance user satisfaction by promoting
discovery but also mitigate issues of over-specialization. Similarly, fairness ensures
equitable exposure for underrepresented items or providers, aligning recommen-
dations with societal values and ethical standards. Efforts such as the NORMalize
workshops [169, 194] emphasize the growing recognition of normative approaches
in RS research. Additionally, regulatory frameworks such as the General Data Pro-
tection Regulation (GDPR) in Europe [63] and the California Consumer Privacy Act
(CCPA) in the United States [39] further necessitate that recommendation algorithms
be transparent, fair, and unbiased. To address these challenges, Multi-Objective
Recommender Systems (MORSs) have emerged as a framework for balancing ac-
curacy with other desirable objectives [90, 219]. MORSs aim to optimize multiple
criteria simultaneously, ensuring that recommendations are relevant but accom-
plish also other objectives. While MORSs offer a promising solution for platforms
designing RSs from scratch, integrating beyond-accuracy objectives into existing
relevance-based RSs presents unique challenges. Established platformsmust navigate
the tension between meeting stakeholder values and minimizing the costs associated
with redesigning, testing, and deploying entirely new solutions. A practical and
scalable alternative involves leveraging hyper-parameters tuning to adjust trade-

2. https://shorturl.at/ePMm6
3. https://shorturl.at/csQTT
4. https://shorturl.at/a2AVy

https://shorturl.at/ePMm6
https://shorturl.at/csQTT
https://shorturl.at/a2AVy
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𝑓1(𝑥)
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(a) Non-sensitive hyper-
parameter tuning model.

𝑓1(𝑥)

𝑓 2
(𝑥

)

(b) Sensitive hyper-parameter
tuning model.

Dominated solutions Non-dominated solutions

Figure 6.1. Dispersion of the solutions in the multi-objective space. Let 𝑓1(𝑥) and 𝑓2(𝑥) be two
metrics for which the lower is the better. Each point represents a model hyper-parameter
configuration set. Red and blue dots refer to two different values for a given hyper-parameter.
In contrast to the model on Figure 6.1a, the model on Figure 6.1b needs precise tuning since
most of the dominated configuration sets (filled dots) are far from the Pareto frontier (empty
dots).

offs between accuracy and beyond-accuracy objectives. By systematically exploring
hyper-parameters configurations, platforms can identify Pareto-optimal solutions
that balance competing objectives without requiring substantial modifications to
their underlying models. This approach raises a critical question: How can we as-
sess the sensitivity of existing RS models to hyper-parameters tuning concerning
trade-offs amongmultiple objectives? Specifically, we address the following research
questions:

• RQ1.How can we evaluate the sensitivity to the hyper-parameters tuning of existing RS
models given a particular trade-off? To address this research question, we propose
to depict several hyper-parameters configurations of the same model as a point
in the objective function space when considering multiple objectives. Then, the
configurations ensuring the best trade-offs will lie on the Pareto frontier, while
the others will be dominated solutions. As intuitively depicted in Figure 6.1, a
model employing many solutions near the Pareto frontier is more constant in
providing optimal or close to optimal solutions (Figure 6.1a). In contrast, the model
is sensitive to hyper-parameter tuning if numerous solutions are distant from
the non-dominated solutions (Figure 6.1b). Therefore, we offer two metrics for
a novel evaluation framework to assess the model performance’s sensitivity to
hyper-parameter tuning based on the distances of solutions to the Pareto frontier
in an objective function space.

• RQ2. To what extent are traditional accuracy-based RSs sensitive to hyper-parame-
ter tuning when considering multiple objectives? Expanding on RQ1, we utilize our
framework to investigate the sensitivity of traditional RSs to hyper-parameter
adjustments under two scenarios: (i) a user-centric scenario that balances accuracy,
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novelty, and diversity, and (ii) a scenario focused on the trade-off between accuracy
and the mitigation of popularity bias in recommendations. Specifically, we train
32 distinct hyper-parameter configurations across six models from diverse fami-
lies, namely, neighborhood-based, factorization-based, and graph-based methods,
to evaluate the degree of hyper-parameter precision required to achieve Pareto
optimal solutions.

• RQ3.What is the impact of individual hyper-parameters on the tuning of the afore-
mentioned RSs, and are there specific hyper-parameter values that consistently yield
Pareto optimal (or near-optimal) solutions? Building on the findings from RQ2, we
leverage our framework to identify the hyper-parameters and their corresponding
values that enable less precise tuning while still achieving Pareto optimal solutions
for the studied RSs. This analysis is performed within the same experimental
scenarios outlined in RQ2.

To summarize, the contributions of our work are the following:

• We introduce a novel evaluation framework that leverages Pareto optimality to as-
sess the sensitivity of RS models to hyper-parameter configurations. By represent-
ing each configuration as a point in the objective function space, our framework
quantifies the distances between each solution and the Pareto frontier, enabling a
robust analysis of model performance consistency across trade-offs.

• Using our framework, we systematically evaluate six diverse RS models, spanning
neighborhood-based, factorization-based, and graph-based methods across 32
distinct hyper-parameter configurations. This analysis reveals how traditional
accuracy-focused RSs can accommodate beyond-accuracy objectives, such as
novelty, diversity, and bias mitigation, without requiring extensive tuning.

• We provide a detailed investigation into the role of individual hyper-parameters,
identifying specific configurations that consistently achieve Pareto optimal or
near-optimal solutions. These insights offer practical guidance for practitioners
seeking to balance accuracy with other objectives while minimizing the need for
extensive hyper-parameter optimization.

6.2 Related Work

The development and evaluation of Recommender Systems (RSs) have long been
central to academic and industrial research. However, recent works highlight the
need for a more analytical approach to research in RSs. Among other points, Jannach
et al. [91] emphasize the importance of understanding how stable algorithms are in
their performance across various metrics when hyper-parameter values are slightly
altered. Such stability is vital for reproducibility and real-world deployment, where
frequent retraining or model updates are often required. Few works concerning
offline evaluation experiments focus on the sensitivity to hyper-parameter tuning
of the recommendation baselines.
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Mostly, these works are reproducibility studies that aim to reveal methodological
flaws that compromise the validity of experimental results [21, 50]. For instance, some
works have reported that the hyper-parameters of baselines are not tuned to the same
extent as those of the new proposed recommendation algorithm, or even at all [48,
162]. In addition, several experiments improperly tuned hyper-parameters on test
datasets rather than validation datasets, violating standard practices and potentially
inflating performance metrics. In their survey, Sun et al. [175] observed that more
than 33% of the offline evaluations tuned hyper-parameters on the test dataset. At
the same time, the remaining 67% papers did not mention any information about
hyper-parameters tuning. Similarly, Dacrema et al. [50] reported that several offline
studies they attempted to reproduce evaluated the model’s performance on the test
dataset after each training epoch, and reported the best metric value. Unlike other
elements of experimental setups, such as datasets or data splits, the ranges of hyper-
parameters explored and the methods used for tuning are rarely disclosed [162,
223]. In response to these issues, some works have proposed guidelines for fair
comparison in hyper-parameter tuning. For example, Shehzad et al. [162] suggest
authors to report the hyper-parameter ranges explored and the tuning method used.
Fang et al. [64] explore multiple hyper-parameter search algorithms to ensure robust
evaluation methodologies.

In contrast, other works have explicitly focused on the hyper-parameter opti-
mization process in RSs. For instance, Anelli et al. [20] explore the discriminative
power of accuracy and novelty metrics in hyper-parameter tuning, analyzing which
specific hyper-parameters most significantly impact the accuracy of the BPR-MF
algorithm. Similarly, Matuszyk et al. [125] conduct a comparative analysis of various
optimization strategies for hyper-parameter tuning of RSs.

While these studies provide valuable insights into hyper-parameters impact on
accuracy, they are primarily limited to single-objective perspectives, focusing exclu-
sively on accuracy metrics. These works highlight suboptimal or incorrect hyper-
parameter tuning procedures [220]. Still, they do not offer a comprehensive frame-
work for assessing the sensitivity of RS performance to hyper-parameter changes
across multiple objectives. This narrow focus on accuracy overlooks the broader
implications of hyper-parameter tuning in multi-objective scenarios, a critical con-
sideration for real-world RSs deployed on online platforms. Such systems must
balance competing objectives, including user satisfaction, fairness, and diversity
while mitigating potential harms.

Some works have begun addressing this gap by integrating multi-objective per-
spectives into hyper-parameter tuning. For example, Quadrana et al. [145] propose a
multi-objective optimization framework for hyper-parameter tuning in the next-
song recommendation task, demonstrating its effectiveness in balancing competing
objectives. Additionally, Moscati et al. [129] investigate the interplay between accu-
racy and beyond-accuracy metrics by identifying Pareto-optimal hyper-parameter
configurations for a recommendation baseline.

To the best of our knowledge, no previous studies have proposed an analytical
framework to evaluate the sensitivity of RSs to hyper-parameter tuning in a multi-
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objective context. This work introduces the first comprehensive framework to assess
the extent to which RS performance is influenced by hyper-parameter variations,
considering the relevance of recommendations and beyond-accuracy objectives
simultaneously.

6.3 The framework (RQ1)

This section provides a formal definition of the evaluation framework proposed
in this work. This framework aims to quantitatively measure the sensitivity to the
hyper-parameter tuning of an RS model in a multi-objective evaluation scenario.
Hence, this section theoretically answers to RQ1.

6.3.1 Protocol

Let us train a set K of different hyper-parameter configurations of the same rec-
ommendation model whose performance is represented by 𝑚 metrics {𝑛1, . . . , 𝑛𝑚}.
Then, a point 𝒌 ∈ K is defined as 𝒌 = {𝜙(𝑛1), . . . , 𝜙(𝑛𝑚)}, where 𝜙(·) is the min-max
normalization function.5 As illustrated in Figure 6.1, each configuration may thus be
represented as a point in a 𝑚-dimensional objective function space.

Let K = {𝒌1, 𝒌2, . . . , 𝒌|K |} ∈ ℝ|K |×𝑚 be the set of |K | points in the objective
function space, with 𝒌𝑡 ∈ ℝ𝑚. Among the set K , let us suppose to have the set
P = {𝒑1, 𝒑2, . . . , 𝒑|P |} of |P |> 1 sequentially ordered Pareto optimal points with
P ⊆ K and 𝒑𝑡 ∈ ℝ𝑚. The Pareto frontier can be shaped as a polyline consisting of
|P |−1 segments 𝒑𝑖𝒑𝑗, each having as vertices a pair of Pareto optimal points 𝒑𝑖 and
𝒑𝑗, with 𝑖 ∈ {1, . . . , |P |−1} and 𝑗 = 𝑖 + 1. Then, we introduce the formulation for the
distance between a point 𝒌𝑡 and the Pareto frontier P as:

∆ (P , 𝒌𝑡) = min({∆
(
𝒑𝑖𝒑𝑗, 𝒌𝑡

)
}), (6.1)

where {∆
(
𝒑𝑖𝒑𝑗, 𝒌𝑡

)
} is the set of the distances ∆

(
𝒑𝑖𝒑𝑗, 𝒌𝑡

)
computed between the

point 𝒌𝑡 ∈ K and each segment 𝒑𝑖𝒑𝑗 ∈ P such that 𝑖 ∈ {1, . . . , |P |−1}, 𝑗 = 𝑖 + 1.
The computation of ∆ (P , 𝒌𝑡) is then performed for each point 𝒌𝑡 ∈ K . In this way,
we obtain the set of distances {∆ (P , 𝒌𝑡)} of each point 𝒌𝑡 from the Pareto frontier
P .

The scenario described above refers to the case in which more solutions inK are
Pareto optimal, i.e., |P |> 1. However, some recommendation models may provide a
single Pareto optimal solution, thus formally resulting in a Pareto frontier P = {𝒑1}
with cardinality |P |= 1. In such cases, it is not feasible to shape the Pareto frontier
as a polyline consisting of |P |−1 segments 𝒑𝑖𝒑𝑗. Consequently, the computation of
the distance ∆ (P , 𝒌𝑡) between the Pareto frontier P = {𝒑1} and a point 𝒌𝑡 reduces
to the Euclidean distance between 𝒑1 and 𝒌𝑡 . Formally:

∆ (P , 𝒌𝑡) = | |𝒑1 − 𝒌𝑡 | |, (6.2)

5. We provide an empirical justification for the normalization of the metrics values in Section 6.3.4.
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where | |·| | represents the Euclidean norm.
In the following, we delve into how calculating each distance ∆

(
𝒑𝑖𝒑𝑗, 𝒌𝑡

)
.

Distance computation

Now, we focus on how to compute the distance ∆
(
𝒑𝑖𝒑𝑗, 𝒌𝑡

)
from a segment 𝒑𝑖𝒑𝑗

belonging to the Pareto frontier to a model configuration represented by 𝒌𝑡 ∈ K .
Conceptually, computing the distance between the segment 𝒑𝑖𝒑𝑗 and the point

𝒌𝑡 is equivalent to calculating the Euclidean distance between the point 𝒌𝑡 and its
closest point lying on the segment 𝒑𝑖𝒑𝑗. Then, the first step is finding the closest
point 𝒈𝒑𝑖𝒑𝑗𝒌𝑡 ∈ ℝ𝑚 belonging to 𝒑𝑖𝒑𝑗 from 𝒌𝑡 .

We define the segment 𝒑𝑖𝒑𝑗 = 𝒑𝑖 − 𝒑𝑗 and the segment 𝒑𝑖𝒌𝑡 = 𝒑𝑖 − 𝒌𝑡 . To find
where the point 𝒌𝑡 projects onto the infinite line defined by 𝒑𝑖 and 𝒑𝑗, we compute a
scalar value 𝑤𝒑𝑖𝒑𝑗𝒌𝑡 , which is given by:

𝑤𝒑𝑖𝒑𝑗𝒌𝑡 =
𝒑𝑖𝒌𝑡 · 𝒑𝑖𝒑𝑗
𝒑𝑖𝒑𝑗 · 𝒑𝑖𝒑𝑗

,

where 𝑤𝒑𝑖𝒑𝑗𝒌𝑡 tells us how far along the segment 𝒑𝑖𝒑𝑗 the projection of 𝒌𝑡 lies. Specif-
ically: (i) if 0 < 𝑤𝒑𝑖𝒑𝑗𝒌𝑡 < 1, the projection lies between 𝒑𝑖 and 𝒑𝑗 on the segment;
(ii) if 𝑤𝒑𝑖𝒑𝑗𝒌𝑡 = 0, the projection lies exactly at 𝒑𝑖; (iii) if 𝑤𝒑𝑖𝒑𝑗𝒌𝑡 = 1, the projection
lies exactly at 𝒑𝑗; (iv) if 𝑤𝒑𝑖𝒑𝑗𝒌𝑡 < 0, the projection lies before 𝒑𝑖; (v) if 𝑤𝒑𝑖𝒑𝑗𝒌𝑡 > 1,
the projection lies beyond 𝒑𝑗. By clamping 𝑤𝒑𝑖𝒑𝑗𝒌𝑡 to the range [0, 1], we ensure the
closest point lies on the segment. Then, we can calculate the closest point 𝒈𝒑𝑖𝒑𝑗𝒌𝑡 as:

𝒈𝒑𝑖𝒑𝑗𝒌𝑡 = 𝒑𝑖 + 𝑤𝒑𝑖𝒑𝑗𝒌𝑡 × 𝒑𝑖𝒑𝑗.

Finally, we can compute the distance ∆
(
𝒑𝑖𝒑𝑗, 𝒌𝑡

)
as the Euclidean distance between

the point 𝒌𝑡 and 𝒈𝒑𝑖𝒑𝑗𝒌𝑡 . Formally:

∆
(
𝒑𝑖𝒑𝑗, 𝒌𝑡

)
= | |𝒌𝑡 − 𝒈𝒑𝑖𝒑𝑗𝒌𝑡 | |, (6.3)

where | |·| | represents the Euclidean norm.
By computing ∆

(
𝒑𝑖𝒑𝑗, 𝒌𝑡

)
∀ 𝒑𝑖𝒑𝑗 ∈ P such that 𝑖 ∈ {1, . . . , 𝑃 − 1}, 𝑗 = 𝑖 + 1, we

obtain the set {∆
(
𝒑𝑖𝒑𝑗, 𝒌𝑡

)
}. The minimum value of this set is the distance ∆ (P , 𝒌𝑡)

of the point 𝒌𝑡 from the Pareto frontier P as formalized in Eq. (6.1).

6.3.2 Metrics

Section 6.3.1 describes the protocol to follow to apply the multi-objective evaluation
approach proposed in this work. The framework aims to provide a methodology
to understand to what extent a recommendation model needs accurate fine-tuning
to reach Pareto optimal performance given various assessed perspectives. For this
reason, we now define two metrics that rely on the distances between each configu-
ration model and its Pareto frontier. The core idea is to exploit such distances to
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quantitatively measure the probability that, by varying the hyper-parameters values
of a model, such model offers Pareto optimal solutions or solutions close to them.
The higher this probability, the less sensitive to hyper-parameter tuning is the model
from a multi-dimensional perspective.

A straightforward metric is the mean of the distances computed as in section 6.3.1.
Given the set of distances {∆ (P , 𝒌𝑡)} of each point 𝒌𝑡 ∈ K from the Pareto frontier
P , we define the mean 𝜇 of the distances in {∆ (P , 𝒌𝑡)} as follows:

𝜇 =
∑

𝒌𝑡∈K ∆ (P , 𝒌𝑡)
|K | . (6.4)

The metric 𝜇 indicates how distant the model configurations are from the Pareto
optimal configurations on average. Then, the lower the value of 𝜇, the shorter is
the average distance between the dominated model configurations and the model
configurations that ensure a Pareto optimal trade-off of the 𝑚 metrics. This metric
captures a scenario in which many configurations of a model are Pareto optimal
since the higher the number of solutions lying on the Pareto frontier, the lower
the value of 𝜇. From the hyper-parameter tuning point of view, it is evident that
a lower value of 𝜇 suggests that the considered model needs a less precise hyper-
parameter tuning to provide a Pareto optimal (or close to) solution as it offers many
configurations on the Pareto frontier or near to it. Conversely, a higher value of 𝜇
reveals that the model needs several hyper-parameter adjustments to gather a Pareto
optimal configuration (or close to it).

After computing the mean 𝜇 of the distances in {∆ (P , 𝒌𝑡)} of each point 𝒌𝑡 ∈ K
from the Pareto frontierP , we can calculate the standard deviation of these distances.
Given the set of distances {∆ (P , 𝒌𝑡)} of each point 𝒌𝑡 ∈ K from the Pareto frontier
P and theirmean 𝜇, we define the standard deviation 𝜎 of the distances in {∆ (P , 𝒌𝑡)}
as follows:

𝜎 =

√︄∑
𝒌𝑡∈K (∆ (P , 𝒌𝑡) − 𝜇)2

|K |−1
. (6.5)

The metric 𝜎 indicates the dispersion of the distance values of the model configu-
rations from the Pareto frontier. Then, the lower the value of 𝜎 , the less dispersed
are the model configurations in terms of distance from the Pareto frontier. In other
words, a small value of 𝜎 catches a situation where the model configurations are
equally distant from the Pareto frontier. Then, from the hyper-parameter tuning
perspective, a lower value of 𝜎 implies that modifications in the hyper-parameter
values do not strongly impact the achievement of a solution closer to the Pareto
frontier. Conversely, a higher value of 𝜎 means that a precise adjustment of the
hyper-parameters can help reach a solution closer to the Pareto frontier than others.
It is worthmentioning that 𝜎 computed as in Eq. (6.5) does not indicate to what extent
the model can provide different trade-off solutions given the examined objectives.
Indeed, this dispersion metric is computed on the distances of several solutions from
the Pareto frontier and not on the metric performance.
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)

(a) 𝜎 ↑ and 𝜇 ↑.
𝑓1(𝑥)

𝑓 2
(𝑥

)
(b) 𝜎 ↓ and 𝜇 ↑.

𝑓1(𝑥)

𝑓 2
(𝑥

)

(c) 𝜎 ↓ and 𝜇 ↓.
𝑓1(𝑥)

𝑓 2
(𝑥

)

(d) 𝜎 ↑ and 𝜇 ↓.

Dominated solutions Non-dominated solutions

Figure 6.2. Different cases for joint interpretation of 𝜎 and 𝜇 in terms of sensitivity to hyper-
parameters tuninf of recommendation models in a multi-objective scenario. 𝑓1(𝑥) and 𝑓2(𝑥)
be two metrics for which the higher is the better.

6.3.3 Interpretation of the metrics

In the previous section, we have introduced the metrics 𝜇 and 𝜎 to assess the sensitiv-
ity to hyper-parameters tuning of Recommender Systems (RSs) in a multi-objective
scenario. To summarize, these metrics capture different situations in the objective
function space:

• 𝜇measures to what extent the solutions in the objective function space are close
to or lie on the Pareto frontier;

• 𝜎 measures to what extent the solutions in the objective function space are dis-
persed in terms of distance to the Pareto frontier.

Since these metrics catch different properties, their simultaneous assessment pro-
vides a comprehensive lens for interpreting RS sensitivity to hyper-parameter tuning
through the Pareto frontiers. We can provide a comprehensive simultaneous inter-
pretation of 𝜇 and 𝜎 by identifying four distinct illustrative cases:

1. High Mean and Standard Deviation: the model provides solutions with high
and varied distances from the Pareto frontier, indicating that the hyper-parameters
tuning can lead to highly different outcomes in a multi-faceted assessment. Hence,
the model is significantly susceptible to hyper-parameter tuning (Figure 6.2a).

2. High Mean and Low Standard Deviation: the model provides solutions uni-
formly distanced from the Pareto frontier but with consistent displacement.
Hence, the model is moderately sensitive to hyper-parameter adjustments (Fig-
ure 6.2b).

3. Low Mean and Standard Deviation: the model provides solutions that are
concentrated near or on the Pareto frontier, indicating that the model achieves
robust performance across a range of hyper-parameter settings. Hence, the model
shows insensitivity to hyper-parameter tuning (Figure 6.2c).
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Figure 6.3. Pareto Frontiers of six recommendation baselines evaluated with nDCG and
APLT. The Pareto frontiers of better performing models dominate the others.

4. LowMean and High Standard Deviation: the model provides many solutions
near or on the Pareto frontier. However, a few outlier solutions are farther from
the frontier. Hence, the model exhibits minimal sensitivity to hyper-parameter
tuning (Figure 6.2d).

The fourth scenario is particularly intriguing. Delving deeper into this case can
uncover valuable insights, such as identifying the specific hyper-parameter con-
figurations responsible for the outlier solutions that deviate significantly from the
frontier. Therefore, a hyper-parameter-level fine-grained analysis of 𝜇 and 𝜎 could
let us discover the hyper-parameters (and their values) that make the recommender
system less sensitive to the hyper-parameter tuning. Such an analysis could in-
form the refinement of hyper-parameter search spaces to minimize suboptimal
outcomes. Ultimately, this taxonomy provides a structured framework for under-
standing the interplay between model performance and hyper-parameter tuning
in a multi-objective scenario, offering a basis for targeted optimization and deeper
exploration of model behavior.

6.3.4 Notes on the metrics values normalization

When adhering to the evaluation protocol outlined in Section 6.3.1, a model’s hyper-
parameter configuration is characterized by a suite of metric values which are
normalized using min-max normalization (𝜙(·)). This normalization serves two
critical purposes.

First, it ensures that metrics with different scales are treated equitably. Without
normalization, a metric with a larger scale could disproportionately influence the
computation of the distance ∆(P , 𝒌𝑡) in Eq. (6.1), leading to biased results.

Second, normalization facilitates a fair comparison among models by mitigating
performance biases and enabling a consistent evaluation of sensitivity to hyper-
parameter tuning in multi-objective scenarios. In this regard, Figure 6.3 depicts the
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Pareto frontiers of six recommendation baselines evaluated using nDCG and APLT
(see Section 6.4 for experimental details). A poorly performing model is likely to
have its Pareto frontier dominated by those of other models, resulting in smaller
distances between the dominated points and the model’s Pareto frontier. However,
smaller distances do not indicate reduced sensitivity to hyper-parameter tuning.
Instead, they reflect the model’s inferior overall performance. Normalization of
metric values is indispensable to eliminate this performance bias and accurately
assess hyper-parameter sensitivity.

6.4 Experiments

This section provides an overview of the experimental settings used to validate
the proposed framework for measuring the sensitivity of recommender systems to
hyper-parameters tuning. We begin by outlining the evaluation methodology and
the multi-objective evaluation scenarios. Next, we describe the recommendation
baselines and their associated hyper-parameter search spaces. Following this, we
present the datasets utilized in the experiments. Lastly, we detail the evaluation
protocol to ensure reproducibility and transparency.

6.4.1 Experimental Setup

Evaluation Scenarios and Methodology

This experimental setup aims to evaluate the proposed framework’s ability to mea-
sure the sensitivity of recommendation algorithms to hyper-parameter tuning in a
multi-objective scenario (Section 6.3.1). To achieve this, we train |K |= 32 distinct
hyper-parameter configurations for each recommendation baseline outlined in Ta-
ble 6.1, resulting in a total of 32 × 6 = 192 trained models. We then employ a suite
of metrics to evaluate the recommendation lists generated by each model, captur-
ing performance from multiple perspectives. Then, the experiments are structured
into two scenarios: (i) a user-centric scenario that focuses on metrics that evalu-
ate the quality of recommendations from the end user’s perspective (i.e., accuracy,
diversity, and novelty); (ii) a popularity bias scenario that deals with the issue of
popularity bias in recommendations, assessing the trade-off between the relevance
of recommendations and the ability of the models to suggest less popular items.

For each scenario, we define 𝑚 metrics to evaluate model performance. For a
given recommendation baseline, the configurations of the trained models form
solutions in an 𝑚-dimensional objective function space. This results in 32 points
in the objective function space for each baseline. Among these points, the Pareto
optimal configurations, which constitute the Pareto frontier P , are identified, while
the remaining points represent dominated solutions.

The following outlines the scenarios employed to utilize the proposed framework.
Contextually, we also define the metrics computed that compose the 𝑚-dimensional
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objective function spaces.
User-centered scenario. The evaluation of Recommender Systems (RSs) has tradi-
tionally focused on accuracy, often measured through metrics like Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and ranking-based metrics such as
Normalized Discounted Cumulative Gain (nDCG). These metrics assess how well
a system predicts or ranks items that align with user preferences, ensuring that
relevant items are prioritized. However, while accuracy remains a foundational goal,
this narrow focus overlooks critical aspects of recommendation quality, particularly
the ability to foster discovery and engagement through novelty and diversity [126, 181].
These elements are necessary to prevent accurate recommendations from becoming
predictable, uninspiring, and ultimately less valuable to the user [181].

Novelty focuses on providing recommendations that introduce unfamiliar and
previously unseen items [126, 185]. For instance, in a movie recommendation context,
suggesting niche films or those outside mainstream popularity enhances novelty,
encouraging users to explore beyond their typical preferences.

Unlike novelty, which evaluates the relationship between a recommended item
and the user’s prior interactions, diversity measures the relationships among the
recommended items [8, 185]. For example, a recommendation list that includesmovies
spanning multiple genres, themes, or styles exhibits high diversity, whereas one
focused solely on a single genre might seem monotonous. Diversity operates on
two levels: individual diversity, which captures the variety within a single user’s
recommendation list, and aggregate diversity, which evaluates the breadth of unique
items recommended across all users in the system. High aggregate diversity is crucial
for mitigating concentration on a small subset of items.

Balancing accuracy, novelty, and diversity presents inherent trade-offs [191].
Highly accurate systems tend to prioritize popular or predictable items, often at the
expense of novelty and diversity. Conversely, enhancing novelty by recommending
obscure or long-tail items can reduce perceived relevance. Similarly, improving
diversity by including a wider range of items might introduce irrelevant or less de-
sirable recommendations, impacting user satisfaction. These trade-offs underscore
the importance of adopting multi-objective evaluation strategies that account for
the complex interplay between these dimensions.

Given this context, we employ our multi-objective evaluation framework in a
recommendation scenario that simultaneously focuses on recommendations’ accu-
racy, novelty, and diversity. Therefore, we employ 𝑚 = 3 metrics to evaluate these
recommendation objectives, obtaining a three-dimensional objective function space:

• Normalized Discounted Cumulative Gain (nDCG) is a ranking-based evaluation
metric widely used to measure the accuracy of recommendations. It accounts for
the recommended items’ relevance and position in the recommendation list (see
Section 2.3.3).

• Gini index is a measure of aggregate diversity used to measure the distributional
inequality, i.e., how unequally different items are chosen by users when a particular
RS is used [42] (see Section 2.4.1).
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• Expected Popularity Complement (EPC) measures the novelty of recommenda-
tions [42]. It measures the expected number of relevant items belonging to the
long-tail (see Section 2.4.1).

Popularity bias scenario. Popularity bias is a well-documented issue in recom-
mender systems, where algorithms tend to favor previously widely popular items,
often at the expense of less known or niche content [24]. This bias occurs because
many recommendation algorithms rely on user interactions with items to drive
recommendations. Items that are more frequently interacted with tend to be ranked
higher, resulting in recommendations that are overly dominated by popular content.
While these recommendations appear accurate for users who have aligned prefer-
ences with the mainstream, they fail to introduce novelty or encourage users to
explore new and diverse options, limiting the overall usefulness of the system. One
significant consequence of popularity bias is the unequal exposure of items, which
raises important concerns about provider fairness [26, 164]. By their widespread
engagement, popular items dominate the recommendation landscape, making it
difficult for less popular or emerging items to gain visibility. This situation creates
a feedback loop where already-popular items are continually recommended while
newer or niche content, which may be equally relevant to the user, remains under-
represented. This imbalance limits the diversity of items recommended to users and
perpetuates content dominance from well-established providers or creators. For
instance, in an online marketplace or streaming service, popular items from major
brands or established creators receive far more exposure than smaller, independent
creators, reducing opportunities for them to reach new audiences.

Achieving an optimal balance remains a challenge. Prioritizing accuracy based
on historical interactions can exacerbate popularity bias, reinforcing the dominance
of popular content. Conversely, emphasizing niche items can reduce relevance by
introducing items that may not resonate with the user.

We consider 𝑚 = 2 metrics to evaluate the sensitivity to hyper-parameter tuning
of recommendation baselines in a scenario, including accuracy and popularity bias
of recommendations. We evaluate the relevance through the nDCG (see Eq. (??)).
Furthermore, we consider two metrics that deal with how much the popularity of
items in the catalog influences those suggested to users. In particular, we consider
the average percentage of items in the long-tail (APLT) [3], which measures in what
proportion unpopular items (i.e., niche) are recommended in users’ recommendation
lists (see Section 2.4.2).

Baselines and Hyper-parameter tuning

We train six recommendation models from three different families of algorithms: (i)
Neighborhood-basedmodels; (ii)Matrix factorizationmodels; (iii)Graph-based
models.

Regarding neighborhood-based models, we select the following baselines:

• UserKNN [151]: a collaborative filtering algorithm that computes the similarity
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between users based on their historical preferences. It predicts a user’s preference
by aggregating the ratings of the most similar users;

• ItemKNN [156]: a collaborative filtering algorithm that measures item similarity
based on user interaction patterns. It predicts a user’s preference by analyzing
similar items with which the user has previously interacted.

The matrix factorization trained models are:

• BPRMF [149]: Bayesian Personalized Ranking Matrix Factorization optimizes the
recommendation process by directly modeling pairwise comparisons. It focuses
on ranking items such that relevant ones are placed above irrelevant ones for a
specific user;

• NeuMF [85]: Neural Matrix Factorization combines traditional matrix factoriza-
tion with deep learning. It uses a multi-layer perceptron (MLP) to model complex
and non-linear interactions between user and item embeddings.

Finally, the graph-based models considered are:

• NGCF [200]: Neural Graph Collaborative Filtering extends collaborative filtering
by propagating user and item embeddings through a user-item bipartite graph. It
captures higher-order connectivity and feature interactions in the graph structure;

• LightGCN [84]: Light Graph Convolutional Network simplifies graph-based rec-
ommendation models by removing unnecessary operations like feature transfor-
mation and activation. It aggregates embeddings over multiple graph layers to
model user-item interactions effectively.

We choose these algorithms to generalize the findings of the obtained results and
find common patterns among different algorithms belonging to the same family. We
explore 32 distinct hyper-parameter configurations of each model through a grid
search. Table 6.1 overviews the hyper-parameters tuned for each baseline.

Datasets

We adopt three public datasets to train the baseline and use the proposed evaluation
framework, i.e., Amazon Books [134], Movielens1M [81], and Amazon Music [13, 134].
We choose these datasets to ensure the generalization of the results by varying
the data domains and characteristics. Amazon Books is a dataset from the book
domain. It contains 771099 interactions among 30839 users and 30548 items (0.99
sparsity). Movielens1M is a movie dataset with 6040 users, 3706 items, and 1000209
interactions, resulting in a lower sparsity than the other datasets. Finally, Amazon
Music is a dataset of the music domain containing 10027 interacted items by 14354
users, totalizing 145523 interactions (0.99 sparsity).

Evaluation Protocol

The datasets are processed in an implicit feedback setting and split using a 70-10-20
hold-out strategy. During training, model performance is evaluated on the validation
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Table 6.1. Overviewof the hyper-parameters tuned for the recommendation baselines adopted
in this study.

Family Algorithm Hyper-parameter Values

Neighborhood-based
UserKNN Neighbors {10, 20, 30, 50, 100, 150, 200, 250}

Similarity {cosine, jaccard, euclidean, pearson}

ItemKNN Neighbors {10, 20, 30, 50, 100, 150, 200, 250}
Similarity {cosine, jaccard, euclidean, pearson}

Factorization-based

BPRMF
Factors {8, 16, 32, 64}
Learning Rate {0.001, 0.0005, 0.005, 0.0001}
Regularization {0.1, 0.05}

NeuMF
Factors {8, 16, 32, 64}
Learning Rate {0.001, 0.0005, 0.005, 0.0001}
Negative Samples {4, 8}

Graph-based

NGCF
Factors {8, 16, 32, 64}
Layers {1, 2, 3, 4}
Learning Rate {0.001, 0.0005}

LightGCN
Factors {8, 16, 32, 64}
Layers {1, 2, 3, 4}
Learning Rate {0.001, 0.0005}

set every 20 epochs. Following standard evaluation practices in the recommender
systems community [20], we select the best iteration based on the nDCG@10 score on
the validation set. The model from this iteration is then used to report performance
on the test set. We employ early stopping with a patience value of 5 epochs to prevent
overfitting.

6.5 Results and Discussion

This section delves into the outcomes of our experimental evaluation, providing
a detailed analysis of the results obtained, and directly addressing the research
questions posed in the introduction. The plots of the objective function spaces
gathered for each combination of model family, dataset, and experimental scenario
are reported in Appendix A.

6.5.1 Sensitivity to Hyper-parameter Tuning in Multi-Objective
Scenarios (RQ2)

In this section, we aim to understand to what extent traditional accuracy-based
RSs are sensitive to hyper-parameter tuning when considering multiple objectives.
Table 6.2 reports the value of 𝜇 and 𝜎 computed apply our proposed framework
outlined in Section 6.3 for the six traditional recommendation baselines consid-
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Table 6.2. Mean (i.e., 𝜇) and standard deviation (i.e., 𝜎 ) of the distances among each hyper-
parameter configuration and the Pareto frontier for each model. The results are categorized
into the studied scenarios. For each scenario, bold and underline stand for best and second-
to-best values, respectively.

Metrics Models Amazon Books Amazon Music Movielens1M

𝝁 𝝈 𝝁 𝝈 𝝁 𝝈

Accuracy

—
Bias

UserKNN 0.0117 0.0384 0.0157 0.0292 0.0232 0.0484

ItemKNN 0.1221 0.1910 0.6187 0.4509 0.0633 0.0825
NGCF 0.1398 0.1109 0.6559 0.4038 0.1509 0.1771
LightGCN 0.6807 0.4511 0.6718 0.4185 0.7008 0.3918
BPRMF 0.6711 0.3216 0.7794 0.1789 0.7917 0.3748
NeuMF 0.1711 0.2172 0.7340 0.2957 0.0875 0.1049

Accuracy

—
Novelty

—
Diversity

UserKNN 0.3918 0.4011 0.4209 0.4092 0.0723 0.1038

ItemKNN 0.7633 0.4856 1.0015 0.6552 0.0809 0.1311
NGCF 0.4281 0.4135 0.8201 0.5270 0.2819 0.3171
LightGCN 0.8316 0.5604 0.7509 0.5135 0.8424 0.5195
BPRMF 1.0089 0.4543 0.9587 0.2599 0.9314 0.5469
NeuMF 0.2581 0.3045 0.8261 0.4299 0.1091 0.1292

ered. The values are reported for each dataset and for both the accuracy/bias and
accuracy/novelty/diversity scenarios.

Accuracy/Bias Scenario

In the accuracy/bias scenario, UserKNN emerges as the model least sensitive to
hyper-parameter tuning. As shown in Table 6.2, this model consistently achieves
the lowest values of 𝜇 and 𝜎 across all three datasets. This outcome aligns with the
interpretation outlined in Section 6.3.3, where low mean and standard deviation
values indicate that the model does not require precise tuning to reach Pareto opti-
mal solutions. Figures A.2a and A.2b further corroborate this finding, illustrating
that the majority of UserKNN’s configurations produce Pareto optimal solutions
across the Amazon Books dataset, offering a diverse range of trade-offs. Similar
patterns are observed for the Amazon Music and Movielens1M datasets. ItemKNN
also demonstrates relatively low sensitivity to hyper-parameter tuning in the accu-
racy/bias scenario, ranking as the second-best performer in terms of 𝜇. However,
its higher 𝜎 values, particularly for the Amazon Books and Amazon Music datasets,
suggest that some configurations fail to approach the Pareto frontier. These find-
ings correspond to the fourth case described in Section 6.3.3, where variability in
performance arises. For example, Figure A.2c shows that dominated configurations
are primarily associated with solutions using “Jaccard” as the similarity metric. This
observation highlights the potential of our framework to investigate the impact of in-
dividual hyper-parameter choices systematically (Section 6.5.2). In contrast, NeuMF
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and NGCF exhibit fluctuating behavior across datasets. While these models perform
relatively well on the Amazon Books and Movielens1M datasets, their performance
deteriorates on the Amazon Music dataset (Figures A.8c and A.7d). Conversely,
BPRMF and LightGCN generally rank among the worst-performing models in this
analysis, frequently displaying high 𝜇 and 𝜎 values. However, the Amazon Music
dataset provides an intriguing exception, where BPRMF demonstrates low 𝜎 but high
𝜇, indicating consistent yet suboptimal solutions that remain distant from the Pareto
frontier. This scenario aligns with the second case described in Section 6.3.3, where
low standard deviation does not imply insensitivity to hyper-parameter tuning.
Supporting this, Figures A.8a and A.8b reveal that many BPRMF configurations with
suboptimal performance share near-zero or zero values for APLT, further confirming
their limitations. Finally, our analysis reveals that models exhibiting lower sensitiv-
ity to hyper-parameter tuning tend to demonstrate a negative correlation between
nDCG and APLT (i,e., UserKNN and ItemKNN). These models typically produce a
greater number of Pareto optimal solutions, significantly influencing both 𝜇 and 𝜎 .
However, certain models are capable of achieving specific configurations that excel
simultaneously in both nDCG and APLT. For instance, as illustrated in Figure A.8c,
two NeuMF configurations achieve superior performance on both objectives, while
the remaining dominated solutions distribute across various trade-offs.

This observation highlights a critical dilemma in model selection: whether to
prioritize a model capable of achieving high simultaneous multi-objective perfor-
mance at the cost of requiring precise hyper-parameter tuning, or to opt for a model
that, while easier to train, offers a broader spectrum of trade-offs. This trade-off
underscores the importance of balancing practical considerations, such as compu-
tational cost and tuning complexity, with the ability to meet specific application
requirements effectively.

Accuracy/Novelty/Diversity Scenario

In the accuracy/novelty/diversity scenario, achieving Pareto optimal solutions proves
to be more challenging due to the reduced cardinality of the Pareto frontiers, as ob-
served in Appendix A. This lower cardinality indicates fewer configurations capable
of simultaneously balancing accuracy, novelty, and diversity. Despite this increased
complexity, some patterns identified in the accuracy/bias scenario persist.

UserKNN continues to demonstrate robustness as a recommendation model that
requires less precise hyper-parameter tuning when balancing multiple objectives.
In this scenario, it consistently achieves the best or second-best values for 𝜇 and 𝜎 ,
further validating its stability and adaptability across diverse trade-offs.

NeuMF and NGCF display similar behaviors to those observed in the accu-
racy/bias scenario. They require more precise hyper-parameter tuning solely for the
Amazon Music dataset, which consistently poses challenges in achieving optimal
configurations. In contrast, LightGCN and BPRMF remain the weakest performers
in this analysis, frequently exhibiting high 𝜇 and 𝜎 values, indicating a pronounced
sensitivity to hyper-parameter tuning and a tendency to provide suboptimal solu-
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tions.
ItemKNNmaintains a consistent performance across most datasets, except for

the Amazon Books dataset, where its effectiveness slightly diminishes.

6.5.2 Impact ofHyper-parameters on the Tuning of Recommender
Systems (RQ3)

In this section, we delve into the impact of individual hyper-parameter values on
model sensitivity to hyper-parameter tuning. While the previous section focused
on analyzing model sensitivity to hyper-parameter tuning considering all the 32
trained configurations, our goal here is to identify specific hyper-parameters and
their respective values that are most likely to result in a Pareto optimal or near-
optimal configuration. To conduct this investigation, we isolate the dominated
configurations in the objective function space that share a specific hyper-parameter
value alongside the entire Pareto frontier. Subsequently, we calculate the metrics
𝜎 and 𝜇 based on the distances between all the configurations (having that hyper-
parameter and value) and the Pareto frontier. This analysis enables us to assess how
much a particular hyper-parameter value contributes to achieving Pareto optimal
trade-offs concerning multiple objectives. Tables 6.3, 6.4, and 6.5 report the results of
this analysis.

Factorization Models

Table 6.3 illustrates the impact of the factors and learning rate hyper-parameters
for the factorization models, namely BPRMF and NeuMF. For NeuMF, the hyper-
parameter setting factors=64 emerges as the most influential, consistently producing
solutions closer to the Pareto frontier across all datasets and scenarios. This observa-
tion is evidenced by the lowest (or near-lowest) values of 𝜇. Except for the Amazon
Music dataset, this configuration also minimizes 𝜎 in both scenarios, indicating
that most solutions are tightly clustered near the frontier. Figures A.8c and A.17c
depict these situations for both scenarios using the Amazon Music dataset. Thus,
when factors=64 are used, fine-tuning other hyper-parameters becomes less critical.
Furthermore, the observed reductions in 𝜇 and 𝜎 compared to the global case suggest
that constraining a single hyper-parameter simplifies the overall tuning process.

For BPRMF, learning rate=0.005 is the most impactful hyper-parameter overall.
Higher learning rates tend to enhance multi-objective performance, potentially due
to the sequential nature of BPRMF training. However, this behavior is not replicated
in NeuMF. Instead, a pattern similar to that observed in NeuMF is seen in BPRMF,
where factors=64 ranks as the second most impactful hyper-parameter. This may
stem from the larger embedding size enabling more effective modeling of user and
item characteristics, addressing accuracy-related and beyond-accuracy objectives.

Notably, reducing the number of factors generally leads to an increase in 𝜇 for
both models, particularly for NeuMF. These findings underscore the central role
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of the factors hyper-parameter in shaping the performance of factorization-based
models, making it the most impactful parameter in this category.

Graph-based Models

Table 6.4 examines the influence of the factors, layers, and learning rate hyper-
parameters for graph-based models, specifically NGCF and LightGCN. In most
dataset-scenario combinations, factors=64 emerges as the most impactful hyper-
parameter, consistently producing Pareto optimal or near-optimal solutions. This
configuration generally yields the lowest values of 𝜇 and acceptable levels of 𝜎 .
These results align with those observed for factorization-based models, further
confirming that increasing the embedding size enhances the model’s capacity to
capture latent user preferences and item characteristics better, ultimately leading to
superior multi-objective performance.

In contrast to factorization models, a clear hierarchy of hyper-parameter impor-
tance is evident in the graph-based models. Notably, layers=4 consistently ranks as
the second most influential hyper-parameter, significantly contributing to Pareto
optimal configurations. Conversely, the learning rate appears to be the least impactful
hyper-parameter in this analysis, exhibiting minimal influence on the model’s ability
to achieve optimal trade-offs.

These findings underscore a recurring theme across different model families: the
factors hyper-parameter is critical for achieving Pareto optimality, emphasizing the
importance of embedding size in capturing multifaceted relationships in the data.
Moreover, the structured impact of layers in graph-based models highlights the
necessity of tailoring hyper-parameter choices to the unique architectural properties
of each model type.

Neighborhood-based Models

Table 6.5 analyzes the influence of the neighbors and similarity hyper-parameters
for the UserKNN and ItemKNNmodels. These models, particularly UserKNN, in-
herently exhibit lower sensitivity to precise hyper-parameter adjustments to achieve
Pareto optimality, as previously demonstrated in Table 6.2. Consequently, this fine-
grained analysis reveals fewer notable patterns than other model families. Indeed,
numerous hyper-parameter configurations yield 𝜇 and 𝜎 values equal to zero, in-
dicating that these configurations consistently guarantee Pareto optimal trade-offs
without requiring extensive tuning.

Among the similarity metrics, cosine similarity emerges as the most effective,
consistently achieving the best results in terms of 𝜇 and 𝜎 across various datasets and
scenarios. This finding highlights the robustness of cosine similarity in facilitating
optimal trade-offs between multiple objectives. Conversely, other metrics, such as
Jaccard or Manhattan, exhibit more variability in their ability to produce Pareto
optimal configurations.

These results confirm the inherent advantage of UserKNN and, to a lesser extent,
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ItemKNN in requiring minimal tuning effort, making them suitable choices for
scenarios where simplicity and stability in hyper-parameter tuning are prioritized.
Moreover, the consistent performance of cosine similarity suggests its suitability as
a default choice when deploying neighborhood-based models.

6.6 Summary

This chapter addresses the challenge of hyper-parameter tuning sensitivity in Rec-
ommender Systems (RSs) when evaluating them under multiple objectives. By intro-
ducing a novel evaluation framework, we provide a systematic approach to under-
standing to what extent traditional RSs require precise hyper-parameter tuning to
achieve Pareto optimal solutions in multi-objective scenarios. Using metrics like the
mean distance to the Pareto frontier) and the standard deviation of such distances,
the framework quantifies both the proximity and consistency of solutions relative to
the Pareto frontier. This enables a nuanced analysis of hyper-parameter sensitivity,
guiding researchers and practitioners toward configurations that balance accuracy
with beyond-accuracy goals. We conduct experiments on six RS models spanning
neighborhood-based, factorization-based, and graph-based approaches. These ex-
periments are carried out under two scenarios: balancing accuracy with novelty
and diversity and mitigating popularity bias alongside accuracy. The results reveal
notable patterns. Neighborhood-based models, such as UserKNN, demonstrated
low sensitivity to hyper-parameter tuning, consistently achieving Pareto-optimal
solutions. In contrast, models like LightGCN and BPRMF exhibited higher sensitiv-
ity, requiring precise tuning to approach optimal performance. The analysis further
identified the embedding size (factors) as the most impactful hyper-parameter across
multiple models, with larger embeddings generally enhancing the capacity to effec-
tively model user preferences and item characteristics. The findings underscore the
practical trade-offs between flexibility and performance. While somemodels achieve
robust multi-objective performance with minimal tuning, others demand precise
hyper-parameter adjustments to deliver similar results. This insight is crucial for
practitioners optimizing traditional RSs in diverse, real-world scenarios.
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Chapter 7

Exposing the Challenges of

Multi-Objective Recommendation

through a Reproducibility Study

Providing effective suggestions is of predominant importance for suc-
cessful Recommender Systems (RSs). Nonetheless, the need of account-
ing for additional multiple objectives has become prominent, from both
the final users’ and the item providers’ points of view. This need has
led to a new class of RSs, calledMulti-Objective Recommender Systems
(MORSs). These systems are designed to provide suggestions by con-
sidering multiple (conflicting) objectives simultaneously, such as di-
verse, novel, and fairness-aware recommendations. In this work, we
reproduce a state-of-the-art study on MORSs that exploits a reinforce-
ment learning agent to satisfy three objectives, i.e., accuracy, diversity,
and novelty of recommendations. The selected study is one of the few
MORSs where the source code and datasets are released to ensure the
reproducibility of the proposed approach. Interestingly, we find that
some challenges arise when replicating the results of the original work,
due to the nature of multiple-objective problems. We also extend the
evaluation of the approach to analyze the impact of improving user-
centered objectives of recommendations (i.e., diversity and novelty)
in terms of algorithmic bias. To this end, we take into consideration
both popularity and category of the items. We discover some inter-
esting trends in the recommendation performance according to dif-
ferent evaluation metrics. In addition, we see that the multi-objective
reinforcement learning approach is responsible for increasing the bias
disparity in the output of the recommendation algorithm for those
items belonging to positively/negatively biased categories. We pub-
licly release datasets and codes in the following GitHub repository:
https://github.com/sisinflab/MORS_reproducibility.1

1. This chapter is based on the work published in the Proceedings of the 17th ACM Conference on
Recommender Systems (RecSys 2023) “Reproducibility of Multi-Objective Reinforcement Learning
Recommendation: Interplay between Effectiveness and Beyond-Accuracy Perspectives”.

https://github.com/sisinflab/MORS_reproducibility
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7.1 Introduction

The primary focus of the recommender systems research community thus far has
been to construct algorithms that can detect and propose accurate content to users.
However, mainstream metrics – such as accuracy – have frequently been prioritized
during this process, neglecting other high-quality content-derived elements. The
last few years have highlighted the diversity and novelty of recommendations as
indispensable factors for sparking user interest, as encouraging a heterogeneous
array of relevant items is more likely to fulfill a user’s diverse needs [75, 152]. In
addition, the fairness in one- and two-sided marketplaces [35, 111, 147] and bias
towards certain groups of items and users of recommendations [6, 228] have been
classified as crucial due to the recent regulations on trustworthy AI [136].

To this extent, several works have been proposed that evaluate the recommenda-
tion techniques under a beyond-accuracy perspective or re-rank the recommenda-
tion lists [14, 111, 131]. However, it is worth noting that training a model accounting
for the sole accuracy can lead to less than optimal recommendations. This narrowly
focused training ignores other crucial goals, like encouraging long-term engage-
ment, promoting a diverse range of user-item interactions, and ultimately leading to
purchases. Nevertheless, achieving these objectives requires a differentiable function
that considers both objectives, which is arduous. Consequently, Multi-Objective
Optimization (MOO) [124] is constrained when the objectives are only represented
by non-differentiable metrics or functions in specific domains.

Upon examining the current state of the recommendation research, a growing
trend has emerged, with researchers sharing the source code used in their experi-
ments and algorithms [51]. This trend is likely due to themounting importance placed
on reproducibility as a significant criterion in academic peer reviewing. However,
for the majority of Multi-Objective Recommender Systems (MORSs) [7, 224], the
source code was either not supplied or lacked necessary details, making it difficult to
reproduce the findings reliably. The reasons behind this omission or lack of clarity
remain obscure, as a proper scientific paper must include all pertinent information
for others to replicate the research accurately.

Given the importance of the reproducibility aspects in the research community
and the lack of reproducible works inMORSs, in this work, we reproduce the results
of a state-of-the-art Multi-Objective Reinforcement Learning-based framework for
recommendation. In particular, we choose the work of Stamenkovic et al. [168], who
are among the few to release the source codes and datasets of their MORS work.
This framework aims to promote relevant, diverse, and novel recommendations
simultaneously. However, some limitations arise when reading the paper. First, the
authors do not explicitly specify the criteria for choosing the best models when
reporting their results. This aspect is critical because their framework simultaneously
deals with multiple objectives. Moreover, the performance analysis is limited to the
accuracy, diversity, and novelty of recommendations. Therefore, the contributions
of our work are the following:



i
i

“output” — 2025/2/22 — 18:13 — page 111 — #116 i
i

i
i

i
i

Exposing the Challenges of Multi-Objective Recommendation through a Reproducibility Study 111

• We briefly survey the reproducibility context of MORSs, discovering that most
MORSs studies are published without being accompanied by source codes and
datasets, making reproducing these works difficult;

• We reproduce the work by Stamenkovic et al. [168] with their source codes and
datasets. We analyze whether their results are reproducible even if some important
details are missing. We further analyze if their framework allows controlling the
influence of each objective, given the intrinsic nature of diversity and novelty of
recommendation;

• We extend the evaluation of their framework to other dimensions, by assessing
the algorithmic bias of their framework on several item categories. Firstly, we
see if their framework amplifies the source bias in the recommendation output.
Secondly, we analyze the equality and equity of the exposure of popular and
unpopular items.

7.2 Context of Multi-Objective Recommender Sys-

tems

This section provides the context of the current state-of-the-art MORSs, briefly
recapitulating the most relevant and recent works in the field. We survey these works
from a reproducibility perspective. Indeed, we report Table 7.1 to summarize the
papers which are considered reproducible and non-reproducible. We consider a paper
to be reproducible according to two criteria [51]: the authors release i) a working
version of the source code, ii) the dataset they use (possibly pre-processed). This
review justifies our choice to reproduce the work by Stamenkovic et al. [168].

Many approaches have been adopted to address multiple objectives in the recom-
mendation scenario. The most intuitive method is re-ranking the recommendations
produced by an algorithm trained on accuracymetrics (e.g., nDCG, Recall) to fit other
objectives. In this regard, Li et al. [111] propose a user-fairness oriented re-ranking
strategy to make recommendations fair for advantaged and disadvantaged groups
according to their level of activity. Rahmani et al. [147] reproduce this work discov-
ering that the user-oriented re-ranking strategy does not mitigate popularity bias
among users with different degrees of interest toward popular items. Therefore, they
highlight the need to look at several dimensions of analysis when blending multiple
objectives. Conversely, Naghiaei et al. [131] implement a re-ranking strategy to meet
objectives both from user and provider fairness. Another family of works [114, 204]
leverage on the Karush–Kuhn–Tucker (KKT) conditions [158] to blend the objectives
in a scalarization function to gather a single Pareto optimal solution through a
Multi-Gradient Descent Algorithm (MGDA) [57]. Last, some recent papers employ
Multi-Objective Reinforcement Learning (MORL) to consider several objectives
simultaneously. Ge et al. [70] propose MoFIR by considering CTR for relevance and
item exposure for provider fairness as objectives. They modify a commonly used RL
algorithm (DDPG) by introducing a conditioned network. Stamenkovic et al. [168]
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Table 7.1. Reproducible and non-reproducible state-of-the-art works regarding MORSs..

Work Venue/Journal Year Source Code Datasets

Lin et al. [114] RecSys 2019 ✗ ✓
Li et al. [111] WWW 2021 ✓ ✓
Xie et al. [212] WWW 2021 ✗ ✗

Naghiaei et al. [131] SIGIR 2022 ✓ ✓
Wu et al. [204] TOIS 2022 ✗ ✗
Ge et al. [70] WSDM 2022 ✗ ✗

Stamenkovic et al. [168] WSDM 2022 ✓ ✓

present SMORL, a Scalarized MORL framework to simultaneously satisfy accuracy,
diversity, and novelty in session-based RSs.

Although most of MORSs works present prominent algorithms, some concerns
about their reproducibility arise. As shown in Table 7.1, a limited number of papers
are accompanied with source code and datasets, and then classified as reproducible.
Among the reproducible papers, Rahmani et al. [147] already reproduced the work by
Li et al. [111]. Therefore, we preferred extensively studying the work by Stamenkovic
et al. [168]. The rationale behind this choice is twofold. On the one hand, the authors
adopt a novel MORL approach (instead of a re-ranking strategy). On the other hand,
they focus only on user-centered objectives, opening the way to extend the exper-
iments to other evaluation dimensions. In this regard, we do not compare it with
the work by Naghiaei et al. [131] who already performed an extensive evaluation of
their work. Moreover, these two papers have different targets, making a comparison
unreasonable.

7.3 Background

In their work, Stamenkovic et al. [168] introduce the Scalarized Multi-Objective Re-
inforcement Learning (SMORL) approach in session-based recommendations. This
state-of-the-art algorithm exploits a single RL agent to solve the next item recom-
mendation problem to produce suggestions that are simultaneously relevant, diverse,
and novel. Therefore, the authors solely focus on user-centered metrics, excluding
other stakeholders or dimensions of analysis.

Problem formulation

The next item recommendation problem is formulated as a Multi-Objective Markov
Decision Process (MOMDP). Given a set of itemsI, a user-item interaction sequence
is represented as x1:𝑡 = {𝑥1, 𝑥2, . . . , 𝑥𝑡}, where 𝑥𝑖 ∈ I and 𝑡 ∈ (0, 𝑡). The problem
consists in recommending the next item, xt+1. The MOMDP is defined by the tuple
(S,A, P,R, 𝜌0, 𝛾).S is a continuous state space corresponding to the user state, which
is defined at timestamp 𝑡 as s𝑡 = 𝐺(x1:𝑡) ∈ S(𝑡 > 0), with𝐺 a sequential model.A is a
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discrete action space, where an action 𝑎 of the agent consists in suggesting a selected
item. The utility score for the state-action pair (s𝑡 , 𝑎𝑡) is defined by themulti-objective
Q-value function Q(s𝑡 , 𝑎𝑡). P : S × A × S → ℝ is a probability function of moving
from state s𝑡 to the next state s𝑡+1 when the agent takes action 𝑎𝑡 . R : S × A ↦→ ℝ𝑚

is the reward function that returns a vector of rewards r(s, 𝑎) by taking action 𝑎 at
state s, each corresponding to each objective. 𝜌0 is the initial state. 𝛾 ∈ [0, 1] is the
discount factor. The solution for the MOMDP is to find the target policy 𝜋𝜃(𝑎|s) to
maximize the expected cumulative reward:

max
𝜋𝜃

𝔼𝜏∼𝜋𝜃 [𝑓 (R(𝜏))], with R(𝜏) =
|𝜏 |∑︁
𝑡=0

𝛾 𝑡r (s𝑡 , 𝑎𝑡) (7.1)

where 𝜃 ∈ ℝ𝑑 denotes the policy parameters. The expectation is taken over trajecto-
ries 𝜏 = (s0, 𝑎0, s1, 𝑎1 . . .), obtained by performing actions that follow a target policy:
s0 ∼ 𝜌0, 𝑎𝑡 ∼ 𝜋𝜃 (· | s𝑡) , s𝑡+1 ∼ P (· | s𝑡 , 𝑎𝑡). The scalarization function 𝑓 : ℝ𝑚 ↦→ ℝ

is 𝑓w(x) = w𝑇x, where w = [𝑤1, . . . , 𝑤𝑚] are the weights to control the importance of
the objectives.

The model

We now summarize the algorithm proposed by Stamenkovic et al. [168]. The authors
cast this task as a self-supervised multi-class classification problem. They use a gen-
erative sequence model𝐺(·) to map the user-item interaction sequence into a hidden
state s𝑡 = 𝐺(x1:𝑡). On the self-supervised head side, they define a fully connected layer
to map s𝑡 into classification logits yt+1. Based on these logits, they train the model
exploiting the cross entropy loss 𝐿𝑠. On the SMORL head side, it can be seen as a
regularizer to make recommendations more diverse and novel. Here, the authors
stack additional fully connected layers to calculate one-dimensional Q-values on
top of 𝐺 for each objective (i.e., accuracy, diversity, and novelty). Therefore, they ob-
tain a vector-valued Q-value function Q(s𝑡 , 𝑎𝑡) = [𝑄𝑎𝑐𝑐(s𝑡 , 𝑎𝑡), 𝑄𝑑𝑖𝑣(s𝑡 , 𝑎𝑡), 𝑄𝑛𝑜𝑣(s𝑡 , 𝑎𝑡)],
which they learn exploiting the Scalarized Deep Q-learning (SDQL) algorithm [130].
Therefore, the Q-network is optimized through the loss function 𝐿𝑆𝐷𝑄𝐿, which is
defined as follows:

𝐿𝑆𝐷𝑄𝐿 =
(
w𝑇 (y𝑆𝐷𝑄𝐿𝑡 (s𝑡 , 𝑎𝑡) − 𝛾Q(s𝑡+1, 𝑎𝑡))

)2
, (7.2)

where y𝑆𝐷𝑄𝐿𝑡 (s𝑡 , 𝑎𝑡) = r𝑡 + 𝛾Q′(s𝑡+1, argmax𝑎′ [w𝑇Q′(s𝑡+1, 𝑎
′)]), with Q′ the target net-

work. It is worth mentioning that w = [𝑤𝑎𝑐𝑐, 𝑤𝑑𝑖𝑣, 𝑤𝑛𝑜𝑣], since accuracy, diversity,
and novelty of recommendations are considered as objectives. In conclusion, the
final loss optimized by Stamenkovic et al. [168] is:

𝐿𝑆𝑀𝑂𝑅𝐿 = 𝐿𝑆 + 𝛼𝐿𝑆𝐷𝑄𝐿, (7.3)

with 𝛼 a hyperparameter that controls the influence of the SMORL part.
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Rewards Definition

Finally, the authors define the rewards in the following ways. They set the accuracy
reward as done by Xin et al. [213] when the algorithm matches the next clicked item
in the sequence, i.e., 𝑟𝑎𝑐𝑐(s𝑡 , 𝑎𝑡) = 1, where 𝑎𝑡 is the action of clicking an item. Then,
they define the diversity reward as:

𝑟𝑑𝑖𝑣 = 𝑟𝑑𝑖𝑣(s𝑡 , 𝑝𝑡) = 1 − cos(𝑙𝑡 , 𝑝𝑡) = 1 −
e𝑇
𝑙𝑡

e𝑝𝑡
| |e𝑙𝑡 | | | |e𝑝𝑡 | |

, (7.4)

with 𝑙𝑡 is the last clicked item in the session, 𝑝𝑡 is a top prediction obtained from self-
supervised layer, and e𝑥 is the embedding of the item 𝑥 obtained from a pre-trained
GRU4Rec model. Finally, they define the novelty reward as 0 if 𝑝𝑡 is in the top 10%
of most popular items, one otherwise.

7.4 Experiments Replication Methodology

In this section, we describe our methodology to reproduce the work by Stamenkovic
et al. [168]. We provide details on the datasets and the recommendation algorithms
used. Furthermore, we discuss the evaluation protocol adopted, highlighting the
challenges when replicating this work. We aim to answer the following research
questions:

RQ1: Are we able to replicate the results reported in the paper by Stamenkovic et al.
[168]?

RQ2: Given the weights setting of SMORL in Equation (7.2), does the nature of
the objectives make it difficult to control them by varying the values of the
weights?

7.4.1 Experimental Settings

In our study, we do not aim to barely verify the reproducibility of the work by
Stamenkovic et al. [168]. On the contrary, we aim to highlight challenges and critical
features when dealing with multiple objectives in RSs. For this reason, we do not
re-implement the codes and use the ones shared by the authors.

Datasets

We use session-based datasets from the original work, i.e., RC 152 and Retailrocket3.
The sessions contain sequences of clicked items. The authors share both datasets in
their pre-processed versions. Precisely, the authors discard sessions in RC 15 having

2. https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
3. https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset

https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
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a sequence length of less than three and then sample a subset of 200K sessions. In
addition, we report what the authors write in the original paper about Retailrocket:
“We remove the items which are interacted less than three times (3) and the sequences
whose length is smaller than three (3)”. However, by examining the code released for
the pre-processing step, we noticed that the authors implement this step for the
Retailrocket dataset as follows: (i) they firstly remove the sequences, and (ii) then
they remove the items. This specific order of actions makes sessions of lengths 1 and
2 still exist in the final dataset. Indeed, some sessions whose length is greater than 2
(i.e., initially maintained) are characterized by items that are later removed, reducing
the sequences. On the one hand, this aspect does not affect the replication of the
experiments in this work. On the other hand, we deal with this issue when extending
such experiments, as explained later in Section 7.5. After the pre-processing step,
RC 15 has 200,000 sequences, 26,702 items, and 1,110,965 clicks, and Retailrocket has
195,523 sequences, 70,852 items, and 1,176,680 clicks.

Baselines

We reproduce the baselines implemented in the original work. Specifically, we
perform experiments on the vanilla baselines and their versions integrated with
SMORL. The baselines are the following:

• GRU4Rec [87]: This model uses a GRU-based Recurrent Neural Network (RNN)
for session-based recommendations. The network’s input is the session’s actual
state, while the output is the item on the next event in the session.

• Caser [179]: This model abandoned RNN structures by leveraging the convolution
filters of Convolutional Neural Network (CNN) to capture sequential patterns on
the embedding matrix of previous items within a session.

• NextItNet [216]: This model uses a convolutional generative network for session-
based top-𝑘 item recommendations. The main characteristics are the dilated con-
volutional layer to maintain a wide receptive field and the residual connections to
ease the network’s training.

• SASRec [99]: This model uses a self-attention mechanism to capture the sequential
patterns of user interactions within a session and generate embeddings for the
items in the session.

We adopt the hyper-parameter settings of the original paper to ensure a fair repro-
ducibility of the experiments. Moreover, we set 𝛼 = 1 in the loss function of Eq. (7.3),
since 1 is generally the optimal value according to Stamenkovic et al. [168].

Evaluation protocol

In the original work, the authors state that they use 5-fold cross-validation to evaluate
their algorithm by splitting the dataset into training, validation, and testing with a
ratio of 8:1:1. We notice that such splitting is performed at the session level. Therefore,



i
i

“output” — 2025/2/22 — 18:13 — page 116 — #121 i
i

i
i

i
i

Exposing the Challenges of Multi-Objective Recommendation through a Reproducibility Study 116

each session is uniquely entered into the training, validation, or testing set. In order
to report the results in their paper, they average the performance across all folds.
However, the authors share just one fold out of five. Consequently, their evaluation
protocol is not entirely replicable with their original splitting. For this reason, we
utilize the fold they share. Specifically, we train the models on the training set.
Then, we choose the best iteration of the training process according to the value
of nDCG@10 on the validation set. As done in the paper we replicate, we evaluate
the validation set every 5,000 batches of updates on RC 15 and every 10,000 batches
of updates on Retailrocket. Finally, we report the results of the testing set on that
iteration. It is worth mentioning that Stamenkovic et al. [168] do not provide any
information in the paper on the strategy for selecting the best iteration.

Each session in the validation/test set comprises a sequence of 𝑛 items according
to a timestamp 𝑡𝑖, with 𝑖 = 1, . . . , 𝑛. The algorithm lists recommended items for each
𝑡𝑖 in the session, amounting to 𝑛 recommendations per session. Therefore, each list
generated at 𝑡𝑖 is compared with the actual item associated at timestamp 𝑡𝑖.

Evaluation metrics

In Section 7.3, we summarized the approach proposed by Stamenkovic et al. [168].
We have seen that their approach aims to provide accurate, diverse, and novel
recommendations simultaneously. Indeed, they evaluate the model along these
dimensions with the following metrics that we also use in this work. To measure
to what extent the recommendations are accurate, we use Hit Ratio (HR@𝑘) on
clicks [168] and the normalized Discount Cumulative Gain [106] (nDCG@𝑘), with 𝑘 ∈
{10, 20}. Instead, both diversity and novelty of recommendations are measured in
an aggregated manner through the Item Coverage [8] (CV@𝑘), with 𝑘 ∈ {1, 5, 10, 20},
of all top-𝑘 recommendations of the validation/test sequences. Specifically, we
consider the coverage of all the items for diversity and the set of less popular items
for novelty. Moreover, Stamenkovic et al. [168] introduce a novel metric to evaluate
the repetitiveness of recommendations (R@𝑘), with 𝑘 ∈ {5, 10, 20}, that we report
in the results.

7.4.2 Results and Discussion

Replication of the Experiments (RQ1)

We start the results discussion by answering RQ1. To this end, we report the results
obtained when replicating the work by Stamenkovic et al. [168] in Table 7.2 and in
Table 7.3 for RC 15 and Retailrocket datasets, respectively. In these tables, the results
labeled with “Orig.” are retrieved from the original work, while the ones achieved in
our reproducibility study are labeled with “Repr.”. In particular, for these results, we
also report the best iteration (Epoch and step of validation) according to nDCG@10,
as explained in Section 7.4.1.
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For both datasets, in the original paper, the baselines integrated with SMORL con-
sistently perform better than the vanilla versions for all metrics. This phenomenon
is still observed in our replicated results but less frequently. More in-depth, SMORL
versions outperform the vanilla baselines from the accuracy perspective (except
for Caser in RC 15), confirming that SMORL enhances the accuracy power of the
generative models. This trend is not borne out as frequently as before from the
beyond-accuracymetrics. Specifically, GRU vanilla achieves higher beyond-accuracy
values for both datasets. In addition, NextItNet and SASRec vanillas also follow this
tendency in RC 15 and Retailrocket, respectively. We notice that our replication
experiments reach even higher values of relevance metrics than in the paper of
Stamenkovic et al. [168]. This observation indicates the success of the training pro-
cess of our replication experiments and the goodness of the approach proposed by
Stamenkovic et al. [168]. We conjecture that the observed differences on the beyond-
accuracy side are due to the criterion of choosing the best iteration of the models
based on nDCG@10, i.e., an accuracy metric, following the best practices in the
RecSys research community [20]. In this regard, we reiterate that the authors give no
indication of their criterion for choosing the best model iteration4. Here are other
instances of these models, chosen by Stamenkovic et al. [168], that perform slightly
worse on the accuracy side but consistently better on diversity and novelty, thus
more clearly reflecting the original trends. However, we do not have enough infor-
mation to identify them. This consideration opens a perspective issue in MORSs.
Since we are dealing with multiple objectives, it is not clear how to choose the
best model. Indeed, such objectives are often characterized by a trade-off among
them. The best solution for this trade-off can be subjective, thus jeopardizing the
comparison and reproducibility of the models. Therefore, as a research community,
we should define and declare the criterion used to select a model when dealing with
multiple objectives for a fair comparison of the algorithms.

To conclude, we answer RQ1 by saying that we can consistently replicate the trends
of SMORL from the accuracy side. As for the beyond accuracy metrics, such trends are
not as equal as in the original paper. Therefore, a perspective issue in MORSs is opened
about the selection strategy of the best model when dealing with multiple objectives. We
observe to what extent it is crucial to define and explain the criteria followed to report
the results in the MORSs field.

Controlling the objectives (RQ2)

We now answer RQ2 by investigating whether we can control the influence of each
objective in SMORL through the weights mechanism available in Equation (7.2). We
summarize the results gathered by varying the weights configurations of SMORL
in Table 7.4 and Table 7.5 for RC 15 and Retailrocket datasets, respectively. We do
not report the results of the NextItNet-SMORL model since one configuration

4. We rule out that they have reported the values at the last iteration. Indeed, for instance, we observed
that GRU-based models achieve significantly worse performance than those reported when selected
by this criterion.
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of this model took more than ten days to train for only one dataset, making it
impractical to explore six different configurations for two datasets in a feasible time.
By looking at Tables 7.4 and 7.5, apparently no single trend occurs. None of the
weights configurations seems to perform better concerning any single analyzed
objective generally. However, some considerations can be made. By reinforcing
toward only either diversity or novelty (i.e., w = [0, 1, 0] and w = [0, 0, 1]), we notice
a reduced capability of the model to suggest relevant items. In addition, we do expect
to power diverse or novel suggestions with these settings separately. Conversely,
frequently these configurations outperform the others in terms of diversity and
novelty, making explicit the difficulty in controlling these two objectives separately.
This behavior is because these objectives are likely to be positively correlated; namely,
the set of diverse items contains many novel items, and vice versa. Therefore, a
general question arises on to what extent it is convenient to consider multiple
positively correlated objectives in the same MORS. The risk is that we can train
RSs to accomplish several objectives without having control over them. By adding
the control on the accuracy side (i.e., w = [1, 1, 1], w = [1, 1, 0], and w = [1, 0, 1]), we
notice a general improvement on the relevance of the item, as further confirmation
of SMORL’s ability to control the accuracy objective. Concerning the repetitiveness
of recommendations, we do not note any particular phenomenon.

We answer RQ2 by saying that, with SMORL, we can control the reinforcing of
the accuracy objectives while having more difficulties when controlling diversity and
novelty individually due to their positive correlation. This opens a quest in MORSs. Is it
appropriate to consider correlated objectives in the same system, or is it counterproductive
to their control?

7.5 Bias Experiments

In the previous Section, we have replicated the work by Stamenkovic et al. [168].
In contrast, we extend our investigation on their MORL-based recommendation
algorithm here. This investigation shares the same experimental setup used to train
and produce the recommendations with the vanilla baselines and their versions
integrated with SMORL in Section 7.4. Indeed, we provide a broader view of the
experiments considering other evaluation dimensions. Given that the SMORL ap-
proach simultaneously focuses on user-centered objectives of recommendations
(i.e., diversity and novelty), we analyze how enhancing user-oriented goals with such
an approach can affect algorithmic bias in recommendations. Mainly, we assess the
algorithmic bias from the popularity and the categories of the items. Therefore, we
drive the analysis in order to answer the following research questions:

RQ3: Is SMORL responsible for bias disparity for certain categories of items in the
recommendations output given the source bias?

RQ4: Does SMORL affect the equality and equity of items’ exposure concerning
their popularity?
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7.5.1 Algorithmic Bias investigation settings

In this section, we present how we broaden the experimental evaluation of the
multi-objective recommendation algorithm proposed by Stamenkovic et al. [168]
that we have reproduced. To our knowledge, most algorithmic bias metrics available
in the literature are not time-aware. For this reason, such metrics do not fit with
the task of sequential-based recommendations. In addition, amid the proliferation
of scholarly works on session-based recommendation in recent times, regrettably,
there are no universally recognized benchmark datasets or evaluation standards that
have gained consensus within the research community. To have a reliable setting, we
must cast the sequential-based recommendations to a classic task. In this regard, in
Section 7.4.1, we have observed that the baselines considered in this work generate 𝑛
lists of suggested items for each session associated by timestamp, 𝑡𝑖. We treat sessions
as users interacting with an ordered list of 𝑛 items. We consider the last item of these
lists as belonging to the test set, while the remaining items are in the training set.
For this reason, we consider only the last recommendation lists generated by the
baselines, i.e., the ones generated at 𝑡𝑛, for the evaluation in terms of algorithmic bias.
Indeed, the baselines provide these last recommendation lists having in memory the
entire previous sequences of items the users have interacted with. In addition, we
previously discarded the sessions of length 1 in the test set of the Retailrocket dataset
resulting from the pre-processing step described in Section 7.4.1. This operation is
necessary to compute the algorithmic bias metrics presented later on, but it should
not impact the evaluation since the discarded sessions are only 514.

Evaluation metrics

This section describes the metrics exploited to show the performance on the algo-
rithmic bias of the work by Stamenkovic et al. [168]. Specifically, we consider the
following metrics (see Section 2.4 for details):

• Bias Disparity (BD) [182]. This metric evaluates the discrepancy between input
bias and recommendation bias. It captures instances where recommendation
algorithms amplify existing biases in the data source, resulting inmore pronounced
biases in the generated recommendations.

• Ranking-based Statistical Parity (RSP) [228]. This metric is based on the con-
cept of statistical parity, which involves ensuring that the ranking probability
distributions for different item categories are identical in a ranking task.

• Ranking-based Equal Opportunity (REO) [228]. In contrast to RSP, this metric
is founded on the principle of equal opportunity. Within a ranking task, this
means ensuring that the ranking-based true positive rate (TPR) is consistent across
different item categories. The TPR is defined as the probability that an item from
a specific category is ranked within the top-𝑘, given that the user likes the item
according to the ground truth.
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To provide a complete reproducibility environment for these metrics, we use the
Elliot recommendation framework [11].

Item categories

In the previous section, we have presented the metrics we use to evaluate the algo-
rithmic bias which affects the approach proposed by Stamenkovic et al. [168]. In all
these metrics, the items are associated with a category. Here, we describe how and
in which categories we assign each item.

We compute BD by considering a unique group of sessions corresponding to the
entire dataset, i.e., |𝐺 |= 1, while we assess the item’s category by exploiting additional
information provided with the datasets. As for the RC 15 dataset, it provides the
context of the item click, which can be a special offer, brand, or category identifier.
Specifically, we take into account this last identifier for the assignment of the items
to a category. In addition, since the context of a click varies in time, an item could
be associated with more categories. However, we desire to have a unique category
for each item. To this end, we set the most recent category for each item, being able
to divide 19,288 items into |𝐶 |= 12 categories uniquely having the following sizes:
|𝑐1 |= 5749, |𝑐2 |= 4776, |𝑐3 |= 1252, |𝑐4 |= 1388, |𝑐5 |= 1032, |𝑐6 |= 1174, |𝑐7 |= 881,
|𝑐8 |= 644, |𝑐9 |= 674, |𝑐10 |= 360, |𝑐11 |= 1267, |𝑐12 |= 91. The Retailrocket dataset
yields some properties for each item. Among them, a category identifier is available.
In addition, the category identifiers are associated with a parent identifier according
to a tree of categories. For this reason, we consider these parent identifiers as the
categories of the item. Similarly to what was done for the RC 15 dataset, we uniquely
assign the most recent category to each item. However, more than 250 categories
were recognized in this way, making reporting and analyzing the results unattainable.
To solve this issue, we split these categories into quartiles based on the number of
interactions they were involved in. Hence, we can divide 65,663 items into |𝐶 |= 4
categories containing the following number of items: |𝑐1 |= 868, |𝑐2 |= 4875, |𝑐3 |=
13444, |𝑐4 |= 46476.

We calculate RSP and REO by dividing the items according to their popularity. In
particular, we identify a category that comprises the 20% most popular items and a
category including the remaining items. We will refer to RSP and REO when dealing
with these categories as PopRSP and PopREO, respectively.

7.5.2 Results and Discussion

Bias Disparity (RQ3)

We start our investigation of the algorithmic bias in SMORL by answering RQ3.
Given the existing bias in the datasets regarding the item categories, we aim to assess
whether SMORL amplifies this in the output of the recommendations. Consequently,
since it is not a de-biasing algorithm, we desire BD values close to 0, which means
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Table 7.6. Results on Source Bias/Recommendation Bias (Bias Disparity) for different cate-
gories of items on RC 15 dataset. Values of Bias Disparity closer to 0 are in bold, assessed for
different cutoff@𝑘, with 𝑘 ∈ {5, 10, 20}.

Model 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

Cutoff@5

GRU 0.82/0.79
(-0.03)

0.83/0.86
(0.03)

4.66/4.51
(-0.03)

0.82/0.84
(0.02)

1.07/1.26
(0.18)

0.66/0.71
(0.07)

1.25/1.21
(-0.03)

0.23/0.2
(-0.13)

0.43/0.43
(-0.01)

0.27/0.25
(-0.07)

0.09/0.06
(-0.3)

0.31/0.28
(-0.1)

GRU-SMORL 0.82/0.8
(-0.02)

0.83/0.88
(0.05)

4.66/4.52
(-0.03)

0.82/0.86
(0.05)

1.07/1.21
(0.13)

0.66/0.66
(0.0)

1.25/1.2
(-0.04)

0.23/0.17
(-0.23)

0.43/0.43
(-0.02)

0.27/0.19
(-0.27)

0.09/0.05
(-0.4)

0.31/0.26
(-0.18)

Caser 0.82/0.81
(-0.01)

0.83/0.86
(0.03)

4.66/4.67
(0.0)

0.82/0.83
(0.01)

1.07/1.17
(0.09)

0.66/0.64
(-0.04)

1.25/1.25
(0.0)

0.23/0.15
(-0.32)

0.43/0.38
(-0.12)

0.27/0.18
(-0.31)

0.09/0.04
(-0.53)

0.31/0.24
(-0.21)

Caser-SMORL 0.82/0.8
(-0.02)

0.83/0.87
(0.05)

4.66/4.6
(-0.01)

0.82/0.84
(0.02)

1.07/1.18
(0.1)

0.66/0.65
(-0.02)

1.25/1.26
(0.01)

0.23/0.14
(-0.36)

0.43/0.41
(-0.06)

0.27/0.19
(-0.28)

0.09/0.05
(-0.44)

0.31/0.19
(-0.39)

NextItNet 0.82/0.8
(-0.02)

0.83/0.86
(0.03)

4.66/4.61
(-0.01)

0.82/0.84
(0.02)

1.07/1.2
(0.12)

0.66/0.68
(0.03)

1.25/1.17
(-0.06)

0.23/0.18
(-0.19)

0.43/0.39
(-0.11)

0.27/0.24
(-0.09)

0.09/0.08
(-0.1)

0.31/0.27
(-0.12)

NextItNet-SMORL 0.82/0.82
(0.0)

0.83/0.88
(0.06)

4.66/4.42
(-0.05)

0.82/0.86
(0.05)

1.07/1.21
(0.13)

0.66/0.66
(0.0)

1.25/1.25
(0.0)

0.23/0.19
(-0.17)

0.43/0.38
(-0.12)

0.27/0.21
(-0.21)

0.09/0.04
(-0.55)

0.31/0.2
(-0.37)

SASRec 0.82/0.81
(-0.01)

0.83/0.86
(0.04)

4.66/4.49
(-0.04)

0.82/0.83
(0.01)

1.07/1.22
(0.14)

0.66/0.68
(0.03)

1.25/1.27
(0.02)

0.23/0.19
(-0.15)

0.43/0.38
(-0.13)

0.27/0.25
(-0.05)

0.09/0.06
(-0.3)

0.31/0.25
(-0.18)

SASRec-SMORL 0.82/0.83
(0.02)

0.83/0.88
(0.06)

4.66/4.39
(-0.06)

0.82/0.84
(0.02)

1.07/1.13
(0.05)

0.66/0.66
(0.0)

1.25/1.26
(0.01)

0.23/0.19
(-0.18)

0.43/0.42
(-0.03)

0.27/0.19
(-0.28)

0.09/0.07
(-0.17)

0.31/0.29
(-0.07)

Cutoff@10

GRU 0.82/0.79
(-0.03)

0.83/0.86
(0.04)

4.66/4.5
(-0.03)

0.82/0.85
(0.03)

1.07/1.27
(0.18)

0.66/0.7
(0.06)

1.25/1.22
(-0.02)

0.23/0.19
(-0.16)

0.43/0.44
(0.0)

0.27/0.24
(-0.1)

0.09/0.06
(-0.31)

0.31/0.27
(-0.13)

GRU-SMORL 0.82/0.8
(-0.02)

0.83/0.87
(0.05)

4.66/4.53
(-0.03)

0.82/0.87
(0.06)

1.07/1.22
(0.14)

0.66/0.66
(0.0)

1.25/1.21
(-0.03)

0.23/0.17
(-0.26)

0.43/0.43
(0.0)

0.27/0.19
(-0.27)

0.09/0.05
(-0.41)

0.31/0.27
(-0.12)

Caser 0.82/0.8
(-0.01)

0.83/0.86
(0.03)

4.66/4.66
(0.0)

0.82/0.83
(0.01)

1.07/1.18
(0.1)

0.66/0.63
(-0.05)

1.25/1.27
(0.02)

0.23/0.14
(-0.37)

0.43/0.38
(-0.12)

0.27/0.2
(-0.26)

0.09/0.04
(-0.51)

0.31/0.25
(-0.18)

Caser-SMORL 0.82/0.79
(-0.03)

0.83/0.88
(0.05)

4.66/4.6
(-0.01)

0.82/0.85
(0.03)

1.07/1.18
(0.1)

0.66/0.64
(-0.03)

1.25/1.27
(0.02)

0.23/0.14
(-0.37)

0.43/0.41
(-0.06)

0.27/0.19
(-0.29)

0.09/0.05
(-0.45)

0.31/0.19
(-0.37)

NextItNet 0.82/0.8
(-0.02)

0.83/0.86
(0.03)

4.66/4.62
(-0.01)

0.82/0.84
(0.02)

1.07/1.19
(0.11)

0.66/0.69
(0.04)

1.25/1.17
(-0.06)

0.23/0.18
(-0.19)

0.43/0.39
(-0.11)

0.27/0.24
(-0.08)

0.09/0.08
(-0.12)

0.31/0.26
(-0.16)

NextItNet-SMORL 0.82/0.82
(0.0)

0.83/0.88
(0.05)

4.66/4.44
(-0.05)

0.82/0.85
(0.04)

1.07/1.21
(0.13)

0.66/0.67
(0.01)

1.25/1.25
(0.0)

0.23/0.18
(-0.19)

0.43/0.39
(-0.1)

0.27/0.21
(-0.22)

0.09/0.04
(-0.56)

0.31/0.19
(-0.39)

SASRec 0.82/0.81
(-0.01)

0.83/0.86
(0.04)

4.66/4.48
(-0.04)

0.82/0.83
(0.02)

1.07/1.21
(0.13)

0.66/0.68
(0.03)

1.25/1.27
(0.02)

0.23/0.2
(-0.12)

0.43/0.38
(-0.13)

0.27/0.25
(-0.06)

0.09/0.06
(-0.3)

0.31/0.25
(-0.2)

SASRec-SMORL 0.82/0.83
(0.02)

0.83/0.88
(0.06)

4.66/4.39
(-0.06)

0.82/0.84
(0.03)

1.07/1.13
(0.06)

0.66/0.67
(0.01)

1.25/1.26
(0.01)

0.23/0.18
(-0.2)

0.43/0.43
(-0.01)

0.27/0.2
(-0.24)

0.09/0.07
(-0.2)

0.31/0.29
(-0.05)

Cutoff@20

GRU 0.82/0.8
(-0.02)

0.83/0.87
(0.05)

4.66/4.45
(-0.05)

0.82/0.85
(0.03)

1.07/1.26
(0.18)

0.66/0.7
(0.06)

1.25/1.21
(-0.03)

0.23/0.2
(-0.1)

0.43/0.43
(0.0)

0.27/0.25
(-0.06)

0.09/0.06
(-0.31)

0.31/0.25
(-0.18)

GRU-SMORL 0.82/0.8
(-0.02)

0.83/0.88
(0.06)

4.66/4.48
(-0.04)

0.82/0.86
(0.05)

1.07/1.23
(0.15)

0.66/0.67
(0.01)

1.25/1.19
(-0.05)

0.23/0.17
(-0.24)

0.43/0.43
(-0.01)

0.27/0.2
(-0.23)

0.09/0.05
(-0.44)

0.31/0.26
(-0.17)

Caser 0.82/0.81
(-0.01)

0.83/0.87
(0.05)

4.66/4.6
(-0.01)

0.82/0.83
(0.02)

1.07/1.18
(0.1)

0.66/0.64
(-0.03)

1.25/1.25
(0.0)

0.23/0.15
(-0.32)

0.43/0.37
(-0.14)

0.27/0.21
(-0.23)

0.09/0.04
(-0.54)

0.31/0.23
(-0.26)

Caser-SMORL 0.82/0.8
(-0.02)

0.83/0.89
(0.07)

4.66/4.53
(-0.03)

0.82/0.84
(0.03)

1.07/1.18
(0.1)

0.66/0.65
(-0.02)

1.25/1.26
(0.01)

0.23/0.15
(-0.34)

0.43/0.4
(-0.07)

0.27/0.19
(-0.28)

0.09/0.05
(-0.47)

0.31/0.19
(-0.39)

NextItNet 0.82/0.8
(-0.01)

0.83/0.87
(0.04)

4.66/4.56
(-0.02)

0.82/0.84
(0.02)

1.07/1.19
(0.11)

0.66/0.69
(0.04)

1.25/1.16
(-0.07)

0.23/0.19
(-0.16)

0.43/0.39
(-0.09)

0.27/0.27
(0.0)

0.09/0.07
(-0.16)

0.31/0.25
(-0.21)

NextItNet-SMORL 0.82/0.82
(0.0)

0.83/0.89
(0.06)

4.66/4.41
(-0.05)

0.82/0.85
(0.03)

1.07/1.22
(0.13)

0.66/0.68
(0.02)

1.25/1.22
(-0.02)

0.23/0.19
(-0.14)

0.43/0.4
(-0.08)

0.27/0.22
(-0.18)

0.09/0.04
(-0.56)

0.31/0.18
(-0.41)

SASRec 0.82/0.81
(0.0)

0.83/0.87
(0.05)

4.66/4.44
(-0.05)

0.82/0.84
(0.02)

1.07/1.21
(0.13)

0.66/0.7
(0.05)

1.25/1.24
(0.0)

0.23/0.2
(-0.1)

0.43/0.38
(-0.12)

0.27/0.26
(-0.01)

0.09/0.06
(-0.31)

0.31/0.24
(-0.23)

SASRec-SMORL 0.82/0.83
(0.02)

0.83/0.89
(0.07)

4.66/4.35
(-0.07)

0.82/0.84
(0.03)

1.07/1.13
(0.06)

0.66/0.68
(0.02)

1.25/1.24
(-0.01)

0.23/0.19
(-0.15)

0.43/0.43
(0.0)

0.27/0.22
(-0.18)

0.09/0.07
(-0.23)

0.31/0.28
(-0.1)
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Table 7.7. Results on Source Bias/Recommendation Bias (Bias Disparity) for different cat-
egories of items on Retailrocket dataset. Values of Bias Disparity closer to 0 are in bold,
assessed for different cutoff@𝑘, with 𝑘 ∈ {5, 10, 20}.

Model 𝑐1 𝑐2 𝑐3 𝑐4 𝑐1 𝑐2 𝑐3 𝑐4 𝑐1 𝑐2 𝑐3 𝑐4

Cutoff@5 Cutoff@10 Cutoff@20

GRU 0.43/0.34
(-0.22)

0.65/0.54
(-0.17)

0.76/0.73
(-0.04)

1.12/1.14
(0.02)

0.43/0.35
(-0.18)

0.65/0.53
(-0.18)

0.76/0.74
(-0.03)

1.12/1.14
(0.02)

0.43/0.37
(-0.14)

0.65/0.54
(-0.18)

0.76/0.75
(-0.01)

1.12/1.13
(0.01)

GRU-SMORL 0.43/0.3
(-0.29)

0.65/0.55
(-0.15)

0.76/0.7
(-0.08)

1.12/1.15
(0.03)

0.43/0.3
(-0.31)

0.65/0.55
(-0.15)

0.76/0.7
(-0.08)

1.12/1.15
(0.03)

0.43/0.31
(-0.27)

0.65/0.56
(-0.14)

0.76/0.71
(-0.07)

1.12/1.14
(0.02)

Caser 0.43/0.22
(-0.48)

0.65/0.6
(-0.08)

0.76/0.69
(-0.1)

1.12/1.15
(0.03)

0.43/0.23
(-0.46)

0.65/0.58
(-0.1)

0.76/0.71
(-0.08)

1.12/1.14
(0.02)

0.43/0.23
(-0.46)

0.65/0.58
(-0.11)

0.76/0.72
(-0.06)

1.12/1.14
(0.02)

Caser-SMORL 0.43/0.22
(-0.49)

0.65/0.5
(-0.23)

0.76/0.68
(-0.12)

1.12/1.16
(0.04)

0.43/0.23
(-0.45)

0.65/0.5
(-0.24)

0.76/0.67
(-0.12)

1.12/1.16
(0.04)

0.43/0.25
(-0.42)

0.65/0.5
(-0.23)

0.76/0.68
(-0.11)

1.12/1.16
(0.04)

NextItNet 0.43/0.32
(-0.25)

0.65/0.54
(-0.18)

0.76/0.69
(-0.09)

1.12/1.15
(0.03)

0.43/0.31
(-0.27)

0.65/0.53
(-0.18)

0.76/0.7
(-0.09)

1.12/1.15
(0.03)

0.43/0.31
(-0.29)

0.65/0.54
(-0.17)

0.76/0.7
(-0.08)

1.12/1.15
(0.03)

NextItNet-SMORL 0.43/0.34
(-0.21)

0.65/0.51
(-0.22)

0.76/0.69
(-0.1)

1.12/1.15
(0.03)

0.43/0.32
(-0.25)

0.65/0.51
(-0.22)

0.76/0.69
(-0.09)

1.12/1.15
(0.03)

0.43/0.32
(-0.24)

0.65/0.52
(-0.2)

0.76/0.7
(-0.08)

1.12/1.15
(0.03)

SASRec 0.43/0.41
(-0.05)

0.65/0.55
(-0.16)

0.76/0.72
(-0.06)

1.12/1.14
(0.02)

0.43/0.42
(-0.03)

0.65/0.55
(-0.16)

0.76/0.72
(-0.06)

1.12/1.14
(0.02)

0.43/0.43
(0.01)

0.65/0.56
(-0.14)

0.76/0.73
(-0.04)

1.12/1.14
(0.02)

SASRec-SMORL 0.43/0.35
(-0.19)

0.65/0.55
(-0.15)

0.76/0.73
(-0.04)

1.12/1.14
(0.02)

0.43/0.36
(-0.17)

0.65/0.55
(-0.15)

0.76/0.73
(-0.05)

1.12/1.14
(0.02)

0.43/0.36
(-0.15)

0.65/0.56
(-0.14)

0.76/0.74
(-0.03)

1.12/1.13
(0.02)

that the algorithm does not deviate from the source bias when providing the rec-
ommendations. In Table 7.6 and Table 7.7, we show the results regarding the bias
disparity. We follow the representation of Tsintzou et al. [182], in which we report
the input/output bias and in parentheses the bias disparity (i.e., BS/BR (BD)).

Starting from the RC 15 dataset (Table 7.6), we detect that the items in the category
𝑐3 are characterized by a strong positive source bias (values much greater than one),
indicating that the items from this category are enjoyed in the sessions dispropor-
tionately to the category size. Indeed, we observe that 𝑐3 is not the most populated
category (1252 items). Therefore, it contains trendy items. Paying attention to this
category, we notice that SMORL-integrated models have absolute values of bias
disparity greater than their respective vanilla versions. We explain this phenomenon
by affirming that SMORL promotes diverse and novel items, thus reducing the
number of recommended mainstream items (which populate 𝑐3). Indeed, the sign
of the bias disparity values is negative. Consequently, although SMORL is useful in
diversifying recommendations, it is responsible for a higher bias disparity in output.
This observation highlights the need for MORSs to focus on several lines of analysis
and not only on the objectives that the system is optimizing. Indeed, we are not
claiming that such bias introduces negative effects in the recommendation, but we
should be aware of what is happening in other aspects. Other concerns occur for the
items in category 𝑐10 that exhibit a strong negative bias in the source, i.e., they are
barely relished in the sessions (the same following considerations hold for categories
𝑐11 and 𝑐12). In addition, we observe that category 𝑐10 is populated by only 360 items.
We notice that SMORL-based models convey greater values of bias disparity for this
category than vanilla baselines, further reducing the exposure of these items. We
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conjecture that this is because, in SMORL, the agent is rewarded if it recommends
relevant items. Therefore, it promotes diverse and novel items, but still relevant
(i.e., items belonging to the mid-tail [3]), at the expense of highly niche items that
are relevant to very few sessions. Consequently, by rewarding the agent for item
relevance (we remind that the generative models are trained to provide relevant
recommendations), we risk affecting the exposure of highly niche items, resulting
unfair from the provider fairness point of view [1, 29, 55]. Finally, we do not remark
on phenomenons for the remaining categories. Indeed, they are less biased at the
source (values close to 1), and all the baselines maintain a roughly equal level of bias
in the output.

A similar discussion emerges for the Retailrocket dataset (Table 7.7). On the one
hand, both vanillas and SMORL-integrated models do not notably increase the bias
in the output for the categories less biased in the source (𝑐3 and 𝑐4). On the other
hand, SMORL still increases the bias of those categories negatively biased at the
source (generally more than vanilla baselines), as in the case of 𝑐1 and 𝑐2.

To end, we answer RQ3 by claiming that SMORL is responsible for injecting a bias
disparity in the recommendations output for those items laying on positively/negatively
biased categories in the source. Relevant items-based rewards can potentially reduce the
exposure of highly niche items, leading to a provider-side unfair situation. Conversely,
reinforcing diversity and novelty objectives decreases the bias of categories containing
mainly interacted items.

Popularity-based Equality and Equity of Items Exposure (RQ4)

Finally, we answer RQ4 by analyzing the algorithmic bias affecting the items’ expo-
sure, dividing the items into popular and unpopular categories. We look at this from
two perspectives. With PopRSP, we assess the equality of the ranking probability of
these items. At the same time, with PopREO, we evaluate the equity of the ranking
probability of these items given the items enjoyed in the sessions [80, 221]. Figure 7.1
shows the results for both datasets. From the equality side, all models seem strongly
biased, having high values of PopRSP for both datasets. GRU and NextItNet vanillas
produce more biased recommendations when integrated with SMORL. In contrast,
blending SMORL in Caser makes the suggestions less biased, while SASRec does
not show a specific trend. Therefore, the success of SMORL in terms of equality of
the ranking probability of popular and unpopular items is related to the generative
model of recommendations. From the equity side, SMORL models generally have
higher values of PopREO, except for NextItNet and Caser with Retailrocket, which
means that they produce more biased recommendations than vanilla baselines.

In conclusion, we answer RQ4 by stating that we do not observe particular trends on
the positive or negative effect of SMORL on the equality of the popular and unpopular
item’s exposure. Regarding equity, SMORL tends to worsen the recommendation bias
more than vanilla baselines.
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7.6 Summary

In this chapter, we briefly survey the state-of-the-art MORSs, showing that few
papers release source codes and datasets to reproduce the work. We reproduce
the work by Stamenkovic et al. [168], which proposes SMORL, a Multi-Objective
Reinforcement Learning-based algorithm, to produce relevant, diverse, and novel
recommendations. Firstly, we replicate the original experiments to highlight chal-
lenges in replicating MORSs papers when crucial details are missing. Furthermore,
we assess the SMORL’s ability to control the importance of each objective. Then,
since SMORL is focused only on user-centered objectives, we extend the analysis of
the algorithm to shed light on the recommendation biases and the items’ exposure of
SMORL. Our experiments in several directions led to new observations, summarized
below.
Perspective issues in MORSs. The very nature of MORSs leads to perspective
issues in selecting the best models. Since we deal with several objectives, more
solutions are potential candidates to represent the best model selectedwith respect to
the combination of two or more metrics. Consequently, as a research community, we
must explicit the criteria adopted to select themodels whose performance is reported
in MORSs papers. This improvement is crucial to enhance the reproducibility of
the works and a fair comparison among them.
Controlling the objectives is not trivial. MORSs’ ability to control the influ-
ence of several objectives deserves much attention. Indeed, the positive correlation
among some objectives makes their precise control complicated. Therefore, a new
research direction is opened regarding the preliminary study on the nature of the
objectives we consider. Indeed, the risk is to provide recommendations according
to the optimization of several metrics without having control of them.
Recommendations are multi-sided. Despite focusing on user-centered objectives
in MORSs, we should be aware of what is happening on the other sides of recom-
mendations. While improving several user-related metrics in MORSs, we may affect
other evaluation dimensions, such as algorithmic biases and provider fairness. As
in the SMORL case, we may introduce biases in the recommendations or trouble
the equality of items’ exposure. Therefore, the analysis of dimensions beyond the
objectives we are blending in our MORSs is needed.
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(a) PopREO@5, RC 15.
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(b) PopREO@10, RC 15.
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(c) PopREO@20, RC 15.
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(d) PopRSP@5, RC 15.
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(e) PopRSP@10, RC 15.
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(f) PopRSP@20, RC 15.
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(g) PopREO@5, Retailrocket.
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(h) PopREO@10, Retailrocket.
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(i) PopREO@20, Retailrocket.
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Figure 7.1. Results on PopREO and PopRSP on RC 15 and Retail Rocket datasets. Lower values
are better for both metrics.
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Chapter 8

Post-hoc Selection of Pareto-Optimal

Solutions in Search and

Recommendation

Information Retrieval (IR) and Recommender Systems (RSs) tasks are
moving from computing a ranking of final results based on a single met-
ric to multi-objective problems. Solving these problems leads to a set of
Pareto-optimal solutions, known as Pareto frontier, in which no objec-
tive can be further improved without hurting the others. In principle, all
the points on the Pareto frontier are potential candidates to represent
the best model selected with respect to the combination of two, or more,
metrics. To our knowledge, there are no well-recognized strategies to
decide which point should be selected on the frontier in IR and RSs. As
shown in the previous chapter, this gap in the literature could lead to per-
spectives and reproducibility issues on theworks proposing information
systems with multiple objectives. In this chapter, we propose a novel,
post-hoc, theoretically-justified technique, named “Population Distance
from Utopia” (PDU), to identify and select the one-best Pareto-optimal
solution for search and recommendation systems. PDU considers fine-
grained utopia points, andmeasures how far each point is from its utopia
point, allowing to select solutions tailored to user preferences, a novel
feature we call “calibration”. We compare PDU against state-of-the-art
strategies through extensive experiments on tasks from both IR and RS,
showing that PDU combined with calibration notably impacts the solu-
tion selection. We release codes and datasets at: https://github.com/
sisinflab/Selection-Pareto-Optimal-Solutions-IR-RS.1

1. This chapter is based on the work published in the Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management (CIKM 2023) “Post-hoc Selection of Pareto-
Optimal Solutions in Search and Recommendation”.

https://github.com/sisinflab/Selection-Pareto-Optimal-Solutions-IR-RS
https://github.com/sisinflab/Selection-Pareto-Optimal-Solutions-IR-RS
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8.1 Introduction

Many tasks in Information Retrieval (IR) and Recommender Systems (RSs) involve
the optimization of multiple objective functions. As an example, consider the IR
task of diversifying search results where, given a user query, we require the IR system
to return a list of results that are both relevant for the user and diverse concerning
the possible “facets” of the query [155]. Addressing this task asks for designing a two-
objective ranking function comprehensively maximizing both the relevance and
the diversity of the result list. The same considerations can be made in RSs. Despite
the accuracy of recommendation being considered the gold measure to assess the
quality of suggestions, over the last years, RSs have been required to meet other
beyond-accuracymetrics to avoid obvious [185] and unfair [204] recommendations.
Therefore, the choice of a recommendation model and its setting entail several
criteria leading to a trade-off among them, resulting in a non-trivial challenge.

Multi-Objective Optimization (MOO) recently attracted several interesting IR
and RS contributions [70, 168, 204]. MOO deals with Pareto optimality, i.e., the identi-
fication of solutions where no objective can be further improved without damaging
the others. Pareto-optimal solutions are in turn collected in the so-called Pareto
Frontier, a set of (possibly infinite) non-dominated solutions.

Existing approaches for MOO can be classified into two categories: i) heuris-
tic search and, ii) scalarization. In the first category, multi-objective evolutionary
algorithms are used to ensure that the emerging solutions are not dominated by
each other, even if they can still be dominated by Pareto-optimal solutions not
visited by the algorithm [31, 152]. In the second category, scalarization methods aggre-
gate multiple objectives into one objective, possibly guaranteeing Pareto optimality.
Scalarization approaches can exploit model aggregation techniques combining the
output of different models trained on the single objectives. Alternatively, label ag-
gregation techniques combine the labels of the training samples a priori, and the
optimization is performed using the aggregated labels. Aggregation techniques may
involve the setting of the importance or priority of the different objectives by weight-
ing each objective through a scalar function (e.g., Linear Scalarization [124], Weighted
Chebyshev [113]). Conversely, some techniques work by constraining the objectives
of the problem, e.g., 𝜖–Constraint [77] leading to a unique non-dominated solution.

Pareto optimality is commonly achieved by many different Pareto-optimal solu-
tions. However, IR and RS MOO tasks generally require identifying a single Pareto-
optimal solution to be deployed in the system. To the best of our knowledge, no
strategies specifically tailored to IR and RS tasks have been previously proposed [204].
The state-of-the-art techniques from MOO theory are in fact aimed at identifying a
set of Pareto-optimal solutions, without addressing the problem of post-hoc choos-
ing one among the—possibly many—solutions identified for the IR and RS tasks.
Indeed, many works in the IR and RS literature, although exploiting the techniques
discussed above, do not either: (i) consider the problem of selecting a single best
solution to the multi-objective problem or, (ii), discuss the criteria adopted to select
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a single Pareto-optimal solution [224].
In this chapter, we fill this gap by introducing “Population Distance from Utopia”

(PDU), a novel post-hoc flexible strategy for selecting one—best—Pareto-optimal
solution among the ones lying in the Pareto frontier for IR and RS tasks. PDU relies
on the observation that the Pareto-optimal point coordinates are an aggregation—
usually the mean—of the model performance for each sample, i.e., queries in IR and
users in RS, on multiple objectives. PDU exploits the notion of “Utopia point” as the
ideal optimization target. Differently from the methods fromMOO theory, which
are devised to solely consider the mean performance values when selecting a single
Pareto-optimal solution, PDU is designed to set a utopia point for each sample of
the dataset. This feature allows choosing a solution not only based on the “global”
performance achieved by the IR/RSmodel, but also in amore fine-grained resolution
that now considers multiple quality criteria that are expressed on a sample level. We
call this feature “calibrated” selection. In detail, the contributions of this work are:

• We formally introduce PDU as a novel technique that allows one to select, in a
principled way, the best Pareto-optimal solution previously identified by a state-
of-the-art MOO technique.

• We provide a thorough comparison of PDU against state-of-the-art selection
strategies. The analysis shows that PDU is the only selection method that allows
identifying a “calibrated” solution, i.e., based on ideal targets expressed on a sample
level.

• Weexperimentally comparePDU against state-of-the-art strategies onwell-known
IR and RS tasks by exploiting public data. The results show that, unlike other
methods, PDU can identify Pareto-optimal solutions regardless of their position
on the frontier. Moreover, PDU calibration can lead to the selection of significantly
different trade-offs.

• We release a GitHub repository for our implementation of PDU and the state-
of-the-art competitors as well as the data used in the experiments to allow a full
reproducibility of the results.

8.2 Background

8.2.1 Selection Strategies

The Pareto frontier consists of a set of equally optimal solutions. Some methods to
select a single Pareto-optimal solution assume the existence of a decision maker [107].
These methods are known asMulti-Criteria Decision Making (MCDM) strategies,
where a decision-maker has knowledge of the preferences (hierarchy) among the
objectives. However, decision-makers do not always know how to weigh the differ-
ent objectives [30]. Moreover, in some cases, the complexity of the problem makes it
difficult for a human decision-maker to evaluate and compare different options com-
prehensively. Conversely, mathematical methods can provide consistent, objective,
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and impartial decision-making approaches. In this work, we focus and outline math-
ematical strategies for selecting a solution from the Pareto frontier, i.e., strategies
applicable in the absence of “a priori knowledge” that can feed an MCDM strategy.

Knee Point

The Knee Point [30] strategy aims to identify a knee of the Pareto frontier. The ratio-
nale is that solutions different from the knee point would exhibit limited improve-
ment for one objective and a substantial deterioration for the others. As described
by Branke et al. [30], these strategies were born as a variation of multi-objective evo-
lutionary algorithms to find the knee regions on the Pareto frontier. Consequently,
when other algorithms compute the Pareto Frontier, the extracted knee region may
not have a knee-featured shape, thus making this strategy less convenient. Several
methods to identify the knee point are proposed in the literature, mainly differing
for the number of objectives.
Angle-based method (A-KP).When dealing with two objectives, the reflex angle
between the slopes of the two vectors through a point 𝐵 = (𝑥𝑖, 𝑦𝑖) and its two
neighbors, i.e., 𝐴 = (𝑥𝑖−1, 𝑦𝑖−1) and 𝐶 = (𝑥𝑖+1, 𝑦𝑖+1), on the Pareto Frontier can be
considered as an efficient indication of whether the point can be classified as a
knee [30]. The Pareto-optimal point having the maximum reflex angle computed from
its neighbors is considered the knee [54]. If no neighbor to the left (right) is found, a
vertical (horizontal) line is used to calculate the angle. Even though this method is
efficient in a two-dimensional scenario, it becomes impractical for more than two
objectives, especially for the choice of neighbors.
Utility-based method (U-KP). A valid alternative to overcome the limitation of
the angle-based method is adopting a marginal utility function. Let us consider
a set of 𝑛 objective functions 𝑓 (·) and 𝑚 sets of 𝑛 uniformly distributed weights
w, with 𝑤𝑖 ∈ [0, 1] such that

∑
𝑖 𝑤𝑖 = 1 [30]. The resulting utility function is then

𝑈 (x,w) =
∑
𝑖 𝑤𝑖 · 𝑓𝑖(𝑥). The Pareto-optimal solution having the minimum utility

value for most weight configurations is the knee point.

Hypervolume

The Hypervolume [230] strategy was first introduced to compare the quality of differ-
ent Pareto frontiers [66]. However, by computing the hypervolume of each solution
on the Pareto frontier, this strategy can be straightforwardly exploited to select
the best solution from the set [224]. Given a Pareto-optimal solution x★ ∈ ℝ𝑘, a
reference point r ∈ ℝ𝑘, and the Lebesgue measure 𝜆, the hypervolumeHV of x★

with respect to r is:
HV = 𝜆({x ∈ ℝ𝑘 | x★ ≺ x ≺ r}). (8.1)

TheHV value is the volume of the hypercube determined by the solution x★ and
the reference point r. The Pareto-optimal point having the maximum hypervolume is
the selected one.
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Other Techniques

Other simpler techniques that have been used for selecting a solution from the
Pareto frontier are the Euclidean Distance and the Weighted Mean [135, 198]. The
Euclidean Distance (ED) is computed between each solution on the Pareto frontier
and the utopia point: 𝐸𝐷(x★) = |f(x★) − f⋄|. The Pareto-optimal point having the
minimum Euclidean distance is the selected solution. Instead, the Weighted Mean (WM)
requires setting the importance of each objective through a set of weights. Among
all the Pareto-optimal points, the point maximizing the weighted mean corresponds to
the selected solution.

8.3 Population Distance from Utopia

Driven by the goal of overcoming the limitations of the othermethods in a principled
way for IR and RSs, we propose PDU (Population Distance from Utopia), a selection
strategy taking into account the distance of the query/user metrics from the utopia
point.

Our intuition starts from the observation that in a search and/or recommendation
scenario, the Pareto frontier is populated by points representing aggregated results
(usually, they represent the average value) onmetrics referring to a set of experiments.
For instance, in a RS setting, we could have a frontier representing the values of two
metrics: nDCG, to measure the accuracy of the model, and Intralist Diversity (ID), to
measure the diversity in the list of recommended items. Each point on the frontier
may represent the corresponding values of nDCG and ID for a specific configuration
of the hyperparameters. It is worth noticing that these values are computed as the
value of the given metric averaged on all the system users. Suppose we focus instead
on the point representing the single user. In that case, we may also reconsider the
notion of utopia point in this more fine-grained view and adapt it to generalize with
respect to the single user. The same observations hold in a search setting where we
have queries instead of users. The questions leading our proposal are then:

• What happens if we focus our analysis on the original points instead of their aggregated
representation?

• Can we characterize each of these fine-grained points and exploit a generalized defini-
tion of utopia point that considers even the single user/query?

We start by defining a generalized version of the utopia point.
A point f ◦ in the objective function space ℝ𝑘 is a generalized utopia point if

and only if f ◦𝑖 = h𝑖(x) | x ∈ X ∀𝑖 ∈ {1, 2, . . . , 𝑘}. In our definition, ℎ𝑖 is a function
that considers the characteristics of the original data and returns a desired but
unattainable utopia value for the 𝑖-th metric. For a (non-generalized) utopia point
𝑓⋄, we have h𝑖 = minx f𝑖(x). Its definition can be driven both by system or dataset
properties and by the choices of the system designer. For instance, in Section 8.4.1, we
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define ℎ2 (see Equation (8.12)) to quantify the users’ popularity tendencies stemming
from their past interactions with the items in a recommendation scenario.

Given a Pareto-optimal solution x★ ∈ ℝ𝑘, we can assume that it is the image of
an aggregation function applied to a set of 𝑚 points x𝑗 inℝ𝑘, with 𝑗 ∈ {1, . . . , 𝑚}. In
our previous example, the points represent the values of the pairs ⟨𝑛𝐷𝐶𝐺, 𝐼𝐷⟩ (with
𝑘 = 2) for the 𝑚 users in the system. Suppose a generalized utopia point f ◦𝑗 ∈ ℝ𝑘,
with 𝑗 ∈ {1, . . . , 𝑚}, is associated to each point x𝑗.

Definition 8.1. The Population Distance from Utopia (PDU) is:

PDU = log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , x𝑗)
2

)
, (8.2)

where 𝑒 : ℝ𝑘 → ℝ is an error function that satisfies the conditions of identity, symmetry,
and triangle inequality. The Pareto-optimal point having the minimum PDU is the
selected solution. The error function 𝑒(·) is parametric, i.e., we can set any error or
distance metric as 𝑒(·), like Euclidean distance or mean squared error.

Derivation. Let us consider an objective function spaceℝ𝑘, where 𝑘 is the number of
objectives, and a datasetD of𝑚 samples (users/queries). For each sample, we suppose
to know the best possible value of each objective. Then, we can associate each sample
with a 𝑘-dimensional vector f ◦𝑗 , with 𝑗 ∈ {1, . . . , 𝑚}, which constitutes its generalized
utopia point in the objective function space ℝ𝑘. We use F = {f ◦𝑗 | 𝑗 ∈ {1, . . . , 𝑚}}
to denote the set of all the generalized utopia points referring to the 𝑚 samples.
Let us now consider a model 𝜂 that returns 𝑘 objectives performance values for
each sample inD. As before, each sample corresponds to a 𝑘-dimensional vector
x𝑗, with 𝑗 ∈ {1, . . . , 𝑚}, which represents the model performance for that sample in
ℝ𝑘. We denote P = {x𝑗 | 𝑗 ∈ {1, . . . , 𝑚}}. Thus, each sample 𝑗 is represented by f ◦𝑗
and x𝑗 in the objective function space: the closer the points, the better the model 𝜂
performs. Let us introduce an error function 𝑒 : ℝ𝑘 → ℝ satisfying the conditions
of identity, symmetry, and triangle inequality. The error of the model 𝜂 on the 𝑗-th
sample is 𝑒(f ◦𝑗 , x𝑗). By supposing the error term follows the IID property, it has a
Gaussian distribution with mean 𝜇 = 0 and variance 𝜎 2, i.e., 𝑒(f ◦𝑗 , x𝑗) ∼ N (0, 𝜎2),
whose probability density function is:

𝑝(𝑒(f ◦𝑗 , x𝑗)) =
1
√

2𝜋𝜎
exp

(
−
𝑒(f ◦𝑗 , x𝑗)

2

2𝜎 2

)
. (8.3)

We can note that if f ◦𝑗 and x𝑗 are close, the exponent part of Equation (8.3) tends
to 1, and the probability increases while tending to 0 when the two points are far
apart and the probability decreases.

Then, we compute the error probability density function of the error for the
entire dataset D. We observe that the model 𝜂 has some parameters Θ. Hence, P
can be expressed as a function 𝑔 of the parameters Θ: P = 𝑔(Θ). Then, a vector



i
i

“output” — 2025/2/22 — 18:13 — page 136 — #141 i
i

i
i

i
i

Post-hoc Selection of Pareto Optimal Solutions in Search and Recommendation 136

x𝑗 ∈ P can be rewritten as x𝑗 = 𝑔(Θ)𝑗. By assuming the samples to be independent,
we obtain the following expression for the likelihood function:

𝑝(𝑒(F, 𝑔(Θ))) =
𝑚∏
𝑗=1

𝑝(𝑒(f ◦𝑗 , 𝑔(Θ)𝑗)). (8.4)

Since f ◦𝑗 is the (generally unattainable) output we desire to have, we are inter-
ested in finding the parameters Θ for the model 𝜂 such that the likelihood function
𝑝(𝑒(F, 𝑔(Θ))) is the highest. As the logarithmic function is increasing monotone, it
does not modify the maximum positions. Hence, we can compute the log-likelihood
instead of the likelihood to simplify calculations:

log 𝑝(𝑒(f ◦𝑗 , 𝑔(Θ))) = log
𝑚∏
𝑗=1

𝑝(𝑒(f ◦𝑗 , 𝑔(Θ)𝑗)) (8.5)

= 𝑚 log
1
√

2𝜋𝜎
− 1

2𝜎 2

𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗)2. (8.6)

At this point, we explicit the variance term 𝜎 2. Since we have supposed that the
error term 𝑒(f ◦𝑗 , x𝑗) has a Gaussian distribution with 𝜇 = 0, the variance 𝜎 2 is defined

as
∑𝑚
𝑗=1 𝑒(f

◦
𝑗
,𝑔(Θ)𝑗)2

𝑚
. By introducing this term in Equation (8.6), we obtain that the log-

likelihood is:

(8.7)

log 𝑝(𝑒(f ◦𝑗 , 𝑔(Θ))) = 𝑚 log
1

√
2𝜋

√︃
1
𝑚

∑𝑚
𝑗=1 𝑒(f

◦
𝑗 , 𝑔(Θ)𝑗)2

− 1
2
𝑚

∑𝑚
𝑗=1 𝑒(f

◦
𝑗 , 𝑔(Θ)𝑗)2

𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗)2

= −𝑚 log(
√

2𝜋 ) + 𝑚 log𝑚 − 1
2

log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗)2

)
− 𝑚

2
. (8.8)

By supposing to train the model 𝜂 on the same datasetD with several configurations
of Θ, the terms depending on the dataset size 𝑚 and the constant 1/2 in Equation
(8.8) can be removed as they are constant when choosing the highest log-likelihood.
Hence, the only variable quantity among the different log-likelihoods is:

− log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗)2

)
. (8.9)

Therefore, we are looking for the model 𝜂 with parameters Θ having the maximum
value of the term in Equation (8.9):

max

[
− log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗)2

)]
. (8.10)
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Finally, this remainder term can be easily rewritten with a positive sign as long as
we choose the configuration of Θ for the model 𝜂 having the minimum value for
this quantity:

min

[
log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗)2

)]
= min

[
log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , x𝑗)
2

)]
. (8.11)

8.3.1 Calibrated PDU

PDU allows setting a generalized utopia point for each sample of the dataset, i.e.,
queries and users in an IR or RS scenario, respectively. This feature allows choosing
a solution not only based on the “global” performance achieved by the IR/RS model,
but also in amore fine-grained resolution that now considersmultiple quality criteria
expressed on a sample level. We call such feature calibration since it can be usefully
exploited in specific scenarios, e.g., personalization in RS, where it is possible to
define generalized utopia points according to individual users’ preferences. These
generalized utopia points can be fixed apriori, e.g., they can be identified by the
system designer or computed through functions that numerically quantify the users’
tendencies, similarly to what has been done in previous works regarding calibrated
recommendations [97, 137, 170]. We refer to this feature as Calibrated-PDU (C-PDU).

8.3.2 Feature Comparison

In Section 8.2.1, we have presented the most-used techniques to choose a single
best solution belonging to a Pareto frontier. However, as also stated by Wu et al.
[204], there is no consensus on the strategy to solve this task in the IR and RS
communities. Not surprisingly, all methods have some advantages and limitations,
leading to a lack of an ideal strategy [109]. Hence, a comparison of the features
provided by PDU and state-of-the-art techniques is needed. Specifically, we identify
some desirable features the techniques should have. Table 8.1 discusses the main
properties of PDU and other state-of-the-art techniques. First, the strategy should

be suitable evenwhen dealingwithmore than two objectives. In this regard, the
angle-based knee point is the only ineffective method. Second, the strategy should

not need any additional knowledge. Most techniques require additional problem
information, i.e., the reference point (HV), the (generalized) utopia point (ED, PDU),
and a weights set (WM). Since the results of a given strategy can largely depend on
such information, a fair strategy should require as less additional information as
possible. The weights should be set by a decision-maker with deep knowledge of
the hierarchy among the objectives. In contrast, the reference and the (generalized)
utopia points are ordinarily intrinsic to the problem.Despite some common practices
(e.g., nadir point) [109], it has been shown that determining a reference point r for
HV is generally more challenging [79, 109], and a badly defined reference point
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Table 8.1. Overview of the properties of PDU and other selection strategies. The symbols ✓
(✗,—) indicate that the method has (does not have, could not have) the specified property.

Method A-KP U-KP HV ED WM PDU

Suitable With >2 Objectives ✗ ✓ ✓ ✓ ✓ ✓
No Additional Knowledge ✓ ✓ r f ⋄ w f ◦
No Scaling before Calculation ✓ — ✓ — — —

Deterministic ✓ ✗ ✓ ✓ ✓ ✓
Equal Treatment of PF Regions ✗ ✓ ✗ ✓ ✓ ✓
Calibration ✗ ✗ ✗ ✗ ✗ ✓

can lead to inconsistent evaluation results [102]. Indeed, having a reference point
slightly different from the nadir point could lead to incongruous evaluation, as
experimentally demonstrated by Ishibuchi et al. [88]. Therefore, the utopia point is
the most effortlessly additional information that can be exploited for this task. Third,
the strategy should not require to scale the range of the objectives. Scaling may
be needed for strategies whose calculation involves objective blending, i.e. U-KP, ED,
WM, and PDU. When the objectives have different scales, the bigger the range of
an objective, the bigger its contribution to the selection of a solution. However, the
choice of scaling the objectives is left to the system designer. Fourth, the strategy
should be deterministic. The U-KP strategy requires randomly extracting a set of
weights from a uniform distribution. This could potentially affect the consistency
and reproducibility of results. Fifth, the strategy should equally promote the

solutions despite their position on the Pareto frontier. The strategies blending
the objectives are not biased to select solutions based on particular Pareto frontier
regions. This is not true for theHV strategy that tends to promote the solutions
on the concave region of a Pareto frontier.

Final Observations and Calibration

To summarize, none of the strategies own all the properties. However, some consid-
erations can be made. A-KP and U-KP are characterized by huge drawbacks. The
former can be utilized only in contexts considering two objectives. The latter is
nondeterministic. Furthermore, none of the techniques is able to select a solution
irrespective of its position on the Pareto frontier and to be independent of scaling
the objective ranges before calculation simultaneously. In this regard, a system de-
signer could prefer to adopt a technique able to fairly choose a solution despite its
position on the Pareto frontier (as done byU-KP, ED,WM, and PDU). Indeed, scaling
the objectives can be easily performed with a simple operation such as min/max
normalization. Furthermore, this operation is subject to the system designer, who
can consider the objectives range in specific applications. Concerning the additional
knowledge problem, only A-KP and U-KP do not need supplementary information.
However, as stated before, they are characterized by main drawbacks. Then, such
additional knowledge is required. Among the remainder techniques, PDU and ED
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exploit easier-to-define additional material, i.e., the utopia point.
By looking beyond, the proposed PDU allows us to define a utopia point for

each sample in the dataset. While the other approaches exploit only aggregated
models’ performance, PDU opens to a novel “calibrated” way to select one—best
Pareto-optimal solution tailored to individual sample characteristics. To the best of
our knowledge, this is the first attempt to introduce this kind of feature in the task
of Pareto-optimal solutions selection strategy.

From now on, when no confusion arises, we will use utopia point to refer also to
a generalized utopia point.

8.4 Experimental Evaluation

We now present an experimental evaluation based on public data that aims at an-
swering the following research questions:

RQ1: How do PDU and other state-of-the-art selection strategies behave w.r.t. the
discussed properties? (see Section 8.3.2)

RQ2: How does the distribution of the points composing the points on the Pareto
frontier influence the selection of a solution?

RQ3: How does the calibration feature impact the selection of a solution?

8.4.1 Experimental Scenarios

Driven by the observation that, in IR and RS settings, the Pareto frontier is populated
by points representing aggregated results, we analyze the selection strategies in these
two settings.

Information Retrieval Scenario

Concerning the IR scenario, we focus on an ad-hoc search task by dealing with
the efficiency / effectiveness / energy-consumption trade-off of query processing
in IR systems based on machine-learned ranking models [33]. IR systems heavily
exploit supervised techniques for learning document ranking models that are both
effective and efficient, i.e., able to retrieve within a limited time budget high-quality
documents relevant to users’ queries. State-of-the-art learning-to-rank models in-
clude ensembles of regression trees trained with gradient boosting algorithms, e.g.,
LambdaMART [33, 209], and deep neural networks, e.g., NeuralNDCG [142]. Since
ranking is a complex task and the training datasets are large, the learned models are
complex and computationally expensive at inference time. The tight constraints on
query response time thus require suitable solutions to provide an optimal trade-off
between efficiency and ranking quality [40, 72, 116].

In this scenario, we use the LambdaMART [33, 209] implementation available
in LightGBM [100] to train ranking models based on ensembles of regression trees
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and Neural Networks (NN) trained in Pytorch [138] following the optimization
methodology proposed in [132]. The models are trained on MSN30K [143], a public and
widely-used dataset for learning to rank. The evaluation employs 11 LambdaMART
and 5 Neural Networks ranking models, each tested on the 6,306 queries of the
MSN30K test set. We measure the ranking quality of each model in terms of average
nDCG@10 (𝑓1), and average ranking time (seconds per document) (𝑓2). For the Lamb-
daMART configurations, we also measure the average energy consumption (Joules
per document) (𝑓3). The average ranking time of each model has been measured by
using QuickScorer [116], while energy consumption has been measured by using the
Mammut library [159]. Efficiency experiments are performed on a dedicated Intel
Xeon CPU E5-2630 v3 clocked at 2.4 GHz in single-thread execution. QuickScorer is
compiled using GCC 9.2.1 with the -O3 option.

In this IR experimental scenario, we focus on selecting the best efficiency/effectiveness
trade-off for query processing.

Recommendation Scenario

Concerning the RS scenario, we consider two of the main problems of recommen-
dation algorithms, i.e., the accuracy of the recommendations and the tendency to
over-suggest popular items. Often, the ability of RS to provide accurate recom-
mendations is competing with the capability of including long-tail items in such
suggestions [131], inducing a trade-off. Hence, we consider two objectives. We com-
pute the Recall@10 (𝑓1) to measure the accuracy of suggestions and the average
percentage of items in the long-tail (APLT) [3] (𝑓2) to measure to what extent a RS
can recommend unpopular items (see Section 2.4).

Specifically, we interpret APLT from two perspectives, identifying two exper-
imental scenarios. On the one hand, we assess APLT from provider-side fairness.
The provider side fairness can be quantified as the models’ ability to expose items to
users evenly [1, 3, 204]. Indeed, the over-recommendation of popular items, i.e., the
so-called unfairness of popularity bias, may be felt as unfair by providers who get
long-tail items under-represented in the suggestions. Hence, in this scenario, the
goal is to choose a model that promotes relevant items without affecting niche items’
visibility.

In this first RS experimental scenario, we focus on selecting the best recommendation
model dealing with multiple objectives.

On the other hand, we evaluate APLT from the final user point of view. Indeed,
certain users may prefer to consume popular items, while others niche items. Con-
sequently, exclusively recommending mainstream items would hurt the experience
of long-tail users, and vice versa. The approach of calibrated recommendation has
shown a valuable solution toward this direction of research [137, 170]. A recom-
mendation list is calibrated concerning popularity when the set of items it covers
matches the user’s profile in terms of item popularity [4]. Inspired by the concept
of popularity-based calibrated recommendation, for each user, we compute the
values of the APLT target (𝑓2) stemming from their popularity profile. To this end,
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we compute the user-level APLT utopia values using the weighted combination of
mean and standard deviationmethod described by Jugovac et al. [97]. We consider
the set of usersU, the set of items I, and the mean number of transactions 𝑇 in
the training set. For each item 𝑖 ∈ I, we assess its popularity 𝑝𝑜𝑝𝑖 by counting the
number of transactions the item is involved in. For each user 𝑢 ∈ U, we define the
set Γ𝑢 = {𝑝𝑜𝑝𝑖 | 𝑢 interacted with 𝑖}. We quantify the user 𝑢 popularity tendencies
as 𝑝𝑜𝑝𝑢 = 𝛼 · 𝜇 (Γ𝑢) + 𝛽 · 𝜎 (Γ𝑢), where 𝛼 and 𝛽 are set to a fixed value of 1 as done
in [97], 𝜇 (·) and 𝜎 (·) are the mean and standard deviation operators, respectively.
The higher is 𝑝𝑜𝑝𝑢, the most user 𝑢 has consumed mainstream items in her past
interactions. Finally, we normalize 𝑝𝑜𝑝𝑢 and compute the APLT utopia value for
each user:

𝑓 ◦2 = ℎ2(𝑢) =
𝑝𝑜𝑝Ψ − 𝑝𝑜𝑝𝑢
𝑝𝑜𝑝Ψ − 𝑝𝑜𝑝Φ

, (8.12)

where Φ and Ψ are the sets composed by 𝑝𝑜𝑝𝑖 values such that 𝑖 is one of the less and
most 𝑇 consumed items, respectively. With this normalization, the higher is 𝑓 ◦2 , the
less popular is the user profile.

In this second RS experimental scenario, we show how important a calibrated technique
is for choosing the best recommendation model dealing with multiple objectives.

In the two experimental scenarios presented for RS, we exploit the EASE𝑅 rec-
ommendation model [171], which works like a shallow autoencoder. This model is
characterized by a single hyper-parameter to tune, i.e., the L2-norm regularization
(𝜆). Nevertheless, it has been shown that it often outperforms other state-of-the-art
recommender systems [13]. Specifically, we explore the hyper-parameter 𝜆 by train-
ing 48 configurations on the book-domain dataset Goodreads [196] (18,892 users,
25,475 items, and 1,378,033 transactions) and on the music-domain dataset Amazon
Music [13] (14,354 users, 10,027 items, and 145,523 transactions). We split the datasets
following the 70-10-20 hold-out strategy. Thus, the evaluation of this scenario em-
ploys 48 solutions on the objective function space, each tested on the remaining
users of the test set (18,070 of Goodreads, and 14,354 of Amazon Music).

8.4.2 Experimental Methodology

The different hyperparameter configurations introduced before, for the two IR and
RS settings, generate solutions in the objectives function space for each specific
experimental scenario. Once the Pareto-optimal solutions that compose the Pareto
frontier are identified, we select one by applying PDU and the other selection strate-
gies we analyzed in this work. The selected solutions are then analyzed according to
the features introduced in Section 8.3.2. Moreover, we investigate in detail how the
formulation of PDU and its calibration feature influence the choice of the one—best
solution by looking at the distribution of points composing that solution. We refer to
the reference point and the utopia point with r and f ◦, respectively. Furthermore, we
use the Euclidean distance as 𝑒(·) in the formulation of PDU, to have an immediate
comparison with 𝐸𝐷 to assess the impact of the points distribution composing a
solution. Tables 8.2, 8.3, and 8.4 report the results for the solutions chosen by at least
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one strategy. For the sake of completeness, the reader may find the complete sets of
results in the GitHub repository. The best values for each metric are in bold, while
the arrows indicate if better stands for lower ↓ or higher ↑ values.

Experimental settings for the IR scenario

A nadir point cannot be established for the IR scenario because two of the objectives,
i.e., efficiency and energy consumption, are not bounded in the opposite direction
of the optimization target. For this reason, we define the reference point by slightly
worsening the worst values reached by the optimal solutions available. By doing so,
we end up setting r = (0.5, 0.00002, 0.001) forHV . Moreover, we set f ◦ = (1, 0, 0)
for 𝐸𝐷, and for each sample in the dataset in PDU. For what regardsWM, we equally
treat the objectives by setting each weight to 0.5. Finally, in this scenario, we do not
apply any normalization to the objective values achieved with the different models.

Experimental settings for the RS scenario

Differently from the IR scenario, a nadir point can be established here because the
two objectives under consideration, i.e., Recall and APLT, are bounded. We thus set
r = (0, 0) forHV , and f ◦ = (1, 1) for 𝐸𝐷. As before, we give equal importance to
the objectives inWM by setting each weight to 0.5. Concerning PDU, we set 𝑓 ◦1 = 1
for each sample utopia point as we want all users to have accurate recommendations.
Instead, we set 𝑓 ◦2 = 1 in the first RS experimental scenario, while we compute
specific values of 𝑓 ◦2 for each user as in Equation (8.12) in the second RS experimental
scenario. Finally, in both RS scenarios, we apply a min-max normalization to the
objectives.

We first divide the results discussion according to both IR and RS scenarios for
RQ1 and RQ2. Then, we answer RQ3 by exploiting the second RS scenario.

8.4.3 Performance Comparison (RQ1)

IR scenario

We answer RQ1 by first focusing on the IR scenario. The results for this scenario
are summarized in Tables 8.2 (LambdaMART) and 8.3 (Neural Networks). The plots
in Figures 8.1a and 8.1c show the Pareto-optimal points selected by the different
techniques for the cases considering two and three objectives regarding the Lamb-
daMART models, respectively. Figure 8.1b shows the points selected in the case of
the Neural Networks models.

Regarding the two-objective case, we observe that the methods blending the
objectives (PDU, ED, WM) select the same Pareto-optimal solution lying on the
boundary of the Pareto frontier for both families of models, thus maximizing the
accuracy at the cost of efficiency. In contrast, HV chooses an inner solution of
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Figure 8.1. Pareto-optimal solutions for the IR and RS scenarios. The colored shapes represent
the best—Pareto-optimal—point selected by the strategies under evaluation.
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the Pareto frontier in both cases, i.e., more efficient models, that however show
a significantly lower performance in terms of nDCG compared to the selection
provided by PDU (0.5225 vs. 0.5179 for LambdaMART, and 0.5185 vs. 0.5144 for the
Neural Network). It is worth noting that, in this case, no transformation has been
applied to the scale of the objectives, and the values of the Pareto solutions for what
regards the efficiency scale lead the points to be closer to the utopia value 𝑓 ◦2 = 0.
If a min/max normalization is applied to the objective, PDU still selects the same
solution. Another essential implication arising from this analysis is that, in this
scenario, we cannot establish the nadir point, making challenging the definition of
the reference point. Consequently, this potentially leads to different results based
on how we define the reference point. Indeed, as we push the reference point away
from the Pareto frontier,HV selects a boundary solution, as done by PDU. In light
of the above results, we observe that if the information related to the nadir point is
unavailable, the definition of the reference point can strongly affect the selection
of the final solution. Moreover, if the reference point is estimated by looking at the
collection of the considered solutions, i.e., by slightly increasing the worst values
reached by them,HV promotes the solution in the middle. Indeed, the definition of
the reference point in such awaymakes the volume of those solutions, computed as in
Equation (8.1), higher than any other. Thus,HV unequally considers the remaining
points lying on the boundaries of the Pareto frontier. Finally, it is worth highlighting
that U-KP, although reported in Figures 8.1a and 8.1b, is not deterministic. Indeed,
by executing this method several times, it may choose different points as the weights
of the utility function (see Section 8.2.1) are randomly extracted from a uniform
distribution.

Moving to the three-objective formulation of the IR scenario for the Lamb-
daMART models, Figure 8.1c shows that when introducing the energy consumption
objective, the methods tend to choose a more efficient model than the one selected in
the two-objectives scenario. As before, PDU and ED tend to maximize the accuracy
with respect toHV that still select solutions in the middle. The three-dimensional
scenario confirms two behaviors observed in the two-dimensional one. First, the
solution selected by HV depends on the chosen reference point since it is not
possible to define a nadir point. Second, U-KP still exhibits a non-deterministic
behavior.

Finally, we claim that PDU and ED perform the most convenient selection from
a qualitative perspective. By looking at Tables 8.2 and 8.3, we see that they choose
the models with higher values of nDCG for all IR cases. Indeed, both efficiency and
energy consumption objectives are closer to their respective utopia values. This
means that more complex models, chosen by PDU and ED, guarantee considerable
improvement in ranking accuracy at a small reduction of efficiency and energy
consumption. Conversely,HV chooses models that exhibit a considerable decrease
in terms of nDCG.
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Table 8.4. EASE𝑅 selected solutions (for Goodreads and Amazon Music) in the RS scenario
with Recall and APLT objectives. For APLT, the higher the better refers to the provider side.

Models Objectives Selection Strategies

𝜆 Recall ↑ APLT ↑∗ PDU ↓ C-PDU ↓ HV ↑ U-KP↑ 𝐸𝐷 ↓ 𝑊𝑀 ↑

Goodreads

0.3 0.0384 0.0485 10.4113 10.0898 0.1861 × 10−2 55 0.8546 0.2699

0.5 0.0433 0.0443 10.4066 10.0829 0.1919 × 10−2 16 0.7761 0.2686
1 0.0503 0.0363 10.4098 10.0819 0.1826 × 10−2 0 0.7191 0.2546
60 0.0822 0.0108 10.4126 10.0706 0.0885 × 10−2 86 0.9651 0.2556
90 0.0827 0.0096 10.4134 10.0711 0.0791 × 10−2

101 0.9938 0.2510

Amazon Music

0.3 0.0632 0.1976 10.0104 9.8604 0.1249 × 10−1 79 0.9524 0.2608
1 0.0683 0.1898 10.0147 9.8628 0.1295 × 10−1 49 0.8074 0.2819
10 0.0853 0.1313 10.0784 9.9160 0.1120 × 10−1 4 0.6177 0.2896

80 0.0955 0.0766 10.1268 9.9570 0.0731 × 10−1
89 0.9780 0.2542

RS scenario

For the first RS experimental scenario, we report the results achieved in Table 8.4 for
the Goodreads dataset (Figure 8.1d) and for the Amazon Music dataset (Figure 8.1e).
For both datasets, we notice that two well-separated clusters characterize the Pareto
frontier. On the one hand, in Goodreads the EASE𝑅 configurations with lower L2
norm (𝜆) values, which belong to the top-center cluster, account for the accommoda-
tion of the objectives. In contrast, the second cluster (bottom-right), i.e., 𝜆 between
10 and 100 in Table 8.4, maximizes Recall at the expense of the exposure of the items
(lower values of APLT). On the other hand, in Amazon Music, these two clusters
of configurations follow the opposite behavior. On the one side, the configurations
with 𝜆 between 0.2 and 1 maximize APLT at the detriment of Recall (top-left cluster).
On the other side, the remaining configurations do not promote either Recall or
APLT (bottom-right cluster). In this scenario,HV suffers less from the problem of
promoting solutions in the center of the Pareto frontier. Indeed, differently from the
IR scenario, here it is possible to define the nadir point as a reference point because
we know the lowest bounds (0 for both APLT and Recall). Consequently, even though
HV selects an inner solution in the Goodreads case, it chooses a point that tends
to maximize APLT for the Amazon Music dataset. PDU follows the behaviour of
HV when selecting the solutions for both datasets. By considering that it selects
an outer point of the Pareto frontier in the IR scenario, this endorses the ability
of PDU to equally promote the available solutions despite their positioning on the
Pareto frontier.WM and ED select a solution belonging to the top-center cluster in
Goodreads and to the bottom-right cluster in Amazon Music, thus enhancing the
trade-off between accuracy measured in terms of Recall and items exposure in both
cases. Finally, U-KP still exhibits a nondeterministic performance.
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(a) EASE𝑅 , 𝜆 = 0.5.
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(b) EASE𝑅 , 𝜆 = 1.0.
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Figure 8.2. Distribution of users data points in the objective function space Recall / APLT
for the solutions selected by PDU (left) and ED (right). The color of the point indicates the
number of users in the point.

To answer RQ1 we conclude observing that PDU overcomes some limitations of
HV and U-KP competitors. Indeed, PDU selects one—best—Pareto-optimal solution
regardless of its position on the Pareto frontier in a deterministic way. Moreover, it exploits
the concept of Utopia point as additional information. Such a concept is more convenient
to use than the reference point used inHV , since, depending on the problem addressed,
the nadir point is difficult to be defined.

8.4.4 Impact of the Points Distribution (RQ2)

We now answer RQ2 by investigating the impact on selecting the distribution of
the points that compose a solution on the Pareto frontier. Indeed, PDU is the only
strategy considering these points in a more fine-grained resolution. This analysis is
done on both the IR (Tables 8.2 and 8.3) and RS (Table 8.4) scenarios. To this end, we
remember that we have set 𝑒(·) as the Euclidean Distance in the formulation of PDU
(Equation (8.2)). Hence, even if both PDU and ED rely on the Euclidean distance,
they work differently in the two experimental scenarios. This observation provides
insights on the impact of the points distribution on the selection.

RS scenario

PDU and ED choose different solutions for both RS datasets. In this regard, the
user data points’ distribution in the objective function space plays a crucial role, as
visually depicted by Figure 8.2 for the Goodreads dataset. Indeed, the distribution of
the solution with 𝜆 = 0.5, chosen by PDU, shows that more points are oriented to
the Utopia point than the ones of the solution selected by ED. To confirm this fact,
we compute the users points’ mean Euclidean distances to the utopia point of both
solutions. Results confirm that the EASE𝑅 configuration selected by PDU has a lower
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value of average Euclidean distance, i.e., 1.3498 for 𝜆 = 0.5, w.r.t. the configuration
chosen by ED, i.e., 1.352 for 𝜆 = 1. The same impact is observed regarding the
Amazon Music dataset. Here, PDU and 𝐸𝐷 select different configuration models
having 𝜆 = 0.3 and 𝜆 = 10, respectively. As before, the EASE𝑅 configuration selected
by PDU (𝜆 = 0.3) has a lower value of average Euclidean distance, i.e., 1.2361 than
the configuration chosen by ED (𝜆 = 10), i.e., 1.279.

IR scenario

Concerning the IR two-objectives cases, PDU and 𝐸𝐷 choose the same solution
for both LambdaMART and Neural Networks models. When introducing energy
consumption as the third objective for the LambdaMART models, 𝐸𝐷 still selects
the same configuration with 878 trees and 64 leaves. Conversely, PDU chooses a
more efficient model (300 trees and 64 leaves). Once more, the query points’ mean
Euclidean distances to the common utopia point of the model selected by PDU are
lower than the ones of the model chosen by 𝐸𝐷 (0.4813 vs. 0.4945).

To conclude, the answer to RQ2 is that the distribution of the points composing a
solution with respect to a common utopia point has a significant impact on the final
selection. This is an important fact, as it paves the way to defining selection strategies
that take the distribution of the points into account while performing a selection that can
be done in a more—fine-grained—sample-level way.

8.4.5 Impact of Calibration on the Selection (RQ3)

Finally, we analyze the impact of the calibration introduced for PDU using the
second RS scenario, where we aim to tailor the selection according to the users’ item
popularity tastes. To this end, we assess the selection performed by Calibrated-PDU
(C-PDU).

Starting from the Amazon Music dataset, the average of the APLT utopia values
computed with Equation (8.12) (0.83) reveals that the dataset’s users generally prefer
less popular items. Indeed, C-PDU selects the EASE𝑅 model with 𝜆 = 0.3. This
solution lies on the top-left cluster of Figure 8.1e, by maximizing APLT with a loss
of Recall. In this case, C-PDU behaves similarly to PDU andHV . Moving to the
Goodreads dataset, it is characterized by users with more mainstream tastes, since
the average of the APLT utopia values is equal to 0.65. Surprisingly, C-PDU is the
only strategy among the ones tested selecting a model configuration belonging to
the bottom-right cluster in Figure 8.1d where the solutions achieve higher accuracy
values without promoting APLT and following the mainstream users tastes — along
with U-KP that, however, has a non-deterministic behavior. These experimental
results already qualitatively show the impact of defining a utopia point for each
user on the final selection, since C-PDU is the only strategy to capture the users’
popularity profiles for both datasets. We deepen the analysis further by considering
the model configurations chosen by PDU and C-PDU for Goodreads, i.e., 𝜆 = 0.5
and 𝜆 = 60, respectively. We observe that, although the model with 𝜆 = 0.5 performs
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better on average APLT, the model with 𝜆 = 60 has a lower variance of the mean
absolute error (0.036 for 𝜆 = 60 vs. 0.039 for 𝜆 = 0.5) between the utopia values
and the model performance values for each user. This indicates that C-PDU selects
the model that generally follows better the users’ popularity profile. In addition,
this model provides more accurate recommendations on average. Hence, C-PDU
chooses the model that performs better in terms of accuracy and also tailors the
popular tastes of the users.

To conclude, the answer to RQ3 is that the calibration feature of PDU allows dealing
with the ideal targets for each sample. This confirms that calibration is a viable way to
move the selection of the Pareto-optimal solution to a more fine-grained resolution that
can lead to significantly different choices in terms of the trade-off selected.

8.5 Summary

In this work, we proposed PDU, a novel, theoretically-justified post-hoc technique
to select one—best—Pareto-optimal solution among the ones lying in the Pareto
frontier in search and recommendation scenarios. To our knowledge,PDU is the only
selection technique in the literature that can be “calibrated”, i.e., it can choose the best
Pareto-optimal solution based on ideal targets expressed on single queries or users.
We comprehensively compared the properties of PDU with those of competitor
techniques. We conducted an extensive experimental evaluation focusing on both IR
and RS scenarios, showing that the formulation and the calibration feature of PDU
have a notable impact on the solution’s selection. In the future, we will explore PDU
by exploiting other distance metrics (e.g., Chebyshev and Manhattan). Moreover, it
could be interesting to perform online A/B tests to assess the impact of the calibrated
selection. Finally, this work could open to the formulation of a new loss function
based on the PDU derivation, to directly train a rankingmodel onmultiple objectives
simultaneously.
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Chapter 9

Flex-MORe:AFlexibleMulti-Objective

Recommendation Framework

Conventional Recommender Systems (RS) deliver users a ranked list
of relevant items based on their historical preferences. Nevertheless,
most approaches overlook other aspects of a recommendation pro-
cess. Beyond-accuracy metrics—e.g., those focusing on novelty, diver-
sity, and fairness of recommendation—are not usually a core part of
the optimization process behind the training of the recommendation
model. Multi-Objective Recommender Systems (MORSs) aim to con-
sider beyond-accuracy objectives in their training process. However,
current state-of-the-art works fail to provide a general framework that
can encompass any kind of objective in the training procedure. This
chapter introduces a Flexible Multi-Objective Recommendation frame-
work (Flex-MORe). The framework extends RS training by incorpo-
rating an objective-agnostic and objective scale-aware additional loss
function term, blending different—conflicting—metrics guided by their
deviation from the corresponding utopia point. Since most ranking-
based metrics are inherently non-differentiable, we present a method
that makes them suitable for use with back-propagation. Experiments
on three real-world datasets show the ability of Flex-MORe to balance
diverse objectives, achieving state-of-the-art performance. We release
code and datasets at: https://github.com/vincpapa/Flex-MORe.1

1. This chapter is based on the work “Flex-MORe: A Flexible Multi-Objective Recommendation
Framework”, currently under review.

https://github.com/vincpapa/Flex-MORe
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9.1 Introduction

In recent years, Recommender Systems (RSs) have become crucial parts of online
platforms, offering personalized recommendations based on users’ preferences [37,
153]. However, conventional approaches focus on accuracymetrics to generate ranked
lists of relevant items, often neglecting other important aspects. On the one hand,
as these systems shape user experience, there is a pressing need to extend their
capabilities beyond accuracy, e.g., to consider the diversity and novelty of sugges-
tions [68, 168]. Indeed, accuracy-centric RS can lead to user satisfaction erosion, the
creation of filter bubbles, and the perpetuation of biases in historical data [96, 133].
On the other hand, these limitations become evident in marketplaces and platforms
that cater to diverse stakeholders with conflicting objectives [1, 165], such as pro-
ducer and consumer interests. Some approaches solely focus on consumer [111] or
producer-sided [70] fairness, while others try to accomplish both user and provider
fairness [147, 205]. Toward these increasing needs of satisfying multiple facets of
recommendation, Multi-Objective Recommender Systems (MORSs) [89, 224] are
gaining attention. MORSs are built by considering multiple objectives through
Multi-Objective Optimization (MOO) [161]. Ideally, the process of MOO leads to
optimal solutions adhering to the Pareto optimality principle, where no objective can
improve without compromising others [30]. Strategies for optimizing multiple objec-
tives can be broadly categorized into heuristic search [31, 152]. and scalarization [124].
Between the two, the most commonly adopted MOO strategy is the latter [94, 114,
205].

Scalarization methods (linearly) combine several objectives by weighting them
through scalars. When adopting this approach, researchers have to face two main
challenges: (i) how the weights of the linear function should be chosen depends on
the application scenario or business needs. Therefore, these weights should be set
according to a decision-maker’s knowledge [107] or through automatic routines [56,
94]; (ii) the blended objectives must be carefully designed to make them differen-
tiable and suitable to train an effective model with back-propagation. In this work,
we focus on the latter challenge. This challenge is even harder in the recommen-
dation domain, where the metrics that possibly measure the achievement of the
objectives imply the ranking of the items into a recommendation list. Unfortunately,
the item’s ranking employs the sorting operation, which is non-differentiable [205].
Consequently, the requirement of designing differentiable functions led to the recent
strides in MORSs [70, 168, 205, 224]. However, even though many works address
quite effectively specific scenarios [70, 168, 205], often they lack generalization. In-
deed, they often overlook the scale of the devised functions, with the risk of having
a dominating objective – i.e., the one with the largest scale of values. To further
illustrate these limitations, we present an experiment in Section 9.2 using a recent
state-of-the-art MORS framework, MultiFR [205], showing that altering the scale of
one objective can significantly affect the model’s performance, resulting in entirely
different outcomes. Overcoming these limitations requires the development of more
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flexible frameworks that can seamlessly accommodate diverse recommendation
scenarios without the need for manual metric adjustments.

To address the abovementioned limitations, we present a FlexibleMulti-Objective
Recommendation framework, named Flex-MORe. In this framework, we propose
a novel smoothing general approach to make ranking metrics that apply a cutoff
differentiable and suitable for back-propagation routines. Then, the framework
encompasses a general multi-objective loss function term that, adopting the scalar-
ization strategy, can be incorporated into the training procedure of any Bayesian
Pairwise Ranking-based recommendation algorithm. The loss function is designed
to measure the discrepancies between the chosen metrics and their corresponding
utopia points. Contrarily to the previous work, each objective’s error is also nor-
malized to avoid the problem of dominating objectives due to different scales. To
summarize, the novel contributions are:

• We introduce Flex-MORe, a novel multi-objective-agnostic framework for rec-
ommendation. Flex-MORe provides a strategy to make any metric suitable for
backpropagation and combines multiple metrics to create a normalized loss func-
tion.

• We evaluate Flex-MORe in a marketplace scenario, where balancing provider
interests (measured byAPLT) and user needs (represented by nDCG) is crucial. Flex-
MORe demonstrates its efficacy in improving the beyond-accuracy performance
and achieves state-of-the-art performance compared to other MORSs.

• We show that Flex-MORe can control the objectives according to the scalarization
weights, avoiding undesired and unexpected behaviors. Furthermore, we demon-
strate that normalizing the objective related errors achieves a balance among the
objectives. Finally, we study the training efficiency of our method.

9.2 Motivating Example

This section highlights the importance of carefully assessing the scale of the loss
functions in a scalarization-based Multi-Objective Recommender System. We con-
duct an experiment on MultiFR [205]2. This framework integrates Bayesian Pairwise
Ranking (BPR) [149] loss function alongside group-based consumer and provider
fairness loss functions. These functions are linearly combined adopting the scalar-
ization technique, computing the weights assigned to each objective through the
Multi-Gradient Descent Algorithm. In MultiFR, the BPR loss is designed to sum the
components related to the users into a batch. However, it is commonly recognized
that for batch data, averaging the loss rather than summing it ensures consistency in
the loss scale, regardless of batch size. This common practice3 [18, 178, 202] promotes
more stable and manageable training [73]. In the experiment, we trained MultiFR
with NGCF [200] on two datasets (Facebook Books and Amazon Music) under two

2. More details on the experimental settings will be provided in Section 9.5.2
3. This approach is evident when inspecting the source codes.
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Table 9.1. Performance comparison between MultiFR w/s and MultiFR w/a as motivating
example.

Model nDCG ↑ RSP ↓ MAD ↓ nDCG ↑ RSP ↓ MAD ↓

Facebook Books Amazon Music

MultiFR w/s 0.0913 0.9340 0.0069 0.0562 0.7950 0.0089
MultiFR w/a 0.0096 0.3231 0.0041 0.0059 0.2590 0.0042

different settings: (i) summing the components of the BPR loss (MultiFR w/s) and (ii)
averaging its components (MultiFR w/a) within the batch. Interestingly, Table 9.1
shows thatMultiFR’s performance varies significantly with this modification. Indeed,
the accuracy performance (measured with nDCG) of MultiFR w/a completely drops
compared to MultiFR w/s, benefiting the fairness-oriented performance (assessed
with RSP [228] and MAD [55]). As a result, averaging the BPR loss function reduces
the scale of its values, thereby lowering its gradient intensity during training.

Overall, experiments show that the scales of the objectives play a crucial role in the
final recommendation performance in a multi-objective setup. Hence, this highlights the
need for a recommendation framework considering the scale of any potential objective
metric.

9.3 Related Work

Over a decade ago, Rodríguez et al. [154] laid the groundwork for multi-objective
optimization for recommender systems. In the subsequent years, numerous research
efforts have aimed to integrate diverse objectives. For a comprehensive overview of
these studies, readers can refer to [89, 161, 224].
Re-ranking-based Approaches. A straightforward approach is to re-rank the sug-
gestions to accommodate other objectives. Li et al. [111] introduced a user-fairness-
focused re-ranking strategy, aiming to ensure fair recommendations for different
user groups according to their activity level. Rahmani et al. [147] replicate the study,
finding that the user-focused re-ranking strategy negatively affects the popularity
bias. Following this direction, Naghiaei et al. [131] implement a re-ranking strategy
addressing both user and provider fairness.
Scalarization and Heuristic Search Approaches. Two common techniques are
scalarization and heuristic search. Ribeiro et al. [152] proposed the first heuristic
search method for recommendation. They introduced a Pareto-efficient hybrid
approach that combines various recommendation models — each excelling in dif-
ferent aspects like precision, novelty, and diversity — using a weighted sum to
determine the optimal weights through a multi-objective evolutionary algorithm.
Among the works belonging to the scalarization category, Lin et al. [114] proposed
differentiable formulations for the GrossMerchandise Value andClick-Through Rate
(CTR) objectives, coordinating these objectives using weighted aggregation. Recently,
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Wu et al. [205] proposed MultiFR, a multi-objective optimization framework for
fairness-aware recommendations, which adaptively balances accuracy and fairness
for various stakeholders. They employ the Karush–Kuhn–Tucker conditions [158]
to blend the objectives in a scalarization function to gather a single Pareto optimal
solution through the Multi-Gradient Descent Algorithm (MGDA) [56]. Conversely,
Carmel et al. [41] propose Stochastic Label Aggregation, that performs label aggrega-
tion by randomly selecting a label per training example according to a given label
distribution.
Reinforcement Learning-based Approaches. An emerging approach utilizes
Multi-Objective Reinforcement Learning (MORL) to pursue several objectives si-
multaneously. Ge et al. [70] propose a fairness-aware multi-objective reinforcement
learning approach, optimizing CTR and item exposure as signals for relavance
and fairness. Conversely, Stamenkovic et al. [168] introduce SMORL, a Scalarized
MORL framework, to simultaneously achieve accuracy, diversity, and novelty in
session-based recommender systems.

The literature shows that existing scalarization approaches typically focus on specific
objectives that the authors aim to achieve. As a result, the constraints, loss functions,
and rewards are closely tied to these objectives. In contrast, this study explores a more
generalized, scale-aware approach to simultaneously optimizing multiple objectives.

9.4 The proposed framework

This section introduces the Flexible Multi-Objective Recommendation framework
(Flex-MORe). Flex-MORe is flexible approach that considers multiple objectives
while holistically training a model. It combines a multi-objective and a recommen-
dation backbone loss function together. The loss function can include any metric
beyond accuracy, making the approach versatile and adaptable to different scenarios
due to the normalization of loss scales. Additionally, we propose a general smoothing
approach to make ranking-based metrics differentiable.

9.4.1 Multi-objective Loss

The Flex-MORe loss function is designed to optimize multiple recommendation
metrics simultaneously. Imagine a perfect scenario where every important metric
reaches its ideal value. This ideal state is called the "utopia point." Flex-MORe tries
to bring the recommendation system performance as close to this utopia point as
possible. To do this, we calculate the squared difference between the actual metric
values and their ideal counterparts for each user. However, these errors can assume
different magnitudes for several reasons: (i) the scales of the metrics can vary in
range, and (ii) it could be easier to reach higher performance for some metrics than
others, thus having lower errors for them. To achieve this, we define the Flex-MORe
loss function as follows.

Definition 9.1 (Flex-MORe Loss Function). Given a set of 𝑚 differentiable metrics
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g(S)

S ∈ ℝ𝒰×ℐ R ∈ ℝ𝒰×ℐ C ∈ ℝ𝒰×ℐ
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Figure 9.1. The steps followed by our proposed smoothing approach to obtain the matrices
𝑅 ∈ ℝU×I and 𝐶 ∈ ℝU×I to compute approximated differentiable ranking-based metrics,
for 𝑘 = 3.

5 10 15

0.5

1

1.5

𝑟 ∈ R

𝑐 ∈ C

Figure 9.2. The plot of the function in Eq. (9.2) for 𝑘 = 10. The function returns 1 (or close to)
if r is less than 𝑘, 0 otherwise.

with cutoff 𝑘 and a setU of users, let x𝑢 ∈ ℝ𝑚 be the 𝑚 metric performance values of
user 𝑢 ∈ U. Let the metrics’ utopia point be f ◦ ∈ ℝ𝑚. The multi-objective loss function
is

LFlex-MORe = arg min
Θ

1
|U|

𝑚∑︁
𝜇=1

𝜔𝜇

U∑︁
𝑢=1

𝜎

(
𝜁

((
𝑓 ◦𝜇 − 𝑥𝜇𝑢 (Θ)@𝑘

)2
))
, (9.1)

where 𝑥𝜇𝑢 represents the performance value of the differentiable approximated metric 𝜇
for the user 𝑢 that depends on the model’s parameters Θ, and 𝑓 ◦𝜇 is the ideal value for
metric 𝜇. 𝜔𝜇 is the weight associated to metric 𝜇. Finally, 𝜎 (·) and 𝜁 (·) are the sigmoid
and z-score normalization functions, respectively.

The z-score normalization function 𝜁 (·) is used to normalize the squared errors
regardless of their scale. To prevent negative values, the sigmoid function 𝜎 (·) is
applied to the normalized errors.

9.4.2 Differentiable Approximation of the Metrics

The formulation of LFlex-MORe in Eq. (9.1) leans on computing 𝑚metric values for
each user. Generally, the metrics employed in a recommendation scenario are re-
quired to calculate the items ranking for each specific user, which is inherently a
non-differentiable operation. Many practical approaches have been proposed to
make the ranking and sorting operations differentiable [27, 128]. Given an array
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of scores, these methods typically compute another array containing the score’s
approximated rankings (or their sorting) of all scores. However, recommendation
metrics generally apply a cutoff, i.e., the top-𝑘 recommended items solely contribute
to their calculus. Therefore, such metrics not only ask for the ranking computation
of the items but also require to know if a ranked item is within the top-𝑘 recom-
mended items, e.g., nDCG@𝑘 or APLT@𝑘. In literature, somemethods are specifically
designed to account for this requirement for accuracy metrics like nDCG@𝑘 and
Precision@𝑘 [32, 142]. However, we need a general strategy to gather the top-𝑘 items
once the approximated rankings have been calculated to apply it to any cutoff and
ranking-based metric. To this end, after leveraging on any method to compute dif-
ferentiable rankings, we propose a differentiable smoothing approach to retrieve
the top-𝑘 items and compute a differentiable approximation of any ranking-based
metrics with cutoff, making them suitable for use with back-propagation. Figure 9.1
shows the steps involved in the approach.

Firstly, we gather the score matrix S ∈ ℝU×I predicted by the recommendation
model, where 𝑠𝑢,𝑖 is the predicted relevance score between the user 𝑢 and the item
𝑖. Then, we can use any continuous approximator of the ranking function [128,
144], that we denote with 𝑔 (·), to compute the differentiable approximated item
positions in each user’s recommendation list. Formally, we obtain the matrix of
rankings R = 𝑔(S), where R ∈ ℝU×I , and 𝑟𝑢,𝑖 is the approximated predicted ranking
position of the item 𝑖 for the user 𝑢. In this way, we make the computation of the
rankings differentiable. Now, we need a differentiable method to retrieve the top-𝑘
recommended items for each user given the approximated ranking matrix R. To this
end, we devise a differentiable function 𝜂(R; 𝑘) obtaining the matrix C ∈ ℝU×I :

C = 𝜂(R; 𝑘) =
tanh(−R + 𝑘) + 1

2
(9.2)

where 𝑘 determines the top-𝑘 recommended items, and 𝑐𝑢,𝑖 ∈ C is 1 (or close to) if
the approximated ranking 𝑟𝑢,𝑖 is less than 𝑘, 0 otherwise. Figure 9.2 plots the function
in Eq. (9.2) for 𝑘 = 10. Thus, matrices R and C suffice to calculate the differentiable
approximation of any ranking-based metric and to compute Eq. (9.1).

9.4.3 Model Training with Flex-MORe loss

In section 9.4.2, we explained how the Flex-MORe loss function term could en-
compass approximated differentiable metrics and be suitable for back-propagation.
We can now integrate LFlex-MORe into a recommendation backbone. We adopt the
Bayesian Pairwise Ranking (BPR) [149] as the recommendation backbone’s loss func-
tion. BPR formulates the recommendation problem as a pairwise ranking task,
where the goal is to ensure that, for each user 𝑢 ∈ U, an observed (positive) item
𝑖+ ∈ S+ is ranked higher than an unobserved (negative) item 𝑖− ∈ S− := I \ S+.
Hence, built a training datasetD := {(𝑢, 𝑖+, 𝑖−) | 𝑖+ ∈ S+

𝑢 ∧ 𝑖− ∈ S−𝑢 }, we define the
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Algorithm 1: Training Procedure with Flex-MORe
Inputs :𝑚← number of objectives

𝜇1, . . . , 𝜇𝑚 ← the metrics to incorporate
𝑔(·)← continuous approximator
𝑚𝑜𝑑𝑒𝑙 ← recommendation backbone
𝜔BPR, 𝜔𝜇1 , . . . , 𝜔𝜇𝑚 ← weights in Eq. (9.3)
𝑛𝑒𝑝𝑜𝑐ℎ ← number of epochs
𝑛𝑏𝑎𝑡𝑐ℎ ← number of batches

Output :Θ
1 Random initialization: Θ // Model parameters
2 for metric ∈ {𝜇1, . . . , 𝜇𝑚} do
3 construct LFlex-MORe(Θ) based on 𝑚𝑒𝑡𝑟𝑖𝑐 and 𝜔metric

4 for epoch ∈ {1, . . . , 𝑛𝑒𝑝𝑜𝑐ℎ} do
5 for batch ∈ {1, . . . , 𝑛𝑏𝑎𝑡𝑐ℎ} do
6 forward propagation depending on model
7 compute score matrix S
8 compute differentiable ranking appr. R = 𝑔(S)
9 compute differentiable ranking cutoff C = 𝜂(R; 𝑘)
10 for metric ∈ {𝜇1, . . . , 𝜇𝑚} do
11 foreach user in batch do
12 select C[user] as the row in C corresponding to user
13 compute metric based on C[user]

14 update LFlex-MORe(Θ) based on metric and 𝜔metric

15 construct L(Θ) = 𝜔BPRLBPR(Θ) + LFlex-MORe(Θ)
16 compute ∇ΘL(Θ)
17 update Θ // Back-propagation

recommendation backbone loss function as:

LBPR = arg min
Θ

1
|D|

∑︁
(𝑢,𝑖+,𝑖− )∈D

− ln 𝜎 (𝑠𝑢𝑖+ (Θ) − 𝑠𝑢𝑖− (Θ)) + 𝜆Θ∥Θ∥2
2,

where 𝜎 (·) denotes the sigmoid function, 𝜆Θ is the regularization term, 𝑠𝑢𝑖+ and 𝑠𝑢𝑖−
represent the predicted scores for the positive and negative items, respectively, and
Θ are the model’s parameters. Finally, we scalarize [53, 205] LBPR and LFlex-MORe:

L = 𝜔BPRLBPR + LFlex-MORe, (9.3)

where 𝜔BPR is the weight that controls the intensity of the model’s loss function
gradient. This scalar, along with the scalars 𝜔𝜇 in Eq. (9.1), can be manually set —
expressing the knowledge of a multi-criteria decision maker [107] — or computed
through some MOO methods such as Multi-Gradient Descent [56, 158] or EPO
Search [118]. The overall training procedure is shown in Algorithm 1.
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9.5 Evaluation

We evaluate the proposed Flex-MORe framework by answering the following re-
search questions:

RQ1: Can we adjust the importance of different goals in Flex-MORe by changing
the values of weights in Eq. (9.1) and (9.3)?

RQ2: Does adding Flex-MORe to the recommendation system improve its perfor-
mance beyond just accuracy?

RQ3: How does our Flex-MORe system compare to other similar systems that focus
on fairness?

RQ4: Does our choice of combining sigmoid and z-score normalization functions
in Flex-MORe effectively balance the various goals of the system?

RQ5: Howdoes the training overhead of Flex-MORe scalewhen optimizingmultiple
objectives in various dataset sizes?

9.5.1 Experimental Scenario

Flex-MORe allows designers to incorporate desired metrics into a general loss
function. To illustrate, we present a case study and identify the metrics to include in
the Flex-MORe loss function to represent our objectives.

The Recommendation Scenario

Recently, there has been a growing interest in the multi-stakeholder fairness [70,
111, 131, 205]. Indeed, nearly every online platform works as a marketplace that links
consumers with service/item providers, positioning them as the main stakeholders
involved in the recommendation process. While fairness can be defined in various
ways, a commonly adopted scenario is as follows. From the consumers’ perspective,
fairness is concerned with evenly achieving effective performance across users on
the accuracy side [111, 131]. Meanwhile, item provider fairness focuses mainly on the
even exposure of different item categories, such as mainstream and niche items [70,
205]. This experimental evaluation considers the above-described recommendation
scenario, focusing on consumer and provider fairness.

Provider Fairness Metric

On the provider fairness side, we partition the items into popular and unpopular
groups according to the Pareto distribution [4]. The items constituting 80% of trans-
actions in a dataset are identified as short-head (popular items), while the remaining
items are categorized as unpopular (long-tail). We inject intoLFlex-MORe the Average
Percentage of Long-Tail metric (APLT) [3]. This metric measures the presence of
long-tail items in the recommendation lists. Pushing this metric towards its utopia
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point, i.e., 1, means promoting the exposure of niche items for each user. This choice
is reasonable since RSs generally suffer from popularity bias. This often results in
greater exposure for popular items [3, 4].

Consumer Fairness Metric

On the consumer fairness side, we measure the effectiveness of the suggestions with
nDCG. Here, we deal with the individual consumer fairness, where ideally, each user
receives recommendations with the same relevance quality [210]. We aim to optimize
the relevance of recommendations towards an ideal nDCG of 1 for each user in the
Flex-MORe loss function.

Flex-MORe loss function

Given the scenario described above, we define the specific Flex-MORe loss function
as follows. As assumed in Section 9.1, how to set or compute the weights of the
scalarization approach is out of this chapter scope. Without loss of generality, we
set 𝜔𝜇 = 1 − 𝜔BPR for each metric 𝜇 in Eq. (9.1). Hence, the Flex-MORe loss function
for this specific setup is:

LFlex-MORe = arg min
Θ

1
|U|

(
(1 − 𝜔BPR)

U∑︁
𝑢=1

𝜎
(
𝜁
(
(1 − APLT𝑢(Θ)@𝑘)2) ) +

(1 − 𝜔BPR)
U∑︁
𝑢=1

𝜎
(
𝜁
(
(1 − nDCG𝑢(Θ)@𝑘)2) )) .

In this setup, we accommodate three objectives within the Flex-MORe framework:
consumer and provider fairness throughLFlex-MORe, and recommendation relevance
through LBPR (Eq. (9.3)). We point out that this scenario serves only as a showcase
of the Flex-MORe performance. In fact, all the metrics used in the above equation
can be substituted to consider other criteria.

9.5.2 Experimental Settings

To answer our research questions, we first introduce the experimental settings, i.e.,
the datasets, the baselines considered for comparison, and the evaluation metrics.

Datasets

We use the following three public datasets from various domains having a different
number of users, items, and transactions: Amazon Baby [134], Facebook Books4, and
AmazonMusic [134]. AmazonBaby is an e-commerce dataset from theAmazon catalog
that contains 5,842 users, producing 35,475 feedbacks on 7,925 items. Facebook Books

4. https://2015.eswc-conferences.org/important-dates/call-RecSys.html

https://2015.eswc-conferences.org/important-dates/call-RecSys.html
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is a dataset in the book domain. It collects 18,978 implicit feedback from 1,398 users for
2,933 items. AmazonMusic is a music domain dataset containing 145,523 transactions
performed by 14,354 users over a catalog of 10,027 items.

Baselines

To measure the effectiveness of Flex-MORe, we compare its performance with two
well-known recommendation models:

• BPRMF [149]. Bayesian Personalized Ranking is one of the most widely used
factorization models for pair-wise ranking.

• NGCF [200]. Neural Graph Collaborative Filtering propagates embeddings on
the user-item interaction graph, capturing non-linear relationships between users
and items.

In addition, identifying appropriate multi-objective-based baselines for our work
poses several challenges since differing interpretations and assumptions of fairness
are assessed in the literature [148]. Nonetheless, we include two state-of-the-art
fairness-oriented multi-objective-based frameworks:

• MultiFR [205]. It is a fairness-aware recommendation framework based on multi-
objective optimization that leverages the application of theMulti-GradientDescent
Algorithm [56]. This model jointly optimizes accuracy and fairness for consumers
and producers. Since it adopts a classic recommendation model as a backbone,
we consider two versions of MultiFR, specifically BPRMF-MultiFR andNGCF-
MultiFR.

• CPFair [131]. It is a re-ranking strategy taking into account consumer (C)- and
provider (P)-side fairness constraints. We consider BPRMF-CPFair andNGCF-
CPFair.

These frameworks promote group-based consumer and provider fairness. We utilize
both these baselines by dividing the users into active and inactive groups and the
items into popular and unpopular groups according to the Pareto distribution.

Reproducibility Details

We implement the baselines using Pytorch with Adam Optimizer. For all of the
models, we fix the embedding size to 64. For NGCF, we set the number of layers
equal to 3. The learning rate is fine-tuned in the range {0.005, 0.001, 0.0005}, and
the regularization term in {0.01, 0.005, 0.001}. In MultiFR, the patience parameter
is varied in {0.5, 0.75}, while the smooth temperature is set to 0.00001 to guarantee
better performance of SmoothRank. Regarding CPFair, we explored a wide range
of 𝜆1 and 𝜆2 values, but did not observe substantial differences in performance.
Finally, for Flex-MORe, the 𝑘 value in Eq. (9.2) used for computing the approximated
differentiable metrics is set to 20. We examine several values of 𝜔BPR in the set {0.25,
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0.5, 0.75, 0.95}. As the continuous approximator 𝑔(·), we adopt the Adaptive Implicit
Likelihood Estimation (AIMLE) method proposed by Minervini et al. [128]. We train
all the baselines with a batch size of 2,048 for the three datasets, except for MultiFR-
NGCF on Amazon Music, where we chose a batch size of 1,024 due to GPU memory
constraints.

Evaluation Protocol

We treat the datasets in an implicit feedback setting and split them following a
70-10-20 hold-out strategy. We evaluate the performance on the validation set every
ten epochs. Given the recent insights about the selection of the best iteration of
multi-objective recommendation models [188], we explicitly choose the best iteration
of the training process according to the value of nDCG@20 on the validation set to
follow the standard evaluation practices in RecSys community [20]. We then report
the performance achieved on the test set by the model obtained on that iteration.

Evaluation Metrics

We select several metrics to assess the performance of Flex-MORe and baselines.
We measure the accuracy of the recommendations with nDCG and Recall. For the
consumer-fairness evaluation, we measure the variance of the consumer’s recom-
mendation quality measured by nDCG (𝜎 2

nDCG) [210]. Lower variance indicates fairer
recommendation results. Conversely, we utilize APLT [3] to measure to what extent
unpopular items are inserted into the recommendation lists. Higher APLT values
indicate that more long-tail items are included in the recommendation lists. To
enhance a fair comparison with the multi-objective-based baselines, we employ the
following metrics to assess the group-based provider and consumer fairness of the
models:

• RSP [228], i.e., “Ranking-based Statistical Parity”. Based on statistical parity, this
metric measures the extent to which the ranking probability distributions of
different item categories 𝑐𝑖, with 𝑖 ∈ {1, . . . , 𝑛}, are the same. Lower values of RSP
indicate that the recommendation is less biased. The items are partitioned into
short-head and long-tail (see Section 9.5.1).

• MAD [55], i.e., "Mean Absolute Deviation," computes the equity of the ranking
quality measured in terms of nDCG among two user groups, active and inactive.
Lower MAD values suggest higher consumer fairness.

Furthermore, we also evaluate the diversity of recommendations with the Item
Coverage (IC) and the Gini index. Item Coverage quantifies the number of unique
items that appear in the top-𝑘 recommendations across all users. The Gini index
is a statistical measure of dispersion used to quantify a distribution’s inequality.
We report the values of 1 - Gini [75], with higher values corresponding to greater
diversification. Finally, we employ a multi-objective evaluation metric to measure
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Figure 9.3. Performance of Flex-MORe on Amazon Baby, Facebook Books, and Amazon
Music by varying the weight 𝝎BPR. All metrics are assessed with cutoff 20 (i.e., Metric@20).
The greater the value of 𝝎BPR, the greater is the backbone loss’ influence.
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how a model simultaneously performs on two metrics. In detail, we calculate the
hypervolume (HV) [230] by considering nDCG and APLT as objectives.

9.5.3 Controlling the Loss Functions (RQ1)

This section aims to assess to what extent Flex-MORe allows controlling the influ-
ence of each loss function in Eq. (9.3). We recall that, without loss of generality, we
set 𝜔𝜇 = 1 − 𝜔BPR for each objective integrated into Eq. (9.1). Hence, by varying the
value 𝜔BPR, we expect a lower or higher influence of each objective into LFlex-MORe
on the final result. Lowering the value of 𝜔BPR increases the influence of LFlex-MORe,
leading to better system performance in terms of the considered objectives (i.e.,
beyond-accuracy metrics in this scenario). Table 9.2 and Figure 9.3 report the results
for 𝜔BPR ∈ {0.25, 0.5, 0.75, 0.95} given the different models and datasets introduced
in Section 9.5.2. It is important to note that controlling the objectives can be chal-
lenging due to their complex interrelationships. Indeed, they could depend on the
positive or negative correlation between a couple of objectives. Except for one out
of twelve case combinations (Figure 9.3c, see discussed limitation in section 9.5.4),
Flex-MORe can fetch adequate control of the objectives. As expected, decreasing
the value of 𝜔BPR generally brings benefits to both provider (with APLT, the higher,
the better) and consumer (with 𝜎 2

nDCG, the lower, the better) fairness at the expense
of the relevance of suggestions on the three datasets with both BPRMF and NGCF
as backbones. Conversely, higher values of 𝜔BPR increase the gradient intensity of
the BPR loss function, resulting in more accurate recommendations, as indicated by
the higher nDCG and Recall values (see Table 9.2).

In conclusion, adjusting 𝜔BPR affects gradient intensity and enables Flex-MORe to
effectively balance fairness and accuracy objectives.

9.5.4 Beyond-Accuracy Performance (RQ2)

This section investigates towhat extent Flex-MORe can improve the beyond-accuracy
performance of the recommendation backbones. In Table 9.2, we compare the vanilla
backbones results with those gathered when combining them with Flex-MORe, i.e.,
BPRMF-Flex-MORe and NGCF-Flex-MORe. For a better visualization, Figure 9.4
depicts the Pareto frontiers obtained by varying the 𝜔BPR values in Eq. (9.3) adopt-
ing the NGCF backbone. Generally, it could be observed that, even assigning low
gradient intensity to the multi-objective loss term LFlex-MORe, i.e., 𝜔BPR = 0.95, the
framework improves the performance of the backbone on the fairness side, showing
comparable values of nDCG and Recall, especially on Facebook Books and Amazon
Baby datasets. This behavior becomes more noticeable by decreasing the value of
𝜔BPR, where Flex-MORe pays a drop in accuracy performance at the advantage
of fairness metrics values (higher values of APLT and lower values of 𝜎 2

nDCG). For
instance, when utilizing NGCF as the backbone, Flex-MORe gets 13,7% and 12,6 % of
improvements on APLT and 𝜎 2

nDCG (on average on the three datasets), respectively,
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Table 9.2. Comparison of backbones (see Section 9.4.3) and Flex-MORe performance on
Amazon Baby, Facebook Books, and AmazonMusic. Best and second-best results are in bold
and underlined, respectively. Arrows indicate the descending or ascending order for better
values. For statistical hypothesis testing, we use the paired t-test to compare Flex-MORe and
the backbone (𝑝 < 0.05) and the Bonferroni adjustment to compare the Flex-MORe variants.
Differences are statistically significant, unless denoted with † (‡ for the Bonferroni test).

Model 𝜔BPR
Accuracy Diversity PF CF MO

nDCG ↑ Recall ↑ Gini ↑ IC ↑ APLT ↑ 𝜎 2
(nDCG) ↓ HV ↑

Facebook Books

BPRMF 0.1059
† 0.1734† 0.0957 1381 0.0406 0.0259 0.0043

BPRMF-Flex-MORe 0.95 0.1051† 0.1748
† 0.1013 1372 0.0448 0.0246 0.0047

BPRMF-Flex-MORe 0.75 0.0926 0.1536 0.1161 1341 0.0681 0.0230 0.0063
BPRMF-Flex-MORe 0.5 0.0767 0.1326 0.1281 1337 0.1380 0.0178 0.0106
BPRMF-Flex-MORe 0.25 0.0475 0.0793 0.1816 1477 0.2739 0.0119 0.0130

NGCF 0.0983
†
0.1648

† 0.1438 1736 0.0695 0.0235 0.0068
NGCF-Flex-MORe 0.95 0.0967† 0.1604† 0.1550 1714 0.0783 0.0226 0.0076
NGCF-Flex-MORe 0.75 0.0819 0.1396 0.1710 1672 0.0880 0.0198 0.0072
NGCF-Flex-MORe 0.5 0.0699‡ 0.1192‡ 0.2088 1850 0.1547 0.0183 0.0108
NGCF-Flex-MORe 0.25 0.0638‡ 0.0998‡ 0.0490 736 0.2214 0.0179 0.0141

Amazon Baby

BPRMF 0.1622
†
0.2049

† 0.2700 7439 0.1848 0.0905 0.0300
BPRMF-Flex-MORe 0.95 0.1599† 0.1978† 0.2852 7340 0.2524 0.0916 0.0404

BPRMF-Flex-MORe 0.75 0.1286 0.1674 0.1817 5699 0.1652 0.0753 0.0212
BPRMF-Flex-MORe 0.5 0.1059 0.1486 0.1617 5340 0.1422 0.0610 0.0151
BPRMF-Flex-MORe 0.25 0.0901 0.1312 0.1074 3545 0.2758 0.0511 0.0248

NGCF 0.1418
† 0.1887† 0.2968 7466 0.2033 0.0798 0.0288

NGCF-Flex-MORe 0.95 0.1404†‡ 0.1917
† 0.2341 7274 0.1336 0.0786 0.0188

NGCF-Flex-MORe 0.75 0.1387‡ 0.1861 0.3276 7684 0.2417 0.0791 0.0335
NGCF-Flex-MORe 0.5 0.1211 0.1633 0.4227 7801 0.3850 0.0711 0.0466

NGCF-Flex-MORe 0.25 0.0973 0.1344 0.1372 4568 0.4617 0.0582 0.0449

Amazon Music

BPRMF 0.0625 0.1064 0.2090 8418 0.0505 0.0270 0.0032
BPRMF-Flex-MORe 0.95 0.0512 0.0943 0.1753 7935 0.0723 0.0208 0.0037
BPRMF-Flex-MORe 0.75 0.0379 0.0659 0.1731 8072 0.0847 0.0169 0.0032
BPRMF-Flex-MORe 0.5 0.0308 0.0512 0.1662 8381 0.1565 0.0148 0.0048
BPRMF-Flex-MORe 0.25 0.0229 0.0398 0.0793 6159 0.2124 0.0104 0.0049

NGCF 0.0563 0.0971 0.3270 9500 0.1205 0.0245 0.0068
NGCF-Flex-MORe 0.95 0.0484 0.0886 0.2110 8594 0.0643 0.0206 0.0031
NGCF-Flex-MORe 0.75 0.0435 0.0789 0.2257 8802 0.1271 0.0190 0.0055
NGCF-Flex-MORe 0.5 0.0328 0.0607 0.2317 9174 0.2894 0.0138 0.0095

NGCF-Flex-MORe 0.25 0.0196 0.0371 0.1962 8545 0.3254 0.0079 0.0064
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Figure 9.4. Pareto frontiers obtained using Flex-MORe on the three datasets adopting NGCF
as the backbone by varying the values of 𝝎BPR. The blue points refer to the models trained
with Flex-MORe. Their labels are the𝝎BPR values. The red points refer to the "vanilla" NGCF.
For 𝜎 2

(nDCG), the negative values are reported to have "the higher the better" semantic.
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paying a drop of 13,5% on nDCG. This demonstrates a satisfactory balance between
the considered objectives. A limitation of the results in Table 9.2 emerges when in-
specting the diversity metrics values. In some cases, lowering the 𝜔BPR value can lead
to a decline in Gini index and IC values. This behavior could occur due to an over-
recommendation of niche items. This can be observed when setting 𝜔BPR = 0.25.
As a confirmation, in those experimentas we can notice high values of APLT. A
similar situation arises for the specific case when using Flex-MORe with BPRMF
on the Amazon Baby dataset, with a little impact on APLT. It is worth mentioning
that the chosen scenario only considers fairness objectives. This diversity-oriented
analysis is included to provide the reader with a more comprehensive view of overall
performance [147, 188].

In conclusion, when Flex-MORe loss function comprises beyond-accuracy metrics, the
Flex-MORe-enhanced backbone outperforms the vanilla backbones for all the considered
objectives.

9.5.5 Performance Comparison with other MORSs (RQ3)

This experiment compares Flex-MORe with state-of-the-art MORSs designed ex-
plicitly for addressing provider and consumer fairness concerns. The radar plots
in Figure 9.5 illustrate the relative performance achievement of Flex-MORe com-
pared to MultiFR and CPFair. The radar plot provides a comprehensive overview
of the model’s performance. On Facebook Books and Amazon Baby, Flex-MORe
shows balanced performance across the various metrics. It performs the best on
the provider-fairness side (APLT and RSP) compared to MultiFR and CPFair, main-
taining comparable performance on accuracy and consumer-fairness. Conversely,
MultiFR prioritizes relevant recommendations and achieves a provider-fairness
performance that is lower than the vanilla backbones.5 On Amazon Music, CPFair
fails to provide relevant suggestions, showing almost a 100% reduction in perfor-
mance compared to MultiFR, which still achieves the best accuracy. In addition
to these observations, the previously discussed patterns are confirmed. Although
Flex-MORe is a flexible and general multi-objective recommendation framework
(unlike MultiFR and CPFair that are explicitly designed for fairness purposes), it
achieves a satisfactory balance among the analyzed objectives.

In conclusion, Flex-MORe can balance the trade-off among the considered objectives,
achieving overall state-of-the-art multi-objective recommendation performance.

9.5.6 Impact of Normalization on Flex-MORe Performance
(RQ4)

To avoid the presence of uncontrolled dominating objectives during model training,
Flex-MORe normalizes the components related to each objective. In this section,

5. Numerical detailed results are available in the online repository.
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Figure 9.5. Performance comparison among Flex-MORe, Multi-FR, and CPFair on Amazon
Baby, Facebook Books, and Amazon Music. All metrics are assessed with cutoff 20. For
metrics where a higher value is preferable, their values are divided by the metric best value.
Conversely, for metrics where a lower value is better, eachmethod’s value is first converted to
its reciprocal. The same division operation is then applied. Therefore, in these plots, a higher
percentage indicates a more favorable outcome. For Flex-MORe, we consider 𝝎BPR = 0.75,
except for BPRMF-Flex-MORe on Amazon Baby (𝝎BPR = 0.95).
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Table 9.3. Performance of Flex-MORe with and without normalizing the objective’s compo-
nents in LBPR.

Model nDCG ↑APLT ↑𝜎 2
nDCG ↓nDCG ↑APLT ↑𝜎 2

nDCG ↓

Facebook Books Amazon Baby

BPRMF-Flex-MORe 0.0926 0.0681 0.0230 0.1599 0.2524 0.0916
BPRMF-Flex-MORe w/o 𝜎 0.1022 0.0483 0.0261 0.1653 0.1850 0.0939
BPRMF-Flex-MORe w/o 𝜁 0.0572 0.6271 0.0202 0.1015 0.0867 0.0497
BPRMF-Flex-MORe w/o n 0.0471 0.6562 0.0177 0.0664 0.1077 0.0291

NGCF-Flex-MORe 0.0819 0.0783 0.0226 0.1387 0.2417 0.0791
NGCF-Flex-MORe w/o 𝜎 0.0922 0.0558 0.0216 0.1326 0.1117 0.0707
NGCF-Flex-MORe w/o 𝜁 0.0742 0.1493 0.0184 0.1219 0.3241 0.0711
NGCF-Flex-MORe w/o n 0.0482 0.2925 0.0128 0.0498 0.3509 0.0260

we study the effectiveness of applying such normalization, i.e., the sigmoid (𝜎 (·))
and the z-score (𝜁 (·)) normalization functions in Eq. (9.1). To this end, we re-train
the configurations of Flex-MORe seen in section 9.5.5 — that show a satisfactory
trade-off among the objectives — by removing the computation of the sigmoid and
the z-score normalization. Table 9.3 reports the results for the Facebook Books and
Amazon Baby datasets. With "backbone"-Flex-MORe w/o n, we denote the variants
of Flex-MORe without both 𝜎 (·) and 𝜁 (·), while "backbone"-Flex-MORe w/o 𝜎 (·)
and "backbone"-Flex-MORe w/o 𝜁 (·) denotes the variants without the sigmoid and
the z-normalization, respectively. The results reveal that removing the computa-
tion of both 𝜎 (·) and 𝜁 (·) in LFlex-MORe causes an accuracy decrease of at least 41%,
thus making the provided recommendations less relevant and suitable, although
the higher beyond-accuracy performance. By applying 𝜎 (·) or 𝜁 (·) individually, the
performance on the accuracy side improves, confirming that the re-scaling of the
objective’s losses benefits the trade-off balance. Notably, the variants w/o 𝜎 (·) achieve
comparable results with Flex-MORe in accuracy and consumer fairness. However,
they consistently fail from the provider fairness perspective. Conversely, the vari-
ants w/o 𝜁 (·) show fluctuating performance that depends on the adopted backbone.
On the one hand, NGCF-Flex-MORe w/o 𝜁 (·) demonstrates the ability to achieve
an effective trade-off. On the other hand, BPRMF-Flex-MORe w/o 𝜁 (·) exhibits a
considerable loss in accuracy without ensuring gains on the provider fairness side.

To conclude, the application of 𝜎 (·) and 𝜁 (·) in Eq.(2) is crucial to achieve balanced
performance among the accuracy and fairness-oriented metrics.

9.5.7 Training Efficiency (RQ5)

In this section, we empirically analyze the training efficiency of Flex-MORe. We
observe that the training loss overhead in Eq. (9.1) is mainly caused by applying 𝜁 (·)
and 𝜎 (·) on the squared difference between a differentiable approximated metric
performance for a user and its utopia value, repeating these operations for each
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Table 9.4. Training efficiency comparison of Flex-MORe by varying dataset and the number
of objectives. The chosen backbone is BPRMF. The training time is reported in seconds.
The symbol ✓ indicates whether the provider (PF) or consumer (CF) fairness objectives are
involved during the training.

Objectives Datasets

PF CF Facebook Books Amazon Baby Amazon Music

✓ 55.62 937.53 8115.51
✓ 58.82 921.20 8116.78

✓ ✓ 70.06 963.39 8288.44

metric and user. Therefore, we expect an increased training time as the number
of objectives involved in the training and the number of users and items in the
dataset increase. For this reason, we evaluate the empirical training efficiency of
Flex-MORe for each dataset by varying the number of fairness-related objectives
involved in the training. We conduct these experiments on a machine equipped with
an Intel(R) Core(TM) i7-5820K CPU, 64 GB RAM, and NVIDIA GeForce RTX 3090
GPU. Table 9.4 reports the training duration in seconds of Flex-MORewith different
combinations of objectives for the consumer (CF) and producer (PF) sides. BPRMF
is used as the base model to assess training performance. The results reveal that
the proposed framework achieves suitable training times, even as the number of
fairness constraints increases. Indeed, by adding more objectives, the training time
grows marginally. Furthermore, the training overhead scales well according to the
dataset’s size, demonstrating the model’s capacity to optimize multiple objectives
simultaneously in real-world applications.

In conclusion, Flex-MORe demonstrates reasonable training efficiency, showing ade-
quate scalability as the number of objectives and the dataset’s size increase.

9.6 Summary

This work introduces Flex-MORe, a Flexible Multi-Objective Recommendation
framework that extends recommender system (RS) training, which often focuses
solely on accuracy, by incorporating an objective-agnostic and scale-aware loss
function. A key contribution of Flex-MORe is its smoothing approach, which makes
ranking-based metrics differentiable and allows their incorporation into the frame-
work. Furthermore, Flex-MORe addresses the challenge of metrics having different
scales by normalizing the squared errors between actual metric values and their ideal
counterparts, ensuring that no single objective dominates the optimization process.
Experimental analysis demonstrates that Flex-MORe effectively balances diverse
objectives, leading to state-of-the-art performance. Moreover, Flex-MORe lets us
adjust the weights in the loss function to control the influence of the objectives,
while maintaining competitive accuracy. Future research will explore the possibility
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of personalizing utopia points at the user level for each metric to better calibrate
recommendations according to individual preferences [97, 189]. Additionally, inves-
tigating methods to dynamically adjust the weights of the scalarization within the
multi-objective loss function during training presents another promising direction
further enhancing the framework’s ability to achieve diverse trade-off levels.
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Chapter 10

Closing Remarks

Traditional research in Recommender Systems (RSs) has predominantly focused on
their ability to deliver relevant recommendations during optimization and evalu-
ation phases. However, as real-world recommendation tasks become increasingly
complex, it is evident that a more holistic approach that accounts for multiple quality
dimensions of recommendations and addresses the diverse needs of various stake-
holders is necessary. This dissertation aims to enhance the multiple perspectives of
RSs by tackling key challenges in their multi-objective evaluation and optimization.

Multi-objective evaluation. The first part of this work concentrates on advancing
the methodologies for the multi-objective evaluation of RSs. In Chapter 4, we ex-
amined the underexplored performance of graph-based RSs regarding consumer
and provider fairness. Leveraging Pareto frontiers, we qualitatively analyzed the
trade-offs between accuracy and beyond-accuracy dimensions. Our findings reveal
that user-user and item-item message-passing strategies can significantly enhance
accuracy/fairness trade-offs. Conversely, implicit message-passing mechanisms in
recent approaches were found to adversely impact consumer-provider fairness sce-
narios, underscoring the need for careful algorithmic design. Tomove a step forward
to a quantitative evaluation, Chapter 5 introduced an approach for assessing RS per-
formance across multiple objectives using quality indicators of Pareto frontiers.
This methodology demonstrated that ranking models solely based on predictive
accuracy can overlook their broader potential. By incorporating beyond-accuracy
dimensions, we showed that this multi-objective evaluation approach could over-
turn traditional performance rankings, offering a more balanced perspective. To
further aid practitioners and researchers, we proposed in Chapter 6 an analytical
framework for assessing the sensitivity of RS models to hyper-parameter tuning in
multi-objective scenarios. This framework provides actionable insights into how
specific hyper-parameters influence trade-offs among objectives, enabling more
informed decision-making in RS optimization.

Multi-objective recommender systems. The second part of this dissertation
focuses on addressing challenges in designing multi-objective RSs that simultane-
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ously optimize multiple goals. In Chapter 7, we conducted a reproducibility study
to uncover ambiguities and challenges in multi-objective RS research. Our study
highlighted the critical importance of transparency in experimental methodologies,
particularly in reporting model selection strategies, which are often overlooked
but essential for fair performance evaluation. Inspired by these findings, Chapter 8
introduced Population Distance from Utopia (PDU), a novel strategy for selecting
a single Pareto-optimal solution tailored to RS tasks. Unlike traditional methods,
PDU introduces a unique property, named calibration, that aligns the selected solu-
tion more closely with user preferences. This approach allows for a more nuanced
and personalized selection of optimal solutions from the Pareto frontier. Finally,
in Chapter 9, we presented Flex-MORe, a flexible framework for multi-objective
recommendations. Flex-MORe integrates an objective-agnostic and scale-aware
loss function into the training process of RS backbones, enabling simultaneous
optimization of multiple objectives. Additionally, Flex-MORe incorporates a novel
technique to make ranking-based recommendation metrics differentiable, ensuring
seamless integration of beyond-accuracy objectives into the optimization pipeline.

Future directions. The research contributions presented in this dissertation seek to
advance recommendation approaches that move beyond accuracy while maintaining
its importance. While our focus has been on methodologies rather than a restricted
set of objectives, the broader perspectives on recommendation extend beyond those
explored in this work. On the evaluation front, future directions include studying
trade-offs between accuracy and dimensions related to trustworthy artificial intelli-
gence, such as privacy, explainability, and data minimization in recommendations.
From an optimization perspective, we aim to extend Flex-MORe to achieve cali-
brated recommendations, incorporating the concept of a generalized utopia point
within this framework, as introduced in PDU. Additionally, we plan to integrate
multi-objective optimization into matrix factorization, assigning objective-driven
semantics to latent factors, thereby enriching their interpretability and utility.

Personal Thought. The entire dissertation is written in the first person plural,
recognizing all my co-authors and colleagues, among whom some have positively
contaminated my research, and others have tried to guide me during these three
years. Now, it is just Vincenzo speaking. Looking at the content of this thesis, I am
proud of what I have achieved in these three years. Not because I have achieved
extraordinary scientific results, considering that knowing I do not know continually
alienates me. I am proud because I remember how this journey began, evolved, and
ended. I am proud of not losing the compass of my research theme and making
my way through, aware that I only spilled a drop in the ocean. It has been three
years in which research questions were flowing. These I have tried to answer. One in
particular remains unresolved. I have experienced a thousand difficulties, especially
psychological ones, often finding myself facing them alone, not feeling that anyone
could fully understand me. I have made sacrifices, made little money compared to
the mental health lost, and cried. But then, was it worth it? I cannot answer, and giving
one today is impossible. Despite this lack, I have made many efforts over the past
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three years. And I can say that I would do it again because I did it to give value to the
me of the past of “four years, four months and twenty one days” who thought, “I care
about me of the future, today’s problem should not be his problem.” For once, I didn’t
care about me of the future, but I loved me of the past despite of being aware of
what I would be up against. And it didn’t even end.
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Figure A.1. Accuracy/Bias trade-offs on Amazon Book, assessed through nDCG/APLT, for
LightGCN and NGCF. The cutoff is 10. Each point depicts a model hyper-parameter config-
uration set in the objective function space. The filled dots are on the Pareto frontier, while
the empty dots are dominated points. Colors refer to a value of a selected hyper-parameter.
Arrows indicates the optimization direction for each metric on x and y axes.
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Figure A.2. Accuracy/Bias trade-offs on Amazon Book, assessed through nDCG/APLT, for
UserKNN and ItemKNN. The cutoff is 10. Each point depicts a model hyper-parameter
configuration set in the objective function space. The filled dots are on the Pareto frontier,
while the empty dots are dominated points. Colors refer to a value of a selected hyper-
parameter. Arrows indicates the optimization direction for each metric on x and y axes.
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Figure A.3. Accuracy/Bias trade-offs on Amazon Book, assessed through nDCG/APLT, for
BPRMF and NeuMF. The cutoff is 10. Each point depicts a model hyper-parameter configu-
ration set in the objective function space. The filled dots are on the Pareto frontier, while
the empty dots are dominated points. Colors refer to a value of a selected hyper-parameter.
Arrows indicates the optimization direction for each metric on x and y axes.
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Figure A.4. Accuracy/Bias trade-offs on Movielens1M, assessed through nDCG/APLT, for
LightGCN and NGCF. The cutoff is 10. Each point depicts a model hyper-parameter config-
uration set in the objective function space. The filled dots are on the Pareto frontier, while
the empty dots are dominated points. Colors refer to a value of a selected hyper-parameter.
Arrows indicates the optimization direction for each metric on x and y axes.
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Figure A.5. Accuracy/Bias trade-offs on Movielens 1M, assessed through nDCG/APLT, for
BPRMF and NeuMF. The cutoff is 10. Each point depicts a model hyper-parameter configu-
ration set in the objective function space. The filled dots are on the Pareto frontier, while
the empty dots are dominated points. Colors refer to a value of a selected hyper-parameter.
Arrows indicates the optimization direction for each metric on x and y axes.
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Figure A.6. Accuracy/Bias trade-offs on Movielens1M, assessed through nDCG/APLT, for
UserKNN and ItemKNN. The cutoff is 10. Each point depicts a model hyper-parameter
configuration set in the objective function space. The filled dots are on the Pareto frontier,
while the empty dots are dominated points. Colors refer to a value of a selected hyper-
parameter. Arrows indicates the optimization direction for each metric on x and y axes.
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Figure A.7. Accuracy/Bias trade-offs on Amazon Music, assessed through nDCG/APLT,
for LightGCN and NGCF. The cutoff is 10. Each point depicts a model hyper-parameter
configuration set in the objective function space. The filled dots are on the Pareto frontier,
while the empty dots are dominated points. Colors refer to a value of a selected hyper-
parameter. Arrows indicates the optimization direction for each metric on x and y axes.
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Figure A.8. Accuracy/Bias trade-offs on Amazon Music, assessed through nDCG/APLT,
for BPRMF and NeuMF. The cutoff is 10. Each point depicts a model hyper-parameter
configuration set in the objective function space. The filled dots are on the Pareto frontier,
while the empty dots are dominated points. Colors refer to a value of a selected hyper-
parameter. Arrows indicates the optimization direction for each metric on x and y axes.
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Figure A.9. Accuracy/Bias trade-offs on Amazon Music, assessed through nDCG/APLT, for
UserKNN and ItemKNN. The cutoff is 10. Each point depicts a model hyper-parameter
configuration set in the objective function space. The filled dots are on the Pareto frontier,
while the empty dots are dominated points. Colors refer to a value of a selected hyper-
parameter. Arrows indicates the optimization direction for each metric on x and y axes.
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Figure A.10. Accuracy/Novelty/Diversity trade-offs on Amazon Book, assessed through
nDCG/EPC/Gini, for LightGCN and NGCF. The cutoff is 10. Each point depicts a model
hyper-parameter configuration set in the objective function space. The filled dots are on
the Pareto frontier, while the empty dots are dominated points. Colors refer to a value of a
selected hyper-parameter. Arrows indicates the optimization direction for each metric on x
and y axes.
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Figure A.11. Accuracy/Novelty/Diversity trade-offs on Amazon Book, assessed through
nDCG/EPC/Gini, for BPRMF and NeuMF. The cutoff is 10. Each point depicts a model
hyper-parameter configuration set in the objective function space. The filled dots are on
the Pareto frontier, while the empty dots are dominated points. Colors refer to a value of a
selected hyper-parameter. Arrows indicates the optimization direction for each metric on x
and y axes.
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Figure A.12. Accuracy/Novelty/Diversity trade-offs on Amazon Book, assessed through
nDCG/EPC/Gini, for UserKNN and ItemKNN. The cutoff is 10. Each point depicts a model
hyper-parameter configuration set in the objective function space. The filled dots are on
the Pareto frontier, while the empty dots are dominated points. Colors refer to a value of a
selected hyper-parameter. Arrows indicates the optimization direction for each metric on x
and y axes.
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Figure A.13. Accuracy/Novelty/Diversity trade-offs on Movielens1M, assessed through
nDCG/EPC/Gini, for LightGCN and NGCF. The cutoff is 10. Each point depicts a model
hyper-parameter configuration set in the objective function space. The filled dots are on
the Pareto frontier, while the empty dots are dominated points. Colors refer to a value of a
selected hyper-parameter. Arrows indicates the optimization direction for each metric on x
and y axes.
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Figure A.14. Accuracy/Novelty/Diversity trade-offs on Movielens1M, assessed through
nDCG/EPC/Gini, for BPRMF and NeuMF. The cutoff is 10. Each point depicts a model
hyper-parameter configuration set in the objective function space. The filled dots are on
the Pareto frontier, while the empty dots are dominated points. Colors refer to a value of a
selected hyper-parameter. Arrows indicates the optimization direction for each metric on x
and y axes.
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Figure A.15. Accuracy/Novelty/Diversity trade-offs on Movielens1M, assessed through
nDCG/EPC/Gini, for UserKNN and ItemKNN. The cutoff is 10. Each point depicts a model
hyper-parameter configuration set in the objective function space. The filled dots are on
the Pareto frontier, while the empty dots are dominated points. Colors refer to a value of a
selected hyper-parameter. Arrows indicates the optimization direction for each metric on x
and y axes.
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Figure A.16. Accuracy/Novelty/Diversity trade-offs on Amazon Music, assessed through
nDCG/EPC/Gini, for LightGCN and NGCF. The cutoff is 10. Each point depicts a model
hyper-parameter configuration set in the objective function space. The filled dots are on
the Pareto frontier, while the empty dots are dominated points. Colors refer to a value of a
selected hyper-parameter. Arrows indicates the optimization direction for each metric on x
and y axes.
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Figure A.17. Accuracy/Novelty/Diversity trade-offs on Amazon Music, assessed through
nDCG/EPC/Gini, for BPRMF and NeuMF. The cutoff is 10. Each point depicts a model
hyper-parameter configuration set in the objective function space. The filled dots are on
the Pareto frontier, while the empty dots are dominated points. Colors refer to a value of a
selected hyper-parameter. Arrows indicates the optimization direction for each metric on x
and y axes.



i
i

“output” — 2025/2/22 — 18:13 — page 193 — #198 i
i

i
i

i
i

Appendix A 193

0.04

0.06

0.20
0.40

0.01

0.02

−−−
→

nD
CG

EPC−−−→

G
in
i

−−
→

cos
euc
jac
man

(a) UserKNN, Distance.

0.04

0.06

0.20
0.40

0.01

0.02

−−−
→

nD
CG

EPC−−−→

G
in
i

−−
→

10
20
30
50
100
150
200
250

(b) UserKNN, NN.

0.04
0.200.40

0.01
0.02
0.02

−−−
→

nD
CG

EPC−−−→

G
in
i

−−
→

cos
euc
jac
man

(c) ItemKNN, Distance.

0.04
0.200.40

0.01
0.02
0.02

−−−
→

nD
CG

EPC−−−→

G
in
i

−−
→

10
20
30
50
100
150
200
250

(d) ItemKNN, NN.

Dominated solutions Non-dominated solutions

Figure A.18. Accuracy/Novelty/Diversity trade-offs on Amazon Music, assessed through
nDCG/EPC/Gini, for UserKNN and ItemKNN. The cutoff is 10. Each point depicts a model
hyper-parameter configuration set in the objective function space. The filled dots are on
the Pareto frontier, while the empty dots are dominated points. Colors refer to a value of a
selected hyper-parameter. Arrows indicates the optimization direction for each metric on x
and y axes.
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