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Abstract

Deterministic mechanical systems subject to stochastic dynamic actions, such
as wind or earthquakes, have to be properly evaluated using a stochastic ap-
proach. For nonlinear mechanical systems it is necessary to approximate
solutions using mathematical tools, as the stochastic equivalent lineariza-
tion. It is a simple approach from the theoretical point of view, but needs
numerical techniques whose computational complexity increases in case of
nonstationary excitations. In this paper a procedure to solve covariance anal-
ysis of stochastic linearised systems in the case of nonstationary excitation is
proposed. The nonstationary Lyapunov differential matrix covariance equa-
tion for the linearised system is solved using a numerical algorithm which
updates linearised system coefficient matrix at each step. The technique
used is a predictor-corrector procedure based on backward Euler method.
Accuracy and computational costs are analyzed showing the efficiency of the
proposed procedure.
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1. Introduction

Many problems in structural dynamics deal with loads whose nature is
intrinsically non deterministic, as earthquakes, wind pressures or sea waves.
Due to intrinsic random nature of inputs random dynamic analysis is the best
way to use. In the analysis of linear systems, the physical solution can be
obtained by using standard analytical approaches that are able to describe
response moments statistics considering input characteristics and system pa-
rameters, both in time and in frequency domains. Moreover there are many
cases where structures exhibit a non linear behaviour, such as buildings sub-
ject to strong earthquakes. In those situations analytical approach does not
work for many nonlinear systems because the theoretical solutions of non-
linear systems are known only in some special cases [29]. In the analysis
of deterministic nonlinear systems, one of the most effective methods is the
perturbation method, which was firstly proposed by Poincaré and has been
extensively studied [28]. The counterpart in random analysis of nonlinear
systems has also been studied (see [33]). An alternative approach is the
statistical linearization method, also referred as stochastic (or equivalent)
linearization [30, 31], proposed independently but simultaneously by Booton
[3], Kazakov [16], Lu and Evan-Iwanowski [18]. The coefficient of linearized
terms are obtained minimizing a stochastic measure of differences between
the two solutions. This measure needs knowledge of state space (system dis-
placement and velocity) and joint probability distribution, but they are often
unknown. In many cases, a circular interdependency between linearization
coefficients and structural stochastic response is made; therefore, an iterative
algorithm is needed to break this loop. Accuracy, efficiency and limits of this
approach has been widely studied both for stationary [30] and non stationary
situations [10, 17, 21, 27]. The algorithm complexity increases dealing with
nonstationary situations, where evolutive state space and joint probability
density induce time variant stochastic equivalent linearization coefficients. A
more complex problem is to consider nonstationary inputs as external forces
like seismic actions. The inner evolutive nature of the input has serious con-
sequences in structural responses, and this has been observed both in general
cases, such as Duffing models, or real engineering problems, as buildings or
bridges [32, 14]. To approach nonstationary situations is better to use mul-
ticorrelated inputs even if it produces numerical difficulties because input
should be defined by using processes modulated in amplitude and/or in fre-
quency [23]. In these problems analytical solutions of random responses are
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known explicitly only in few cases [5, 15, 19]. Hence in applications it is nec-
essary to approximate the solution. The most common way is to use Monte
Carlo methods that consist in generating a suitable number of time histories
of the excitations and integrating directly in order to produce a simulation of
time history analysis. It is possible to obtain an accurate statistical analysis
of responses, but with high computational cost that grows up as the number
of direct integrations. Hence a simplified linearized covariance analysis shows
a better appeal as a significant reduction of computational efforts. The main
goal of the paper is to propose a computational method reducing the com-
putational cost taking account of some covariance matrix properties [20]. A
numerical approach for space state evolutive covariance matrix evaluation is
proposed; the nonlinear behaviour is overcome using the equivalent statisti-
cal linearization technique, and the Lyapunov matrix differential equation is
solved using backward Euler method (a modification of the one proposed for
linear systems in [11, 24]). The algorithm is thus described and a predictor-
corrector scheme for a step by step linearised coefficients update is proposed.
The algorithm is applied to a nonstationary Gaussian filtered input, mod-
ulated in amplitude and frequency, acting on a generic SDoF base excited
system, modelled on the Bouc-Wen model. The paper is organized as follows:
in Section 2 the statistical linearization approach and the predictor-corrector
numerical scheme are fully analyzed. An application is described in Section
3, while in Sections 4 and 5, respectively, the statistical properties together
with some numerical issues are shown. Finally some remarks and further
possible work are reported in Section 6.

2. Statistical linearization approach

Consider the nonlinear SDoF system:

mẍ+ g(x, ẋ) = ξ(t) (1)

where m is the mass, g(x, ẋ) is the nonlinear force including the nonlinear
damping and restoring forces and ξ(t) is a stochastic excitation. The main
idea behind a statistical linearization approximation is to replace equation
(1) with an equivalent linear one:

mÿ + ceqẏ + keqy = ξ(t) (2)

where ceq and keq are the equivalent damping and stiffness respectively, such
that the error between the solutions of the two systems is minimized with
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the mean-square method. The difference between (1) and (2)

eex = mẍ+ g(x, ẋ)− (mÿ + ceqẏ + keqy) . (3)

represents the error approximating the solution of (1) with that of (2). How-
ever, the response x of the nonlinear system is unknown hence the error so
defined would be intractable. On the contrary, to obtain the equivalent re-
sponse y in (2) is easier. Hence it is better to solve (2) instead of (1), defining
the error by (3) where x is replaced by y;

eapp = g(y, ẏ)− ceqẏ − keqy. (4)

In order to choose the best equivalent damping ceq and the equivalent stiffness
keq, it is necessary to minimize the error with statistical procedure requiring
the expectation of (4) to be zero,

E 〈eapp〉 = 0,

where E 〈•〉 denotes the mathematical expectation, and minimizing the second-
order moment, namely the mean-square error:

E
〈

e2app
〉

= E
〈

(g(y, ẏ)− ceqẏ − keqy)
2
〉

. (5)

This requires that:
∂E

〈

e2app
〉

∂ceq
= 0 (6)

and
∂E

〈

e2app
〉

∂keq
= 0 (7)

Equations (6) and (7) yield two linear equations and, therefore, give the
optimal values of ceq and keq

ceq =
E 〈g(y, ẏ)ẏ〉E

〈

y2
〉

− E 〈g(y, ẏ)y〉E 〈yẏ〉

E
〈

ẏ2
〉

E
〈

y2
〉

− (E 〈yẏ〉)2
(8)

keq =
E 〈g(y, ẏ)y〉E

〈

ẏ2
〉

− E 〈g(y, ẏ)ẏ〉E 〈yẏ〉

E
〈

ẏ2
〉

E
〈

y2
〉

− (E 〈yẏ〉)2
. (9)

It is important to note that to obtain the optimal values of ceq and keq, in
this procedure in (8) and (9) the joint probability density function (PDF)
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pZ(z) of the state space z = [ y ẏ ]T is needed. This means that to solve
the linear random vibration system (2) the values of ceq and keq are needed.
So a circular interdependency is produced for this problem and therefore, an
iterative algorithm is useful to break the loop. This scheme is illustrated in
Figure 1, where the superscripts represent the steps of iteration and pZ(z)
represents the probabilistic information (e.g. the joint statistics or PDF).
The iteration could reach the end if the error of ceq and keq between two
subsequent iterations is limited within the tolerance:

∥

∥c(j+1)
eq − c(j)eq

∥

∥ < εceq
∥

∥k(j+1)
eq − k(j)

eq

∥

∥ < εkeq

or the error of the probabilistic characteristics of the state space z are
bounded by tolerances εE〈y2〉 and εE〈ẏ2〉 :

∥

∥

∥

(

E
〈

y2
〉)(j+1)

−
(

E
〈

y2
〉)(j)

∥

∥

∥
< εE〈y2〉 (10)

∥

∥

∥

(

E
〈

ẏ2
〉)(j+1)

−
(

E
〈

ẏ2
〉)(j)

∥

∥

∥
< εE〈ẏ2〉. (11)

In the case of a multi degree of freedom (MDoF) mechanical problem, it

should be set as a linearised equation in the state space z =
[

y ẏ
]T
, where

y and ẏ are, respectively, the displacement and the velocity vector, both with
n degrees of freedom, in the following way:

ż = Aeqz + ξ (12)

In Equation (12) A is the state space matrix, whose coefficients depending
on the state space covariance matrix Rzz:

Rzz = E
〈

zzT
〉

(13)

that is the solution of the stationary Lyapunov matrix equation:

[Aeq (Rzz)]Rzz +Rzz

[

AT
eq (Rzz)

]

+B = 0 (14)

and
Aeq = Aeq (Rzz) . (15)

A similar scheme of that proposed in Figure 1 is applicable to solve the couple
problem of (14) and (15): the problem so stated is well known in literature
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Figure 1: Scheme to evaluate the best equivalent damping ceq and the equivalent stiffness
keq.

and many standard and commercial codes to solve the Lyapunov equation
in (14) exist, such as Lyap command in Matlab. The scheme so far proposed
holds only for stationary problems, while nonlinear and nonstationary ones
require the solution of a time depending Lyapunov Equation. It is important
to note that determined optimal values of ceq and keq are time variant if the
response is a nonstationary process and therefore, the equivalent system in
Equation (2) or in (14) for general nonlinear system is a time-variant linear
system. The main question is that the state matrix has to be updated at each
integration step because linearised coefficients depend on the same unknown
covariance matrix that is time dependent in this case:

Aeq = Aeq (Rzz(t), t) . (16)

Here the state space covariance matrix is the solution of nonstationary Lya-
punov equation in the form:

Ṙzz(t) = Aeq (Rzz, t)Rzz(t) +Rzz(t)A
T
eq (Rzz, t) +B(t) (17)
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where Ṙzz = d
dt
Rzz. To solve this specific problem a simple numerical

predictor-corrector algorithm is developed in this paper, using an iterative
procedure to update the linearised system matrix at each step as its time
varying coefficients. The total duration [0, Ttot] is divided in m equal sub-
interval of length ∆t = th+1 − th, h = 0, 1, 2, . . . ,m − 1, and in each sub-
interval a linear variation of the time derivative covariance matrix Ṙ(t) is
assumed. The backward Euler method is used as predictor:

Predictor : R
p

(h+1) = R(h) +∆tṘ(h) (18)

while the trapezoidal rule is used as corrector:

Corrector : Rc
(h+1) = R(h) +

∆t

2

(

Ṙ(h) + Ṙ
p

(h+1)

)

(19)

where the symbol a(h) denotes the generic quantity a evaluated at time t =
h∆t. For each integration step h is evaluated as prediction of covariance
matrix with (18); than it is used to obtain a corrected value using the implicit
scheme in (19). Moreover the coefficients of linearised state matrix A depend
on covariance matrix so there is an implicit evolution of A, so the system
matrix Aeq has to be updated at each time depending on the covariance
matrix at the same time:

Aeq(h) = Aeq

(

R(h)(t), th
)

. (20)

This equation is still implicit because the evaluation of generic unknown co-
variance R(h+1) at step h+1, needs still unknown state space matrix Aeq(h+1)

at step h+ 1 while Aeq(h) is known because it depends only on R(h). A first
evaluation of Aeq(h) is obtained using (20) with predictor R

p

(h+1) of (18).

Hence a second more accurate evaluation is obtained using (20) with correc-
tor Rc

(h+1) of (19). For a more accurate evaluation of Aeq(h+1) and R(h+1) an
iterative scheme based on a modification of (19) is then possible. Starting
from the corrector evaluation of the covariance matrix R1

(h+1) = Rc
(h+1), it is

updated with the following scheme:

R
j+1
(h+1) = R(h) +

∆t

2

(

Ṙ(h) + Ṙ
j

(h+1)

)

(21)

A
j+1
eq(h) = Aeq

(

R
j+1
(h+1)(t), th

)

. (22)
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The convergence of the iterative process is reached when the following stop-
ping criterion is satisfied:

ε
(j+1)
Aeq

= ‖Aeq

(

R
j+1
(h+1)

)

−Aeq

(

R
j

(h+1)

)

‖ ≤ εmax. (23)

It is a way to achieve the given accuracy as the implicit prevision of matrix
Aeq will differs smoothly from its explicit prediction. In this way there are
two iterative processes, the first for time integration and the latter to satisfy
(23). In this way reducing the time step will produce a greater number of
iterations to evaluate the system matrix as in (23). As it is clear in general a
greater value of time step will reduce the total steps for time integration, but
will increase the number of iterations as stopping criterion (23) is reached.
In order to obtain knowledge of covariance matrix evolution, the scheme
proposed has to be repeated for each time step and must be solved in sequence
for each time value th, starting from t0 = 0 (whose covariance matrix value
R(0) = 0). In this way the m unknown matrices R(h), should be determined,
defining statistics of structural response.
The integration scheme, written in pseudo-code, is the following:

Initialize the outer loop:
h = 0, t0 = 0, R1 = R(t = 0), A1 = Aeq(R1)
while th ≤ Ttot

th+1 = th +∆t

Compute R
p

(h+1) and Ṙ
p

h+1 using (18) and (17)

Compute R
c
(h+1) and Ṙ

c

h+1 using (19) and (17)

Initialize the inner loop:

j = 1, R
1
(h+1) = R

c
(h+1), A

1
eq(h+1) = Aeq

(

R
1
(h+1)

)

while

∥

∥

∥
A

(j+1)
h+1 −A

(j)
h+1

∥

∥

∥
≤ εAeq

Compute R
j+1
(h+1) using (21)

Compute A
(j+1)
h+1 and Ṙ

j+1
h+1 using (22) and (17)

j = j + 1
end

h = h+ 1
end

3. An application: Bouc-Wen system subject to nonstationary base

random input

The Bouc-Wen model is a nonlinear differential model often taken on
to assess the structural response of buildings subjected to earthquakes (see

8



[2, 4, 34]). The model in Figure 2 with the following motion equation

mẍ(t) + F (x, ẋ, z, t) = ma(t) (24)

describes a single degree of freedom system, having a mass m, subject to a
generic base acceleration a(t) and characterized by a hysteretic constitutive
law. In (24) the first term represents the inertia force whereas F (x, ẋ, z) is

Figure 2: SDoF nonlinear system Bouc-Wen model.

Figure 3: Bouc-Wen Hysteresic force-displacement model.

the restoring force. This term can be seen as the sum of two terms:

F (x, ẋ, z; t) = L(x, ẋ; t) +H(x, ẋ, z; t). (25)

The first one L(x, ẋ; t) is due to the linear viscous-elastic contribution while
the second H(x, ẋ, z; t) is due to the hysteretic one:

L(x, ẋ; t) = cẋ(t) + αkx(t) (26)
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H(x, ẋ, z; t) = (1− α)kz(t) (27)

where c is the damping and k is the initial elastic stiffness. The function z(t)
satisfies the following nonlinear differential equation:

ż(t) = G(z, ẋ) = ẋ(t) [λ− |z(t)|η (β + γsgn{z(t)}sgn{ẋ(t)})] . (28)

The parameters β, γ, η, α and λ in (28) are the shape factors of the hys-
teretic cycle. Mechanical quantities can be related to analytical parameters
in order to model real structural elements. When is necessary the analysis of
mechanical systems exhibiting a softening behavior (a reduction of stiffness
for great deformations), as for buildings when exposed to strong earthquakes,
it is possible to define the initial and the post-elastic stiffness, ki and kf , as

ki =

(

∂G

∂x

)

Z=0

= αk + (1− α)kλ

and

kf =

(

∂G

∂x

)

Z=zmax

= αk.

The maximum asymptotic value of internal variable z is

zmax =

(

λ

β + γ

)
1
η

.

The ultimate hysteretic restoring force is given by:

Fmax
h = (1− α)kzmax

In addition it is possible to define the elastic limit displacement XY :

XY =
Fmax
h

(1− α)kλ
=

zmax

λ
= λ

1−η

η (β + γ)−
1
η (29)

The corresponding yielding resistance is given by:

FY = kiXY = (αk + (1− α)kλ)λ
1−η

η (β + γ)−
1
η . (30)

From (29) and (30) it is possible to observe that if λ = 1 then k = ki, α
becomes the ratio between the post-elastic and initial elastic stiffness (for
β = γ):

XY =

(

1

2β

)
1
η

(31)
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and

FY = kXY = k

(

1

2β

)
1
η

. (32)

hence

β =
1

2Xη
Y

.

It has been found [22] that the parameters of the Bouc-Wen model are func-
tionally redundant. Removing this redundancy is best achieved by setting
λ = 1. Moreover if the unloading stiffness is equal to the elastic one (as it
happens in many cases) then β = γ. In order to describe the mechanical
constitutive law only three mechanical parameters are needed:
• initial elastic stiffness ki;
• post-elastic stiffness kf ;
• maximum hysteretic restoring force FY (or maximum elastic displacement
XY ).
Considering now a seismic excitation F (t) = −mẍg(t), the motion equations
are:







mẍ(t) + cẋ(t) + αkx(t) + (1− α)kz(t) = −mẍg(t)

ż(t) = ẋ(t) [1− z(t)β (1 + sgn{z(t)}sgn{ẋ(t)})]
(33)

where the parameter η can be properly evaluated according to the relative
smoothness in transition between elastic and post-elastic phases. In the
following it will be assumed η = 1 as a common approach, with a smooth
transition between elastic and post-elastic phase, as done in many works.
Introducing ω2

0 = k/m, fY = FY /m and 2ξ0ω0 = c/m, and considering (31)
when η = 1, equations (33) become:















ẍ(t) + 2ξ0ω0ẋ(t) + αω2
0x(t) + (1− α)ω2

0z(t) = −ẍg(t)

ż(t) = ẋ(t)

[

1−
1

2

(

z(t)

XY

)

(1 + sgn{z(t)}sgn{ẋ(t)})

]

.

3.1. The Bouc-Wen model equivalent linearization

The approximate linearised form of the original nonlinear equation is then
achieved minimizing the difference between the nonlinear equation and the
linearised one. Then, the equation governing the internal variable z(t) is
replaced with the following:

ż(t) = G(z, ẋ) = −ceq(t)ẋ(t)− keq(t)z(t) (34)
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where the linearised evolutive coefficients ceq(t) and keq(t) are nonlinear func-
tions of covariance response elements. Atalik and Utku [1] provided these
equivalent coefficients, which appear in equations (8) and (9): for the most
common case where η = 1, β = γ and λ = 1, in the hypothesis of processes
z and ẋ jointly Gaussian, the time variant equivalent coefficients are:

ceq(t) =

√

2

π
β

[

σz(t) +
E 〈ẋ(t)z(t)〉

σẋ(t)

]

− 1 (35)

keq(t) =

√

2

π
β

[

σẋ(t) +
E 〈ẋ(t)z(t)〉

σz(t)

]

(36)

where terms σz(t) and σẋ(t) are the standard deviations of z and ẋ, respec-
tively, and E 〈ẋ(t)z(t)〉 is their cross covariance.

3.2. Modelling the input ground motion

It is widely known that seismic accelerograms are often modelled as a zero
mean stochastic nonstationary processes. A widely used description with
constant content both in amplitude and in frequency could be considered.
An extensively applied stochastic approach is that proposed by Clough and
Penzien [8] which considers a linear fourth-order filter, obtained by a series of
two linear oscillators, forced by a modulated white noise ([9, 12, 25]). Ground
acceleration Ẍg(t) is therefore given by:























Ẍg(t) = −ω2
pXp(t)− 2ξpωpẊp(t) + ω2

fXf + 2ξfωfẊf (t)

Ẍp(t) + ω2
pXp(t)− 2ξpωpẊp(t) = ω2

fXf + 2ξfωfẊf (t)

Ẍf (t) + 2ξfωfẊf (t) + ω2
fXf = −φ(t)W (t)

(37)

where Xf (t) is the response of the first filter, having frequency ωf and damp-
ing coefficient ξf , Xp(t) is the response of the second filter characterized
by frequency ωp and damping ratio ξp. Moreover W (t) is the white noise
stochastic process, whose constant bilateral power spectral density function
is S0 and φ(t) is the modulation function. In this study the function proposed
by Jennings et al. is adopted [13]. Several expressions relate the maximum
value of ground acceleration to S0: this maximum value is called the peak

ground acceleration (PGA) and is indicated with max
(

|Ẍg(t)|
)

. A common

way to express PGA is:
PGA = 3σẌg

. (38)
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In this way after some rearrangements it is obtained [26]:

S0 =
0.222

π

PGA2ξfξp
(

ω4
f + 4ξfξpω

3
fωp + 2(−1 + 2ξ2f + 2ξ2p)ω

2
fω

2
p + 4ξfξpωfω

3
p + ω4

p

)

ω2
f

(

(1 + 4ξ2f )ξpω
3
f + ξf (1 + 16ξ2fξ

2
p)ω

2
fωp + 16ξ4fξpωfω2

p + 4ξ3fω
3
p

) .

4. Stochastic analysis

The linearised motion equations for the system plus filter are given by:



























Ẍ(t) + 2ξsωsẊ(t) + αω2
sX(t) + (1− α)Z(t)ω2

s = ω2
pXp(t)+

+2ξpωpẊp(t)− ω2
fXf (t)− 2ξfωfẊf (t)

Ẍp(t) + ω2
pXp(t) + 2ξpωpẊp(t) = ω2

fXf + 2ξfωfẊf (t)

Ẍf (t) + 2ξfωfẊf (t) + ω2
fXf = −φ(t)W (t)

Ż(t) = −ceqẊ(t)− keqZ(t).

(39)

Introducing the state vector Y (t) =
[

X(t), Xp(t), Xf (t), Z(t), Ẋ(t), Ẋp(t), Ẋf (t)
]T

equation (39) becomes:

Ẏ (t) = Aeq(R, t)Y (t) + F (t) (40)

where F (t) = [ 0 0 0 0 0 0 − φ(t)W (t) ] is the forcing vector and

Aeq(R, t) =





















0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 −keq(R, t) −ceq(R, t) 0 0

−αω2
s +ω2

p −ω2
f −(1− α)ω2

s −2ξsωs +2ωpξp −2ωfξf
0 −ω2

p +ω2
f 0 0 −2ωpξp +2ωfξf

0 0 −ω2
f 0 0 0 −2ωfξf





















is the equivalent system matrix.
It is possible to perform the covariance analysis starting from equation (40)
and solving the matrix differential Lyapunov equation:

Ṙ(t) = Aeq (R, t)R(t) +R(t)AT
eq (R, t) +B(t)

where R(t) = 〈Y Y
T
〉 is the covariance matrix, while B(t) is a square matrix

having all zero entries except the last one equal to 2πS0φ(t)
2. Coefficients keq
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and ceq in matrix depend on the elements of R(t), and therefore an iterative
procedure is required to solve equation (38) as for equation (17). This is
solved using a Matlab code where the coefficients of the equivalent linear
system are updated at each step and the solution of response covariance
matrix equation is searched for.

5. Numerical analysis

Using a Bouc-Wen model, in Figure 4 a nonlinear SDoF system is anal-
ysed under a nonstationary base acceleration, modelled by a filtered separable
white noise process. To evaluate numerical efficiency of proposed algorithm,
nonstationary covariance response is evaluated under different nonlinear me-
chanical parameters and using different time step value ∆t. The modulation
function used is the following [13]:

φ(t) = αφte
−βφt (41)

where the maximum intensity is reached at Tmax = 10 (sec), φ(Tmax) = 1 (see
Figure 4) and αφ and βφ are so defined:

αφ =
e

Tmax

, βφ =
1

Tmax

.

The filtered white noise in (37) is modelled with the following parameters:
ωf = 20 rad/sec, ωp = 5 rad/sec, ξf = 0.6 and ξp = 0.7.
The PGA is assumed as 0.15 (g), while the other elastic mechanical pa-
rameters are a natural period T0 = 1.0 (sec), ω0 = 6.28 (rad/sec) and a
damping ξ0 = 0.05. Three different values of post-elastic/elastic ratio are
used (α = 0.1, 0.5, 0.8) to compare numerical performances under different
levels of nonlinearity. For each case numerical results have been evaluated
under different time step values ∆t, in the range 0.005−0.045 (sec.). Finally
in (23) it is assumed εmax = 10−7. In Figure 5 are reported main system
structural responses from covariance equation, in terms of state space vector
(displacement and velocity vectors) z standard deviation, compared with the
pure elastic response (only for displacement and velocity). In Figures 6 and
7 are reported evaluated linearised coefficients for each case.

The results are stable for the time steps in the range of analysis (from
0.005 to 0.045 sec) both for covariance and linearised coefficients. An in-
teresting result is the evaluation of computational cost under different time
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Figure 4: Modulation function.

steps that has been evaluated as the number of iterations jtot necessary to
reache convergence in the inner loop of predictor-corrector scheme. This
value is multiplied by the number of time steps necessary to simulate the
whole process in the time window [0, Ttot = 40(sec)]. Figure 8 shows that,
for a given accuracy, computational costs are strongly influenced by time
steps. Actually when the time step is too small the method requires less
iterations to satisfy the stop criterion, but a greater number of integration
points is required. On the contrary, increasing the time step size, the re-
quired integration points decrease, but to reach the given accuracy a greater
number of iterations is required at each time step. It is evident that there
is an equilibrium, corresponding to a minimum of total evaluation, between
number of integration points and number of iterations useful for each time
step, and it is independent from the stiffness ration used. This is important
to decide the most appropriate time step but it depends on the problem and
its parameters.

6. Conclusions and future work

In this work a numerical approach to integrate nonstationary Lyapunov
matrix equation has been presented to improve stochastic linearization tech-
nique adopted for nonlinear systems representation. The proposed algorithm
is implemented using a predictor/corrector scheme, where the linearised co-

15



0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

t (sec)

σ x

 

 

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

450

t (sec)

σ v

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

t (sec)

σ z

linear
α = 0.1 
α = 0.5
α = 0.8

Figure 5: Evolutive structural covariance (σx, σẋ, σz).

efficients update is performed by an iterative scheme at each step. The
numerical integration algorithm has been used for an important case of me-
chanical nonlinearity, the hysteretic Bouc-Wen model. A single degree of
freedom system modelled and subject to a nonstationary filtered white noise
has been evaluated under different mechanical conditions and time step sizes.
Results show that the proposed algorithm is stable and accurate, while time
step size plays a central role in total computational costs, so that an opti-
mum time step should be deducted comparing total computational costs for
different steps ∆t.
The main future research is to use a variable step size technique for the
predictor-corrector scheme, like the following, if

en+1 =

∥

∥

∥
Aeq

(

R
j+1
(h+1)

)

−Aeq

(

R
j

(h+1)

)∥

∥

∥

∥

∥

∥
Aeq

(

R
j

(h+1)

)∥

∥

∥

where the norm is the Frobenius or the infinity one, δ > εmax, a > 1, b < 1,
with δ, a and b chosen parameters (see [6, 7]), it is possible to define ∆t
according to the following criterion: if en+1 ≤ εmax then ∆t = a∆t else if
en+1 ≥ δ then ∆t = b∆t. The step ∆t unchanges if εmax < en+1 < δ. Some
possible values could be a = 1.2, b = 0.8, ε = 10−5 and δ = 10−4.
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Figure 6: Evolution of linearized coefficients ceq.

References

[1] T. Atalik, S. Utku, Stochastic linearization of multi degree of freedom
nonlinear systems, Earthq. Eng. Struct. Dyn. 4 (1976) 411–420.

[2] T. Baber, Y. Wen, Random vibration of hysteretic degrading system,
Journal of the Engineering Mechanics Division, Proc. ASCE 107 (EM6)
(1981) 1069–1087.

[3] R. Booton, Nonlinear control systems with random inputs, Circuit The-
ory, IRE Trans. 1 (1) (1954) 9–18.

[4] R. Bouc, Forced vibration of mechanical systems with histeresys, in:
Proc. 4th Conf. on Nonlinear Oscillations, 1967, p. 315.

[5] F. Carli, Nonlinear response of hysteretic oscillator under evolutionary
excitation, Adv. Eng. Softw. 30 (9-11) (1999) 621–630.

[6] C. Choi, A variable step-size method for solving stiff lyapunov differen-
tial equations, in: Proc. Am. Control Conf., 2001, pp. 4197–4199.

[7] C. Choi, Improving the accuracy of a variable step-size method for solv-
ing stiff lyapunov differential equations, in: Proc. Am. Control Conf.,
2003.

17



0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

k eq

 

 

t (sec)

Figure 7: Evolution of linearized coefficients keq.

[8] R. Clough, J. Penzien, Dynamics of Structures, McGraw-Hill, New York,
1975.

[9] F. Fan, G. Ahmadi, Nonstationary kanai-tajimi models for el centro
1940 and mexico city 1985 earthquakes, Probab. Eng. Mech. 5 (1990)
171–181.

[10] R. Greco, G. Marano, M. Mezzina, The performance of hdrb devices
in base isolation: A stochastic sensitivity analysis, J. Struct. Contr. 8
(2001) 203–218.

[11] R. Greco, F. Trentadue, Structural reliability sensitivities under nonsta-
tionary random vibrations, Math. Probl. Eng. 2013 (2013) 1–21.

[12] T. Hsu, M. Bernard, A random process for earthquake simulation,
Earthq. Eng. Struct. Dyn. 7 (4).

[13] P. Jennings, G. Housner, Simulated earthquake motions for design pur-
pose, in: Proc. 4th World Conf. Earth. Eng., 1968, pp. 145–160.

[14] H. Jia, D. Zhang, S. Zheng, W. Xie, M. Pandey, Local site effects on a
high-pier railway bridge under tri-directional spatial excitations: Non-
stationary stochastic analysis, J. Soil Dyn. Earthq. Eng. 52 (2013) 55.

18



0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

dt (sec)

T
ot

al
 E

va
lu

at
io

ns

 

 
α = 0.1
α = 0.5
α = 0.8

Figure 8: Iterations for different post-yielding stiffness.

[15] X. Jin, Z. Huang, Nonstationary probability densities of strongly nonlin-
ear single-degree-of-freedom oscillators with time delay, Nonlinear Dyn.
59 (1-2) (2010) 195–206.

[16] I. Kazakov, An approximate method for the statistical investigation for
nonlinear systems, Trudy VVIA im Prof. NE Zhukovskogo (1954).

[17] K. Kimura, H. Yasumuro, M. Sakata, Non-gaussian equivalent lineariza-
tion for non-stationary random vibration of hysteretic system, Probabil.
Eng. Mech. 9 (1-2) (1994) 15–22.

[18] C. Lu, R. Evan-Iwanowski, Period doubling bifurcation problems in
the softening duffing oscillator with nonstationary excitation, Nonlin-
ear Dyn. 5 (4) (1994) 401–420.

[19] Y. Lu, X. Wei, G. Xu Dong, Nonstationary probability densities of a
class of nonlinear system excited by external colored noise, Sci. China
Phys. Mech. Astron. 55 (3) (2012) 477.

[20] L. Lutes, S. Sarkani, Random Vibrations: Analysis of Structural and
Mechanical Systems, Elsevier Butterworth-Heinemann, 2004.

[21] C. Ma, Y. Zhang, P. Tan, L. Zhou, Seismic response of base-isolated
high-rise buildings under fully nonstationary excitation, Shock and Vi-
bration 2014, article ID 401469.

19



[22] F. Ma, H. Zhang, A. Bockstedte, G. Foliente, P. Paevere, Parameter
analysis of the differential model of hysteresis, J. Appl. Mech. ASME 71
(2004) 342–349.

[23] G. Marano, Envelope process statistics for linear dynamic system sub-
ject to nonstationary random vibrations, Far East J. Theor. Stat. (2008)
29–46.

[24] G. Marano, G. Acciani, L. Cascella, Nonstationary numerical covariance
analysis of linear multi degree of freedom mechanical system subject to
random inputs, Int. J. Comp. Meth. 173 (2007) 173–194.

[25] G. Marano, M. Morga, S. Sgobba, Parameters identification of stochastic
nonstationary process used in earthquake modelling, Int. J. Geosci. 4 (2)
(2013) 290–301.

[26] G. Marano, F. Trentadue, E. Morrone, L. Amara, Sensitivity analysis
of optimum stochastic nonstationary response spectra under uncertain
soil parameters, Soil Dyn. Earthq. Eng. 28 (12) (2008) 1078–1093.

[27] S. Matsuda, Non-stationary random respose analysis for multi-story bi-
linear system focusing on residual disiplacement, J. Struct. Constr. Eng.
80 (710) (2015) 551–560.

[28] A. Nayfeh, Nonlinear Interactions, Wiley, 2000.

[29] A. Nayfeh, D. Mook, Nonlinear Oscillations, John Wiley & Sons, 1995.

[30] J. Roberts, P. Spanos, Random Vibration and Statistical Linearization,
John Wiley & Sons, 1990.

[31] D. Roy, Explorations of the phase-space linearization method for de-
terministic and stochastic nonlinear dynamical systems, Nonlinear Dyn.
23 (3) (2000) 225–258.

[32] A. S., Seismic behaviour of isolated multi-span continuous bridge to
nonstationary random seismic excitation, Nonlinear Dyn. 67 (1) (2012)
263–282.

[33] A. Skorokhod, F. Hoppenstead, H. Salehi, Random Perturbation Meth-
ods, Springer Verlag, 2002.

20



[34] Y. Wen, Method for random vibration of hysteretic systems, J. Eng.
Mech. Div. ASCE 102 (1976) 150–1548.

21




