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A B S T R A C T

In this study, we propose a theory of rough adhesive contact of viscoelastic materials in steady-state sliding.
By exploiting a boundary formulation based on Green’s function approach, the unknown contact domain is
calculated by enforcing the local energy balance at the contact edge, thus considering also the non-conservative
work of internal stresses which is directly related to the odd part of the Green’s function. Theoretical predictions
indicate that viscoelasticity may enhance the adhesive performance depending on the sliding velocity, thus
leading to larger contact area and pull-off force compared to the equivalent adhesive elastic case The interplay
between viscoelasticity and adhesion also affects the overall friction. Indeed, at low velocity, friction is strongly
enhanced compared to the adhesiveless viscoelastic case, mainly due to the small-scale viscoelastic hysteresis
induced by the adhesive neck close to the contact edge At higher velocity, the effect of viscoelastic hysteresis
occurring at larger scales (bulk material) leads to even higher friction. Under these conditions, in the presence
of adhesion, the small-scale and large-scale viscoelastic contributions to friction cannot be separated. Finally,
in contrast with usual predictions for crack propagation/healing in infinite systems, we found a non-monotonic
trend of the energy release rates at the trailing and leading contact edges, which is consistent with the finiteness
of the contact length. All the presented results are strongly supported by existing experimental evidences.
1. Introduction

Understanding the effect of adhesion in sliding contacts of poly-
meric rubber-like materials is of crucial importance in a large num-
ber of engineering and industrial applications, as in Micro-Electro-
Mechanical systems (MEMs) (Bhushan, 2007; Kim et al., 2007; Zeng
et al., 2018), medical applications (Vilhena and Ramalho, 2016;
Van den Dobbelsteen et al., 2007), seals (Tiwari et al., 2017; Gawliński,
2007), biological and bio-inspired systems (Chung and Chaudhury,
2005; Zhou et al., 2013; Tang et al., 2008; Menga et al., 2018b, 2020;
Ceglie et al., 2022), protective coatings (Martinez-Martinez et al., 2012;
Zhang and Archer, 2007), tire–road frictional behavior (Sharp et al.,
2016; Persson, 2000), windscreen wipers (Bódai and Goda, 2014),
touchscreens (Ayyildiz et al., 2018), and solid state batteries (Zhang
et al., 2023). Controlling adhesion is fundamental, as the adhesive
effect might be desirable, e.g. adhesion might increase the sliding
friction in the tire–road contact thus improving the braking and the
handling performances (Sharp et al., 2016), or deleterious, e.g. in
MEMs and micro-grippers, where avoiding the permanent adhesion is a
crucial issue for moving components and to release the objects (Zhang
et al., 2009; Mengüç et al., 2012; Zeng et al., 2018).

∗ Corresponding author.
E-mail address: nicola.menga@poliba.it (N. Menga).

Viscoelasticity is another major feature affecting the contact be-
havior of rubber-like materials. Existing analytical and numerical ap-
proaches (Hunter, 1961; Harrass et al., 2010; Persson, 2001, 2010;
Carbone and Putignano, 2013; Menga et al., 2014, 2016b, 2018a;
Putignano et al., 2019; Afferrante et al., 2019) are only able to describe
the adhesiveless viscoelastic contact behavior in the presence of relative
motion between the solids, also considering normal–tangential coupling
in the deformation field due to interfacial friction and finite thick-
ness (Menga, 2019; Menga et al., 2021; Müller et al., 2023). Indeed,
under these conditions, viscoelastic relaxation strongly affects the key
contact quantities, such as the contact size, which are found to depend
on the relative sliding velocity. Moreover, since viscoelasticity also
entails a certain amount of energy dissipation within the bulk material
under the effect of cyclic deformations, in these class of contacts, a
friction force is observed opposing the relative interfacial sliding, which
is usually referred to as viscoelastic friction.

Although several experimental results
(Barquins et al., 1978; Charmet and Barquins, 1996; Hoyer et al.,
2022) clearly indicate that interfacial adhesion and viscoelasticity may
interact in controlling the properties of mating interfaces in many
tribological systems, a comprehensive theory of adhesive viscoelastic
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sliding contacts is still lacking. Indeed, the effect of adhesion on the
behavior of contacting solids has been mostly investigated only for
purely elastic solids, by relying on both theoretical (Johnson et al.,
1971; Maugis, 2000; Menga et al., 2018c, 2019) and numerical (Car-
bone and Mangialardi, 2008; Carbone et al., 2009b, 2015; Menga et al.,
2016a) approaches based on the Griffith’s energy balance. Very little
has been done in the case of adhesive viscoelastic contacts, with some
contributions primarily focusing on the case of normal indentation and
exploiting adhesive models based on surface potentials (Violano and
Afferrante, 2022; Pérez-Ràfols et al., 2023).

In the case of viscoelastic materials, the standard energy balance
equation 𝐺 = 𝛥𝛾 between the energy release rate 𝐺 and the Duprè work
of adhesion 𝛥𝛾, no longer holds true, as additional non conservative
energy terms come into play due to viscoelastic hysteresis (Persson
and Brener, 2005; Schapery, 1975; Barber et al., 1989; Schapery,
1989; Greenwood, 2004; Baney and Hui, 1999; Carbone and Persson,
2005a,b). Moreover, in the presence of adhesion, besides the usual
large-scale energy dissipation occurring in the bulk viscoelastic mate-
rial, local dissipation also takes place very close to the contact edges
(i.e., at the opening or closing crack tips). This latter phenomenon,
also known as small-scale viscoelasticity, is usually regarded as a
primary cause of enhanced adhesive hysteresis, as observed in Fuller
and Roberts (1981) and Kendall (1975). Since in these conditions the
real value of 𝐺 at the contact edges is unknown, a very few studies exist
focusing on such case. Most of them rely on scale separation (Carbone
and Mangialardi, 2004; She et al., 1998; Krijt et al., 2014; Zhang et al.,
2015), thus assuming purely elastic conditions in the bulk material,
and local crack propagation criterion at the contact edges (Green-
wood, 2004; Carbone and Persson, 2005a,b). However, although very
pioneering, these studies are limited to the local viscoelastic regime
(i.e., small-scale viscoelasticity).

On the other hand, several experimental investigations have re-
ported strongly enhanced adhesive properties in rolling contacts against
rubber (i.e., viscoelastic) substrates (Barquins et al., 1978; Charmet
and Barquins, 1996; Hoyer et al., 2022). Larger pull-off force and
contact size are reported in rolling conditions, compared to the static
case, thus confirming that the effective adhesive behavior depends on
the interaction between small-scale viscoelasticity, interfacial adhesion,
and bulk viscoelasticity (Roberts, 1979). Moreover, also friction is
affected by similar mechanisms, as shown in Refs. Grosch (1963) and
Roberts (1979). More specifically, Grosch’s experiments clearly show
that the interplay between viscoelasticity and adhesion leads to a
friction increase, which cannot be explained by simply summing-up the
contributions of adhesion hysteresis and bulk viscoelastic losses (Pers-
son, 1998; Scaraggi and Persson, 2015). Such an experimental evidence
has not yet found any physically explanation.

We propose a novel theory to study the adhesive contact of vis-
coelastic materials in steady-state sliding or rolling contact with a
rigid substrate. The theory provides the closure equations needed to
determine the unknown contact domain, which is expressed in terms
of a local energy balance, thus generalizing the Griffith’s criterion to
the case of viscoelastic media. The very first results of the proposed
theory have been shown by Carbone et al. in a short letter (Carbone
et al., 2022), where the authors report a very good agreement between
theoretical prediction and experimental evidences. In this paper, the
authors present their theory in much deeper detail, thus providing an
exhaustive treatment of viscoelastic adhesive contacts, and presenting
a specific analysis of the influence of the physical parameters affecting
the tribological behavior of the contact. The theory covers a very wide
range of sliding velocities, thus providing insights and enlightening
most of the available experimental observations in the field.

2. Formulation

We consider a linear homogeneous viscoelastic slab sliding past
a rough surface in the presence of interfacial adhesion. We assume
2

b

steady state motion at constant velocity 𝐯, and displacement controlled
conditions by assigning the contact penetration 𝛥. We neglect the
presence of shear stresses at the interface. According to Menga et al.
(2014) and Carbone and Putignano (2013), using a reference frame co-
moving with the indenter, the contact normal stress 𝜎(𝐱) and the normal
nterfacial displacement 𝑢(𝐱) (see also Carbone and Mangialardi, 2008

and Menga et al., 2016b for the definition of interfacial displacement)
are related each other through the integral relation

𝑢(𝐱) = ∫ 𝑑2𝑥1(𝐱 − 𝐱1, 𝐯)𝜎(𝐱1) (1)

here 𝐱 and 𝐱1 are the in-plane position vectors. Under the assumption
f infinitely short-range adhesive interactions, out of the yet unknown
ontact domain 𝛺 of size |𝛺| = 𝐴 the normal stresses vanish, so that
he integral in Eq. (1) can be extended to 𝛺. The kernel (𝐱, 𝐯) is the
iscoelastic Green function (parametrically dependent on the sliding
elocity 𝐯), which has been determined for several geometric config-
rations (i.e., displacement or stress boundary conditions) both for
eriodic and non-periodic contacts, as a function of the slab thickness
see Appendix A). Now observe that for a viscoelastic material (𝐱, 𝐯)
s an asymmetric function of 𝐱 and can be decomposed into an even
symmetric) E(𝐱, 𝐯) part, and odd (anti-symmetric) O(𝐱, 𝐯) one

(𝐱, 𝐯) = E(𝐱, 𝐯) + O(𝐱, 𝐯) (2)

ith E(𝐱, 𝐯) = 1
2 [(𝐱, 𝐯) + (−𝐱, 𝐯)] and O(𝐱, 𝐯) = 1

2 [(𝐱, 𝐯) − (−𝐱, 𝐯)].
otably, for a given penetration 𝛥 of the indenter, the displacement

ield 𝑢(𝐱) is prescribed at points located in the contact domain 𝛺 where
he deformed slab shape must match the rigid profile. Therefore, Eq, (1)
an be inverted to calculate the stress field 𝜎(𝐱) in the contact domain
, being 𝜎(𝐱) = 0 out of the contact. The problem at hand belongs

ndeed to the class of mixed value problems. In fact, out of the contact
rea the unknown is no longer the normal stress distribution but the
isplacement field which can simply be calculated directly from Eq. (1)
or 𝐱 ∉ 𝛺. However, the contact area 𝐴 = |𝛺| is not yet known,
ence an additional equation (the closure condition) needs to be found
o completely solve the problem. In the case of adhesiveless contacts,
ince the local contact pressure can only takes positive values or vanish,
t is enough to enforce the condition that the stress 𝜎(𝐱) = 0 at the
oundary 𝜕𝛺 of the contact domain. In presence of adhesion, instead,
he local pressure can also take negative values, i.e. the stress 𝜎(𝐱) may
hange sign over the contact area. Under such conditions, the closure
quation can be easily found only for the case of elastic contacts, by
equiring that (at fixed penetration) the total energy  = 𝑈 − 𝛥𝛾𝐴
i.e. the sum of the elastic energy 𝑈 stored into the system and the
dhesion energy −𝛥𝛾𝐴, with 𝛥𝛾 being the Duprè work of adhesion)
s stationary at equilibrium (Carbone and Mangialardi, 2008; Maugis,
000; Menga et al., 2016a, 2018c, 2019). However, additional non-
onservative energy contributions exist in viscoelastic materials, which
revent such an approach from being employed. In this case, we need to
rite a local energy balance, which requires that, at fixed penetration
, the work 𝛿𝐿 done by internal viscoelastic stresses equates the work
one by external adhesion forces when the contact area is subjected to
small quasi-static perturbation 𝛿𝐴, i.e.

𝐿 = 𝛥𝛾𝛿𝐴 (3)

ue to the hysteretic behavior of the viscoelastic material, 𝛿𝐿 consists
f two terms: the change of elastic energy stored into the viscoelastic
aterial, and the work done by non-conservative internal stresses.

In order to provide a physical framework to determine these two
ontributions, we firstly consider the simpler case represented in Fig. 1,
here the free boundary of a constrained deformable linear solid, is

oaded with two forces 𝐹1 and 𝐹2. The resulting displacement 𝑢1 and
2 are given by 𝐹𝑖 = 𝐾𝑖𝑗𝑢𝑗 (we use the Einstein notation for the repeated
ndex), where 𝐾𝑖𝑗 is the generic response matrix, which we assume to

E O E 1 (𝐾 + 𝐾𝑇 ) and
e asymmetric. Notably, 𝐾𝑖𝑗 = 𝐾𝑖𝑗 + 𝐾𝑖𝑗 with 𝐾𝑖𝑗 = 2 𝑖𝑗 𝑖𝑗
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Fig. 1. A constrained deformable solid, whose response matrix is non-symmetric,
loaded with two surface forces. Blue arrows refer to displacements (𝑢1 and 𝑢2), red
arrows refer to forces (𝐹1 and 𝐹2).

𝐾O
𝑖𝑗 = 1

2 (𝐾𝑖𝑗 −𝐾𝑇
𝑖𝑗 ) being the symmetric and anti-symmetric parts of 𝐾𝑖𝑗

espectively.
In this case, the work done by 𝐹1 and 𝐹2 can be written as 𝛿𝐿 =

𝑖𝛿𝑢𝑖 = 𝐾E
𝑖𝑗𝑢𝑗𝛿𝑢𝑖 + 𝐾O

𝑖𝑗 𝑢𝑗𝛿𝑢𝑖, with 𝛿𝑢𝑖 being the point displacements
nfinitesimal changes. With this regard, we observe that the symmetry
f 𝐾E

𝑖𝑗 implies that 𝐾E
𝑖𝑗𝑢𝑗𝛿𝑢𝑖 = 𝐾E

𝑖𝑗𝑢𝑖𝛿𝑢𝑗 , and 𝐾E
𝑖𝑗𝑢𝑗𝛿𝑢𝑖 = 𝛿

(

1
2𝐾

E
𝑖𝑗𝑢𝑖𝑢𝑗

)

.
Thus, 𝐾E

𝑖𝑗𝑢𝑗𝛿𝑢𝑖 = 𝛿𝑈 is a conservative term, i.e. the change of the elastic
energy 𝑈 = 1

2𝐾
E
𝑖𝑗𝑢𝑖𝑢𝑗 . Similarly, since 𝐾O

𝑖𝑗 is anti-symmetric, we have
that 𝐾O

𝑖𝑗 𝑢𝑗𝛿𝑢𝑖 = −𝐾O
𝑖𝑗 𝑢𝑖𝛿𝑢𝑗 , and 𝐾O

𝑖𝑗 𝑢𝑗𝛿𝑢𝑖 = 1
2𝐾

O
𝑖𝑗
(

𝑢𝑗𝛿𝑢𝑖 − 𝑢𝑖𝛿𝑢𝑗
)

which
cannot be derived by a potential energy. Therefore, the quantity

𝛿𝐿P = 𝐾O
𝑖𝑗 𝑢𝑗𝛿𝑢𝑖 (4)

is a non-conservative path-dependent contribution to 𝛿𝐿. Moreover,
since 𝐾O

𝑖𝑗 𝑢𝑗𝑢𝑖 = −𝐾O
𝑖𝑗 𝑢𝑖𝑢𝑗 = 0, the potential energy 𝑈 can also be

rewritten as

𝑈 = 1
2

(

𝐾E
𝑖𝑗 +𝐾O

𝑖𝑗

)

𝑢𝑗𝑢𝑖 =
1
2
𝐹𝑖𝑢𝑖 (5)

nd

𝐿 = 𝛿𝑈 + 𝛿𝐿P (6)

he same arguments can be extended to the aforementioned continuum
ase, i.e. the sliding or rolling contact between a rigid rough indenter
nd a linear viscoelastic slab (see Appendix B). Now, without any loss
f generality, let us consider the case of a generic contact area increase
rom 𝐴 to 𝐴+ 𝛿𝐴 (i.e., 𝛿𝐴 is a positive perturbation). Since we assume
nfinitely short range adhesive forces (i.e., JKR limit for large values of
he Tabor parameter (Johnson et al., 1971)), no interactions occur out
f the contact area. Under these conditions, the contact area variation
epresents a mode I crack closure, and the work 𝛿𝐿 only results from
he interfacial stress acting in the small region 𝛿𝐴. Then, within 𝛿𝐴, the
(𝐱) undergoes a quasi-static change 𝛥𝑢(𝐱) from the initial shape (out
f contact) 𝑢−(𝐱) = 𝑢(𝐱,𝐴), to final one (in contact) 𝑢+(𝐱) = 𝑢(𝐱,𝐴+ 𝛿𝐴).
his zipping process can be described by introducing a dimensionless
arameter 𝜂 that slowly increases from zero to one; therefore, within
𝐴, we have 𝑢(𝐱, 𝜂) = 𝜂𝛥𝑢(𝐱) + 𝑢−(𝐱), where 𝛥𝑢(𝐱) = 𝑢+(𝐱) − 𝑢−(𝐱), and
∈ [0, 1]. Linearity entails a similar trend for the stress in 𝛿𝐴, thus
(𝐱, 𝜂) = 𝜂𝜎+(𝐱), where 𝜎+(𝐱) = 𝜎(𝐱,𝐴 + 𝛿𝐴). Observing that 𝛿𝑢(𝐱, 𝜂) =
𝑢(𝐱)𝛿𝜂, the internal work 𝛿𝐿 = ∫ 𝑑2𝑥𝜎(𝐱)𝛿𝑢(𝐱) can be rewritten as

𝐿 = ∫𝛿𝐴
𝑑2𝑥∫

1

0

𝜕𝑢
𝜕𝜂

(𝐱, 𝜂)𝜎(𝐱, 𝜂)𝛿𝜂 = 1
2 ∫𝛿𝐴

𝑑2𝑥𝛥𝑢(𝐱)𝜎+(𝐱) (7)

Since 𝜎−(𝐱) = 𝜎(𝐱,𝐴) = 0 for 𝐱 ∈ 𝛿𝐴, 𝜎+(𝐱) = 𝜎−(𝐱) = 0 for 𝐱 ∉ 𝐴 + 𝛿𝐴,
and 𝛥𝑢(𝐱) = 0 for 𝐱 ∈ 𝐴, the integral in Eq. (7) can be extended to the
entire nominal contact area, thus yielding

𝛿𝐿 = 1 𝑑2𝑥[𝑢+(𝐱) − 𝑢−(𝐱)][𝜎+(𝐱) + 𝜎−(𝐱)] (8)
3

2 ∫
Moreover, recalling that, according to the aforementioned arguments,
the elastic energy is given by 𝑈 = 1

2 ∫ 𝑑2𝑥𝜎 (𝐱) 𝑢 (𝐱), we have

𝑈 = 1
2 ∫ 𝑑2𝑥[𝑢+(𝐱)𝜎+(𝐱) − 𝑢−(𝐱)𝜎−(𝐱)] (9)

hich only depends on the symmetric part E(𝐱, 𝐯) of the Green’s
unction (see also Ref. Carbone et al., 2022).

Using Eqs. (8) and (9) in Eq. (6), the non-conservative term 𝛿𝐿P can
e then calculated as

𝐿P = 1
2 ∫ 𝑑2𝑥

[

𝑢+(𝐱)𝜎−(𝐱) − 𝑢−(𝐱)𝜎+(𝐱)
]

(10)

hich can be shown to strictly depend on the antisymmetric part
O(𝐱, 𝐯) of the Green’s function (see also Ref. Carbone et al., 2022).
q. (10) shows that 𝛿𝐿P is a non-conservative term, which vanishes in
he case of purely elastic material, i.e., when O(𝐱, 𝐯) = 0 (Carbone
t al., 2022; Carbone and Mangialardi, 2008; Menga et al., 2016a).
oreover, it is worth noting that this term does not represent the

mount of energy dissipated within the bulk viscoelastic material.
ndeed, Eq. (10) shows that the sign of 𝛿𝐿P can be either positive or
egative, depending on the specific conditions. The reader is referred
o Appendix B for further insides on conservative and non-conservative
echanical systems, where some special cases yielding 𝛿𝐿P = 0 are
escribed.

Combining Eq. (6) with Eq. (3), the final expression for the energy
alance at the boundary of the contact area (i.e., the closure equation
or the unknown contact area) reads
𝜕𝑈 (𝐯)
𝜕𝐴

|

|

|

|𝛥
+

𝛿𝐿P(𝐯)
𝛿𝐴

|

|

|

|𝛥
= 𝛥𝛾 (11)

hich can be numerically computed based on contact stress and dis-
lacement fields using Eqs. (9), (10). Also, recalling the usual definition
f the energy release rate 𝐺 = (𝜕𝑈∕𝜕𝐴)𝛥 at fixed displacement of the
ndenter, we get

(𝐯) = 𝛥𝛾 −
𝛿𝐿P(𝐯)
𝛿𝐴

|

|

|

|𝛥
(12)

Notably, depending on the sign of the term 𝛿𝐿P, the energy release
rate can either increase or decrease compared to 𝛥𝛾, and can even
vanish or become negative. When this happens adhesion is switched
off, being totally masked by viscoelasticity. Notably, such a mechanism
might (at least) partially explain the recently reported ability to control
adhesion strength by means of mechanical micro-vibrations (Shui et al.,
2020).

Also note that in this treatment we do not take into account the
influence of the highly non linear phenomena occurring very close to
the tip of the contact edges which may modify the effective energy
of adhesion (Yoshizawa and Israelachvili, 1993; Tiwari et al., 2017;
Yoshizawa et al., 1993; Maeda et al., 2002; Chaudhury, 1996; Chernyak
and Leonov, 1986). These effects can be included in the present theory
by replacing 𝛥𝛾 with an apparent energy of adhesion 𝐺0 measured at
very low sliding velocity.

3. The case of a sinusoidal rigid indenter

In this section we discuss the 1D+1D adhesive periodic contact of a
viscoelastic half-plane sliding at constant velocity 𝑣 against a sinusoidal
rigid indenter of wavelength 𝜆, amplitude 𝛬 and wave vector 𝑘 =
2𝜋∕𝜆. All the geometrical parameters needed to define the problem
are shown in Fig. 2. Specifically, we define the contact penetration as
𝛥. The contact domain is defined by the quantities 𝑙1 and 𝑙2, which
represent the distance of the two contact edges (respectively trailing
edge and leading edge) from summit of the sinusoidal indenter. The
semi-width of the contact length is 𝑎 =

(

𝑙1 + 𝑙2
)

∕2 and the eccentricity
is 𝑒 =

(

𝑙2 − 𝑙1
)

∕2. In this 1D+1D case (Menga et al., 2014), the Green’s
function is

 (𝑥, 𝑣) = 𝐽 (0)
2
(

1 − 𝜈2
)

log
|

|2 sin 𝑘𝑥 |
|

𝜋 |

|
2 |

|
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Fig. 2. The schematic of the sliding contact between a viscoelastic solid and a rigid wavy indenter. Geometric parameters are also shown.
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The linear viscoelastic solid is modeled with one relaxation time 𝜏, and
the creep function is

𝐽 (𝑡) =  (𝑡)
[

1
𝐸0

−
(

1
𝐸0

− 1
𝐸∞

)

exp
(

− 𝑡
𝜏

)

]

(14)

here 𝐸∞ and 𝐸0 are, respectively, the high and low frequency vis-
oelastic modulus, and  (𝑡) is the Heaviside unit-step function.

Within the contact area, the interfacial displacement must match
he indenter shape; therefore, 𝑢 (𝑥) = 𝛬 cos (𝑘𝑥) −𝛬+ 𝛥 and the contact
tress distribution can be found, at given 𝛥, by solving the equation
𝑙2

−𝑙1
𝑑𝑥1

(

𝑥 − 𝑥1, 𝑣
)

𝜎(𝑥1) = 𝛬 cos (𝑘𝑥) − 𝛬 + 𝛥 (15)

In order to calculated the unknown contact parameters 𝑙1 and 𝑙2 we
need to enforce the energy balance Eq. (11) at each edge of the contact,
i.e.

𝜕𝑈 (𝑣)
𝜕𝑙1

|

|

|

|𝛥,𝑙2
+

𝛿𝐿P1 (𝑣)
𝛿𝑙1

|

|

|

|

|𝛥,𝑙2

= 𝛥𝛾 (16)

𝜕𝑈 (𝑣)
𝜕𝑙2

|

|

|

|𝛥,𝑙1
+

𝛿𝐿P2 (𝑣)
𝛿𝑙2

|

|

|

|

|𝛥,𝑙1

= 𝛥𝛾 (17)

ith 𝛿𝑙1 and 𝛿𝑙2 being, respectively, the infinitesimal independent
ariations of the contact area at the trailing and leading edges. The
isplacement field and the contact stresses are numerically calculated
y relying on the numerical procedure addressed in Carbone and
angialardi (2008).

Once the contact problem is solved [notably, the contact pressure is
(𝑥) = −𝜎 (𝑥)], we can calculate the remote average pressure

∞ = 1
𝜆 ∫

𝑙2

−𝑙1
𝑝(𝑥)𝑑𝑥, (18)

as well as the friction coefficient

𝜇 = − 1
𝜆𝑝∞ ∫

𝑙2

−𝑙1
𝑝(𝑥)𝑢′(𝑥)𝑑𝑥, (19)

and the strain energy release rates at the opening and closing cracks
(trailing and leading edges) respectively

𝐺1 (𝑣) = 𝛥𝛾 −
𝛿𝐿P1 (𝑣)

𝛿𝑙1

|

|

|

|

|𝛥,𝑙2

(20)

𝐺2 (𝑣) = 𝛥𝛾 −
𝛿𝐿P2 (𝑣)

𝛿𝑙

|

|

|

|

(21)
4

2
|𝛥,𝑙1

c

4. Results

Results are shown in terms of the following dimensionless pa-
rameters: �̃� = 𝑘𝑥; �̃� = 𝑘𝑎; 𝑒 = 𝑘𝑒; �̃� = 2

(

1 − 𝜈2
)

𝑝∕
(

𝐸0𝑘𝛬
)

;
�̃� =

(

1 − 𝜈2
)

𝑘𝛥𝛾∕(𝜋𝐸0); 𝜁 = 𝑘𝑣𝜏; �̃� = 𝑢∕𝛬; �̃� = 𝑘𝛬; 𝛥 = 𝛥∕𝛬;
𝛽 = 𝐸∞∕𝐸0. Also we define the dimensionless elastic energy as �̃� =
2(1 − 𝜈2)𝑈∕(𝐸0𝛬2) and the dimensionless non-conservative work of
internal stresses as 𝛿�̃�P = 2(1 − 𝜈2)𝛿𝐿P∕(𝐸0𝛬2). Eqs. (16), (17), once
written in dimensionless form, show that adhesion is governed by the
parameter 𝛤 = �̃�∕�̃�2. More specifically, the contact solution is uniquely
determined by the parameters 𝛤 , 𝜁 , 𝛥 or, analogously, by 𝛤 , 𝜁 , �̃�∞.
Moreover, regarding the assumption of JKR-like infinitely short-range
adhesive interactions, we observe that the Tabor parameter in the stiffer
case of 𝐸 = 𝐸∞ can be rewritten according to our dimensionless
quantities as 𝜇T = [(𝜋𝛤∕𝛽)2�̃�3∕(𝑘𝑍0)3]1∕3 and still gives 𝜇T ≫ 1 even for
low values of the reduced adhesion energy 𝛤 (≈ 0.001) and high values
f 𝛽 (≫ 10) provided that the periodic profile’s wavelength 𝜆 ≳ 10 μm,
hich is a reasonable value for our case of interest (also, we set �̃� ≈ 1

o enforce linear elasticity and 𝑍0 ≈ 1 nm).
Fig. 3 shows the dimensionless semi-width of the contact �̃� [see

igs. 3(a) and (b)] and the dimensionless eccentricity 𝑒 [see Figs. 3(c)
nd (d)] as a function of the dimensionless sliding velocity 𝜁 = 𝑘𝑣𝜏,
ither at fixed penetration 𝛥 or load �̃�∞. The adhesiveless case (Menga
t al., 2014, 2016b, 2018a) is also reported for reference (dashed lines).
n agreement with previous studies (Carbone and Mangialardi, 2004),
t very low or very high sliding velocity the system recovers the elastic
imit, with the high velocity solution exhibiting a smaller contact area
ecause of the larger stiffness of the material. The most interesting
esult in Figs. 3(a) and (b) is that, regardless of the controlled param-
ter (𝛥 or �̃�∞), the contact area presents a maximum located in the
ntermediate range of sliding velocity 𝜁 . A similar behavior has never
een predicted for adhesiveless viscoelastic contacts, whereas it has
een observed in several experimental tests with viscoelastic adhesive
ontacts as, for instance, in the case of rolling contacts between rigid
ylinders and rubbery-like substrates under tractive loads (Barquins
t al., 1978; Charmet and Barquins, 1996). The reported enhanced
dhesion is ascribable to local viscoelastic losses occurring close to
he trailing edge (crack opening) of the contact, where the excitation
requency can be qualitatively estimated as 𝑣∕𝜌, with 𝜌 being the radius
f curvature at the crack tip. The analysis of the crack opening profile
asily shows that 𝜌 ≪ 𝜆 for the cases of interest (i.e., 𝛤 ≪ 1);
herefore, at sliding speed 𝑣 ≈ 𝜌∕𝜏 ≪ 𝜆∕𝜏, the bulk of the material
ehaves elastically with the low frequency elastic modulus 𝐸0 (notice,
he bulk excitation frequency is ≈ 𝑣∕𝜆 ≪ 1∕𝜏) and most of the
nergy dissipation occurs close to the trailing edge. This regime, which
as been experimentally observed, is usually refereed to as the small-
cale viscoelasticity regime, and also is related to friction dissipations
ommonly known as adhesive friction (see Section 4.1).
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Fig. 3. The dimensionless semi-width of the contact �̃�, and the dimensionless eccentricity 𝑒 as functions of the dimensionless sliding velocity 𝜁 , for different values of the
dimensionless remote pressure �̃�∞, and the dimensionless penetration 𝛥. Results are shown for 𝛽 = 10 and 𝛤 = 0.008.
Fig. 4. The comparison between the deformed contact configurations predicted for adhesive and adhesiveless conditions at different sliding velocity values. (a) small-scale viscoelastic
regime, 𝜁 = 0.01. (b) coupled large and small scale viscoelastic regime, 𝜁 = 0.8. (c) bulk viscoelastic regime, 𝜁 = 2. Results are shown for 𝑝∞ = 0.15, 𝛤 = 0.008, 𝛽 = 10.
In Figs. 3(c) and (d) we observe that at dimensionless speed at
which the contact size �̃� takes its maximum value, the eccentricity 𝑒
is negative so that the whole contact is shifted backward. Since in the
adhesiveless case the opposite behavior occurs (Menga et al., 2014,
2016b, 2018a), we conclude that in the range of velocity governed by
the small-scale viscoelasticity the contact area is strongly enlarged at
the trailing edge. Indeed, this is confirmed by the deformed contact
configuration reported in Fig. 4(a) which, in agreement with exper-
imental observations (Barquins et al., 1978; Charmet and Barquins,
1996), suggests that in those contact conditions 𝑣 ≈ 𝜌∕𝜏 ≪ 𝜆∕𝜏.
However, as the sliding velocity increases and 𝜌∕𝜏 < 𝑣 < 𝜆∕𝜏, a large
amount of energy is dissipated in the bulk of the material and large-
scale (bulk) viscoelastic losses take place in addition to local hysteresis
at the trailing and closing edges, as qualitatively shown in Fig. 4(b)).
In this case, the contact area and the eccentricity gradually invert their
trend (see Figs. 3). At higher velocity, where 𝑣 ≈ 𝜆∕𝜏 ≫ 𝜌∕𝜏 [see
Fig. 4(c)], the contact edges behave elastically (with high frequency
5

elastic modulus 𝐸∞), and the bulk viscoelasticity governs the system
behavior.

Fig. 5 shows the effect of the dimensionless parameter 𝛤 = �̃�∕�̃�2

on the semi-width of the contact �̃� and eccentricity 𝑒. As expected,
increasing 𝛤 enhances the effect of the small-scale viscoelasticity.

Fig. 6 reports the equilibrium values of the reduced strain energy
release rates 𝐺1∕𝛥𝛾 (at the opening crack) and 𝐺2∕𝛥𝛾 (at the closing
crack) as a function of the dimensionless sliding velocity 𝜁 , for dif-
ferent values of the dimensionless remote pressure. The effect of the
dimensionless parameter 𝛽 = 𝐸∞∕𝐸0 on the curves is also shown in
Fig. 7. As expected, at very low or very high velocities, the ratios 𝐺1∕𝛥𝛾
and 𝐺2∕𝛥𝛾 approach the unit value as the material behaves elastically.
In such conditions, the non-conservative contribution to the work of
internal stresses vanishes. At low velocity, increasing the value of 𝜁
leads to an increase of 𝐺1∕𝛥𝛾 at the opening edge, and to a decrease
of 𝐺2∕𝛥𝛾 at the closing edge. The difference between 𝐺1 and 𝐺2 is
usually referred to as adhesion hysteresis, and represents a major effect
of small-scale viscoelasticity. Interestingly, a maximum and a minimum
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Fig. 5. The effect of the reduced energy of adhesion 𝛤 = �̃�∕�̃�2 on the dimensionless semi-width �̃� (a) and the dimensionless eccentricity 𝑒 (b) shown as functions of the dimensionless
sliding velocity 𝜁 .
Fig. 6. The reduced energy release rates 𝐺∕𝛥𝛾 as functions of the dimensionless sliding velocity 𝜁 , for different values of the dimensionless remote pressure �̃�∞. (a) 𝐺1∕𝛥𝛾 refers
to the trailing edge of the contact (opening crack), (b) 𝐺2∕𝛥𝛾 refers to the leading edge (closing crack).
Fig. 7. The effect of the parameter 𝛽 = 𝐸∞∕𝐸0 on the trend of 𝐺∕𝛥𝛾 vs. 𝜁 . Data are shown in log–log form. (a) 𝐺1∕𝛥𝛾 refers to the trailing edge of the contact (opening crack),
(b) 𝐺2∕𝛥𝛾 refers to the leading edge (closing crack).
value of 𝐺1 and 𝐺2 exist, which turn out to be monotonic functions of 𝛽,
with 𝐺1max∕𝛥𝛾 < 𝛽 and 𝐺2min∕𝛥𝛾 > 𝛽−1 (see also Fig. 7). Note that for
negative value of the remote pressure �̃�∞ the trend of 𝐺1∕𝛥𝛾 and 𝐺2∕𝛥𝛾
is described by bell-shaped curves, with 𝐺1 being always greater than
𝛥𝛾 and 𝐺2 always smaller. However, when the remote pressure �̃�∞ is
positive, the shape of the reduced energy release rates changes. In this
case 𝐺1 may reach a minimum value less than 𝛥𝛾 and 𝐺2 a maximum
value greater than 𝛥𝛾. This happens because the viscoelastic stiffening
of the bulk material tends to move the contact forward: a larger amount
of elastic energy is stored at the closing edge compared to the opening
edge, thus making 𝐺2 greater than 𝐺1 at sufficiently large velocity.

According to existing theories (Persson, 2021a, 2017), in the pres-
ence of a finite contact length, energy dissipation occurs also in the
bulk of the material and is accompanied by material stiffening. On the
contrary, in infinite systems, energy is dissipated only close to the crack
tip, whereas very far from the crack tip the material is fully relaxed with
elastic modulus equal to 𝐸0. In such conditions, we may say that the
system response is always governed by the small-scale viscoelasticity
regime. In this case, at sufficiently high crack propagation velocity,
6

close to the crack tip the material behaves elastically with stiffness 𝐸∞,
whereas far from the crack into the bulk the material has stiffness 𝐸0.
Thus, one obtains 𝐺1∕𝛥𝛾 = 𝛽 = 𝐸∞∕𝐸0 and 𝐺2∕𝛥𝛾 = 𝛽−1 = 𝐸0∕𝐸∞
(Persson and Brener, 2005; Carbone and Persson, 2005a; Greenwood,
2004; Persson, 2021b).

Notably, in Fig. 8 we show that, by increasing the size of our system
(i.e. the wavelength 𝜆), the response asymptotically approaches the one
predicted for the infinite case, as 𝐺1max∕𝛥𝛾 and 𝐺2min∕𝛥𝛾 approach the
values of 𝛽 and 𝛽−1, respectively.

4.1. Friction

In this section, we investigate the frictional behavior of the system.
Friction is originated by the cyclic deformations caused by the relative
motion between the indenter and the solid and, in turn, by energy
dissipation within the viscoelastic material. As a consequence, the con-
tact pressure distribution 𝑝(𝑥) is asymmetric, and the resulting contact
force acting on the rigid asperity leads to a tangential force opposing

the indenter sliding motion, which is usually referred to as viscoelastic
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Fig. 8. The effect of the wavelength of the sinusoidal indenter 𝜆 on the trend of
𝐺∕𝛥𝛾 vs. the dimensional quantity 𝑣𝜏 = 𝜁∕𝑘. Data are shown in log–log form. The
wavelength increases from 10 μm (red curve) to 1.2 mm (orange curve), corresponding
to 𝛤 increasing from 0.0001 (red curve) to 0.012 (orange curve).

friction. According to Refs. Carbone and Putignano (2013), Menga et al.
(2021) and Persson (2001), the viscoelastic friction coefficient can be
calculated through Eq. (19). Note that dimensionless arguments yield
𝜇 ∝ �̃�, so that we can define the reduced friction coefficient as

�̃� =
𝜇
�̃�

(22)

The reduced friction coefficient �̃� takes into account the energy
dissipation occurring in the whole viscoelastic solid, i.e. both large- and
small-scale viscoelastic hysteresis. In order to provide a rough estimate
of the contribution to the overall friction ascribable to adhesion hys-
teresis (i.e., to local viscoelastic effects close to the contact edges), we
define the reduced adhesive friction coefficient as

�̃�𝑎 =
1
�̃�

𝐺1 − 𝐺2
𝜆𝑝∞

(23)

Similarly, we also refer to �̃�0 as to the reduced friction coefficient
calculated in adhesiveless viscoelastic contacts, which originates from
bulk viscoelastic hysteresis. Fig. 9 reports, at given remote pressure
�̃�∞, the reduced friction coefficients �̃�, �̃�a and �̃�0 as functions of the
dimensionless sliding velocity 𝜁 , for different values of the reduced
energy of adhesion 𝛤 . At low velocity (i.e., for 𝜁 < 10−2), the system
is in the small-scale viscoelasticity regime; indeed, friction is governed
by the adhesion hysteresis (i.e., �̃� ≃ �̃�a), and increasing 𝛤 leads to sig-
nificantly higher values of �̃�, as the term 𝐺1 −𝐺2 in Eq. (23) increases.
At intermediate velocities (i.e., for 10−2 < 𝜁 < 1), also bulk dissipation
occurs; however, since �̃� ≫ �̃�a + �̃�0, the contributions to friction of the
small-scale and of the bulk (i.e. large-scale) viscoelasticity cannot be
linearly separated. This is a key result: adhesion increases the contact
area, hence, the volume where viscoelastic losses take place, and, in
turn, increases the bulk viscoelastic dissipation [see also Fig. 3(a)]. At
higher velocity (i.e., for 1 < 𝜁 < 10), this effect is even clearer, as
𝜇𝑎 < 0 while �̃� > 𝜇0 > 0. Indeed, following Eq. (23), 𝜇𝑎 is a qualitative
estimation of the sole contribution to friction ascribable to the contact
edges, which can also become negative when more energy is recovered
during sliding in closing the leading edge compared to that required
to open the trailing one (i.e., 𝐺2 > 𝐺1). At very high velocity, the
contact edges behave almost elastically (glassy region), thus the small-
scale viscoelastic energy dissipation vanishes, and the great majority of
energy dissipation occurs in the bulk of the material.

Figs. 11(a, b) show the reduced friction coefficient �̃� versus the
sliding dimensionless speed 𝜁 for different values of the dimensionless
remote pressure �̃�∞ and the dimensionless penetration 𝛥, respectively.
The specific dependence of the friction coefficient on 𝛥 and �̃�∞ is af-
fected by different mechanisms, related to both the adhesion hysteresis
and the bulk viscoelasticity. At relatively high velocity (i.e., for 𝜁 > 1),
7

Fig. 9. The reduced viscoelastic friction coefficient �̃� = 𝜇∕�̃� (solid lines) as a function
of the dimensionless sliding velocity 𝜁 , for different values of the reduced energy
of adhesion 𝛤 under load controlled conditions. In the same figure, we also show
the reduced adhesive friction coefficient �̃�a (dashed line), and the reduced friction
coefficient �̃�0 corresponding to adhesiveless conditions (solid black line).

Fig. 10. The measured friction coefficient 𝜇 as a function of the dimensionless
sliding velocity taken from Grosch (1963) for styrene–butadiene rubber sliding against
three surfaces: smooth clean (dashed); rough clean (solid); rough dusted (dot-dashed).
See Grosch (1963) for further details.

friction is mostly governed by bulk dissipation, and the curve 𝜇 vs.
𝜁 roughly depends on the size of the contact area 𝑎, as discussed in
Refs. Menga et al. (2016b, 2018a, 2021). The first effect is that, since
the excitation frequency in the bulk material can be estimated as 𝜔 ≈
2𝜋𝑣∕𝑎 = 2𝜋𝜁∕ (�̃�𝜏), and the viscoelastic dissipation takes its maximum
at 𝜔 ≈ 1∕𝜏, the dimensionless sliding velocity 𝜁0 associated to the 𝜇
peak depends on the value of 𝑎 as 𝜁0 ≈ �̃�∕2𝜋. Indeed, Figs. 11(a, b)
show that increasing 𝛥 or �̃�∞ (i.e., increasing 𝑎) shifts the friction peak
location 𝜁0 at higher values. Secondly, considering that dimensional
arguments (Menga et al., 2016b) show that 𝜇 ≈ (𝛿∕2𝑎) Im[𝐸(𝜔)]∕ |𝐸(𝜔)|,
with 𝛿 = 𝛬 (1 − cos 𝑘𝑎) ≈ 𝛬(𝑘𝑎)2∕2 being the local indenter penetration,
Figs. 11(a, b) show, indeed, that increasing 𝛥 or �̃�∞ (i.e., increasing 𝑎)
leads to higher peak values for 𝜇. On the contrary, at low velocities
(i.e., for 𝜁 < 10−2), most of the contribution to friction arises from
adhesion hysteresis, and 𝜇 ≈ 𝜇a. In agreement with Refs. Persson (2000)
and Carbone and Mangialardi (2004), the reduction of 𝜇 reported under
these condition as 𝛥 and �̃�∞ are increased, can be explained recalling
that, in Eq. (23), the term 𝐺1 −𝐺2 only depends on 𝜁 (see also Fig. 6).
Moreover, it is worth noticing, that under load controlled conditions
[Fig. 9 and Fig. 11(a)], the 𝜇 vs. 𝜁 curves present a hump localized at
the value of 𝜁 corresponding to the maximum of 𝜇a, followed by a peak
at higher velocity, where maximum bulk dissipation occurs.

In Fig. 10, we report the experimental measurements provided by
Grosch in Grosch (1963) for sliding friction of rubber samples. Re-
gardless of the numerical values, which depend on the specific rubber
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Fig. 11. The reduced viscoelastic friction coefficient �̃� = 𝜇∕�̃� (solid lines) as function of the dimensionless sliding velocity 𝜁 , under load controlled conditions (a) and displacement
controlled conditions (b). In the same figure, we also show the reduced friction coefficient �̃�0 corresponding to adhesiveless conditions (dashed line).
Fig. 12. (a): The dimensionless work needed to cause detachment �̃� as a function of the dimensionless sliding velocity 𝜁 , for different values of the reduced energy of adhesion
𝛤 . (b): iso-𝜁 (dashed lines) and iso-𝛤 (solid lines) curves in the |𝛥out | vs |�̃�out | plane, being �̃�out the dimensionless pull-off remote pressure and 𝛥out the dimensionless penetration
at which the pull-off occurs. Results are shown for 𝛽 = 10.
property and surface roughness parameters, Grosch’s trends are in very
good agreement with our numerical predictions. Notably, using a clean
smooth surface (dashed line) as sliding counterpart, only adhesive
friction occurs. Dealing with a clean rough surface (continuum line),
both adhesive hysteresis and bulk viscoelasticity play a key role on
𝜇; whereas, adhesion can be completely masked by introducing a fine
powder at the interface (dot-dashed line).

Under displacement controlled conditions (i.e., fixed 𝛥), the behav-
ior is slightly different as the contact size is less affected by the effective
bulk stiffness and, in turn, by the sliding velocity [see also Fig. 3(a)].
In this case, at high velocity (i.e., for 𝜁 > 1), the effect of adhesion is
very poor, and �̃� ≈ �̃�0. Nonetheless, at low velocity, adhesion plays a
key role as 𝜇 ≈ 𝜇a.

4.2. Adhesive properties of the contact

In this section the adhesive properties of the contact are investigated
in terms of toughness 𝑇 (i.e. amount of work required to separate the
contacting bodies) and adhesive strength (i.e. pull-off remote pressure
𝑝out) of the contact interface. In dimensionless terms the toughness
�̃� = 2

(

1 − 𝜈2
)

𝑇 ∕
(

𝛬2𝐸0
)

is defined as

�̃� = 2𝜋 ∫

𝛥out

𝛥0
�̃�∞(𝛥)𝑑𝛥 (24)

where 𝛥out is the dimensionless penetration at which pull-off occurs,
𝛥0 is the dimensionless penetration corresponding to �̃�∞ = 0. Notably,
both 𝛥out and 𝛥0 depend on the dimensionless sliding velocity 𝜁 . In
Fig. 12(a) the quantity �̃� is plotted against 𝜁 for different values of
8

the dimensionless adhesive parameter 𝛤 , whereas in Fig. 12(b) the
iso-𝜁 and iso-𝛤 curves are shown in the |�̃�out | vs. |𝛥out | plane. In
agreement with the experimental observations reported in Ref. Charmet
and Barquins (1996), we note that in the range of velocity where
small-scale viscoelasticity effects take the largest values (i.e., 10−2 <
𝜁 < 10−1), both the adhesive toughness and the adhesive strength take
their maximum values. Interestingly, the trend of |�̃�out | vs. 𝜁 curve is
non-monotonic; indeed, at very high velocity, due to the glassy stiff
behavior of the material, the contact interface is able to withstand
high tensile loads (i.e. large pull-off pressures), with low adhesive
toughness �̃� . Interestingly, a similar limiting behavior is reported in the
case of thin elastic adhesives, where the material confinement induced
by the rigid substrate leads very high contact stiffness (Carbone and
Mangialardi, 2008; Menga et al., 2016a).

In Fig. 13 the equilibrium diagram �̃�∞ vs. 𝛥 is shown, for different
values of 𝜁 . We observe that �̃�∞ non-monotonically depends on 𝜁 .
Indeed, at low velocities (i.e., for 𝜁 < 0.1 = 0.001, 𝜁 = 0.01, 𝜁 =
0.1) the snap into full-contact pressure decreases as 𝜁 is increased, as
a consequence of the viscoelasticity-induced enhanced adhesion. The
scenario is reversed at high velocities, as larger values of 𝜁 entail a
strong viscoelastic material stiffening.

5. Conclusion

In this study, we present a novel theory of adhesive viscoelastic
contact mechanics in the presence of relative sliding or rolling mo-
tion between the viscoelastic solid and rigid rough indenter. While
in adhesiveless conditions, the system response only depends on the
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Fig. 13. The dimensionless remote pressure �̃�∞ as a function of the dimensionless
penetration 𝛥 at equilibrium, for different values of the dimensionless sliding velocity
𝜁 .

bulk (large-scale) viscoelasticity with excitation frequency related to
the contact size, we found that in the adhesive case the contact be-
havior is also affected by the local viscoelastic response close to the
contact edges (i.e., small-scale viscoelasticity), where the excitation
frequency depends on the adhesive (opening and closing) crack tip
radii. Consequently, the overall adhesive response can be governed
by either the small-, the large-scale viscoelasticity, or a combination
of the two, depending on the specific value of the sliding velocity.
Indeed, in agreement with the experiments (Barquins et al., 1978;
Charmet and Barquins, 1996), we show that at relatively low sliding
velocity the bulk of the material behaves as a soft elastic body, and the
interaction between interfacial adhesion and small-scale viscoelasticity
leads to an increase of the contact area, mostly localized at the trailing
edge of the contact, and to a strong enhancement of the pull-off load.
Small-scale viscoelasticity induces different adhesive response of the
trailing and leading edge, whose difference is mostly responsible of
the overall frictional response of the contact. At intermediate velocities,
bulk viscoelasticity and local viscoelasticity coexist, leading to a strong
increase of friction compared to the corresponding adhesiveless contact
case. This peculiar result is in perfect agreement with the observations
made by Grosch on rubber adhesive friction (Grosch, 1963).

The present theory also allows to quantify the energy release rates
𝐺1 and 𝐺2 (at the trailing and leading edge, respectively) as functions
of the sliding velocity. A detailed analysis of these trends shows that,
because of the finiteness of the contact area, 𝐺1 and 𝐺2 follow a non-
monotonic trend, which may also differ from the simple bell-shaped
curve depending on load conditions and on the relative interplay
between small-scale and bulk viscoelasticity. Interestingly, conditions
exist able to completely mask adhesion at the opening edge.
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Appendix A. The green function of periodic and non-periodic con-
tacts.

First let us recall that under the condition of translational invariance
(i.e. homogeneity) and linearity, the relation between the interfacial
normal stresses 𝜎 (𝐱, 𝑡) and the surface normal displacements 𝑢 (𝐱, 𝑡) can
be written as a convolution product, i.e.

𝑢 (𝐱, 𝑡) = ∫ 𝑑2𝑥1𝑑𝑡1𝐺
(

𝐱 − 𝐱1, 𝑡 − 𝑡1
)

𝜎
(

𝐱1, 𝑡1
)

(A.1)

where 𝐱 is the in-plane position vector. Taking the time and space
Fourier transform of Eq. (A.1) one obtains

𝑢 (𝐪, 𝜔) = 𝐺 (𝐪, 𝜔) 𝜎 (𝐪, 𝜔) (A.2)

where the wave vector is 𝐪 and 𝜔 is the angular frequency, and 𝐺 (𝐪, 𝜔)
is the response function. The specific form of the response function
𝐺 (𝐪, 𝜔) depends on the system geometry, on the material properties,
and on how the system is constrained. Dimensional arguments (see
Ref. Carbone et al., 2009a) show that 𝐺 (𝐪,𝜔) must have the following
general form

𝐺 (𝐪,𝜔) = −
2
(

1 − 𝜈2
)

𝐸 (𝜔)
1
|𝐪|

𝑆 (|𝐪| , 𝜔) (A.3)

where the term 𝑆 (𝐪, 𝜔) is a corrective factor that in the case of homo-
geneous half space is equal to 1. The corrective factor 𝑆 (𝐪, 𝜔) has been
found for different geometries and different boundary conditions as
well as for and also for layered materials (Ref. Carbone and Putignano,
2013; Carbone et al., 2009a; Carbone and Mangialardi, 2008; Menga
et al., 2016b). In the case of a thick slab of thickness 𝑑 sandwiched
between a flat rigid plate (upper part) and a rough substrate (bottom
part), as shown in Fig. 14(a) the quantity 𝑆 (|𝐪| , 𝜔) is 𝜔-independent
and takes the form

𝑆 (|𝐪| , 𝜔) = (3 − 4𝜈) sinh (2 |𝐪| 𝑑) − 2 |𝐪| 𝑑 (A.4)

(3 − 4𝜈) cosh (2 |𝐪| 𝑑) + 2 (|𝐪| 𝑑)2 − 4𝜈 (3 − 2𝜈) + 5
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Fig. 14. A deformable layer of thickness 𝑑 in contact with a rough substrate. The layer
is assumed to be glued to the upper plate (a), or subjected to a uniform pressure 𝑝 (b).

f we instead consider the situation depicted in Fig. 14(b), where the
hick slab is subjected to a uniform applied pressure the quantity
(|𝐪| , 𝜔) is 𝜔-independent and takes the form

(|𝐪| , 𝜔) =
sinh (2 |𝐪| 𝑑) + 2 |𝐪| 𝑑

cosh (2 |𝐪| 𝑑) − 2 (|𝐪| 𝑑)2 − 1
(A.5)

Now let us consider steady sliding contacts. In this case, using the
replacement 𝐱 → 𝐱 + 𝐯𝑡, i.e. changing the reference frame so that
the observer moves with velocity 𝐯, the explicit time dependence will
disappears and Eq. (A.1) can be rephrased as

𝑢 (𝐱) = ∫ 𝑑2𝑥′(𝐱 − 𝐱′, 𝐯)𝜎
(

𝐱′
)

(A.6)

where the new Green function (𝐱, 𝐯) parametrically depends on the
velocity 𝐯. Also observe that in steady sliding any physical quantities
𝑓 depends on space and time through the relation 𝑓 (𝐱, 𝑡) = 𝑓 (𝐱 − 𝐯𝑡).

ence, taking the Fourier transform yields

(𝐪, 𝜔) = ∫ 𝑑𝑡𝑑2𝑥 𝑓 (𝐱 − 𝐯𝑡) 𝑒−𝑖(𝐪⋅𝐱−𝜔𝑡) = 2𝜋𝛿 (𝜔 − 𝐪 ⋅ 𝐯) 𝑓 (𝐪) (A.7)

hen, using Eq. (A.2), and integrating over the frequency real axis gives

(𝐪) = 𝐺 (𝐪,𝐪 ⋅ 𝐯) 𝜎 (𝐪) (A.8)

aking the inverse Fourier transform, Eq. (A.8) shows that

(𝐱, 𝐯) = 1
(2𝜋)2 ∫ 𝑑2𝑞𝐺 (𝐪,𝐪 ⋅ 𝐯) 𝑒𝑖𝐪⋅𝐱 (A.9)

We will show now how it is possible, moving from (𝐪, 𝐯) = 𝐺 (𝐪,𝐪 ⋅ 𝐯)
to calculate the Green function for the case of periodic steady sliding
contacts, where the relation between the stress and displacement fields
at the interface can be written as

𝑢 (𝐱, 𝑡) = 𝑑2𝑥′𝐷
(

𝐱 − 𝐱′, 𝐯
)

𝜎
(

𝐱′, 𝑡′
)

(A.10)
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∫𝐷
where 𝐷 (𝐱, 𝐯) is the periodic Green function with periodic square cell
𝐷 of lateral size 𝐿. Of course 𝐷 (𝐱, 𝐯) is the interfacial displacement
ield resulting from a stress distribution of concentrated unit loads
istributed on a regular square lattice of elementary cell 𝐷. This

distribution of forces can be represented by the surface stress field

𝛿𝐷 (𝐱) =
+∞
∑

𝑘,ℎ=−∞
𝛿
(

𝐱 − 2𝜋
𝑞0

𝐤
)

(A.11)

where 𝛿 (𝐱) is the two-dimensional Dirac delta function and 𝐤 = (𝑘, ℎ) is
the vectorial wave number. The fundamental frequency is 𝑞0 = 2𝜋∕𝐿.
Therefore we get

𝐷 (𝐱, 𝐯) = ∫ 𝑑2𝑥′
(

𝐱 − 𝐱′, 𝐯
)

𝛿𝐷
(

𝐱′
)

=
+∞
∑

𝑘,ℎ=−∞

(

𝐱 − 2𝜋
𝑞0

𝐤, 𝐯
)

(A.12)

aking the Fourier transform of Eq. (A.12) gives

𝐷 (𝐪, 𝐯) =
+∞
∑

𝑘,ℎ=−∞
∫ 𝑑2𝑥𝑒−𝑖𝐪⋅𝐱

(

𝐱 − 2𝜋
𝑞0

𝐤, 𝐯
)

=
+∞
∑

𝑟,𝑠=−∞
 (𝐪, 𝐯) 𝛿

(

𝐪
𝑞0

− 𝐫
)

(A.13)

ith 𝐫 = (𝑟, 𝑠). Moving back to the space domain we have

𝐷 (𝐱, 𝐯) = 1
(2𝜋)2 ∫ 𝑑2𝑞𝐷 (𝐪, 𝐯) 𝑒𝑖𝐪⋅𝐱 =

( 𝑞0
2𝜋

)2 +∞
∑

𝑟,𝑠=−∞

(

𝑞0𝐫, 𝐯
)

𝑒𝑖𝑞0𝐫⋅𝐱

(A.14)

The procedure just presented so far can easily exploited also for 1D+1D
ontact problems with spatial periodicity 𝐿 and fundamental spatial
requency 𝑞0 = 2𝜋∕𝐿. In this case the displacement and stress fields

takes the form 𝑢 (𝐱) = 𝑢 (𝑥) and 𝜎 (𝐱) = 𝜎 (𝑥). The corresponding 2D
ourier transform is

(𝐪) = ∫ 𝑑𝑥2𝑢 (𝑥) 𝑒−𝑖𝐪⋅𝐱 = 2𝜋𝛿
(

𝑞𝑦
)

𝑢
(

𝑞𝑥
)

(A.15)

nd

(𝐪) = ∫ 𝑑𝑥2𝜎 (𝑥) 𝑒−𝑖𝐪⋅𝐱 = 2𝜋𝛿
(

𝑞𝑦
)

𝜎
(

𝑞𝑥
)

(A.16)

herefore, after integrating over 𝑞𝑦, Eq. (A.8) gives
(

𝑞𝑥
)

= 1𝐷
(

𝑞𝑥, 𝑣
)

𝜎
(

𝑞𝑥
)

(A.17)

where 1𝐷
(

𝑞𝑥, 𝑣
)

= 𝐺
(

𝑞𝑥, 𝑞𝑦 = 0, 𝑞𝑥𝑣
)

, where 𝑣 = 𝑣𝑥. Then, following
the same approach as in Appendix A leads to

1𝐷𝐿 (𝑥, 𝑣) =
+∞
∑

𝑘=−∞

𝑞0
2𝜋

1𝐷
(

𝑘𝑞0, 𝑣
)

𝑒𝑖𝑘𝑞0𝑥 (A.18)

Appendix B. Non-symmetry of the Green function and the geomet-
ric interpretation of the non conservative work term 𝑳𝐏

In this Section we provide some additional considerations which
mphasizes how the conservative nature of linear systems is related
o the symmetry properties of the response matrix 𝐾𝑖𝑗 . As a simple

example we consider the one represented in Fig. 15 and let us consider
the application of the two forces at the points 1 and 2. Following
the path I, firstly the force applied at the point 1 is slowly increased
(i.e., through a quasi-static transformation) from zero to a final value
𝐹1, whereas the force at the point 2 is held equal to zero. Because
of linearity, the work done by the force from the configuration (a) to
(b) is 𝐿ab = 1

2 𝑢11𝐹1, being 𝑢11 the displacement of the point 1 in the
direction of 𝐹1 in the state (b). Then, moving from (b) to (d), the force
applied at the point 2 is slowly increased from zero to a final value
𝐹2, whereas the force 𝐹1 is held constant. At the state (d) the value of
the displacements of the points 1 and 2, in the direction of 𝐹1 and 𝐹2,
are respectively 𝑢1 and 𝑢2. Within the latter process, the work done by

𝐹2 can be calculated by relying on linearity, whereas the work done
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Fig. 15. Application of two forces at the free boundary of a constrained linear solid with reverse order. Red arrows and blue arrows refer, respectively, to forces and displacements.
The work done by the forces is path-independent only when the system response matrix is symmetrical.
a

𝛿

w

by the constant force 𝐹1 is simply obtained by multiplying 𝐹1 by the
elative displacement of point 1 during the process, so that the overall
ork from (b) to (d) is 𝐿bd = 1

2 (𝑢2 − 𝑢21)𝐹2 + (𝑢1 − 𝑢11)𝐹1, being 𝑢21
the displacement of the point 2 in the configuration (b). Regarding the
path II, the forces are applied with reverse order. At the intermediate
state (c), in which only 𝐹2 is applied, the displacement of the point 1
is 𝑢12, whereas the displacement of the point 2 is 𝑢22. Observing that
linearity entails 𝑢1 = 𝑢11 + 𝑢12 and 𝑢2 = 𝑢21 + 𝑢22 we can compare the
overall work within the two paths:

𝐿I = 𝐿ab + 𝐿bd =
1
2
𝑢11𝐹1 +

1
2
𝑢22𝐹2 + 𝑢12𝐹1 (B.1)

𝐿II = 𝐿ac + 𝐿cd =
1
2
𝑢22𝐹2 +

1
2
𝑢11𝐹1 + 𝑢21𝐹2

he system is conservative only if 𝐿I = 𝐿II, i.e. 𝑢12𝐹1 = 𝑢21𝐹2. This
nly occurs if the system’s response matrix is symmetrical and can be
asily shown expressing 𝐹1 and 𝐹2 in terms of the displacements in
onfigurations (b) and (c) respectively and in terms of 𝐾𝑖𝑗 :

12𝐹1 = 𝐾11𝑢12𝑢11 +𝐾12𝑢12𝑢21 (B.2)

21𝐹2 = 𝐾21𝑢21𝑢12 +𝐾22𝑢21𝑢22

Moreover, observing the configuration (c), we have 𝐹1 = 𝐾11𝑢12 +
𝐾12𝑢22 = 0 and similarly in configuration (b) 𝐹2 = 𝐾22𝑢21 +𝐾21𝑢11 = 0.
Solving for the quantities 𝐾11𝑢12 = −𝐾12𝑢22 and 𝐾22𝑢21 = −𝐾21𝑢11 and
replacing in Eq. (B.2) we conclude that the system behaves conserva-
tively if and only if 𝐾12 = 𝐾21.

Referring to the same example shown in Fig. 1, we consider now
a quasi static change of the two displacements over a generic path 
between two states, 0 and 1 in the

(

𝑢1, 𝑢2
)

plane [Fig. 16(a)]. We aim
now at finding a geometrical interpretation for the non-conservative
work 𝐿P. Let us use polar coordinates: 𝑢1 = 𝑟 (𝜃) cos 𝜃 and 𝑢2 =
𝑟 (𝜃) sin 𝜃. Observe that, according to Eq. (4) and using 𝐾O

12 = −𝐾O
21,

the elementary non-conservative work is 𝛿𝐿P = 𝐾O
21
(

𝑢1𝛿𝑢2 − 𝑢2𝛿𝑢1
)

.
2

11

Recalling that 𝑢1𝛿𝑢2 − 𝑢2𝛿𝑢1 = 𝑟 𝛿𝜃, the non-conservative work over y
the whole path is:

𝐿P = ∫
𝛿𝐿P = 𝐾O

21 ∫

𝜃1

𝜃0
𝑟2𝛿𝜃 = 2𝐾O

21𝐴 (B.3)

Where 𝐴 is the area of the sector limited by the curve  and the
two straight lines 𝜃 = 𝜃0 and 𝜃 = 𝜃1 [Fig. 16(a)]. If we now consider
the inverse process over the same path, the work 𝐿P inverts its sign.
Also note that when  lies on a straight line through the origin of
the plane the non-conservative term is zero. Moreover, considering
cyclic processes, if 𝐾𝑖𝑗 is non-symmetrical the work done by the two
forces over the cycle equates the non-conservative work and is thus
proportional to the area 𝐴C

of the cycle [Fig. 16(b)] comprised by the
closed curve C. If the cycle is inverted, the work changes sign, leading
to the conclusion that the non-conservative system might also represent
a source of energy for the observer that applies the forces.

Moving to the sliding contact between a rigid rough indenter and a
linear viscoelastic slab, using Eq. (1) we have

𝛿𝐿 = ∫ 𝑑2𝑥𝜎(𝐱)𝛿𝑢(𝐱) (B.4)

= ∫ 𝑑2𝑥𝑑2𝑥1(𝐱 − 𝐱1, 𝐯)𝜎(𝐱)𝛿𝜎(𝐱1).

where 𝛿𝜎 (𝐱) is an infinitesimal change of the normal stress distribution.
Splitting the Green function into its odd and even parts we also get that
the elastic energy can be calculated as

𝑈 = 1
2 ∫ 𝑑2𝑥𝑑2𝑥1E(𝐱 − 𝐱1, 𝐯)𝜎(𝐱)𝜎(𝐱1) (B.5)

nd the interfacial non-conservative contribution as

𝐿P = ∫ 𝑑2𝑥𝑑2𝑥1O(𝐱 − 𝐱1, 𝐯)𝜎(𝐱)𝛿𝜎(𝐱1) (B.6)

= 1
2 ∫ 𝑑2𝑥𝑑2𝑥1O(𝐱 − 𝐱1, 𝐯)

[

𝜎 (𝐱) 𝛿𝜎
(

𝐱1
)

− 𝛿𝜎 (𝐱) 𝜎
(

𝐱1
)]

hich vanishes in the case of purely elastic material [i.e., O(𝐱, 𝐯) = 0].
With reference to Eq. (B.6), we can identify some particular cases
ielding 𝛿𝐿P = 0. We consider a perturbation of the displacements fields
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Fig. 16. (a) In the
(

𝑢1 , 𝑢2
)

plane the non-conservative contribution to the work is proportional to the area of the blue sector 𝐴. (b) In cyclic processes the overall work is
proportional to the area 𝐴C

comprised by the closed curve and might be both positive or negative, depending on the direction the cycle is followed.
𝑢 (𝐱), which keeps its shape unchanged, i.e. 𝑢(𝐱) = 𝑢0(𝐱)𝜂 and 𝛿𝑢(𝐱) =
𝑢0(𝐱)𝛿𝜂, where 𝜂 is a dimensionless parameter governing the process. In
this case, linearity yields 𝜎(𝐱) = 𝜎0(𝐱)𝜂 and 𝛿𝜎(𝐱) = 𝜎0(𝐱)𝛿𝜂, where 𝑢0(𝐱)
and 𝜎0(𝐱) are related through Eq. (1). Thus, referring to Eq. (B.6), we
have 𝜎 (𝐱) 𝛿𝜎

(

𝐱1
)

= 𝜎0 (𝐱) 𝜎0
(

𝐱1
)

𝜂𝛿𝜂 = 𝛿𝜎 (𝐱) 𝜎
(

𝐱1
)

leading to 𝛿𝐿P = 0.
This arguments applies of course also to the case of a concentrated load
𝜎(𝐱) = 𝜂𝛿𝐷(𝐱− 𝐱0), being 𝛿𝐷(𝐱) the Dirac delta function. Indeed, we get
𝜎 (𝐱) 𝛿𝜎

(

𝐱1
)

= 𝛿𝐷(𝐱 − 𝐱0)𝛿𝐷(𝐱1 − 𝐱0)𝜂𝛿𝜂 = 𝛿𝜎 (𝐱) 𝜎
(

𝐱1
)

leading again to
𝛿𝐿P = 0.
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