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Abstract— This article proposes a nonintrusive parame-
ter identification procedure suitable for Internet-of-Things
(IoT)-embedded isotropic permanent magnet synchronous
machines (PMSMs). The method is designed for scenarios where
only measurements collected without additional sensors, dedi-
cated tests, or signal injection from in-service off-the-shelves
motor drives are available. After automatic detection of the
steady-state operating conditions (OCs) defined by the triplet
current–speed–temperature, the rotor flux linkage, the stator
resistance, the inductance, and the inverter distorted voltage term
are estimated using two operating points. Particular emphasis
is placed in defining the criteria of selecting these two optimal
OCs to minimize the estimation errors. The latter are due to
the inevitable difference between the parameters in different
operating points. As a vessel to investigate the effectiveness of the
proposed parameter identification, experimental and simulation
tests carried out on a high-speed PMSM drive have been used
for validation purpose. The proposed method is also compared
with the existing methods from the literature to demonstrate its
superiority in the considered scenario.

Index Terms— Actuation delay compensation, inverter non-
linearity, parameter identification, permanent magnet, rank
deficiency, synchronous machines.

I. INTRODUCTION

RECENTLY, the integration of electrical drives with edge
and cloud computing systems is becoming more and

more popular for condition monitoring, fault diagnosis, and
predictive maintenance [1], [2]. In this context, data-driven
and machine-learning-based algorithms are the most adopted,
while model-based (MB) approaches have not received much
attention [3]. However, MB strategies may offer additional
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advantages if paired with the data-driven algorithms. A con-
solidated strategy is to execute an analytical digital twin in
parallel to the real motor with the same measured inputs
while comparing their outputs. The residual signals can be
exploited to detect faults in the system using a residual
evaluator.

To implement mathematical models of motors, the parame-
ter identification is essential. Moreover, the knowledge of the
parameters allows itself for a straightforward fault diagnosis
if the model parameters have a one-to-one mapping with
the physical coefficients [4]. For instance, the estimation of
rotor magnet flux of permanent magnet synchronous machines
(PMSMs) can be adopted to detect magnet faults [5], while
the interturn short-circuit can abruptly change both the dq-axis
inductance and winding resistance [6].

In this study, the problem of parameter identification of
Internet-of-Things (IoT)-embedded electrical motor drives is
addressed. A schematic of the considered IoT-embedded elec-
trical motor drive is depicted in Fig. 1. The system consists
of a standard off-the-shelf motor drive, an IoT device which
collects and transmits the data generated by the drive control
unit, and a cloud-computing application where the data are
stored and processed to accomplish parameter identification.
The communication between the drive control unit and the IoT
device is enabled by the widespread connectivity properties of
modern electric drives. The flexibility and scalability of this
architecture allow to easily implement customized parameter
identification algorithms for multiple and different in-service
motor drives. In the considered setup, the drive control unit
shares the data with the IoT device through a unidirectional
communication. Therefore, the drive control algorithm is
not affected by parameter identification while the estimated
parameters can be exploited to implement digital twins, con-
dition monitoring, fault detection, or predictive maintenance
procedures.

Thus, this work is based on a realistic scenario where a
motor drive provides measurements generated during regular
operations. In such a scenario, compared with more con-
ventional contexts such as laboratory tests or electric drive
design, additional nonintrusivity and flexibility constraints
must be considered to design a suitable parameter identifi-
cation technique:

1) To simplify the system and reduce costs, additional
measurement devices are not allowed;
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2) To avoid machine downtimes, ad hoc tests to collect data
are not allowed;

3) Since in-service off-the-shelves commercial motor
drives are considered, a customized control logic cannot
be implemented to inject perturbation signals;

4) The algorithm must be flexible to operate even in case
of few available speed/load operating conditions (OCs).

In particular, the parameter identification problem is for-
mulated for PMSMs, which are widely used in the industry
[7], electric transportation [8], and renewable energy [9]. The
identification of PMSM parameters, such as inductances, rotor
flux linkage, and stator resistance has been a subject of a
vast literature in the past decades. The numerous parameters’
estimation techniques reported in literature are categorized into
two main families: offline and online estimation methods.

The offline methods need specific laboratory equipment
with the machine usually disconnected from its load or
require multiple measurements collected in different motor
OCs achieved with ad hoc tests [10]. For instance, in [11],
an offline procedure is proposed in which the rotor flux
linkage is estimated using line-to-line voltage measurements
during a test in which an induction motor is powered to
drive the PMSM. Instead, to identify the stator resistance
and inductance, an additional single-phase voltage source is
connected to the PMSM to collect the required measurements.
In [12], no load and load tests on several operating points in the
entire torque–speed range are performed to identify the motor
parameters. In [13], the measurements are collected under
multiple predefined speed and current conditions achieved with
ad hoc tests.

Instead, online parameter identification methods are usually
implemented on the drive control unit during the motor
operation relying on the injection of perturbation signals
to overcome the rank-deficiency issue. For instance, in [6],
a d-axis current is injected to obtain two steady-state equations
required to identify the parameters. In [14], two position
offsets are intentionally added into the drive system, and the
machine measurements corresponding to the two offsets are
recorded before the estimation. In [15], an additional tempo-
rary steady-state is designed for the simultaneous estimation
of flux, resistance, and dq-axis inductances of a salient-pole
PMSM. It is clear that both the approaches are inadequate to
be adopted in the scenario considered in this work.

A first work that addresses parameter identification of a
PMSM using cloud computing resources was presented in
[16]. In this article, an edge/cloud computing architecture
based on Amazon Web Services (AWS) is arranged to collect
motor measurements generated without signal injection or ad
hoc tests and to perform a parameter identification based on
three Adaline neural networks. However, this work lacks vali-
dation through experimental data collected from a real motor.
Moreover, this work is based on simplifying assumptions, such
as the availability of the measured voltages and the absence
of parameter variations.

In this article, a novel parameter identification method
for isotropic PMSM drives controlled with the zero d-axis
current is proposed. Note that this is the most widespread
typology among PMSM drives and can also be considered the

most investigated for parameter identification [6], [11], [14],
[17], [18], [19], [20], [21], [22]. In particular, to satisfy the
nonintrusivity constraints imposed by the considered scenario,
the motor parameters are estimated using only measurements
commonly available in commercial PMSM drives (such as
rotor position, currents, voltage references, and motor tem-
perature) collected during the regular operation of the motor
without injection of perturbation signals or ad hoc tests.
Moreover, to make the method more flexible and to extend
its applicability in contexts where few load/speed OCs are
available, the identification algorithm is designed to operate
only with two steady-states.

Since the motor parameters may vary among the PMSM
steady-states due to temperature and frequency changes, a the-
oretical analysis is presented to determine the estimation
errors caused by parameter variations. Therefore, according
to this analysis, when only two OCs are available, the pro-
posed identification method evaluates the feasibility of the
estimations. Instead, when more than two OCs are available,
an optimization algorithm selects the two OCs used to identify
the parameters which minimize the estimation errors.

Note that since the proposed method relies on the voltage
references instead of the measured voltages, the estimation
accuracy can be further endangered [22]. The mismatch
between these two quantities is caused by actuation delays
and inverter nonlinearity, i.e., voltage drops on power devices
and dead-time effect [23]. The inverter distortion does not
affect the estimation of the q-axis inductance when the d-axis
current is controlled to zero [23], while the actuation delay
affects all the parameters. In particular, the actuation delay
causes a voltage distortion which increases when the ratio
between electrical rotor speed and control sampling frequency
increases. As a consequence, identification procedures relying
on voltage references are usually carried out at low speeds
where this effect is negligible [6], [20]. In this article, both
inverter nonlinearity and actuation delay are considered and
compensated to increase the accuracy also in medium- and
high-frequency applications.

The rest of this article is organized as follows. Section II
summarizes the PMSM model with actuation delays and
inverter nonlinearity, while the proposed identification
algorithm is detailed in Section III. The validation method-
ology is discussed in Section IV while the simulation results
and the experimental validation are reported and commented
in Sections V and VI, respectively.

II. FORMULATION OF THE PARAMETER
IDENTIFICATION PROBLEM

A stationary discrete-time mathematical model largely
adopted for the design of online identification algorithms of
isotropic PMSM with d-axis current, id , equal to zero, is based
on the following equations [6], [22], [24]:

u∗

d (k) = −Lω (k) iq (k)− Dd (k) Vdead (1a)
u∗

q (k) = Riq (k)+ ψmω (k)− Dq (k) Vdead (1b)

where k denotes the kth sample, u∗

dq are the voltage references,
iq is the q-axis current, ω is the electrical rotor speed, Vdead is
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Fig. 1. IoT-embedded drive schematic.

the distorted voltage, Dd and Dq are the distorted coefficients
as in [5], and L , R, and ψm are the stator inductance, the
stator resistance, and the rotor flux linkage, respectively. The
sampling time of (1) is Ts . This model is based on the common
assumptions that the dq-axis inductances are equal and iron
losses are negligible in isotropic PMSMs [21], [23].

Since temperature measurements are usually available in
commercial PMSM drives [25], the model can be improved
by introducing the temperature correction of R

u∗

d (k) = −Lω (k) iq (k)− Dd (k) Vdead (2a)
u∗

q (k) = (1 + α012(k)) R′
aciq (k)+ ψmω (k)

− Dq (k) Vdead (2b)

where 12 = 2−20 ◦C, with 2 motor temperature, α0 is the
copper temperature coefficient, and R′

ac is the ac stator resis-
tance factor. Note that this PMSM model has four unknown
parameters to be identified, i.e., L , R′

ac, ψm , and Vdead, while
its rank is at most 2. Therefore, in principle, only two PMSM
steady-states are required to estimate the parameters.

To increase the estimation accuracy, more complex models
are considered in offline estimation methods. For instance,
in [26], a model which also includes iron losses and self-
and cross-saturation is considered. The study presented in [27]
shows that the ac stator resistance is actually a function of
temperature and frequency by means of additional coefficients
and parameters to be identified. Obviously, the increased
complexity of the model results in more parameters to be
identified and in additional PMSM OCs required to solve the
parameter identification problem. However, in the considered
scenario, the PMSM OCs cannot be arbitrarily obtained with
ad hoc tests since only measurements collected during the
regular operation of the motor can be exploited. Therefore,
in this study, the model (2) is chosen as it is simple and flexible
to operate even in case of PMSMs working in few different
conditions.

The accuracy of (2) is further improved by compen-
sating the delay between the actual voltages and the
reference voltages, which is equal to 1.5Ts in the PMSM

Fig. 2. Main steps of the proposed identification method.

digital control system [28]

ũdq (k) =

[
cos (1θ (k)) sin (1θ (k))

− sin (1θ (k)) cos (1θ (k))

]
u∗

dq (k − 1) (3)

where 1θ is the rotor electrical angular displacement due to
the digital delay. By assuming constant speed during this short
period, 1θ is expressed as

1θ (k) =
3
2
(θ (k)− θ (k − 1)) (4)

where θ is the rotor electrical position. Note that since
1θ(k) ≈ (3/2)ω(k)Ts , the voltage distortion caused by the
digital delay is expected to increase with the speed of the
motor. By considering (3), the definitive model adopted in
this study is

ũd (k) = −Lω (k) iq (k)− Dd (k) Vdead (5a)
ũq (k) = (1 + α012(k)) R′

aciq (k)+ ψmω (k)

− Dq (k) Vdead. (5b)

III. PROPOSED PARAMETER IDENTIFICATION METHOD

Fig. 2 shows the high-level procedure of the proposed
parameter identification detailed in Sections III-A–III-D. The
identification of the electromagnetic steady-states defined by
a given speed and current values is outlined in Section III-A
along with extraction of the OCs defined by a certain speed,
current, and stator temperature. Section III-B describes the
identification of L and Vdead, while Section III-C details the
estimations of R′

ac and ψm . The selection of the best OCs used
to estimate R′

ac and ψm is described in Section III-D.

A. Extraction of the OCs

The formulated parameter identification problem is based on
the stationary model of the PMSM. Therefore, the automated
detection of the motor steady-states is required. In this study,
a steady-state is detected when the recorded current and speed
show a constant behavior according to the R-statistic paradigm
[16]. Instead, the PMSM transient states due to speed and
load variations are automatically excluded from the collected
measurements. Let Ns be the number of detected steady-states.
Then, X i , with i = 1, . . . , Ns , denotes the set containing the
data of the i th steady-state, as follows:

X i =
{
ωi (1) , . . . , ωi (Ni ) , iqi (1) , . . . , iqi (Ni ) ,

ũdq i (1) , . . . , ũdq i (Ni ) , Ddi (1) , . . . , Ddi (Ni ) ,

Dqi (1) , . . . , Dqi (Ni ) ,2i (1) , . . . ,2i (Ni )
}

(6)

where Ni is the number of samples within the i th steady-
state, and 2i represents the motor temperature. Note that
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in (6) speed and current are at the steady-state while the
motor temperature may vary. Since both R and ψm depend
on the temperature, it is congruous to consider different OCs
within each electromagnetic steady-state according to thermal
transients. Therefore, in each X i , a set of OCs are extracted
as follows.

First, the raw data in each X i are properly sliced. Let
ki,hs , ki,he ∈ {1, . . . , Ni }, with ki,he > ki,hs , be the start and
end samples of the hth data slice, respectively. ki,hs and ki,he

are such that |2i (ki,hs )−2i (ki,he )| ≈ 12r . That is, each slice
is a subset of the data in X i corresponding to a temperature
range that is approximately 12r . Then, each hth slice in X i
is represented by the t-uple (ω̄i j , īqi j

, ¯̃udq i j
, D̄di j

, D̄qi j
, 2̄i j )

obtained by averaging each variable within the slice.
Now let X̄ = {X̄1, . . . , X̄ NOC} be the set of the OCs

extracted from all X i sets. Each OC is represented by X̄ j =[
ω̄ j īq j

¯̃udq j D̄d j D̄q j 2̄ j

]
, j = 1, . . . , NOC. For each

X i , the t-uples corresponding to the first and last data slices
constitute the first two OCs extracted. Then, other OCs are
extracted at a temperature step of 12s . That is, if there exist
two data slices, indexed by h1 and h2, such that |2̄1h1 −

2̄1h2 | ≈ 12s , the corresponding t-uples are added as OCs
in X̄ . Clearly, 12s is selected greater than 12r .

To sum up, the extraction procedure starts from the raw
data of each identified steady-state, X i , to produce the set of
OCs, X̄ , to be used in parameter identification. Two or more
OCs in X̄ may share the same steady-state values of speed
and current but feature different temperatures (with a step of
12s degrees).

B. L and Vdead Identification

After the OCs have been extracted, the inductance in each
OC, L j , can be identified using (5a)

L̂ j =
−¯̃ud j

ω̄ j īq j

(7)

where Dd Vdead is neglected as it is a periodic function of
period (2π)/(6ω̄ j ) with zero-mean when id = 0 [20]. This
is a simple solution whose main novelty relies on to use of
the d-axis delay-compensated voltage, which ensures higher
accuracy compared with conventional approaches based on the
use of the d-axis voltage reference. It is also worth noting that
since only one OC is required to estimate L , the variation in
this parameter due to saturation effects among the collected
OCs can be effectively tracked.

While the voltage source inverter (VSI) nonlinearity does
not affect the estimation of L , it affects the estimation of ψm
and R′

ac as the term Dq Vdead in (5b) has a nonzero mean
value. Therefore, it is necessary to estimate Vdead to ensure the
accuracy of the estimation of ψm and R′

ac. The identification of
Vdead j can be addressed by solving the following minimization
problem for each OC, derived from (5a):

min
V̂dead j

kei,h∑
k=ksi,h

((
Ddi (k) V̂dead j + ũdi (k)+ L̂ jωi (k) iqi (k)

))2

(8)

where i and h denote the i th steady-state and the hth slice
corresponding to the j th OC in X̄ , respectively. The effec-
tiveness of the search depends on the availability of samples
in a period of Dd Vdead, which decreases as the motor speed
increases since the sample time Ts is fixed. Note that also to
identify Vdead, only one OC is required.

C. R′
ac and ψm Identification

To obtain a full-rank identification problem for R′
ac and ψm ,

two different OCs, α, β ∈ {1, . . . , NOC}, are used. In this way,
a set of two equations are derived from (5b)[

¯̃uqα + D̄qα V̂deadα
¯̃uqβ + D̄qβ V̂deadβ

]
=

[(
1 + α012̄α

)
īqα ω̄α(

1 + α012̄β
)

īqβ ω̄β

] [
R̂′

ac
ψ̂m

]
(9)

where R̂′
ac and ψ̂m are, respectively, the estimated stator

resistance and rotor flux linkage. To obtain two linearly
independent equations, the OCs α and β must be selected
such that

r =

(
1 + α012̄α

)
īqα ω̄β(

1 + α012̄β
)

īqβ ω̄α
̸= 1. (10)

If (10) is satisfied, R̂′
ac and ψ̂m are obtained as

R̂′
ac =

−
ω̄β
ω̄α

(
¯̃uqα + D̄qα V̂deadα

)
+ ¯̃uqβ + D̄qβ V̂deadβ

ī ′qβ (1 − r)
(11a)

ψ̂m =

¯̃uqα + D̄qα V̂deadα −

(
¯̃uqβ + D̄qβ V̂deadβ

)
ī ′qα
ī ′qβ

ω̄α (1 − r)
(11b)

where ī ′qι = (1 + α012̄ι)īqι , with ι = α, β.
Considering the parameter dependence on the OCs and the

presence of voltage errors due to imperfect digital delay and
VSI nonlinearity compensation and measurement errors of
speed and currents, (5b) can be rewritten as follows:

¯̃uqα + D̄qα V̂deadα = R′
acα ī ′qα + ψmα ω̄α + εuqα (12a)

¯̃uqβ + D̄qβ V̂deadβ = R′
acβ ī ′qβ + ψmβ ω̄β + εuqβ

(12b)

where R′
acα , R′

acβ , ψmα , ψmβ , εuqα , and εuqβ are the unknown
actual values of the stator resistance, rotor flux linkage, and
voltage errors in the OCs α and β, respectively. By sub-
stituting (12a) and (12b) in (11b), the following equivalent
expressions of ψ̂m are obtained:

ψ̂m = ψmα + εψmα + εψM

ψ̂m = ψmβ + εψmβ + εψM (13)

where

εψmα =

(
ψmα − ψmβ

)
r

1 − r
+

(
R′

acα − R′
acβ

)
ī ′qα
ω̄α

1 − r

εψmβ =

(
ψmα − ψmβ

)
1 − r

+

(
R′

acα − R′
acβ

)
ī ′qα
ω̄α

1 − r

εψM =

εuqα − εuqβ

ī ′qα
ī ′qβ

ω̄α (1 − r)
. (14)
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With the same approach, by substituting (12a) and (12b)
into (11a), the following expressions of R̂′

ac are obtained:

R̂′
acα = R′

acα + εRα + εRM

R̂′
acβ = R′

acβ + εRβ + εRM (15)

where

εRα =

R′
acβ − R′

acα

1 − r
+

(
ψmβ − ψmα

) ω̄β
ī ′qβ

1 − r

εRβ =

(
R′

acβ − R′
acα

)
r

1 − r
+

(
ψmβ − ψmα

) ω̄β
ī ′qβ

1 − r

εRM =
εuqβ − εuqα

ω̄β
ω̄α

ī ′qβ (1 − r)
. (16)

Note that R̂′
ac and ψ̂m are given by the actual values in

the two OCs α or β, i.e., ψmα , ψmβ , and R′
acα , R′

acβ , plus
two components of the estimation error. The first component,
i.e., εψmα and εψmβ in (13), and εRα and εRβ in (15), is caused
by the mismatch of the two parameters in the two OCs. The
second component, i.e., εψM in (13), and εRM in (15), is caused
by the voltage errors.

D. Minimization of the Estimation Errors

The estimation errors depend on the speed, temperature,
and q-axis current of both OCs α and β [see (14) and (16)].
Therefore, the majorant of the estimation error can be min-
imized by properly selecting these two OCs. With reference
to the estimation of R′

ac in the αth OC, the majorant of the
estimation error, i.e., ε̃Rα tot, is derived from (16)

ε̃Rα tot = ε̃Rα + ε̃RM (17)

with

ε̃Rα =

∣∣∣∣∣ R̃′
acβ − R̃′

acα

1 − r

∣∣∣∣∣ +

∣∣∣∣∣∣∣
(
ψ̃mβ − ψ̃mα

)
ω̄β

ī ′qβ

1 − r

∣∣∣∣∣∣∣
ε̃RM =

∣∣ε̃uq

∣∣ +

∣∣∣ε̃uq
ω̄β
ω̄α

∣∣∣∣∣∣ī ′qβ (1 − r)
∣∣∣ (18)

where R̃′
acι and ψ̃mι are rough estimations of R′

acι and ψmι ,
respectively, with ι = α, β. ε̃uq is the supposed voltage error.

The rough estimations are computed using only temperature
and speed data, i.e., considering the following [27], [29], [30]:

R̃′
acι = R̃dc0

(
1 + β̃0

(
ω̄ι
2π

)2
)

− 1(
1 + α0

(
2̄ι − 20

))γ̃+1
+ R̃dc0

ψ̃mι = ψ̃0
(
1 + α̃PM0

(
2̄ι − 20

))
(19)

where R̃dc0 and ψ̃0 are rough estimations of R and ψm at
zero speed and 20 ◦C, β̃0 is the supposed quadratic frequency
coefficient, γ̃ is the supposed temperature coefficient of the
ac resistance, and α̃PM0 is the supposed PMs’ temperature

coefficient. The use of precautionary values for ε̃uq , β̃0, γ̃ ,
and α̃PM0 ensures that

ε̃Rα tot > εRα + εRM . (20)

In particular, for the choice of β̃0, a conservative assumption
is that the ac resistance at rated speed is at most ten times the
dc resistance. According to this assumption, it can be assumed
that (

1 + β0

(ωr

2π

)2
)

= 10 (21)

where ωr is the electrical rated speed. Therefore, the following
formula is adopted to calculate β̃0:

β̃0 =
9(
ωr
2π

)2 . (22)

Furthermore, considering that commonly γ is in the range
[0 1], it is precautionary set γ̃ = 0 [27], [31]. Finally,
for the choice of α̃PM0, it should be considered that for
PMs, the actual temperature coefficient αPM0 is in the range
[−0.2 − 0.02]%/◦C. Therefore, in this study, it is chosen
α̃PM0 = −0.1%/◦C.

To obtain R̃dc0 , the OCs α and β are selected as follows:

[α, β] = argmin
i∈SR

j=1,...,NOC
i ̸= j

∣∣ε̃uq

∣∣ +

∣∣∣ε̃uq
ω̄ j
ω̄i

∣∣∣∣∣∣∣ī ′q j

(
1 −

ī ′qi
ω̄ j

ī ′q j
ω̄i

)∣∣∣∣
s.t.

∣∣∣∣∣ ī ′qi
ω̄ j

ī ′q j
ω̄i

∣∣∣∣∣ > rlim (23)

where rlim is a positive tuning parameter that ensures to reduce
estimation errors [see (16)], and SR is a set of OCs determined
as follows:

SR =

{
i = 1, . . . , NOC :

∣∣ω̄2
i − ω̄2

w

∣∣
ω̄2
w

< flim

}
[w] = argmin

t=1,...,NOC

|ω̄t | (24)

in which flim is a positive dimensionless tuning coefficient.
Problem (23) is built given that R̃dc0 is computed by

correcting the resistance estimation in α, i.e., R̂′
acα . Thus, it is

convenient to find OC α such that R̂′
acα is close to R̃dc0 ,

i.e., 2̄α near 20 ◦C and ω̄α near zero. While the temperature
correction is more reliable as the actual temperature coefficient
of the ac resistance γ varies little around the value γ̃ = 0.5
[27], this is not true for the frequency correction as the actual
frequency coefficient β0 largely depends on the machine.
Therefore, to not add conservativeness to (23), it is only
considered that ω̄α is minimized [see (24)]. To increase the
accuracy of R̃dc0 , also the estimation errors ε̃Rα and ε̃RM have
to be minimized. ε̃Rα cannot be explicitly minimized as the
parameter estimations are not known. However, as in (18),
ε̃Rα can be made small by selecting two OCs α and β which
make |1 − r | big [second constraint in (23)]. Instead, ε̃RM

is minimized by considering it as objective function. Given α
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and β from (23), R̂′
acα is computed according to (11a). Finally,

a temperature and frequency correction provides R̃dc0

R̃dc0 = R̂′
acα

(
1 + α0

(
2̄α − 20

))γ̃+1

β̃0

(
ω̄α
2π

)2
+

(
1 + α0

(
2̄α − 20

))γ̃+1
. (25)

With similar considerations, to obtain ψ̃0, the OCs α and β
are selected as follows:

[α, β] = argmin
i=1,...,NOC

j∈Sψ
i ̸= j

∣∣ε̃uq

∣∣ +

∣∣∣∣ε̃uq

ī ′qi
ī ′q j

∣∣∣∣∣∣∣∣ω̄i

(
1 −

ī ′qi
ω̄ j

ī ′q j
ω̄i

)∣∣∣∣
s.t.

∣∣∣∣∣ ī ′qi
ω̄ j

ī ′q j
ω̄i

∣∣∣∣∣ > rlim (26)

where Sψ is a set of OCs determined as follows:

Sψ =
{

j = 1, . . . , NOC :
∣∣2̄ j − 2̄w

∣∣ < 2lim
}

[w] = argmin
t=1,...,NOC

∣∣2̄t
∣∣ (27)

where 2lim is a positive tuning parameter. Given α and β

from (26), the estimation of ψm in OC β, i.e., ψ̂mβ , is com-
puted according to (11b). Finally, a temperature correction
provides ψ̃0

ψ̃0 =
ψ̂mβ

1 + α̃PM0
(
2̄β − 20

) . (28)

The majorant of the estimation error of ψm in the βth OC,
ε̃ψβ tot, can be similarly computed with the procedure outlined
for R′

ac. Once the rough estimations are obtained, the error
majorants can be explicitly computed and minimized. For each
OC α ∈ {1, . . . , NOC} in which R̂′

acα has to be determined,
called main OC (MOC), an OC β, called auxiliary OC (AOC),
is chosen to minimize ε̃Rα tot, i.e.,

β = argmin
i=1,...,NOC

i ̸= j

ε̃Rα tot

s.t. r < εr1 or r > εr2 , and ε̃R j tot < xR R̃α (29)

where εr1 < 1 and εr2 > 1 are two tunable thresholds which
avoid choosing r close to 1, while xR is a tunable value
between 0 and 1. Note that an estimation in an OC α can
be rejected if there does not exist an AOC so that ε̃Rα tot is
less than a given fraction of R̃′

acα , i.e., xR R̃′
acα . Once the

AOC is found, α and β are set and the estimation is obtained
using (11a). Optimization (29) can also be applied to estimate
ψm in each OC β ∈ {1, . . . , NOC} by substituting β, ε̃Rα tot, and
R̃′

acα , with α, ε̃ψβ tot, and ψ̃mβ , respectively. It is worth noting
that according to (29), when only two OCs are available, the
proposed method evaluates the reliability of the achievable
estimation. Instead, when more than two OCs are available,
the proposed algorithm selects the best AOC that minimizes
the error majorant.

TABLE I
MOTOR DRIVE PARAMETER

Fig. 3. Experimental setup.

IV. VALIDATION METHODOLOGY

The proposed identification procedure is validated on a chal-
lenging case study consisting of a custom high-speed PMSM
drive with large parameter variations. The specifications of
the motor drive are reported in Table I while the setup is
shown in Fig. 3. Note that the reported stator resistance value
is obtained using an ohmmeter at the room temperature while
the stator inductance and rotor flux linkage are derived with the
experimental procedure reported in [32], which matches the
finite element analysis presented in [33]. The stator inductance
can be considered constant as this particular machine is not
affected by magnetic saturation. The high-speed PMSM is con-
nected to a load motor via a gearbox and a torque sensor, and
a custom three-phase VSI has been used to supply the motor.
The field-oriented control (id = 0) has been implemented on
a Xilinx Zynq7020 SoC custom control platform.

Section V reports the results obtained considering different
scenarios derived from a simulation dataset obtained using a
MATLAB/Simulink model of this motor drive. The full exper-
imental dataset considered to validate the proposed method is
made up of measurements collected during efficiency char-
acterization of this machine [33]. This dataset, X , consists
of 20 different steady-states with high temperature, current,
and speed variations. In all, 55 OCs are extracted from X
by adopting the procedure described in Section III-A and by
setting 12r = 1 ◦C and 12s = 15 ◦C. Fig. 4 reports the
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Fig. 4. Measurements during the test at 30 krpm of motor drive 1:
(a) temperature, (b) dq-axis actual and reference currents at 77 ◦C, and
(c) dq-axis voltage references at 77 ◦C and 118 ◦C.

main variables during the test at 30 krpm. Fig. 4(a) shows
the winding temperature. Two temperature points (77 ◦C and
118 ◦C) corresponding to OCs 52 and 55 are highlighted
with the marker. Note that as shown in Fig. 4, the average
value of iq in these two OCs is the same. Fig. 4(b) reports
the measured and reference currents corresponding to OC 52,
while Fig. 4(c) shows the voltage references corresponding
to OCs 52 and 55. As expected, only the q-axis voltage
references are affected by the temperature variation due to
the changes in ψm and R.

The simulation dataset reproduces the same 55 OCs of the
experimental dataset allowing the validation of the proposed
method in an extended operating range of the motor. In fact,
note that the actual values of L , ψm , R, Vdead, and dq-axis
voltages are difficult to measure in all the experimental OCs.
In the simulation model, the parameters’ dependence on the
OCs is implemented as follows:

R′
ac = Rdc0

(
R′

ac
∣∣
20

)
− 1(

1 + α0
(
2̄ι − 20

))γ+1 + Rdc0

ψm = ψm0 (1 + αPM0 (2− 20)) (30)

where R′
ac|20 is a 1-D lookup table containing the experimental

ac stator resistance measurements at 20 ◦C, Rdc0 is the
experimental measurement value of the dc stator resistance
at 20 ◦C, and γ = 0.75. Note that the value of β0 that fits the
experimental measurements R′

ac|20 is approximately equal to
3.52·10−7/Hz2. The inverter parameters (Vdead = −0.35 V) are
considered constant during the simulations and the inductance
which do not significantly depend on the q-axis current in
the investigated case study, according to the measurements
performed on the real motor. The other parameters required
by the proposed procedure are set as follows: ε̃uq = 0.5 V,
β̃0 = 1.27 · 10−6/Hz2 rlim = 2, 2lim = 20 ◦C, flim = 2,
εr1 = 0.9, εr2 = 1.1, and xR = 0.25.

Fig. 5. Estimation error of L .

V. SIMULATION RESULTS

A. Identification of L and Vdead

This section presents the results of the identification of
L and Vdead in all the extracted 55 OCs. Fig. 5 reports
with the color scale in the current–speed–temperature space
the actual estimation absolute percentage error (APE) of L
defined as ϵLα = 100|(L̂α − Lα)/Lα|. In the same figure,
ϵL∗

α
represents the APE related to the estimations obtained

without compensating the digital delay according to (3). The
identification of L using the compensation of the digital
delay is highly accurate with a mean APE (MAPE) of 0.51%
and a maximum error εL46 = 2.75%. Also, the standard
deviation (SD) of the estimation error is low (0.68%). Instead,
as expected, the results obtained without the compensation of
the digital delay are affected by large errors which increase
with the motor speed.

To demonstrate the stator inductance tracking ability under
saturation effects of the proposed algorithm, an additional
analysis is reported. The dependence of L on the q-axis
current has been introduced in the simulation model to take
into account the saturation effect. The upper subfigure in
Fig. 6 shows the q-axis current before and after an abrupt
load torque variation. Thanks to the R-statistic algorithm, the
two different steady-states of iq can be easily detected and
two different OCs can be extracted. In fact, before the load
torque change, the R-statistic index (Riq ) is below the critical
threshold (Rcrt) which means that iq is at the steady-state
[16]. The measurements in this time interval constitute the
first OC. When iq arises due to the load torque change, the
R-statistic algorithm timely detects the loss of steady-state
(Riq > Rcrt). The measurements in this time window can
therefore be excluded from the dataset used to estimate the
parameters. Finally, Riq quickly approaches the unity when
the steady-state is recovered and a new OC is extracted. Note
that to correctly extract the OCs, the R-statistic procedure is
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Fig. 6. Estimation of L under saturated conditions.

also applied on the rotor speed, as mentioned in Section III-A.
In the lower subfigure, the trend of the actual stator inductance
is reported along with its estimations in the two extracted
OCs. According to the saturation effect, the actual stator
inductance decreases with the increase in the current. Albeit
its variation, the inductance in the two different OCs is tracked
very precisely by the proposed algorithm. The reason behind
this is that since from (7) only a single OC is required to
estimate L , the accuracy of the proposed algorithm is not
affected by inductance variations due to saturation effects. In
fact, as iq is constant within the two OCs, L is also constant.
It can be concluded that in the presence of saturation effects,
the proposed method can track the inductance variation by
estimating the inductance in OCs with different currents.

Fig. 7 reports with the color scale the q-axis voltage error,
εuqα , and V̂deadα , (α = 1, . . . , 55), in the current–speed–
temperature space. εuqα has been computed as

εuqα = ¯̃uqα + D̄qα V̂deadα − ūqα , α = 1, . . . , 55 (31)

where ūqα is the average actual q-axis voltage. The mean
absolute error (MAE) of εuqα is 0.40 V, while the maximum
error is εuq49 = 1.08 V. Note that εuqα increases as the speed
increases since fewer samples are available in a period of
Dd Vdead. The average value of V̂deadα is −0.34 V, which is
really close to the actual value, and the SD is 2.5%. Therefore,
the proposed method provides accurate estimations of the
actual q-axis voltage in a wide range of OCs.

B. Identification of R′
ac and ψm

This section presents the results of the identification of
R′

ac and ψm considering different scenarios. Fig. 8 shows
the results obtained considering the first five steady-states,
which correspond to the first 13 OCs shown in Fig. 5.
In this figure, ϵ%ψα and ϵ%Rα represent the actual APEs,
computed similar to ϵ%Lα ; ε%ψα = 100|(εψα + εψM )/ψα|

and ε%Rα = 100|(εRα + εRM )/R′
acα | are the theoretical APEs

computed, respectively, using (14) and (16) with the actual
values of the parameters and q-axis voltage errors; and
ε̃%ψα = 100|(ε̃ψα tot)/ψα| and ε̃%Rα = 100|(ε̃Rα tot)/Rα| are the
minimized absolute percentage values of the error majorants,

Fig. 7. Voltage error and identified distorted voltage term.

obtained according to (29). Note that ε%ψα ≈ ϵ%ψα and
ε%Rα ≈ ϵ%Rα in all the OCs. This outcome confirms the
validity of the error analysis performed in Section III. In
addition, ε̃%ψα > ϵ%ψα and ε̃%Rα > ϵ%Rα in all the OCs,
confirming the correct definition of the error majorant. Note
that in some OCs, the actual and theoretical APEs of R′

ac
are not shown as in these cases the estimations have been
rejected according to (29). Overall, low estimation errors have
been obtained even if the results are asymmetric for the two
parameters. In fact, R′

ac is the most difficult parameter to be
identified due to its high dependence on the OCs.

Fig. 9 shows the results obtained considering the same set
of OCs but with ε̃uq = 0 V, i.e., the voltage error is not
considered for the minimization of the error majorant in (29).
Note how the estimation accuracy is overall deteriorated for
both ψm and R′

ac and that the error majorant is lower than the
actual error in several OCs. It is clear that even if the q-axis
voltage error εuqα is small, as shown in Fig. 7, it largely affects
the estimation accuracy and must be taken into account for the
minimization of the error majorant.

Fig. 10 shows a performance analysis of the identification
of ψm and R′

ac considering several scenarios with different
numbers of available steady-states. For each scenario s, Ns
different trials produced by randomly choosing ks steady-
states among X , with ks = 2, . . . , 10. Note that since the full
dataset contains 20 steady-states, the number of steady-states’
combinations without repetition Ncombs when ks steady-states
are considered is given by the following formula:

Ncombs =
20!

ks ! (20 − ks)!
. (32)

In this study, to analyze a congruous number of combinations
for each value of ks , it is set Ns = Ncombs/5. The analy-
sis considers two performance indexes: the MAPE and the
number accepted estimations, both averaged over Ns trials.
Fig. 10(a) shows the MAPE for both ψm and R′

ac estimations.
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Fig. 8. Results with a set of five steady-states with ε̃uq = 0.5 V.

Fig. 9. Results with a set of five steady-states with ε̃uq = 0 V.

Despite the challenging case study, the estimation accuracy of
ψm (blue line) is very high and slightly improves with the
increase in the available steady-states. This can be explained
considering that the availability of more steady-states increases
the chance to further minimize the majorant of the estimation
errors. Also, the estimation error of R′

ac (red line) is small
even if it is significantly greater than the estimation error
of ψm . Note that in this case, while the average estimation
accuracy noticeably improves when going from two to three
steady-states, subsequently it slightly deteriorates with the
increase in the available steady-states. This can be explained
considering the results reported in Fig. 10(b). This figure
shows that while the estimations of ψm are accepted almost
in all the available OCs (the blue line is near to the black
line), many estimations of R′

ac are rejected. Therefore, with
reference to the estimation of R′

ac, on average, the increase
in the available steady-states may lead to accept estimations
previously rejected which can increase the MAPE. It is worth
noting that when only two steady-states are available, on aver-
age 4 and 0.25 estimations of ψm and R′

ac are accepted,
respectively. This means that with two steady-states, at least
an accurate estimation of the rotor flux linkage is guaranteed
while the probability to perform reliable estimations of the
stator resistance is around 25%. To better demonstrate how

Fig. 10. Identification of ψm and R′
ac varying the available steady-states:

(a) MAPE of the estimation results and (b) average number of accepted
estimations compared with the average number of available OCs.

the proposed selection of the AOC improves the accuracy of
the parameter estimation, Fig. 10(a) also reports the results
obtained by means of a random selection of the AOC (cyan
and magenta lines). In particular, for each trial, the AOC is
randomly selected among the available OCs that satisfy the
condition r < εr1 or r > εr2 , as in (29). This condition
prevents to select a value of r close to 1, which would certainly
increase the estimation errors according to (14) and (16).
Compared with the estimations obtained with the proposed
optimization of the error majorant, the random selection of
the AOC leads to a lower estimation accuracy of both the
parameters. This is particularly clear when looking at the
estimation of R′

ac. In fact, since this is the parameter most
affected by the variation in the OCs, careful selection of the
AOC is crucial.

C. Comparison to the State-of-the-Art

In this section, the proposed method is compared with other
methods from the literature. Since in the context considered
in this article, signal injections and dedicated tests are not
possible, two alternative approaches are considered. The first
one is based on fixing a parameter to its nominal value while
the other parameter is estimated using only one OC [5],
[10], [17], [18]. Hereafter, this approach is denoted as fixed
parameter (FP) method. When R is fixed to its nominal value
Rdc0 , the estimation of ψm in OC α is provided by

ψ̂mα =

¯̃uqα + D̄qα V̂deadα − ī ′qα Rdc0

ω̄α
. (33)

Note that as in [5], since the current ī ′qα = (1 + α012̄α)īqα
is used to estimate ψm , (33) takes into account the variation
in R with the temperature. Instead, when ψm is fixed to its
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nominal value ψm0, R′
ac can be identified as follows:

R̂′
acα =

¯̃uqα + D̄qα V̂deadα − ω̄αψm0

ī ′qα
. (34)

It is worth highlighting that the accuracy of this method does
not depend on the quantity of available steady-states as only
the data of a single OC are required to estimate the parameters.

The second method is based on a more complex model
of the PMSM involving more parameters to explicitly express
the dependence of R′

ac and ψm on the OCs. These parameters
are identified by means of the least-squares (LS) method
exploiting simultaneously all the available OCs, as in [13]
and [26]. The following model derived from (9) and (19) is
considered for the generic OC α:

ū′
qα = ī ′qα Rdc0 + gα

(
γ ′, β ′

0
)
+ ω̄αψm0 + ω̄α

(
2̄α − 20

)
α′

PM0

(35)

with ū′
qα = ¯̃uqα + D̄qα V̂deadα ω̄

′
α = ω̄α/2π , β ′

0 = Rdc0β0,
γ ′

= γ + 1, α′

PM0 = ψm0αPM0, and

gα
(
γ ′, β ′

0
)

=
ī ′qα ω̄

′2
α β

′

0(
1 + α0

(
2̄α − 20

))γ ′
.

This model has five unknown parameters to be identified (Rdc0 ,
β ′

0, γ ′, ψm0, α′

PM0) and is nonlinear on these parameters. This
model can be simplified in the affine model shown below

y = Xφ + b (36)

with

y =



ū′
q1
...

ū′
qα
...

ū′
qNOC

 , φ =


Rdc0

γ ′

β ′

0
ψm0
α′

PM0

 , b =



b1
...

bα
...

bNOC



X =



ī ′q1
p1 q1 ω̄1 ω̄1

(
2̄1 − 20

)
...

...
...

...
...

ī ′qα pα qα ω̄α ω̄α
(
2̄α − 20

)
...

...
...

...
...

ī ′qNOC
pNOC qNOC ω̄NOC ω̄NOC

(
2̄NOC − 20

)


where pα , qα , and bα are coefficients obtained from the first-
order Taylor approximation of the function gα(γ ′, β ′

0) on the
point (γ̄ ′, β̄ ′

0), with γ̄ ′
= 1.5 and β̄ ′

0 = β̃0/2, which is chosen
according to the considerations reported in Section III-D.

The LS finds the solution φ̂ that minimizes the voltage
prediction error on the model (36)

φ̂ =

(
X⊤X

)−1 (
X⊤y − X⊤b

)
. (37)

The parameters R′
ac and ψm in OC α are obtained as follows:

R̂′
acα =

(X)α,1:3

(
φ̂
)

1:3

ī ′qα
+ bα

ψ̂mα =

(X)α,4:5

(
φ̂
)

4:5
ω̄α

(38)

Fig. 11. Estimation errors of ψm with different methods and with two, three,
and four available steady-states. The numbers at the top of the subfigures
denote percentage errors >3% and >8%.

where (X)α,i : j expresses the elements from the i th to j th rows
of the αth column of X. To compare these two methods
with the one proposed in this article, an analysis considering
scenarios with different numbers of available steady-states
is reported. The performances are compared over a set of
20 OCs, i.e., the first OCs of each steady-state (see Fig. 5).
As in the analysis shown in Fig. 10, for each OC, a number
of trials provided by (32) are performed. Fig. 11 shows the
MAPE and the maximum APE of the estimation of ψm when
two, three, and four steady-states are available. The black
circles in the upper figure represent the estimations obtained
with the FP method. Note that the accuracy decreases with
the increase in the motor speed as the variation in R with the
frequency is not taken into account by this method. Moreover,
also the voltage errors cannot be compensated with the FP
method. Therefore, the proposed method outperforms the FP
method almost in all the OCs even with few available steady-
states. At the top of the two subfigures are reported the
estimations with MAPE and maximum APE higher than 3%
and 8%, respectively. In these cases, a numeric value is added
to specify the errors. Clearly, the LS fails when only two
steady-states are available since the number of the OCs is
insufficient to correctly estimate φ̂.

Instead, the proposed method provides reliable estimations
with low maximum APE. When three steady-states are avail-
able, the proposed method is still more accurate than the LS
(for most of the OCs, the blue squares are below the blue
crosses). Finally, when four steady-states are available, the
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Fig. 12. Estimation errors of R′
ac with different methods and with two, three,

and four available steady-states. The numbers at the top of the subfigures
denote percentage errors >14% and >22%.

MAPEs obtained with the LS are lower than those of the
proposed method. Instead, the maximum APEs are greater for
the LS than for the proposed method in most of the OCs.

Fig. 12 reports the same analysis for R′
ac. Also in this case,

the FP method is poorly accurate and is outperformed by the
proposed method. This is mainly caused by the fact that this
method does not take into account the variation in ψm with
the temperature. In this figure, the symbol >K that appears on
the top of the subfigures denotes that the error is greater than
1000%. Moreover, the symbol |R| denotes that the estimation
has been rejected by the proposed method. As concerning the
MAPE, with the same available steady-states, the LS is on
average outperformed by the proposed method in all the cases.
Instead, as concerning the maximum APE, the gap between
the LS and the proposed method is even bigger. This is mainly
due to the fact that the proposed method rejects the estimations
affected by a high error majorant.

Fig. 13 shows the results of the estimations of ψm when
five, seven, and nine steady-states are available. The results
obtained with the FP method are the same reported in Fig. 11.
As concerning the MAPE, the LS outperforms the proposed
method when five or seven steady-states are available, while
the performances of the two methods are quite similar when
nine steady-states are available. Instead, in all the cases, the
maximum APEs obtained with the proposed method are higher
if compared with the LS.

Finally, Fig. 14 reports the same analysis for R′
ac. Note that

although the LS generally achieves lower MAPEs across all

Fig. 13. Estimation errors of ψm with different methods and with five, seven,
and nine available steady-states.

the three scenarios on average, the proposed method, on the
other hand, exhibits significantly lower maximum APEs. It is
worth noting that with the LS method, even when significant
parameter estimation errors occur, the voltage prediction errors
remain close to zero. Therefore, a criterion to reject esti-
mations affected by high-voltage prediction errors would be
ineffective. Instead, the proposed method ensures to limit the
maximum estimation error by taking into account the voltage
errors and parameter variations.

VI. EXPERIMENTAL RESULTS

This section reports the results obtained with the experi-
mental dataset. Fig. 15 shows the results of the identification
of L in all the 55 OCs using the d-axis compensated voltage
and the d-axis voltage reference (L̂∗

α). The estimations are
compared with the measured value. Note that the estimations
obtained with the compensated voltage are very accurate, and,
as expected, the identified L does not significantly vary with
both current and speed. Instead, the estimations obtained with
the voltage reference worsen with the increase in the speed,
as in the simulation analysis.

Regarding the identification of ψm and R′
ac, since only

measurements of these parameters at room temperature are
available, to properly evaluate the estimation accuracy, Fig. 16
shows the results obtained on a reduced subset of OCs, i.e., the
OCs at temperature lower than 50 ◦C. In particular, the results
have been obtained considering a scenario with five available
steady-states. The available steady-states are randomly chosen
among the full dataset, and a number of trials equal to
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Fig. 14. Estimation errors of R′
ac with different methods and with five, seven,

and nine available steady-states. The numbers at the top of the subfigures
denote percentage errors >14% and >35%.

Fig. 15. Estimation of L .

N5 = Ncomb5/5 is evaluated. Since the maximum temperature
difference with respect to the room temperature is 30 ◦C,
the variation in the actual ψm and R′

ac can be neglected.
The analysis is performed in three different cases, i.e., when
setting ε̃uq = 0.5 V, ε̃uq = 0 V, and ε̃uq = 0.5 V with
V̂dead = 0 V. The third case allows to analyze the estimation
accuracy when the VSI nonlinearity is not compensated. In
particular, the figure shows the average and worst values
of the estimations obtained with N5 trials. As concerns the
estimation of ψm , the average estimations are very similar in
the two first cases, with a high accuracy. However, in some
OCs, the worst estimations obtained in the first case are more
accurate than in the second one, confirming the importance of
considering the voltage error to minimize the error majorant.
Note also that the average estimations slightly decrease with
the increase in OCs’ temperature (see Fig. 5). This aspect
highlights that the proposed method can detect slight rotor
flux linkage variations with the temperature. Also, the average

Fig. 16. Estimation of ψm and R′
ac with five steady-states. The black circles

represent measured values.

estimations of R′
ac are highly accurate and can precisely track

the resistance variations with the speed of the motor. In
the first case (ε̃uq = 0.5 V), the estimations are accepted
only in few OCs, in a similar way to the simulation results
shown in Fig. 8. Furthermore, the considerations drawn on the
comparison between the average and worst estimations of ψm
in the two first cases can also be repeated about the estimation
of R′

ac. Finally, this analysis demonstrates the importance of
estimating the distorted voltage. In fact, in most of the OCs
the estimation accuracy decreases for both ψm and R′

ac when
the VSI nonlinearity is not compensated.

VII. CONCLUSION

This article has investigated the possibility of estimating
the parameters of an isotropic PMSM only using the mea-
surements commonly available during the regular operation
of commercial drives. The rank-deficiency issue, typical of
this class of problem, is solved using two different OCs.
In particular, by properly selecting these two OCs from the
available dataset of measurements, it is possible to minimize
the estimation errors due to both parameter variations and
voltage errors. The effectiveness of the proposed identification
approach has been validated using both the simulation and
experimental studies considering several scenarios with differ-
ent numbers of available speed/load OCs. The key findings
of the article are summarized as follows: 1) the accuracy
of the estimations of both ψm and R improves when the
q-axis voltage error component is considered when selecting
the optimal OCs required to perform their identification; 2) the
accuracy of the estimations improves when more steady-states
are available; and 3) the number of identifiable OC increases
with the size of the available dataset of measurements. Also,
the proposed method has been compared with other methods
from the literature. The results clearly show that the proposed
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method outperforms the method based on fixing a parameter
to its nominal value. In addition, the proposed approach works
better than the LS method in scenarios with a limited number
of steady-states. Although, on average, the LS technique
performs better than the proposed one in scenarios with
more than four available steady-states, the estimations of the
stator resistance produced by the LS method are impacted by
larger maximum errors. Hence, the proposed method is more
flexible as it provides accurate estimations even in scenarios
with few available steady-states and is more cautionary as
it autonomously rejects estimations affected by high errors.
These outcomes demonstrate the superiority of the proposed
identification method to any application where additional
sensor, dedicated tests, and signal injections are not possible.
Such feature makes the proposed method highly suitable for
condition monitoring of large-scale industrial plants where
many electrical machines are operating at the same time.
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