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This article addresses adaptive radar detection of N pulses coher-
ently backscattered by a prospective target in heterogeneous distur-
bance. As customary K ≥ N range cells adjacent to the one under test
are used for estimation purposes. The disturbance in each range cell
is described by a non-Gaussian model based on a mixture of L < K
Gaussian distributions. Gaussian components are characterized by an
unknown low-rank matrix plus thermal noise with unknown power
level. We first derive a detector inspired by the generalized likelihood
ratio test that adaptively estimates the statistical properties of the
disturbance from the observed data. To overcome the intractability
of the involved maximum-likelihood estimation problem, a suitable
approximate strategy based on the expectation-maximization algo-
rithm is developed. This also allows us to classify the cell under test by
selecting the “maximum a posteriori Gaussian distribution” for the
disturbance (under both hypotheses). Accordingly, a likelihood ratio
test is also proposed. An extensive performance analysis, conducted
on synthetic data as well as on two different experimental datasets
(PhaseOne and IPIX for land and sea radar returns, respectively),
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shows that the proposed approaches outperform state-of-the-art com-
petitors in terms of both detection capabilities and false alarms control.

I. INTRODUCTION

In the last decades, the design of adaptive decision
schemes capable of detecting coherent targets buried in
Gaussian and non-Gaussian noise has attracted a great
interest in the signal processing community. In a seminal
article, Kelly [1] used the generalized likelihood ratio test
(GLRT) to design an adaptive decision scheme aimed at
detecting coherent pulse trains in the presence of Gaussian
disturbance with an unknown covariance matrix. Therein, it
is assumed that a set of secondary data, free of signal com-
ponents, but sharing the same statistical characterization
of the overall interference (i.e., clutter, thermal noise, and
possible noise-like jammers) in the cell under test (CUT), is
available (homogeneous environment). To reasonably meet
this condition, secondary data are usually picked from a
window of range cells adjacent to the CUT. Building upon
such a pioneering work, a plethora of detectors have been
designed by following procedures that include statistical
tests with modified hypotheses, asymptotic arguments, ap-
proximations, and ad hoc strategies [2], [3], [4], [5], [6].

However, experimental data [7], [8], [9], [10], [11] have
demonstrated that the Gaussian assumption is not always
valid; in particular, in high-resolution radars (especially
at low grazing angles), non-Gaussian clutter is generally
modeled as a compound-Gaussian process that, when ob-
served on sufficiently short time intervals, degenerates into
a spherically invariant random process (SIRP), namely
the product of a random variable (RV) (texture) times a
Gaussian process [12], [13]. An asymptotically optimum
approximation of the GLRT to detect a coherent signal
when the disturbance is modeled in terms of an SIRP has
been derived in [14]. Therein the covariance matrix of the
disturbance is supposed to be known at the design stage
and the corresponding detector is commonly referred to
as the normalized matched filter (NMF). Remarkably, in
clutter-dominated, non-Gaussian environments such a de-
tector possesses the constant false alarm rate (CFAR) prop-
erty with respect to the probability density function (PDF) of
the texture. Adaptive versions of the aforementioned NMF
(ANMF) can be obtained when secondary data are available
by means of the estimate-and-plug paradigm [15], [16].
Specifically, a sample covariance matrix based on normal-
ized secondary data can be used to estimate the unknown
covariance matrix if the secondary data share the same co-
variance matrix of the disturbance in the CUT up to possibly
different power levels (the so-called heterogeneous environ-
ment) [17], [18]. Such a detector inherits the CFAR property
with respect to the power levels from the NMF, but it is not
CFAR with respect to the structure of the clutter covariance
matrix (even in clutter-dominated environments). It is com-
monly referred to as �-ANMF. Recursive estimators for
the structure of the clutter covariance matrix have been pro-
posed in [19], [20], [21], and [22] based on secondary data
drawn from a heterogeneous environment; plugging such
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estimators into the NMF in place of the unknown covariance
matrix can guarantee a distribution of the decision statistic
under the noise-only hypothesis independent of both the
power levels and the structure of the clutter covariance
matrix, provided that the environment is clutter dominated.
An approximation of the GLRT for heterogeneous environ-
ments has been proposed in [23]. Interestingly, exploiting a
specific initialization, it also guarantees the CFAR property
in clutter-dominated environments with respect to all of the
unknown parameters and may guarantee better performance
than the previously proposed estimate-and-plug solutions.
Finally, in [24], adaptive detectors for point-like targets in
heterogeneous scenarios have been devised by resorting
to the so-called directional statistics and the expectation-
maximization (EM) algorithm [25], [26].

All the aforementioned contributions share the common
assumption that the structure of the disturbance covariance
matrix remains unaltered over the entire extent (in space) of
the secondary data window. Actually, it depends on the spa-
tial distribution of the clutter point scatterers, and in prac-
tice, it is not guaranteed that such a distribution is invariant
with respect to the range. In fact, heterogeneous terrains in
the form of variations in topology, land cover variations, and
land–sea interfaces might lead to different structures for the
disturbance covariance matrix [27]. Accounting for these
variations at the design stage and exploiting the maximum
likelihood (ML) approach yield optimization problems that,
from a mathematical point of view, become very difficult
and it is not guaranteed to obtain closed-form expressions
for their solutions. For this reason, suboptimum approaches
have been pursued such as in [28] and [29] where the
EM algorithm has been used to address the direction of
arrival estimation problem and clutter clusterization in the
presence of heterogeneities (i.e., clutter returns character-
ized by possibly different covariance structures). Finally,
the EM algorithm has been employed in [30] to devise
detection architectures capable of classifying the range bins
according to their clutter properties and detecting possible
multiple targets whose positions and number are unknown.
Therein, the covariance matrix of each range cell is assumed
to belong to a finite set of different classes.

With the aforementioned remarks in mind, in this article,
we address the detection of a coherent point-like target
under a new heterogeneous scenario where both clutter
power levels and covariance structures are modeled as
parameters that can vary over the range. Specifically, we
formulate the detection problem assuming that in each range
cell the disturbance components are non-Gaussian but can
be modeled as a mixture of Gaussian terms, each with
zero-mean and covariance matrix given by one out of L
low-rank covariance matrices, representative of classes of
different heterogeneous clutter (e.g., originating from land,
sea, etc.), plus thermal noise with unknown power. To the
best of authors’ knowledge, these more general assumptions
have not yet been investigated in the context of target
detection in heterogeneous environments. We then provide
the following contributions.

1) We formulate the binary hypothesis testing problem
using a latent variables model: hidden random vari-
ables (weights of the mixture model) are introduced
to specify in a probabilistic manner the clutter in each
range cell. For this problem, the GLRT-based detec-
tor that adaptively estimates the statistical properties
of the disturbance is derived.

2) To overcome the intractability of the ML estimation
problem stemming from the GLRT approach, we
propose a suitable strategy based on the EM algo-
rithm, which provides approximate ML estimates of
the unknown parameters under both hypotheses and
efficiently solve the detection problem. The outcome
of the EM is also used to derive an alternative deci-
sion scheme based on the likelihood-ratio test (LRT)
fed by the maximum a posteriori (MAP) classifica-
tion of the disturbance distribution in the CUT, i.e.,
a detector that decides based on the most probable
environment at hand.

3) We conduct an extensive performance analysis to
test the effectiveness of the proposed detectors in
terms of detection capabilities, false alarms control,
and robustness to mismatches on the assumed non-
Gaussian heterogeneous disturbance model. The al-
gorithms are validated both on synthetic data as
well as on two different experimental radar datasets
(PhaseOne and IPIX) including different types of
heterogeneous clutter (land and sea, respectively),
and also compared against the state-of-the-art de-
tectors. Results show that the proposed strategies
guarantee noticeable advantages in terms of detec-
tion performance for a preassigned value of the
false alarm probability over state-of-the-art methods.
Moreover, on real data, the proposed strategies tend
to guarantee values of the false alarm rate closer to
the nominal one than all the considered competitors
except for one of them that, however, experiences an
important detection loss with respect to the proposed
approaches.

The rest of this article is organized as follows. Section
II deals with the problem formulation, while Section III
is devoted to the design of the newly proposed decision
schemes relying on the EM algorithm. Section IV assesses
the performance of the proposed algorithms also in com-
parison with natural competitors over synthetic and real
recorded data. Finally, Section V concludes this article.

Notation: Vectors and matrices are denoted by boldface
lower case and upper case letters, respectively. Symbols
det(·), (·)−1, (·)T , and (·)† denote the determinant, inverse,
transpose, and conjugate transpose, respectively. As to
numerical sets, C is the set of complex numbers, CN×M

is the Euclidean space of (N × M )-dimensional complex
matrices, and CN is the Euclidean space of N-dimensional
complex vectors. The nth entry of the vector x is denoted
by [x]n. The symbol 0 denotes a matrix of zeros of proper
dimensions, while the identity matrix of size N × N is indi-
cated by IN . The acronym RV means random variable, while
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IID means independent and identically distributed. The set
function P denotes a probability measure. We write x ∼
CNN (0, M) if x ∈ CN is a complex normal (N-dimensional)
vector with zero mean and (Hermitian) positive definite
covariance matrix M ∈ CN×N .

II. PROBLEM FORMULATION AND DEFINITIONS

The general radar detection problem for a coherent
point-like target can be formulated as the following hypoth-
esis test:{

H0 : z = n, zk = nk, k = 1, . . . , K
H1 : z = αv + n, zk = nk, k = 1, . . . , K

(1)

where z ∈ CN is the vector of samples from the CUT,
v ∈ CN is the known (space, time, or space-time) steering
vector, α ∈ C is an unknown parameter accounting for
channel propagation, radar cross section of the target, etc.,
the zks are secondary data, K ≥ N , and n, n1, . . . , nK are the
disturbance terms. As customary, secondary data are taken
from a window of cells adjacent in range to the CUT, and
are supposed free of signal components.

We resort to hidden random variables (latent variable
model [26]) to identify the covariance matrix modeling the
clutter components in each range cell. As a matter of fact,
we introduce the RV ck for the kth secondary range cell (and
c for the CUT) that takes on the value l with probability pl ,
l = 1, . . . , L, namely P(ck = l ) = pl (P(c = l ) = pl ), and
ck = l (c = l) implies that the N-dimensional noise vector
nk (n) is a complex normal vector with covariance matrix

Rl + σ 2
wIN ∈ CN×N . (2)

In the last equation, Rl is an unknown low-rank1 positive
semidefinite matrix with known rank r < N , and σ 2

w > 0 is
the unknown level of the thermal noise. Due to the inherent
complexity of the considered problem, we suppose that L is
less than the number K of secondary data. In addition, we
suppose that c, c1, . . . , cK are IID RVs.

It follows that n is modeled by a multivariate contam-
inated normal distribution, i.e., a convex mixture model
of Gaussian terms, each conditioned on one of the L
classes. Otherwise stated, n|c = l ∼ CNN (0, Rl + σ 2

wIN ),
and hence, the (unconditional) PDF of n is given by

f (n;P0) =
L∑

l=1

pl
1

πN det
(
Rl + σ 2

wIN
)

× exp
[
−n† (Rl + σ 2

wIN
)−1

n
]

(3)

1Notice that in space-time adaptive processing (STAP), the disturbance
covariance matrix exhibits a structure that comprises the sum of (white)
noise and clutter covariances, with the clutter component being positive
semidefinite and rank deficient [31], [32], [33]. For a uniform array and for
fixed pulse repetition frequency, the space-time clutter covariance matrix
is essentially low rank due to the inherent oversampling nature of the STAP
architecture (see [34] and references therein). In addition, the rank of the
clutter covariance matrix is an indicator of both severity of the clutter
scenario and the number of degrees of freedom required to equalize the
clutter component [35], [36], [37], [38].

where we recall that pl is the probability that c = l . For
future reference, we indicate by P0 the set of the unknown
parameters in the aforementioned PDF associated to the H0

hypothesis, namely p1, . . . , pL, σ 2
w and the elements of the

set of the deterministic entries of the positive semidefinite
matrices R1, . . . , RL, sayR. Thus,P0 = {p1, . . . , pL, σ 2

w} ∪
R. Notice that some of the entries of the covariance matrices
are related by a one-to-one mapping (due to Hermitian
symmetry), thus impacting the set of unknowns forming
R.

Similarly, the PDF of nk is given by

f (nk;P0) =
L∑

l=1

pl
1

πN det
(
Rl + σ 2

wIN
)

× exp
[
−n†

k

(
Rl + σ 2

wIN
)−1

nk

]
. (4)

Assuming that n and the nks are independent random vec-
tors, it follows that the logarithm of the joint PDF of z and
Z = [z1 · · · zK ] is given by

L0 (z, Z;P0) = log f (z;P0) +
K∑

k=1

log f (zk;P0) (5)

under H0 and

L1 (z, Z;P1) = log f (z − αv;P0) +
K∑

k=1

log f (zk;P0)

(6)
under H1 with P1 = P0 ∪ {α}.

Under these assumptions, we aim at estimating the
unknown probabilities pl > 0,

∑L
l=1 pl = 1, together with

all the other unknown parameters from the available data.
We remark that the solution of the corresponding hypothesis
test via GLRT, for this rather general clutter model, based
on a convex mixture of Gaussian terms, is a challenging
problem. Thus, to derive an adaptive detector able to esti-
mate the resulting large number of parameters involved in
the setsP0 andP1, we adopt the EM algorithm, which yields
approximate local maxima of the log-likelihood functions
(L0 and L1) required in the GLRT. Moreover, we present
two different ways to solve the detection problem.

The first decision scheme relies on the GLRT where the
compressed likelihoods,2 modeled according to the contam-
inated normal distribution, are computed by implementing
the EM algorithm under both hypotheses. The correspond-
ing detector will be referred to in the following as EM-based
GLRT (labeled EM-GLRT). The EM algorithm can also
be used to construct the MAP estimates of c and the cks,
given the CUT and the secondary data, and eventually to
select a reasonable Gaussian distribution of the disturbance
within each cell (a point better clarified in due course). An
ad hoc detector, based upon the LRT and implemented by
replacing the actual contaminated normal distribution of the
CUT with the Gaussian distribution associated to the MAP

2Compressed likelihood refers to the maximum of the likelihood function
with respect to its unknown parameters.
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estimates of c, will also be investigated. Such a detector
will be referred to as the EM-MAP-based LRT (labeled
EM-MAP-LRT).

III. DESIGN OF DETECTORS FOR HETEROGENEOUS
ENVIRONMENTS

As already anticipated, to solve the hypothesis testing
problem (1) under the modeling assumptions of Section II,
we propose two different design approaches. Let us start
with the plain GLRT relying on the (approximate) ML
estimates of the unknown parameters obtained by the EM
algorithm (under both hypotheses). The logarithm of the
GLRT is given by

max
P1

L1 (z, Z;P1) − max
P0

L0 (z, Z;P0) (7)

from which the EM-GLRT decision scheme is obtained by
replacing the ML estimates with their EM counterparts, i.e.,

�EM-GLRT(z, Z) = L1

(
z, Z; P̂1

)− L0

(
z, Z; P̂0

) H1

≷
H0

η (8)

where η is the threshold to be set according to the desired
probability of false alarm (Pfa), while P̂1 and P̂0 denote the
estimates of P1 and P0, computed by the EM algorithm.

An alternative to the aforementioned approximation
of the GLRT can be obtained by considering the MAP
estimates of c (i.e., the class of the CUT) obtained starting
from the posterior probability

P
(
c = l|z; P̂1

)
(9)

computed by the EM algorithm under H1 and the analogous
quantity computed under H0. Accordingly, we can estimate
the value c takes on under H0 and H1, respectively. As a
matter of fact, we compute

l̂1 = arg max
l

P
(
c = l|z; P̂1

)
(10)

under H1 and

l̂0 = arg max
l

P
(
c = l|z; P̂0

)
(11)

under H0. It turns out that the EM-MAP-LRT is given by

�EM-MAP-LRT(z, Z) = f̃
(
z; α̂, R̂̂l1

, σ̂ 2
w1

)
f̃
(
z; 0, R̂̂l0

, σ̂ 2
w0

) H1

≷
H0

η (12)

where

f̃
(
z;α, Rl , σ

2
w

) = 1

det
(
Rl + σ 2

wIN
)

× exp
[
−(z − αv)† (Rl + σ 2

wIN
)−1

(z − αv)
]
. (13)

R̂̂l0
and σ̂ 2

w0 denote the estimates of Rl and σ 2
w under H0,

respectively (again computed by the EM algorithm); simi-
larly, α̂, R̂̂l1

, and σ̂ 2
w1 are the estimates of α, Rl , and σ 2

w under
H1.

We finally derive the EM algorithm for the problem
addressed in this work, which is necessary to implement
the proposed decision schemes. This approach allows us to
recursively estimate the parameters of the sets Pi, i = 0, 1.

For the sake of clarity, let us denote by3 �l the set formed by

σ 2
w and the entries of Rl , and by P̂

(h−1)
i and �̂

(h−1)
l the sets of

the estimates of the parameters in Pi and �l , respectively, at
the (h − 1)th iteration of the EM algorithm. The hth iteration

computes P̂
(h)
i starting from P̂

(h−1)
i to guarantee

Li(z, Z; P̂(h)
i ) ≥ Li(z, Z; P̂(h−1)

i ). (14)

The EM procedure consists of the following two steps,
referred to as the E-step and the M-step.

A. E-Step

The E-step is tantamount to implementing the update
rule

q(h−1)
k (l ) = P

(
ck = l|zk; P̂(h−1)

0

)
=

f
(

zk|ck = l; �̂
(h−1)
l

)
p̂(h−1)

l∑L
i=1 f

(
zk|ck = i; �̂

(h−1)
i

)
p̂(h−1)

i

(15)

under both hypotheses for the secondary data, while for the
primary data, we have

q(h−1)(l ) = P
(

c = l|z; P̂(h−1)
0

)
=

f
(

z|c = l; �̂
(h−1)
l

)
p̂(h−1)

l∑L
i=1 f

(
z|c = i; �̂

(h−1)
i

)
p̂(h−1)

i

(16)

under H0 and

q̃(h−1)(l ) = P
(

c = l|z; P̂(h−1)
1

)
=

f
(

z − α̂(h−1)v|c = l; �̂
(h−1)
l

)
p̂(h−1)

l∑L
i=1 f

(
z − α̂(h−1)v|c = i; �̂

(h−1)
i

)
p̂(h−1)

i

(17)

under H1, respectively. In the aforementioned formulas,
f (·|ck = l; �̂

(h−1)
l ) and f (·|c = l; �̂

(h−1)
l ) are the estimates

of the conditional PDFs of zk and z under H0 (or z − αv un-
der H1) given ck = l and c = l , respectively, at the (h − 1)th
iteration of the EM algorithm, namely the PDF of a com-
plex normal random vector with zero mean and covariance

matrix given by R̂
(h−1)
l + σ̂ 2(h−1)

w IN , with R̂
(h−1)
l and σ̂ 2(h−1)

w

the estimates of Rl and σ 2
w, respectively, at the (h − 1)th

iteration. Similarly, α̂(h−1) and p̂(h−1)
l are the estimates of α

and pl , respectively, at the previous step.

B. M-Step

We now focus on the M-step under the H1 hypothesis,
as it provides as special case also the equations for the H0

hypothesis (for which α = 0, hence, does not need to be
estimated). We can write that

P̂
(h)
1 = arg max

P1

[
g1

(
p1, . . . , pL,R, σ 2

w

)
3For notational convenience, we omit the dependence of the estimates on
the hypothesis on which they are obtained.
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+ g2

(
p1, . . . , pL,R, σ 2

w, α
)]

(18)

with

g1

(
p1, . . . , pL,R, σ 2

w

) =
K∑

k=1

L∑
l=1

q(h−1)
k (l )

× log
f (zk|ck = l; �l ) pl

q(h−1)
k (l )

(19)

and

g2

(
p1, . . . , pL,R, σ 2

w, α
) =

L∑
l=1

q̃(h−1)(l )

× log
f (z − αv|c = l; �l ) pl

q̃(h−1)(l )
(20)

where f (·|ck = l; �l ) and f (·|c = l; �l ) are the conditional
PDFs of zk and z under H0, given ck = l and c = l , re-
spectively. The maximization with respect to the pls is
tantamount to solving the following optimization problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
pl ,l=1,...,L

L∑
l=1

[(
K∑

k=1

q(h−1)
k (l ) + q̃(h−1)(l )

)
log pl

]

s.t.
L∑

l=1

pl = 1

.

(21)
By applying the method of Lagrange multipliers, it is not
difficult to prove (see Appendix A) that

p̂(h)
l = 1

K + 1

[
K∑

k=1

q(h−1)
k (l ) + q̃(h−1)(l )

]
. (22)

To the best of authors’ knowledge, the problem of
estimating the remaining parameters in the right-hand side
of (18) cannot be solved in closed form. Thus, we pursue
an alternative path and seek for an approximate solution
using the following two-step procedure: first we estimate
the disturbance-related parametersR and σ 2

w by maximizing
g1 only, which is a function of z1, . . . , zK , thus obtaining

R̂
(h)

and σ̂ 2(h)
w ; then, we plug these estimates into g2, which

is a function of z, in place of R and σ 2
w and maximize it

with respect to the remaining target-related parameter α

obtaining α̂(h). Similar suboptimal strategies have been used
in the radar signal processing literature to conceive many
detectors as, for instance, the well-known adaptive matched
filter (AMF) [15].

We start with the maximization of g1, which can be
conducted using the results reported in [29, Proposition 3]
that we restate here for the sake of completeness.

PROPOSITION 1 An approximation to the maximizer of the
function

g′
1(R, σ 2

w ) =
K∑

k=1

L∑
l=1

q(h−1)
k (l ) log f (zk|ck = l; �l ) (23)

can be obtained as follows:

σ̂ 2(h)
w =

{
L∑

l=1

N∑
n=r+1

γ
(h−1)

l,n

}/{ L∑
l=1

K∑
k=1

q(h−1)
k (l )(N − r)

}
(24)

and

R̂
(h)
l = Û

(h)
l �̂

(h)
l (Û

(h)
l )†, l = 1, . . . , L (25)

with Û
(h)
l the unitary matrix whose columns are the eigen-

vectors corresponding to the eigenvalues γ
(h−1)

l,1 ≥ γ
(h−1)

l,2 ≥
. . . ≥ γ

(h−1)
l,N of the matrix S(h−1)

l = ∑K
k=1 q(h−1)

k (l )zkz†
k and

�̂
(h)
l = diag

(
max

{
γ

(h−1)
l,1∑K

k=1 q(h−1)
k (l )

− σ̂ 2(h)
w , 0

}
, . . . ,

max

{
γ

(h−1)
l,r∑K

k=1 q(h−1)
k (l )

− σ̂ 2(h)
w , 0

}
, 0, . . . , 0

)
. (26)

As a final comment, notice that, although the afore-
mentioned proposition assumes that R1, . . . , RL have the
same known rank r, the result can be generalized to the
case that the matrices have unknown, possibly different,
values of the rank [29]. Moreover, it is important to remark
that the EM algorithm derived in the present contribution
conveniently uses only a part of the results in [29]: in fact,
while [29] deals with clutter classification, here we address
target detection, and hence, in addition to estimating the
unknown disturbance parameters (appearing in g1), it is
also necessary to handle unknown parameters associated
to the presence of a target buried in a heterogeneous clutter
environment (appearing in the g2 function).

Maximizing g2 with respect to α is tantamount to max-
imizing

g′
2 (α) =

L∑
l=1

q̃(h−1)(l ) log f
(

z − αv|c = l; �̂
(h)
l

)
=

L∑
l=1

q̃(h−1)(l )
[
−N log π − log det

(̂
R

(h)
l + σ̂ 2(h)

w IN

)
− (z − αv)†

(
R̂

(h)
l + σ̂ 2(h)

w IN

)−1
(z − αv)

]
where f (·|c = l; �̂

(h)
l ) is the estimate of the conditional

PDF of z − αv, under H1 and given c = l , at the hth iteration
of the EM algorithm. Moreover, neglecting additive terms
independent of α, we introduce the function

g′′
2 (α) = − (z − αv)† A(h) (z − αv)

with

A(h) =
[

L∑
l=1

q̃(h−1)(l )
(

R̂
(h)
l + σ̂ 2(h)

w IN

)−1
]

.

It is not difficult to show that the maximum is achieved at

α̂(h) =
∑L

l=1 q̃(h−1)(l )v†
l ζl∑L

l=1 q̃(h−1)(l )v†
l vl

(27)
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Fig. 1. Possible signal processing unit architecture that includes the
proposed approach.

where

vl =
(

R̂
(h)
l + σ̂ 2(h)

w IN

)−1/2
v (28)

and

ζl =
(

R̂
(h)
l + σ̂ 2(h)

w IN

)−1/2
z. (29)

Estimation of P̂0 under H0 is tantamount to maximizing g in
(18) with α = 0 and can be conducted exploiting the same
proposition used to maximize g1 under H1.

Fig. 1 shows a possible architecture that incorporates
the proposed approach into the signal processing unit of a
radar system.

C. EM Initialization

We now propose how to properly initialize the EM
algorithm. In this respect, we assume equiprobable priors
for the values of pl ’s, namely, p̂(0)

l = 1/L, whereas the initial

value of the clutter covariance matrices R̂
(0)
l is set according

to the following strategy:

1) for each range bin, compute the power g(k) = 1
N z†

kzk ,
k = 1, . . . , K ;

2) sort the power values g(k)’s in ascending order,
namely g̃(1) ≤ · · · ≤ g̃(K );

3) denote by z̃i the vector corresponding to g̃(i);
4) use the subsets of4K/L vectors z̃i, i = (l − 1) K

L +
1, . . . , l K

L , representative of a coarse similarity
among the different range bins, to compute the fol-
lowing matrix, that will be used to initialize Rl

R̃
(0)
l = L

K

l K
L∑

i=(l−1) K
L +1

z̃i z̃
†
i , l = 1, . . . , L. (30)

To set the initial value of the noise power, we first
compute the sample covariance matrix � = (1/K )ZZ†. De-
noting with λ1 ≤ λ2 ≤ · · · ≤ λN the ordered eigenvalues of
�, we set

σ̂ 2(0)
w = 1

N − r

N−r∑
j=1

λ j . (31)

The initial estimate of Rl is computed by removing from
(30) the estimated contribution of the noise power (31) as

R̂
(0)
l = R̃

(0)
l − σ̂ 2(0)

w IN , l = 1, . . . , L. (32)

4For the considered values of K and L, the ratio K/L is an integer.

As to the complex amplitude α, we set its initial value
(only required under the H1 hypothesis) as

α̂(0) = v†z
v†v

(33)

that is the ML estimate of α in white Gaussian noise. The
discussion about the number of iterations required to obtain
P̂1 and P̂0 is part of the analyses conducted in the next
section.

IV. PERFORMANCE ASSESSMENT ON SYNTHETIC
AND REAL DATA AND RESULTS

In this section, we present an extensive performance
analysis of the proposed detectors based on both synthetic
and real data. We start by determining the number of iter-
ations required to compute P̂1 and P̂0. The analysis over
synthetic data allows us to first evaluate the advantages in
terms of nominal detection performance of the proposed
approaches against that of the natural competitors. The anal-
ysis also tests the robustness of the newly proposed decision
schemes with respect to possible mismatches related to the
design assumptions. In the second part, the behavior of
the proposed detectors is assessed on live data recorded
by real radar systems. Such data are characterized by the
presence of heterogeneous clutter disturbances in different
operational environments.

A. Simulation Setup

The numerical assessment on synthetic data is con-
ducted assuming N = 8 and considering two different con-
figurations of K and number of clutter classes L, i.e.,
K = 48, L = 2, and K = 96, L = 3. It is important to stress
here that the proposed approach goes beyond the limitations
of the conventional radar window used to select secondary
data. We use a spatial steering vector v steered at 0◦. A de-
sired Pfa = 10−3 is assumed and the performance is assessed
by Monte Carlo simulations with 100/Pfa independent trials
to estimate the thresholds; the Pd values are obtained over
103 trials. We adopt the general definition for the signal to
clutter-plus-noise ratio (SCNR)

SCNR = |α|2v†(RCUT + σ 2
wIN )−1v (34)

with RCUT denoting the covariance matrix associated to the
specific clutter class affecting the returns in the CUT (i.e.,
one among the L possible matrices Rl , l = 1, . . . , L). The
power of the thermal noise is instead set to σ 2

w = 0.5.
1) Clutter Covariance Matrix: For simplicity, we con-

sider a spatial-only processing performed through a uni-
formly spaced linear array of N identical and isotropic (at
least in the angular sector of interest) sensors with interele-
ment distance equal to λ/2, with λ being the wavelength
corresponding to the radar carrier frequency. Accordingly,
clutter samples can be modeled as the summation of indi-
vidual patch returns at distinct angles [39], leading to the
following covariance structure:

Rl = σ 2
c,l

∑
φl

i ∈
l

v(φl
i )v(φl

i )† (35)
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where

1) v(φl
i ) denotes the spatial steering vector having the

nth entry equal to [v(φl
i )]n = 1/

√
Nejπn sin φl

i , n =
0, . . . , N − 1;

2) 
l = {φl
1, φ

l
2, . . . , φ

l
Nl

c
}; for simplicity, we assume

that the number of patch returns is the same for each
class, namely Nl

c = Nc, ∀l .

We set Nc = 3, and hence, r = 3 (in fact, Nc is the rank of
Rl ). The specific Nc directions for each class of clutter used
in the simulations are 
1 = {−5.96◦, −1.76◦, −2.97◦},

2 = {−11.24◦, 4.86◦, −9.17◦}, and 
3 = {13.95◦,
−14.17◦, 3.13◦}, respectively.5 As to σ 2

c,l , it denotes
the lth class clutter power and is set as σ 2

c,l = 10l dB,
l = 1, . . . , L.

2) State-of-the-Art Competitors: We compare the per-
formance of the newly proposed detectors against a set of
different algorithms designed to operate in heterogeneous
environments. More specifically, we consider the ANMF
detectors obtained by employing different estimates of the
disturbance covariance matrix.

1) the �-ANMF in [18] relying on a sample covariance
matrix based on normalized secondary data;

2) the R-ANMF detector, relying on the recursive pro-
cedure devised in [19];

3) the RP-ANMF detector based on a recursive estimate
exploiting the persymmetric structure of the covari-
ance matrix proposed in [21].

In addition, we also consider the approximate GLRT
(AGLRT) detector proposed in [23], proven to be a viable
approach to detect coherent targets in clutter-dominated
heterogeneous environments. The considered competitors
represent the state-of-the-art references for radar detection
in heterogeneous scenarios.6 The number of iterations used
by the R-ANMF and RP-ANMF detectors to recursively
estimate the clutter covariance matrix is set to 3, being
this number sufficient to guarantee an acceptable conver-
gence as corroborated by the related literature. On the other
hand, the AGLRT uses 20 iterations in its cyclic estimation
procedures.

B. Results on Synthetic Data

First, we set K = 48, L = 2, and as preliminary step, an-
alyze the requirements of the proposed procedures in terms
of number of EM iterations. To this aim, we consider as
metric the absolute value of the relative difference between
the values assumed by the “compressed” log-likelihood

functions, i.e., L0(z, Z; P̂(h)
0 ) or L1(z, Z; P̂(h)

1 ), over two
successive iterations h − 1 and h, evaluated under H0, as

5Each φl
i is drawn from a uniform distribution within the first null-to-null

beamwidth of the linear array (whose extent is about 4/N).
6Notice that such competitors are the ultimate achievements of different
research groups from the radar community, who contributed to their
derivation and analysis. In addition to [18], [19], and [21], the interested
reader is also referred to, e.g., [2], [7], [9], [10], [20], [22], and [40].

Fig. 2. Average �Li (h) as a function of the iteration number h.

Fig. 3. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, for the case N = 8, K = 48, and

L = 2.

a function of the number of iterations h, namely, i = 0, 1

�Li(h) =
∣∣∣∣∣∣
(
Li

(
z, Z; P̂(h)

i

)
− Li

(
z, Z; P̂(h−1)

i

))
Li

(
z, Z; P̂(h)

i

)
∣∣∣∣∣∣ . (36)

In Fig. 2, we report the average values of �Li(h) under
both hypotheses as a function of the number of iterations h,
computed over 105 Monte Carlo trials. As it can be observed,
the curves quickly decrease with the iteration number under
both hypotheses, and already at h = 10 achieve variations
lower than 10−4. Notice that such curves represent the log-
likelihood variations, and hence, do not have to experience
an increasing monotone behavior unlike the sequence of
likelihood values. Similar results are obtained also for other
parameters setting, hence are omitted for brevity. Therefore,
in the following, we will consider for the proposed detectors
a number of maximum iterations equal to 10.

The detection performances in terms of Pd as a function
of the SCNR are shown in Fig. 3. It can be observed that
both the proposed detection schemes significantly outper-
form the state-of-the-art competitors over the whole range
of SCNR, with a gap that in the low SCNR regime is
around 4 dB for the EM-MAP-LRT, and increases up to
about 5 dB for the EM-GLRT, when compared with the
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Fig. 4. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, assuming N = 8, K = 48, and

L = 2, using a compound-Gaussian model for the clutter.

�-ANMF detector, the latter providing the best Pd ’s among
the considered competitors. These interesting outcomes
demonstrate improved performance, i.e., a better capability
to exploit the available information in the detection task,
despite the higher number of free parameters to be esti-
mated. Differently put, although more parameters need to
be estimated to cope with the L clutter classes, the proposed
detectors are able to learn the different structures and powers
associated with the diverse clutter conditions; consequently,
they fully adapt to heterogeneous environments and offer
superior performance compared to existing approaches that
model clutter heterogeneity only through different power
levels. Furthermore, the behavior of the EM-MAP-LRT also
reveals that the proposed EM-based recursive estimation
scheme is able to correctly infer the specific class of clutter
the CUT is embedded in. As a byproduct, it can be used for
a coarse clutter classification.

To test the robustness of the proposed approaches to mis-
matches with respect to the assumed heterogeneous model,
we now stick to different scenarios that match the design
assumptions of the considered competitors. More specif-
ically, we change the distribution of the disturbance and
assume for the clutter contribution a compound-Gaussian
model characterized by a texture component distributed as
the square root of a Gamma RV with parameters (ν, 1/ν)
(so that the mean square value is unitary), with ν = 0.5,
multiplied by a complex Gaussian vector with zero mean
and covariance matrix R. As to R, we set it equal to the
covariance matrix of the class l = 1 generated according
to (35). In addition, texture values of different range cells
(i.e., CUT and secondary data) are supposed to be indepen-
dent RVs. The disturbance also includes a thermal noise
component.

The obtained results in terms of Pd as a function of the
SCNR are reported in Fig. 4. Remarkably, the two proposed
detectors incur a very limited gap compared to the consid-
ered competitors. Overall, we can conclude that the novel
detectors offer performance comparable to state-of-the-art
competitors in environments where the clutter has the same

Fig. 5. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, for the case N = 8, K = 96, and

L = 3.

structure (covariance matrix) and its heterogeneity is related
to a varying level of powers in range, whereas significant
improvements are achieved when clutter heterogeneity (in
range) is described by (a limited number of) different co-
variance matrices. As better discussed later in Section IV-C,
these conditions can be typically found in real experimental
data.

To corroborate the aforementioned results, we investi-
gate a second configuration consisting in K = 96 secondary
data and L = 3, which is representative of a processing
performed over a larger portion of the monitored area in-
cluding an additional class of clutter. In Fig. 5, we report the
curves of the Pd as a function of the SCNR for the proposed
detectors and considered competitors. The obtained perfor-
mance confirms the superiority of the proposed detection
schemes over the state-of-the-art. Remarkably, the proposed
EM-GLRT guarantees an advantage that reaches more than
10 dB for Pd = 0.8 compared to the �-ANMF and RP-
ANMF, and even higher with respect to the R-ANMF and
the AGLRT. The EM-MAP-LRT also provides significantly
higher Pd values than the ANMF and AGLRT detectors,
though with a slightly smaller performance gap (about 8 dB
at Pd = 0.8) compared to the EM-GLRT algorithm. On the
other hand, it is also interesting to observe the worse perfor-
mance of the ANMF detectors: this behavior is related to the
increased level of heterogeneity of the clutter returns along
the different range bins, and reveals the inability of ANMF
detectors to adapt to this type of heterogeneity. Similarly, the
AGLRT detector is inherently penalized by the underlying
assumption that the structure of the clutter covariance matrix
remains the same across the L clutter classes, and that the
heterogeneity of the clutter can be sufficiently captured by
just considering different power levels in each range bin.
Finally, the superior performance of the EM-GLRT with
respect to the EM-MAP-LRT can be explained by the fact
that the former exploits all the available information, while
the decision statistic of the EM-MAP-LRT considers only
the class returned by the MAP classifier. As a consequence,
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Fig. 6. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, assuming N = 8, K = 96, and

L = 3, using a compound-Gaussian model for the clutter.

TABLE I
Average Execution Time (In Seconds) of the Considered Detectors for

N = 8, K = 48

the remaining information related to the other classes is not
exploited.

We also assess the performance of the proposed detec-
tors in the presence of a mismatch on the assumed design
model, as done for Fig. 4. The obtained results, reported in
Fig. 6, confirm that both the proposed EM-MAP-LRT and
EM-GLRT are quite robust against the introduced mismatch
with a limited loss with respect to the competitors, which
however operate under conditions perfectly tailored to their
design assumptions.

We conclude the analysis by quantifying the computa-
tional load of the proposed algorithms, in comparison with
the considered state-of-the-art detectors. To this aim, we
have run all the algorithms on the same hardware platform
and computed the average execution time on 100 distinct
trials. The findings are presented in Table I. Notably, the
�-ANMF detector is the fastest among all the considered
detectors. This can be attributed to its lightweight process-
ing that does not entail any iterative or recursive steps. The
R-ANMF and RP-ANMF methods exhibit only slightly
higher execution times, attributable to their recursive co-
variance matrix estimation. Comparatively, the proposed
EM-GLRT showcases an average execution time in between
one and two orders of magnitude greater than R-ANMF and
RP-ANMF. This is noteworthy considering that the EM pro-
cedure adaptively estimates a larger number of parameters
(within the P̂0 and P̂1 sets) to account for the more complex
heterogeneous environment at hand. The EM-MAP-LRT is
only slightly more complex than the EM-GLRT owing to
the two additional 1-D maximizations performed in (10)
and (11) to infer the most probable clutter class in the
CUT under the two hypotheses. In contrast, the AGLRT

algorithm shows the highest average execution time, around
two times greater than the proposed EM-GLRT. Overall, it
is crucial to emphasize that all recorded average execution
times are measured in absolute temporal units, meaning that
all detectors necessitate mere fractions of a second for their
execution.

C. Results on Real Radar Data

In this section, we assess the effectiveness of the pro-
posed detection schemes when applied on two real radar
datasets, each characterized by a different type of heteroge-
neous clutter. Clearly, such data do not match the underlying
design assumptions used to derive the proposed detectors
and described in Section II. Therefore, the analyses con-
ducted on these experimental data allow us to unveil to what
extent the novel approaches are able to effectively adapt to
heterogeneous environments found in real operating sce-
narios.

1) Analysis on PhaseOne Data: We start the analysis
by considering the L-band land clutter data, recorded in
1985 using the MIT Lincoln Laboratory Phase One radar at
the Katahdin Hill site, MIT Lincoln Laboratory. We process
the dataset contained in the file H067037.2, which consists
of 30 720 temporal returns from 76 range cells with VV
polarization. From the 3-D-clutter intensity field of the
dataset H067037.2, reported in [29, Fig. 8], it is evident
that the monitored area consists of two major regions, the
first extending from range bin 1 to 48, and the second one
from 49 to 76. As discussed in [41], these two macroregions
correspond to range cells containing agricultural fields and
windblown vegetation. At a finer scale analysis, it is possible
to identify five main categories of terrains spread across the
two macroregions. In what follows, we set r = 2 [42] and
consider different values of L; we refer the reader to [41],
[43], [44], and references therein for more details about the
PhaseOne datasets.

a) Pd performance analysis: We first compute the
thresholds for all detectors in order to guarantee exactly the
same Pfa on the range bin R = 37, selected as CUT, with the
secondary data picked from range bins adjacent to the CUT,
with indices in [R − K/2, R − 1] ∪ [R + 1, R + K/2]. The
number of primary data is set to N = 8 pulses, whereas the
number of secondary data is set to K = 72 so as to cover
the whole extent (in range) of the dataset. Given the limited
availability of samples, thresholds are set to guarantee a
Pfa = 10−2, and from one trial to the next one, the data
window is slid by three pulses until a sufficient number of
100/Pfa = 104 trials is reached. The Pd is estimated in a sim-
ilar manner using 103 trials, with data generated by adding
a synthetic target αv to the CUT at different values of the
SCNR, with v = [1 exp( j2π fd ) · · · exp( j2π (N − 1) fd )]T ,
being fd the normalized Doppler frequency. For the specific
dataset at hand, the value of fd is set to 0 in accordance
with the normalized power spectral density (PSD) curves
reported in [29], which show that the clutter exhibits a
peak in correspondence of 0 Hz. This is tantamount to
considering the average worst case of a target embedded
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Fig. 7. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, assuming N = 8, K = 72, for

varying settings of L, on the PhaseOne real dataset, using as CUT the
range bin 37.

in clutter. Finally, we redefine the SCNR as |α|2/σ̂ 2, where
σ̂ 2 is the average power of the clutter plus noise estimated
from the I/Q samples of each range bin.

In Fig. 7, we report the Pd curves of all the detectors
as a function of the SCNR, considering three different
choices of L, namely L = 2, L = 3, and L = 5. Remarkably,
the EM-GLRT and the EM-MAP-LRT confirm their su-
perior performance compared to state-of-the-art detectors,
providing an improvement in the detection power that is
already about 2 dB for L = 2. Under this setup, the proposed
algorithms are able to fit the heterogeneous environment
only on a larger spatial scale, following the dimension of
the two macroregions discussed previously. Accordingly,
in the estimation process they try to assign the CUT (both
algorithms) and the secondary data (only the EM-GLRT)
to one of the two possible clutter classes. When a value of
L = 5 is used to reparameterize the proposed algorithms, it
becomes possible to distinguish between all the five terrains
found in the dataset, allowing in turn a better adaptation of
the algorithms to the different clutter classes on a much
finer scale. This immediately translates into an evident
increase of the performance in terms of Pd , leading to an
improvement of up to about 5 dB compared to the ANMF
schemes and AGLRT.

b) Pfa sensitivity analysis: For completeness, we also
investigate the CFAR behavior of the considered detectors,
namely their sensitivity in terms of variations of the actual
Pfa from its nominal value. The analysis is conducted by
assuming that the thresholds for all the algorithms are sim-
ply set on synthetic data to guarantee a nominal Pfa = 10−2,
considering the sole presence of additive white noise in the
initial model given in (1) and (2), i.e., Rl = 0, l = 1, . . . , L,
and σ 2

w = 1. Since the size of the secondary data (K = 72)
occupies almost the entire extent (in range) of the PhaseOne
dataset to capture the heterogeneity of the observed sce-
nario, we opted to compute different estimates of the Pfa

using the temporal (slow time) dimension of the CUT (range
bin 37). More specifically, we consider three different time

TABLE II
P̂fa/Pfa for PhaseOne Dataset H067037.2, With Pfa = 10−2

windows (denoted as Window A, B, and C and labeled as
W-A, W-B, and W-C for short) that divide the first 30 000
samples of range bin 37 in equal parts (10 000 samples per
each). Within each window, the N-dimensional vector of
primary data is slid by 1 pulse until reaching the end of the
considered window. An estimate of the actual Pfa of each
detector, denoted by P̂fa, is then obtained by counting the
total number of false alarms across each individual temporal
window. The results reported in Table II reveal that the
proposed EM-MAP-LRT is the least sensitive to deviations
from the nominal Pfa, whereas the �-ANMF turns out to
be the most sensitive. Notably, the proposed EM-GLRT
shares the same weak sensitivity of the R-ANMF and
RP-ANMF detectors, while the AGLRT detector appears
slightly more sensitive. Overall, the analysis shows that the
proposed detectors guarantee Pfa values that do not deviate
too much from the desired nominal one when operating on
the PhaseOne dataset H067037.2, despite the fact that their
thresholds were set to a simplified synthetic model of white
noise only, which is clearly mismatched with respect to the
actual disturbance found in the dataset.

2) Analysis on IPIX Data: We now consider another
well-known real dataset collected by the McMaster IPIX
radar overlooking Lake Ontario from the shore in Grimsby,
in the winter of 1998; the database is freely available
in [45]. The acquisition system is a fully coherent X-band
radar, with advanced features such as dual transmit/receive
polarization. The radar was originally developed for ice-
berg detection, but after major upgrades between 1993 and
1998, it became a benchmark for testing advanced detection
algorithms. The dynamic range is 10 bits, the transmitted
power is 8 kW, the carrier frequency is 9.39 GHz (fixed), or
ranges from 8.9 to 9.4 GHz (agile), with a bandwidth of 25
MHz [45].

For the analysis purpose, we process the dataset file
19980223_165836_antstep.cdf (D84 for short), which con-
tains samples corresponding to ranges from 3000 to 3990 m,
with a range resolution of 30 m and for a total of 34 different
range bins with VV polarization. For each range bin, the
signal is recorded for 60 s, corresponding to a total of 60 000
pulses. The dataset has been preprocessed to remove mean
and normalize standard deviation from the I and Q channels
separately and to compensate the phase imbalance due to
hardware imperfections. In Fig. 8, we report the 3-D clutter
intensity field from the IPIX D84 dataset. Compared to
the PhaseOne dataset, which captures returns from land,
the sea clutter returns in the D84 are visibly contaminated
by power variations over the different range bins, clutter
discretes, and other outliers that introduce variations also
over the temporal (slow-time) domain. Overall, two main
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Fig. 8. 3-D normalized intensity field of clutter returns for IPIX D84
dataset.

Fig. 9. Normalized PSDs of clutter for IPIX D84 (VV polarization),
range bin 17, obtained using only the first, mid, and last 10 s of

acquisition.

regions extending from range bin 1 to 17 and from 18 to
34 can be identified. For a more detailed discussion on the
IPIX datasets, we refer the interested reader to [9], [46],
and [47].

To better inspect the strong heterogeneity of the D84
dataset, in Fig. 9, we report the normalized PSD for the
range bin 17. Different curves are obtained by applying
the Welch method [48] fed with data over the integer
set [Noffset + 1, Noffset + Nd ], where Nd is the number of
processed data and a 50% overlap between segments of
length Nw = 4 096 is considered; segments are multiplied
by a Blackman window (of length Nw) using the built-in
MATLAB function pwelch(x, window) (version 2020b).
By fixing Nd = 10 000, the parameter Noffset is then used to
select Nd samples corresponding to the first (Noffset = 0),
mid (Noffset = 20000), and last (Noffset = 50000) 10 s of
acquisition, respectively, so as to assess the variations of
the PSD over the slow time (i.e., intracell variations). Some
interesting conclusions can be deduced from the analysis of
Fig. 9. First, it is evident that the clutter has a peak around
about 80 Hz, and that the gap between the peak and the
floor levels at higher frequencies varies between about 25
and 40 dB. More generally, although the general shape of the
PSDs is shared among the three intervals of samples, curves
visibly differ among each other, revealing that the nature of
the clutter is nonstationary over time. Overall, Fig. 9 coupled
with other findings in [46] confirms a marked heterogeneity

Fig. 10. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, assuming N = 8, K = 32, for

L = 2, on the IPIX D84 dataset, using as CUT the range bin 17.

TABLE III
P̂fa/Pfa for IPIX Dataset D84, With Pfa = 10−2

of D84 in both fast time (spatial dimension) and slow time,
also with different floor levels.

a) Pd performance analysis: The thresholds for all the
detectors are computed by using as CUT the range bin
R = 17 previously analyzed in Fig. 9, following the same
procedure as for the PhaseOne dataset and for Pfa = 10−2.
In this case, however, we set the number of secondary data
to K = 32 since the number of range bins available in the
dataset is lower than that of PhaseOne data. Furthermore,
we set fd = 0.08 to generate the synthetic target in order to
be consistent with the clutter peak found in Fig. 9. Finally,
we set r = 3.

In Fig. 10, we report the Pd curves of all the detectors
as a function of the SCNR, assuming L = 2 as observed
in Fig. 8. Further analysis not reported here for brevity
confirms the aforementioned results using L = 3. Interest-
ingly, we observe that the novel detection schemes continue
to outperform all the competitors, with a less marked but
still visible Pd improvement. Among the competitors, the
�-ANMF and the AGLRT offer the best performance,
whereas the RP-ANMF exhibits an evident loss compared
to its previous behavior observed in Fig. 7. The outcome
of this analysis confirms the effectiveness of the proposed
algorithms, highlighting their ability to correctly deal also
with the presence of stronger heterogeneous and nonsta-
tionary clutter conditions as those found in D84.

b) Pfa sensitivity analysis: We conclude the analysis
by testing the sensitivity of the algorithms to variations
of their actual Pfa compared to its nominal value. The
analysis is carried out following the same procedure adopted
for Table II. The results reported in Table III confirm the
goodness of the proposed approaches, which experience
small deviations from the nominal Pfa value despite the
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more challenging operational scenario under consideration.
In this case, the RP-ANMF algorithm turns out to be the
least sensitive, whereas the �-ANMF exhibits significant
deviations toward much larger values of Pfa, confirming its
too high sensitivity.

V. CONCLUSION

We have addressed the detection of a coherent target in
heterogeneous environments where both power levels and
covariance structures of the clutter may vary in range. To
this end, the clutter covariances for the CUT and secondary
data are modeled as low-rank matrices belonging to a set of
L classes, each representing a different type of clutter return.

To handle the unknown association of each range cell
to one of the L possible clutter classes, we introduced a
latent variables mixture model and formalized a binary
hypothesis test with observations modeled by a multivariate
contaminated Gaussian distribution. We tackled the result-
ing detection problem via a GLRT approach and proposed
a novel strategy based on the EM algorithm to adaptively
estimate the unknown parameters related to the statistical
properties of the disturbance. As a byproduct of the EM
procedure, we have also derived an alternative detection
scheme that tries to infer the most probable disturbance
distribution in the CUT using a MAP classification rule
followed by an LRT. When tested on synthetic data, the two
detection schemes can achieve significant improvements
in terms of detection power compared to state-of-the-art
algorithms.

Furthermore, they can also operate under mismatches
on the assumed design model. Remarkably, the proposed
strategies confirmed their effectiveness also when oper-
ating on two rather different experimental datasets, each
comprising a different type of clutter (land and sea). From
these analyses, we conclude that the novel algorithms are
able to fully adapt to heterogeneous environments and offer
superior performance compared to existing approaches.

Future research tracks might encompass the detection
of range-spread targets whose position and extension are
unknown under the same heterogeneous assumptions and/or
the exploitation of special structures for the covariance ma-
trices. Moreover, other approaches might be investigated,
as for instance those relying on the theory of machine
learning. A very simple attempt in this respect has been done
in [49] where the potential of a K-nearest neighbor classifier
is investigated. We expect that more general approaches
based on neural networks [50], [51] might lead to even
more powerful decision schemes at the price of a more
challenging training stage.

Finally, the presence of outliers in the secondary data
is a problem of relevant interest in radar detection, as they
can lead to increased false alarms or missed detections. To
mitigate the influence of outliers, a possible generalization
of the proposed decision scheme could include an initial
stage focused on detecting and eliminating cells near the
CUT (secondary data) that are affected by outliers. This
approach aligns with established methodologies in radar

detection contexts such as [40] and [52]. Building on a
similar idea, the algorithm introduced in [30], when applied
to the secondary data, is able to adaptively exclude range
cells that might contain components related to targets (hence
representing outliers for secondary data, which are usually
assumed free of target components). Developing an effec-
tive strategy that incorporates an outlier detection method
capable of handling the heterogeneous environments in
which the newly proposed detection schemes are deployed
thus represents another interesting direction for future work.

APPENDIX A
PROOF OF (22)

As to the estimation of the pls, we preliminarily observe
that constraints pl ≥ 0, l = 1, . . . , L, will be automatically
satisfied by the solution of the following problem:⎧⎨⎩ max

pl ,l=1,...,L

∑L

l=1

[(∑K

k=1
q(h−1)

k (l ) + q̃(h−1)(l )
)

log pl

]
s.t.

∑L

l=1
pl = 1

.

Using the method of Lagrange multipliers, we construct the
function

g(p1, . . . , pL,λ) =
L∑

l=1

al log pl + λ

(
L∑

l=1

pl − 1

)
with

al =
K∑

k=1

q(h−1)
k (l ) + q̃(h−1)(l )

whileλ is the Lagrange multiplier. Computing the derivative
of g with respect to pl and setting such derivative equal to
zero, yields

∂g(p1, . . . , pL,λ)

∂ pl
= al

pl
+ λ = 0

and hence, we have that
pl = −al

λ
.

The constraint implies that
L∑

l=1

pl = − 1

λ

L∑
l=1

al

= − 1

λ

L∑
l=1

(
K∑

k=1

q(h−1)
k (l ) + q̃(h−1)(l )

)
= 1

and hence, λ = −(K + 1) exploiting the conditions
L∑

l=1

q(h−1)
k (l ) = 1, k = 1, . . . , K

and
L∑

l=1

q̃(h−1)(l ) = 1.

Equation (22) follows in a straightforward manner. �
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