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ABSTRACT

The mutual interaction between viscous fluids and elastic solids plays a role in a
variety of engineering applications and natural systems. In some cases, large struc-
tural deformations are sought for engineering purposes, at other times undesirable
vibrations cause structural damage.
Performing accurate and high-fidelity numerical simulations to investigate the be-
havior of such fluid-structure interaction (FSI) problems is not trivial nor cheap,
thus the development of numerical methods for FSI is a very active research area.
Another possibility is to investigate the linear dynamics of these coupled systems.
Linear stability analysis is a popular tool in the fluid mechanics community since
it allows the faster identification of the stability criteria and gives insights into the
underlying physics of the phenomena. As a matter of fact, the data resulting from
temporal simulations may be difficult to interpret directly. Besides, it is usually
necessary to run long simulations to go past the transient phase and see if a given
perturbation fades away.
However, many FSI configurations of engineering relevance are still uninvestigated
from a linear point of view due to the complexity of the linearization of the cou-
pled dynamics. The main objective of this thesis is to promote a wide adoption of
the linear approach to FSI problems. An Immersed Boundary (IB) framework is
introduced, based on a direct-forcing moving-least-squares procedure to couple the
fluid and solid dynamics, which has been already well validated and has proven to
accurately capture the coupled dynamics. The major novelty of the present work is
the development of a general approach to perform linear stability analyses of large-
scale FSI problems, based on the IB method previously mentioned. To the author’s
knowledge, in the context of FSI systems, the global linear approach has not been yet
extended to problems involving multiple elastic bodies. The proposed methodology
allows the treatment of multi-body configurations with no added complexity and
reasonable computational cost.
In this thesis, the proposed methodology is derived and the numerical solver is
validated against results from the literature. Then, the procedure is applied to ana-
lyze the vortex-induced vibrations of two elastically mounted cylinders in tandem
arrangement. Two unstable eigenmodes are identified in the analysis, and an expla-
nation is suggested for a change in the nonlinear behavior of the system, previously
noted by other researchers but still without interpretation.
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In the last chapter, a different methodology is adopted to investigate the linear dy-
namics of a gas bubble placed in a uniform straining flow. For this case, it is used a
recently developed linearized Arbitrary Lagrangian-Eulerian framework. The lin-
ear analysis of this configuration reveals the existence of a saddle-node bifurcation
linked to the breakup of the bubble via an end-pinching mechanism. Interestingly,
a self-propelling unstable mode emerges, which is counterintuitive as it consists
in a displacement of the bubble towards a higher-pressure region. The existence
of this mode is confirmed in the inviscid limit, and it is shown that the propulsive
mechanism exploits shape asymmetries to create a net thrust.
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C h a p t e r 1

INTRODUCTION

Without reason, no effect is produced in nature;
understand the reason and you will not need
experience.

Leonardo da Vinci

This chapter contains a brief introduction to the comprehensive topic of
flow instability from a historical perspective. The chapter also provides
the reader with the essential terminology employed throughout the the-
sis and discusses different approaches to perform the linear stability
analysis of fluid-structure systems. Eventually, the structure and the
objectives of the thesis are presented.

The interaction of fluid flows with elastic structures is a widespread phenomenon
occurring in a variety of engineering applications and natural systems. The recon-
figuration of seaweed blades in a current (Vettori and Nikora, 2019), the synchro-
nization of a trout’s gait to ambient vortices (Liao et al. 2003), and the flapping
flight of a fruit fly (Lehmann, Wang, and Engels, 2021) are typical examples of
fluid-structure interaction (FSI) in biological systems. The mutual interaction of
fluid and structure plays a major role in the cardiovascular system as well. The
flow of blood through the aortic valve attracted the interest of Leonardo da Vinci,
who first identified the role of the vortex formation in the sinus of Valsalva during
the closing of the valve (Marusic and Broomhall, 2021). During the past several
years, public environmental concern has led to significant research efforts focused
on bio-inspired energy harvesting mechanisms (Orrego et al. 2017; Nitti, De Cillis,
and de Tullio, 2022) that exploit flow-induced vibrations (FIV) of structures to ex-
tract energy from ambient flows. In other cases, FSI leads to undesirable vibrations
that cause structural fatigue and can provoke serious damage to the structure, the
most dramatic example being the collapse of the Tacoma Narrows bridge (Arioli
and Gazzola, 2017).
Often, these vibrations take the form of self-excited phenomena that appear above
a certain threshold of a control parameter of the system. The term self-excited
indicates that the motion of the structure and its interplay with the flow is intimately
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coupled with the emergence of the oscillatory behavior, which arises without the
intervention of external sources of energy. From a linear perspective, the sponta-
neous appearance of these vibrations represents an instability of the fluid-structure
system.

1.1 Instabilities in fluids: an overview
The concept of stability of a dynamical system has received great attention since
the nineteenth century, with the pioneering works of Poincaré and Lyapunov. In
his famous memoir (Poincaré, 1886), Poincaré introduced the notion of trajectory,
paving the way for the foundation of a theory of dynamical systems. His paper was
a source of inspiration for Lyapunov, who gave a rigorous definition of asymptotic
stability in his doctoral dissertation (Lyapunov, 1892). A compendium of the his-
tory of dynamical systems theory throughout the twentieth century is beyond the
scope of this thesis and can be found in (Holmes, 2007). Depending on the context,
different definitions of stability have been employed by researchers over time (in
(Glendinning, 1994), the author identifies 57 distinct stability types!). The focus
throughout this manuscript is on determining the reaction of a system to small per-
turbations, i.e. a particular state of the system is considered stable if every possible
disturbance dies out, and unstable if some perturbation grows in amplitude such that
the system departs from its original state. When these disturbances are considered
to be infinitesimal, the stability of the system can be inferred from the linearized
equations that govern the evolution of such perturbations.
In the field of fluid mechanics, the concept of hydrodynamic stability plays a funda-
mental role given its connection with the transition to turbulence. It is recognized
that, under given steady boundary conditions, there exists a solution of the steady
Navier-Stokes equations, yet not every mathematically valid solution is observed
in real life. The explanation lies in the instability of the solution with respect to
infinitesimal disturbances, therefore, these flows occur in practice only for certain
ranges of the parameters that govern the dynamics. The most famous of these pa-
rameters is certainly the Reynolds number Re, named after Osborne Reynolds and
his classic experiments (Reynolds, 1883) on the instability of the laminar Poiseuille
pipe flow. Together with Reynolds’ observations on the transition to turbulence of
pipe flow, in the nineteenth century, the foundations were laid for many others of
the essential problems of hydrodynamic stability, thanks to the interest of renowned
scientists such as Stokes, Helmholtz, Kelvin, and Rayleigh, just to name a few.
In general, the objective of the stability analysis of flows is the identification of
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the neutral states of the system, i.e. those particular equilibrium solutions that are
neither linearly stable nor unstable , as a function of the characteristic parameters.
A typical example of this concept is provided by the flow over a bluff body. It
is well-known that the steady flow around a circular cylinder loses its stability for
a critical Reynolds number '42 that is slightly below 50 (Giannetti and Luchini,
2007). For Reynolds numbers larger than that '42, unsteady vortices are observed to
detach periodically from the cylinder’s surface. This two-dimensional flow pattern
was first described by Theodore von Kármán and is now recognized as an absolute
instability (Huerre and Monkewitz, 1985) of the wake of solid obstacles, i.e. a
disturbance that grows locally in time, associated with a Hopf bifurcation .
On the other hand, an example of convective instability, corresponding to a pertur-
bation that is amplified as it is advected far from the location of the impulse, is
provided by the mixing layer between two parallel streams with different velocities.
In this case, vortices appear in the shear layer as a consequence of the Kelvin-
Helmholtz instability mechanism, then these vortical structures grow as they are
convected downstream. In this sense, the mixing layer functions as a noise am-
plifier. Another representative example of convective instability is provided by the
boundary layer over a flat plate placed in a uniform flow. In this flow configuration,
disturbances are created close to the leading edge but intermittent structures appear
farther downstream under the form of Tollmien-Schlichting waves that ultimately
lead to turbulence.

Figure 1.1: A typical flow instability, the Von Kármán vortex wake behind a fixed
circular cylinder. The image shows the vorticity field of a snapshot of a simulation
at '4 = 100. The simulation was conducted by the author, with the finite-difference
solver described in section 2.4 at a constant ��! = 0.2.

Instabilities occur in elastic solids as well. For example, when a slender structure is
compressed beyond a critical level, it can deflect laterally as a sign of buckling in-
stability. This phenomenon, already recognized by Euler in the eighteenth century,
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can lead to severe damage and even to the failure of the structure. Another example
of elastic instability is the torsional instability of a slender rod. For large values
of torsional stresses, the rod coils around itself eventually forming a twisting knot
(Ciarletta and Destrade, 2014).

Fluid-structure instabilities
When fluids and solids are coupled together, the already-reach dynamics exhibited
by the two separate systems becomes even more complex due to their mutual in-
teraction. In some cases, previously existing instability mechanisms can interact
and reciprocally intensify one another. It is the case of the vortex-induced vibration
(VIV) of an elastically mounted bluff body placed in a cross-flow. The global insta-
bility resulting in the vortex-shedding in the wake of a fixed body has already been
mentioned before; When the solid is free to move, the fluctuations in the lift force,
caused by the unsteady wake, result in an oscillatory motion of the bluff body, which
in turn influences the wake dynamics. These oscillations are frequently encountered
in engineering applications and are, in general, not worrisome. It is only when the
frequency of vortex shedding and the natural frequency of the structure are close to
each other that the lock-in phenomenon occurs and large-amplitude oscillations can
arise.
Other instability types, on the contrary, do not show a connection with pre-existing
instability mechanisms but are the result of an unstable coupling of the two systems,
as in the case of the coupled-mode flutter that is often observed for aerodynamical
sections. In the latter case, the instability is due to the coupling of the flexion and
torsion modes of the section as the flow velocity increases. This phenomenon is
inherently different from the VIV of a bluff body since its main feature is that the
frequency of oscillation is zero at the beginning, but it becomes finite as the velocity
of the flow increases. From a linear perspective, the emergence of flutter is linked
to the instability of one of the structural modes that are connected via the flow field
(de Langre, 2006). Nonetheless, unstable states characterized by static divergence,
large and small-amplitude flapping (see Figure 1.2), and chaotic behavior can be
also present with a rigid structure, as in the case of the rigid inverted flag, attached
at its trailing edge to a torsional spring (Leontini and Sader, 2022).
Other examples of these new classes of instability emerging in FSI configurations are
the galloping of bridge decks and the static divergence instability of wing sections.
The former is a phenomenon characterized by much lower frequencies than the vor-
tex shedding frequencies of the wake and takes its name from its resemblance with a
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galloping horse. The latter, instead, is a static aeroelastic instability that corresponds
to the destabilization of the pitching mode of the wing section (E. H. Dowell et al.
1989) without the presence of oscillations around the new angle of attack.

(a)

(b)

(c)

Figure 1.2: Large-amplitude flapping regime of a rigid inverted flag placed in a
uniform flow. The image shows the vorticity field for three snapshots of a simulation
at '4 = 200. The simulation was conducted by the author, with the solver described
in section 2.4. The (hinged) trailing edge of the flag is marked with a black circle.

Linear Stability Analysis of flows: historical background The essence of the
linear stability theory lies in the investigation of the temporal and spatial evolution
of small-amplitude disturbances superimposed on either a steady or time-periodic
laminar base flow. Specifically, one wants to investigate the response of the system
once it is perturbed from its equilibrium: will the disturbance die away, or will the
system reach a new state? To answer this question, the basic idea is to linearize
the Navier-Stokes equations around the base flow, or basic state, to obtain an initial
value problem (IVP) that governs the evolution of small amplitude perturbations. In
agreement with the definition, a stable base flow is stable to all possible infinitesimal
disturbances, therefore, a proper stability analysis should examine a generic pertur-
bation. This is usually done, in practice, by expanding the disturbance into a suitable
set of normal modes and later investigating the stability of the base flow with respect
to each mode separately. This classic ansatz follows from the observation that the
coefficients of the linearized problem are independent of time, thus one can in prin-
ciple separate the variables in time via eigensolution expansion to get a generalized
eigenvalue problem (EVP) . The modal approach (Juniper, Ardeshir Hanifi, and
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Theofilis, 2014) is justified by the observation that, close to the instability threshold,
the amplitudes of the disturbances are typically small and exponentially growing.
Consequently, a necessary and sufficient condition for the linear stability of a basic
flow is the absence of normal modes with a positive growth rate.
Given a three-dimensional basic state, the most general application of the modal
approach requires the identification of time-periodic perturbations whose ampli-
tude function is inhomogeneous in each of the three directions. However, from
a computational perspective, the size of the generalized EVPs resulting from the
discretization of the three-dimensional linearized Navier-Stokes equations makes a
direct solution challenging. Early analyses based on the linear theory circumvented
this hurdle by way of the parallel-flow assumption. This approach, also termed local
analysis and dating back to the first half of the past century (Huerre and Monke-
witz, 1990), exploits the spatial separation of variables by assuming the existence of
only one inhomogeneous direction as far as the linear perturbations are concerned.
This approximation, which is suitable for external flows such as boundary layers
and shear layers (Drazin and Reid, 2004), or for axisymmetric flow configurations,
generates an EVP of reasonable size that can be solved through direct techniques.
However, the number of industrially relevant flows that show dependence upon only
one coordinate is rather limited. When the focus is on flows through more com-
plex geometries, the assumption of two homogeneous directions fails to adequately
represent the underlying physics of the phenomena. These flow conditions require
a global analysis, whose eigenfunctions, differently from the local approach, show
a dependence on all the spatial coordinates. At a minor level of approximation
with respect to the local approach, one finds the weakly non-parallel linear analysis,
employed through the 1980s to circumvent the restriction of a parallel base state
(Chomaz, 2005). Within the weakly non-parallel assumption, the base flow shows
one homogeneous and one slowly varying spatial direction while the disturbance
field is assumed to vary on a shorter length scale such that it behaves as if the base
flow were parallel at each location of the weakly inhomogeneous coordinate.
With the advance in computing power and owing to the availability of publicly
available libraries that implement efficient numerical methods for the numerical
solution of large-scale generalized EVPs, the linear analysis of complex flows with
a global approach has become feasible. In the past decades, the range of appli-
cations of global linear theory has expanded significantly in several areas of fluid
mechanics (V. Theofilis, 2011). The most common approach consists in discretizing
the Linearized Navier-Stokes equations, e.g. by means of spectral methods, finite
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elements or finite differences, and solving the resulting generalized eigenvalue prob-
lem, often by means of standard library sub-routines. For instance, Zebib (Zebib,
1987) carried out the first linear stability analysis of the two-dimensional flow past a
circular cylinder exploiting Chebyshev polynomials. During the second half of the
twentieth century, algorithms based on the QZ decomposition have been extensively
applied to investigate the full eigenspectrum of a wide class of flows. When attain-
able, the computation of the full eigenspectrum is to be preferred as it provides a
comprehensive overview of the physics of a new problem under investigation. How-
ever, this approach comes across computational difficulties for large-scale systems
(# ∼ O(106)) as computing time and memory requirements grow as O(#3) and
O(#2), respectively (V. Theofilis, 2011), where # is the size of the system matrix.
This is the reason for the popularity gained through the 80s and 90s by various
libraries that implemented iterative methods (ARPACK (Lehoucq, Sorensen, and
Yang, 1998), LAPACK (Anderson et al. 1990)). Themost common class of iterative
approaches is that of Krylov subspace methods. This family of algorithms is based
on the assumption that the eigenvalue problem can be projected on a vector space
characterized by a much smaller dimension. As a consequence, iterative methods
are able to retrieve a limited portion of the spectrum compared to the full spectrum
recovery of direct methods. Nonetheless, such iterative techniques are favored by
the fact that, in most fluid mechanics applications, the interest is just on a few least
stable eigenvalues.
A further distinction can be done between matrix-forming and matrix-free strate-
gies. Within the former approach, the stability matrix of the system is explicitly
assembled and stored. On the contrary, matrix-free techniques simply evaluate a
sequence of matrix-vector products in order to assemble the subspace needed by
an iterative solver. The considerations about memory and hardware requirements
done for direct and iterative methods apply also to matrix-forming and matrix-free
strategies. One aspect that is worth noticing about the matrix-free framework re-
gards the difficulties that arise with spectral transformation and preconditioning.
Typically, preconditioning techniques are needed to achieve a good convergence
rate in a Krylov method. In addition, it is often desirable to alter the spectrum in
order to separate the eigenvalues and promote the emergence of the most interesting
ones. This is often the case when the desired eigenvalues are not the dominant ones,
or when they are clustered around a certain value.
In general, spectral transformations involve the use of a preconditioning matrix, the
construction of which requires access to the stability matrix in explicit form. This
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is clearly unattainable in a matrix-free environment, where information about the
matrix is obtained only through matrix-vector products, therefore one has to recur
to simplified preconditioners based on estimates of the actual matrix.
Finally, to close this brief discussion about the methods and applications of linear
stability analysis (LSA) in fluid mechanics, it is worth remarking that linear analysis
does not necessarily imply modal analysis, even though the normal-mode approach
has dominated the field of hydrodynamic stability theory for several decades. Re-
cently, this traditional technique has been complemented with the relatively new
nonmodal analysis (Schmid, 2007). The concept at the base of this tool is that the
non-normality of the linearized Navier-Stokes operator can lead to large transient
energy growth of a perturbation (Trefethen et al. 1993). As a matter of fact, non-
modal effects can account for the discrepancies observed in the transitional Reynolds
number between linear predictions and experiments for several wall-bounded shear
flows (Schmid and D. Henningson, 2001).

1.2 Stability analysis of fluid-structure problems
Despite the significant advances achieved in the last decades in the application
of global stability analysis of flows through complex geometries, the field of FSI
remains largely unexplored from a linear point of view. The reason lies in the com-
plexity of the linearization process in presence of a moving fluid-solid interface.
Hence, these configurations are generally investigated by way of experiments and
high-fidelity temporal simulations.
In the context of fluid-solid instability, classic approaches to determine the onset of
vibrations were either theoretical or adopted reduced-order models both for the fluid
and solid dynamics. The first examples of linear stability analyses over FSI configu-
rations date back to the pivotal studies of Theodorsen (1934) on the flutter instability
of an aerodynamic section. Theodorsen’s formulation was based on the potential
flow and slender body assumptions. The same analytical approach was also fol-
lowed by Kornecki, E. Dowell, and O’Brien (1976), who theoretically investigated
the divergence and flutter instability of a panel in a two-dimensional incompress-
ible flow. More recent applications of theoretical approaches to the linear stability
analysis of plates can be found in the works of Guo and Paidoussis (1999) and Eloy,
Souilliez, and Schouveiler (2007). In their work, Argentina and Mahadevan (2005)
investigated the stability of cantilevered flags in axial flow extending Theodorsen’s
formulation to include the effects of viscous drag and finite plate length.
Even though the adoption of these simplified flow models is legitimate in the field
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of classic aeronautics, applications involving low to medium Reynolds numbers or
flow separation require the simultaneous solution of the linearized Navier-Stokes
equations coupled with the linearized equation of motion of the elastic solid. As
a low-cost alternative, reduced-order methods have been applied to recover the
mean features of some FSI configurations involving bluff bodies in low-to-medium
Reynolds number flows; de Langre (2006), for instance, investigated the VIVs of a
spring-mounted rigid cylinder modeling the wake dynamics as a van der Pol oscilla-
tor. Cossu andMorino (2000) were the first to perform a linear stability analysis of a
two-dimensional low Reynolds number flow interacting with an elastically-mounted
bluff body. They investigated the primary instability of a circular cylinder, whichwas
free to oscillate in the cross-flow direction by solving the linearized flow equations
in a moving reference frame. Navrose and Mittal (2016) adopted the same approach
with a non-inertial frame of reference to conduct a parametric study of the lock-in
phenomenon exhibited by elastically-mounted circular cylinders in the laminar flow
regime. Cossu and Morino (2000) reported a critical Reynolds number that is about
half of the value obtained for the fixed cylinder case with low solid-to-fluid density
ratios. Meliga and Chomaz (2011) extended the stability analyses to smaller mass
ratios (O(10−4)), employing a multiple-time-scale expansion to decouple fluid and
solid dynamics at the leading order of the perturbation.
More recently, Pfister, Marquet, and Carini (2019) adopted a Lagrangian-based
approach to derive a linearization of the equations of motion for a coupled fluid-
structure problem written in an Arbitrary-Lagrangian-Eulerian (ALE) framework.
This formulation becomes cumbersomewhen it is based on the Lagrangianmotion of
the structure, requiring important modifications in the residual of the Navier-Stokes
equations to take into account the motion of the mesh. Fernández and Le Tallec
(2002) proposed, instead, an Eulerian-based formulation of the perturbation in an
attempt to overcome the difficulties arising from amoving grid. In their formulation,
obtained starting from the weak form of the ALE equations, the coupling between
the flow and the solid is made via a transpiration technique. Although reducing
considerably the complexity of the problem, this method produces additional stress
contributions at the interface, termed added stiffness, that depend on higher-order
derivatives of the flow variables. Negi, A. Hanifi, and D. S. Henningson (2020)
followed the same methodology but performed the linearization of the equations of
motion in their strong form.
Moulin et al. (2017) suggested the use of non-conforming methods to investigate
the stability of strongly coupled FSI systems, discussing, in particular, the adoption



10

of a fictitious domain formulation to handle the coupling between the fluid and the
solid. Goza, Colonius, and Sader (2018), who also proposed a non-conforming
approach, conducted the global stability analysis of an inverted flag in a uniform
flow using an Immersed Boundary (IB) method . They resorted to the numerical
derivation of the Jacobian matrix linearizing the discretized operators around the
steady state via a first-order finite difference scheme. The memory requirements
with matrix-forming strategies become rapidly unfeasible when dealing with a large
number of degrees of freedom, e.g. three-dimensional FSI configurations. This
aspect is even more relevant in the computation of neutral curves since the Jacobian
matrix must be re-evaluated for each base flow.

1.3 Motivation and outlook
Many FSI configurations of industrial relevance are still unexplored from a linear
perspective due to the complexity of the linearization of the coupled dynamics. For
this reason, the main objective of this thesis is to propose an alternative, matrix-free
methodology for the global stability analysis of viscous laminar flows interacting
with elastic solids.
The method is based on a time-stepping procedure that makes use of high-fidelity
nonlinear simulations obtainedwith a direct-forcing immersed boundary (IB)method,
based on a moving-least-squares (MLS) approach. One of the main advantages of
the IB formulation resides in the fact that it can handle multi-body configurations
with no additional complexity. Besides, the fluid equations are solved on a staggered
Cartesian grid, which makes the method prone to a simple parallel implementation
for three-dimensional computations.
Details on the IB treatment are provided in Chapter 2. The method has undergone
extensive validation through the years (de Tullio and Pascazio, 2016). Here, its key
components are analyzed from a linear perspective, and special care is given to the
computation of the forces acting on the immersed body. The choice of the specific
IB forcing technique is indeed crucial for the success of linear computations.
In Chapter 3, the problem of linear stability in the context of fluid-structure interac-
tion is introduced and the methodology is derived from theoretical considerations.
The proposed strategy involves the adoption of the matrix exponential, first intro-
duced by Eriksson and Rizzi (1985) in the context of global stability analysis of the
Euler equations. The same approach was later extended to the full Navier-Stokes
equations by Chiba (1998), who performed a linear stability analysis of the two-
dimensional square lid-driven cavity flow. This contribution provides an extension
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of Chiba’s approach to FSI problems. To the author’s knowledge, time-stepping
techniques had not been applied to study the linear stability of FSI problems up
to this work. The numerical linearization proposed in this thesis accounts for the
fully coupled solid and fluid dynamics, and thus is able to identify all the instability
mechanisms arising in the system. In addition, the general formulation derived here
can be directly applied to multi-body FSI problems without modifications, and with
a little increase in the computational effort, a characteristic that is not shared by
grid-conforming methodologies. The proposed time-stepping IB approach, indeed,
is able to extract stability information from simulations, irrespective of the total
number of immersed bodies or the complexity of the multi-physics phenomenon
under investigation.
Details of the numerical implementation of the solver are given in section 3.4,
together with a discussion of the most critical aspects. The method is then vali-
dated against the benchmark case of the vortex-induced vibrations of an elastically
mounted rigid cylinder. Chapter 4 reports the results obtained by applying the
presented strategy to the problem of flow-induced vibrations of two cylinders in
tandem. The obtained results provide further confidence in the robustness of the
method. Besides, the linear predictions identify an unstable eigenvalue responsible
for a change of behavior of the system already observed in previous studies, which
has remained without explanation until now.
Chapter 5 is dedicated to the stability analysis of a gas bubble placed in a uniaxial
straining flow. In this case, the role of the solid elasticity is taken by the surface
tension at the interface between the two fluids. The linear dynamics of the system
is investigated by means of a recently developed (Bonnefis, 2019) method based on
a linearized Arbitrary Lagrangian-Eulerian framework. The analysis systematically
revises this classic problem from a linear perspective. Results from the literature are
confirmed for the stable base states, and a second unstable branch of steady states
is found via a continuation method, linked to the stable branch through a saddle-
node bifurcation. The unstable branch leads to the breakup of the bubble via an
end-pinching mechanism. Interestingly, a self-propelling unstable mode emerges,
which is counterintuitive as it consists in a displacement of the bubble towards a
higher-pressure region.
Finally, Chapter 6 summarizes the results of the thesis and offers an outlook on
future developments.
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C h a p t e r 2

AN IMMERSED BOUNDARY FRAMEWORK FOR
FLUID-STRUCTURE INTERACTION

The applied scientist needs to cope increasingly with
the nonlinear world and the extra mathematical
sophistication that this requires. For that is where the
rewards are.

Michiel Hazewinkel

This chapter outlines the immersed boundary framework that is used
throughout the subsequent chapters. The first part contains a general
overview of the most common techniques employed for non-linear sim-
ulations of fluid-structure interaction problems. The limitations and
drawbacks of each approach are explored, with a particular focus on
immersed boundary methods.
Then, the governing equations for FSI problems involving elastically
mounted rigid bodies are presented and the time-stepping algorithm is
described in detail. Some aspects regarding the hydrodynamic load
evaluation and the forcing technique are analyzed here due to their
relevance to the linearization procedure described in the next chapter.

2.1 Methods for fluid-structure interaction simulations
For the majority of FSI problems, the nonlinearity in the fluid equations and the
complexity of the dynamic interplay between flow and structure make analytical
solutions unattainable. Thus, to investigate the physics of the interaction, one has to
resort to experiments and high-fidelity numerical simulations. That being said, the
task of developing efficient and accurate computational solvers for FSI simulations
poses several difficulties owing to the mutual interaction between the two systems
and the displacement of the common interface.
In recent years, this topic has received great attention from the scientific community,
resulting in the development of different computational strategies (Hou, Wang,
and Layton, 2012; W. Kim and Choi, 2019). Broadly speaking, the universe of
algorithms employed for the simulations of FSI problems can be categorized into
two main approaches, namely the monolithic and the partitioned approaches. In a
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monolithic framework, the fluid and solid domains are considered as a single system
from a mathematical point of view, and the coupling conditions at the interface
are treated implicitly by the procedure. Conversely, in partitioned (or staggered)
methods, the fluid and structural dynamics are solved separately, each with its
own algorithm, while information is transferred at the interface from one domain
to the other. One of the biggest advantages of staggered approaches is that they
enable the selection of the most suitable and well-validated solvers for both the
fluid and structural parts. On the other hand, in a monolithic setting, the fluid and
the structural systems are to be solved with the same numerical approach, despite
their intrinsic differences from a mathematical perspective. As a matter of fact, in
solid mechanics, the stress tensor is generally a function of the current strain state,
while it is dependent upon the pressure and the instantaneous velocity gradient for
a Newtonian fluid. Given the dependence of the stresses upon the deformation with
respect to a reference configuration, the Lagrangian description is usually prevalent
in solid mechanics. On the contrary, the large displacements that characterize fluid
problems suggest an Eulerian framework as the most convenient choice. As a result,
the development of a reliable monolithic solver is not an easy task, furthermore, its
usage requires a significant computational effort due to the solution of a nonlinear
large system at each time step. Nonetheless, the monolithic approach presents the
indubious advantage that the strong coupling between the two dynamics is naturally
enforced at each step, resulting in a more robust solver. By contrast, staggered
solvers give rise to smaller and better-conditioned systems, but these are solved
sequentially at each time step and require an appropriate technique to exchange
information at the fluid-structure interface. With reference to partitioned solvers, a
further distinction can be made between weakly and strongly coupled methods. In
the former case, the outputs from one solver are passed as boundary conditions to
the other solver in a sequential fashion, thus the two solutions do not satisfy exactly
the interface conditions at the end of the time step. The correct imposition of the
interface conditions is necessary when large structural motions are involved, in this
case, weakly (or loosely) coupled methods have proven to be unstable for low solid-
to-fluid density ratios (Förster, Wall, and Ramm, 2007). To overcome this difficulty
and the consequential restrictions on the time step size, strongly coupled methods
strictly enforce the equilibrium conditions at the common interface, typically by
means of a set of sub-iterations performed at every time step. Unfortunately, the
same added mass effect that causes the instability of the explicit loosely coupled
approach deteriorates the convergence properties of implicit algorithms, as they
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require more iterations to converge (Causin, Gerbeau, and Nobile, 2005). The
added mass effect, which is well-known to the FSI community, is a by-product of
the time lag introduced by the staggered approach. Its name derives from the fact
that the fluid present in the immediate vicinity of the interface acts as an additional
inertial force on the structural degrees of freedom owing to the dependence of the
fluid forces upon the structural solution obtained at a previous time instant, being
unknown the solution at the synchronous time.
Another typical categorization of FSI methods distinguishes between conforming
and non-conforming mesh approaches. In the former, the fluid is solved on a grid
or mesh that conforms to the shape of the fluid-solid interface. This approach
possesses the obvious advantage of an accurate evaluation of the quantities of
interest at the interface, but it requires the adaptation of the fluid mesh with every
change in the position and shape of the interface. Non-conformal techniques, on
the other hand, solve the fluid and structural equations on separate grids that do not
necessitate common nodes as the interfacial conditions are treated as constraints.
These approaches are computationally more efficient, but the complexity is moved
from the grid adaptation task to the communication between the two meshes at the
interface. Besides, it is easier to locally refine a body-conformal mesh rather than a
regular grid.

(a) Conforming (b) Non-conforming

Figure 2.1: Illustrative example of meshes/grids employed in FSI algorithms. The
body-conformal mesh on the left changes as the rectangular plate moves. The plate
on the right, instead, moves on a fixed grid.
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2.2 Immersed Boundary Methods
Among the many approaches that fall in the category of non-body-fitted methods,
the immersed boundary (IB) method has gained great popularity in recent years due
to its straightforward application with complex geometries. The idea at the base of
IB methods is to solve the fluid and the structure independently on separate grids,
while the exchange of information between the two discretizations is typically ob-
tained by means of a distribution of forcing terms in the fluid equations that mimics
the presence of the interface. The forcing distribution is therefore prescribed on
the fluid grid and is determined in order to enforce the correct interfacial boundary
conditions.
The term immersed boundary was first introduced by Peskin (1972) in a seminal
work on the flow around the human mitral valve. In Peskin’s original formula-
tion, the fluid equations are solved on a uniform Cartesian grid and the interface is
represented as a set of Lagrangian points whose position is tracked throughout the
simulation. A semi-discrete version of the Dirac delta distribution X is introduced as
a singular source term in themomentum equations to reproduce the forces exerted on
the fluid by the immersed surface. In this work, the forcing terms are computed as-
suming an elastic behavior of the structure and selecting an appropriate constitutive
law. Almost simultaneously, Viecelli (1971) proposed an extension of the Marker
and Cell method to impose pressure and velocity boundary conditions on moving
boundaries of arbitrary shape. The idea behind the method, referred to as ABMAC
( Arbitrary Boundary Marker And Cell), is that the presence of a given interface can
be represented by a pressure distribution that imposes a no-penetration condition.
One drawback of Peskin’s original formulation is that it is impossible to compute
the forcing term in the case of a rigid body. To overcome this difficulty, Goldstein,
Handler, and Sirovich (1993) developed an IB method based on a feedback scheme
in which the surface force is determined directly from the local velocity field. The
main drawback of this approach is that it contains two arbitrary constants that must
be tuned to the flow frequencies. Besides, large values of these parameters require
a small time-step size due to the stiffness of the system.
The methods developed by Peskin (1972) and Goldstein, Handler, and Sirovich
(1993) come under the definition of continuous forcing approaches, in the sense that
the forcing function is already present in the continuous equations. An alternative
discrete formulation is possible, in which the forcing field is to be evaluated after the
discretization of the equations. The primary advantage of this second formulation
is the absence of user-defined parameters in the forcing function, and the conse-
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quent elimination of their stability issues. Among the various IB schemes, a further
distinction can be made between direct 1 (Fadlun et al. 2000), in the sense that
the momentum forcing is imposed directly in the discretized equations to prescribe
the desired velocity value at every time-step, and indirect forcing techniques, such
as Goldstein’s (1993) feedback method. In the direct-forcing formulation proposed
by Fadlun et al. (2000), the body force term is evaluated by means of a linear
interpolation of the velocity field at the grid points closest to the solid boundary. In
this sense, the procedure reduces to a modification of the stencil to account for the
position of the solid boundary. An alternative direct-forcing scheme was proposed
by Uhlmann (2005), where the forcing field is computed on the Lagrangian points
instead of the Eulerian grid points. In this method, the forcing field is computed
by requiring the intermediate velocity of a fractional-step scheme to be equal to
the local velocity on the surface of the body. The hydrodynamic load acting on a
solid particle is evaluated directly from the IB force distribution, yielding an explicit
coupling of the fluid and solid dynamics.
The distinguishing feature of IBmethods is the way they accomplish the information
exchange between the fluid and structural degrees of freedom. Since the grid points
are in general not coincident, an interpolation procedure is needed to transfer the
information about the velocity field at the desired location. Different techniques to
reconstruct the solution near the interface give rise to distinct IB methodologies.
In Uhlmann’s approach (2005), for instance, the interpolation procedure is based
on a regularized Dirac delta function that involves three Eulerian grid points in
each direction. The spreading of the interpolation operator over a small support
domain results in reduced spurious oscillations of the hydrodynamic loads, which
have been observed with a sharp representation of the interface. In sharp-interface
IB methods, such as cut-cell (Udaykumar et al. 2001) and ghost-cell (Tseng and
Ferziger, 2003) formulations, the interface is represented accurately by means of a
modification of the computational stencil near the immersed boundary. The accurate
representation of the solid surface is a desirable feature, especially for high Reynolds
number flow, but it comes at the price of introducing spurious force oscillations in
the case of moving bodies. Basically, these oscillations originate from the change
of role of the Eulerian points close to the surface from one time-step to the other
(Uhlmann, 2003). As a grid point comes out of the solid phase, for instance, it car-
ries no information about the fluid phase at the previous time-step, hence providing
inaccurate values for the temporal discretization of the flow variables. Motivated by

1Here the attribute direct is used as in (Fadlun et al. 2000)
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the need for smoother hydrodynamic loads, Vanella and Balaras (2009) improved
Uhlmann’s approach (2005) by introducing the use of the Moving Least Squares
(MLS) approximation to construct the Eulerian-Lagrangian transfer function.
Nowadays IB methods are widely employed to model complex FSI problems in-
volving large structural displacements. In presence of significant boundary defor-
mations, indeed, the use of a mesh-conforming framework, such as the Arbitrary
Lagrangian-Eulerian (ALE) method (Souli, Ouahsine, and Lewin, 2000), would
produce severe mesh distortions in the proximity of the interface, thus limiting its
application to problems involving small structural displacements. In addition to
the ease in handling multibody configurations, another important advantage offered
by IB methods is their simple implementation on stationary Cartesian grids, thus
allowing easier parallelization and enabling the use of fast algebraic solvers.
Despite themany benefits IB techniques offer, there are some drawbacks to consider

(a) (b)

Figure 2.2: Example of the mesh adaptation that results from body-conformal
approaches. Specifically, the initial mesh (a) is updated (b) to follow the movement
of the interface. The meshes shown above have been used by the author in the
computation of the steady states for the problem of a gas bubble in a straining flow
described in Chapter 5.

as well. One downside of these methods is that they solve the momentum equa-
tions also for the grid points inside the solid boundaries. With increasing Reynolds
numbers, and consequently the number of discretization cells required to resolve the
small flow scales, solving for the inner points constitutes a computational burden
that cannot be neglected. Besides, the cost required to achieve high resolution near
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the body increases significantly with uniform or stretched grids. As a matter of fact,
with Cartesian grids, the grid refinement is propagated with grid lines and a high
density of cells is obtained also far from the body. To alleviate this computational
burden, a local refinement is needed (de Tullio, De Palma, et al. 2007). Another
crucial point about IB methods is the evaluation of surface stresses at the interface,
which is a nontrivial task when the solid and fluid grid points do not coincide, as is
generally the case. This aspect is further discussed in section 2.4.
Without any pretense of being exhaustive, this short review has served as an intro-
duction to the basic concepts of the IB methodology that is used in the following
chapters. For an overview of the various IB methodologies, the reader is referred
to the review of Mittal and Iaccarino (2005). In the next section, after introducing
the governing equations for the fluid-structure model, the IB framework method
adopted to handle the moving surfaces is presented in detail.

2.3 Governing equations
The focus here is on homogeneous incompressible viscous flows that interact with
elastically mounted rigid bodies, although the formulation derived for the solver
remains very general and utilizable with various structural models (and solvers).
The dynamics of the fluid system is governed by the Navier-Stokes and continuity
equations, reported here in their non-dimensionalized form:

mu

mC
+ u · ∇u = −∇? + 1

'4
∇2u + f , (2.1a)

∇ · u = 0. (2.1b)

In the equations above, u and ? denote the fluid velocity and pressure , respectively.
The body force term f , in the absence of other external fields, corresponds to the IB
body-force field. The system of equations (2.1) is closed by appropriate boundary
conditions related to the specific configuration to be studied. Fluid variables have
beenmade dimensionless by considering a reference length !A and velocity scale*A ,
and the Reynolds number is defined as '4 =

*A!A

a
, with a the kinematic viscosity

of the fluid. The time is non-dimensionalized with respect to the reference value
gA = !A/*A .
The equations that govern the motion of an elastically mounted rigid body, with the
elastic center coincident with the center of mass, and subject to structural damping
and hydrodynamic forces are reported below:

¥̃G8 +
28

�8dB
¤̃G8 +

:8

�8dB

(
G̃8 − G̃4@8

)
= �8, 8 = 1, .., =�$� . (2.2)
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The above equation describes the temporal evolution of a simple damped oscillator,
where G̃8 represents the position of the 8–th degree of freedom (DOF) , G̃4@

8
being

the equilibrium position of the spring for the same DOF, 28 and :8 are the damping
and stiffness coefficients, respectively, dB is the density of the solid and �8 is the
sum of all external loads acting on the 8–th DOF. For two-dimensional problems,
each solid body has =�$� = 3 degrees of freedom, namely the two components of
the displacement vector and a rigid rotation around the center of mass. The inertia
associated with the 8–th DOF is given by dB�8, where the parameter �8 is used to
indicate the cross-sectional area (for the translational DOFs) or the moment of area
of the cross-section (for the rotational DOF). The dot notation is used to indicate
time derivatives.
After non-dimensionalization, the equation for the 8–th DOF reads:

¥G8 +
f8

�∗
8
d∗
¤G8 +

b8

�∗
8
d∗

(
G8 − G4@8

)
= �8, 8 = 1, .., =�$� (2.3)

where the solid variables have been made dimensionless by means of the bulk
parameters of the flow field .
The non-dimensional cross-sectional area is defined as �∗ = �/!2

A4 5 , while the
non-dimensional moment of area corresponds to the second moment of area with
respect to the centroidal axis divided by the fourth power of !A . The parameter d∗

is the ratio of solid-to-fluid densities, d∗ = dB/d 5 , with d 5 being the density of the
fluid phase. The non-dimensional linear damping (f8) and stiffness (b8) coefficients
are defined as follows:

fG,H =
2G,H

d 5*A4 5 !A4 5
, f\ =

2\

d 5*A4 5 !
3
A4 5

, bG,H =
:G,H

d 5*
2
A4 5

, b\ =
:\

d 5*
2
A4 5
!2
A4 5

.

In the definitions above, the subscripts G and H are used to indicate the translational
DOFs, while the subscript \ indicates the rotation around an axis perpendicular to
the GH–plane and passing through the center of mass. The coefficient �8 represents
the non-dimensional force (or torque) acting upon the 8−th DOF, given by:

�G,H =
�G,H

d 5*
2
A4 5
!A4 5

, �\ =
�\

d 5*
2
A4 5
!2
A4 5

.

The coupling between the two systems of equations (2.3) and (2.1) is accomplished
via the forcing term f in the momentum equations that represents the action of
the solid boundaries on the flow, and the lift and torque coefficients above defined,
which give the hydrodynamic load, in absence of other external force fields, such as
gravity, that act on the body.
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2.4 Time-stepping algorithm
The finite-difference solver employed in this work (Nitti et al. 2020) integrates in
time the Navier-Stokes equations (2.1) through a semi-implicit procedure, where the
convective and viscous terms in the momentum equations (2.1a) are discretized by
a third-order Runge-Kutta (RK3) and a Crank-Nicolson (CN) scheme, respectively.
Each substep is resolved bymeans of a classic fractional-stepmethod (Chorin, 1968),
in which the coupling between the flow and the structure is obtained by means of
Uhlmann’s direct-forcing IB technique (Uhlmann, 2005). This method introduces
an additional force term into the right-hand side (RHS) of eq. (2.1a) to take into
account the effect of the solid boundaries. The method is outlined below.
At the beginning of the (: +1)–th substep, a preliminary velocity field û is evaluated
by making use of known quantities from the previous time steps

û = u: + ΔC
[
−U:∇?: + V: (u · ∇u): + W: (u · ∇u):−1 + U

:

'4
∇2u:

]
, (2.4)

whereΔC is the total time step and the coefficients for the three Runge-Kutta substeps
are the same as in (Mohan Rai and Moin, 1991):

U =
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8
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,

2
15
,

5
15

)
, V =
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32
60
,
25
60
,
45
60

)
, W =

(
0,
−17
60

,
−25
60

)
.

The preliminary velocity û is then used to compute the IB forcing term f , which is
in turn employed to advance in time the intermediate velocity field ũ,

ũ − u:
ΔC

= −U:∇?: + V: (u · ∇u): + W: (u · ∇u):−1 + U:

2'4
∇2

(
ũ + u:

)
+ f (û) .

(2.5)
The evaluation of the preliminary velocity field involves only quantities already
computed in the previous time step, hence it requires a low-cost explicit computation.
Furthermore, its value is contained in the RHS of eq. (2.5), therefore the evaluation
of the forcing field upon the preliminary velocity does not increase the computational
cost compared to its evaluation upon the velocity at the previous time-step (J. Kim,
D. Kim, and Choi, 2001). The details about the IB procedure adopted to evaluate f
are provided in section 2.4, after a brief discussion about the coupling between the
fluid and the solid dynamics.
After the evaluation of the forcing term, a Helmholtz equation is to be solved for the
velocity increment Δũ, (

1 − U
:ΔC

2'4

)
Δũ = û − u: + ΔCf , (2.6)
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with
Δũ = ũ − u: . (2.7)

The fluid equations are solved on a Cartesian staggered grid (Welch et al. 1965),
where the velocity components and the IB forcing terms are located at face centers,
and the scalar quantities are defined at the centers of the cells. The spatial derivatives
are approximated by means of standard second-order central finite differences. In
thisway, the staggered grid allows for compact stencils and does not require boundary
conditions for the pseudo-pressure i (Orlandi, 2001).
The solution of eq. (2.6) would involve the inversion of a large sparse matrix. This is
avoided by adopting an approximate factorization procedure (Briley andMcDonald,
1980) to reduce the large banded matrix associated with the implicit treatment of
viscous terms to the product of two tridiagonal matrices. This operation allows the
use of fast tridiagonal solvers, such as the Thomas algorithm, leading to a saving
in computational time. The solution of eq. (2.5) gives an intermediate velocity
field that does not satisfy the continuity equation. To enforce the continuity of the
final velocity u:+1, a pseudo-pressure field i is introduced in such a way that the
expression for the final velocity reads

u:+1 = ũ − U:ΔC∇i. (2.8)

Taking the divergence of the discrete fields in (2.8) and requiring the divergence of
u:+1 to be zero everywhere, a Poisson equation is obtained for i:

∇2i =
∇ · ũ
U:ΔC

. (2.9)

The discretized Poisson equation is solved to machine precision using a direct
method based on the eigendecomposition of the coefficient matrices (Haidvogel and
Zang, 1979). On a fixed grid, the decomposition procedure must be done once and
for all since the matrix entries do not change with time. The direct solution of eq.
(2.9) is needed to enforce the continuity condition with a tight tolerance at each
time step and is accomplished by using standard LAPACK (Anderson et al. 1990)
routines. For computational domains with different numbers of cells in the two
directions, it is preferred to solve for #G tridiagonal matrices of order #H, where G
is the direction with more grid points.
Once eq. (2.9) is solved for the scalar field i, the pressure can be updated (if needed)
as

?:+1 = ?: + i − ∇ · ũ
2'4

. (2.10)
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For incompressible flow problems, indeed, the pressure, or in this case the related
scalar variable i, is used as a Lagrangian multiplier to impose the divergence-free
condition upon the velocity field.
Before describing the possible coupling techniques for the fluid and the solid dy-
namics, there is another important aspect to be mentioned. The forcing term in
eq. (2.5), is evaluated based on the preliminary velocity û but is applied to the
intermediate velocity ũ. Given the semi-implicit nature of the time-stepping algo-
rithm, the boundary conditions of the fluid-solid interface may not be satisfied after
the solution of the Helmholtz equation (2.6). Furthermore, given the time-splitting
nature of the fractional-step approach, the imposition of the boundary conditions at
the interface is subsequently spoiled in the corrector step to enforce local continuity
(Fadlun et al. 2000).
However, the modification of the interface velocity caused by the correction step can
be minimized through a repetition of the forcing procedure after the solution of the
Helmholtz equation. Specifically, once eq. (2.6) has been solved, the interpolation
procedure described in section 2.4 is used to compute an updated IB forcing term,
then the intermediate velocity is modified accordingly. The iterative procedure is
described below:

for B := 1, =B do
f =+1/2B = f

(
ũ=+1
B−1

)
ũ=+1B = û + ΔCf =+1/2B

end for

where =B is a pre-defined number of iterations of the forcing procedure. Observations
have shown that the discrepancy between the interpolated final fluid velocity and
the local body velocity is effectively reduced with three to five iterations of the
forcing procedure (Breugem, 2012), up to a root-mean-square error that goes as
∼ O(10−5) of the reference flow velocity. Within the present method, the local
difference between the interpolated fluid velocity and the solid velocity employed
in the forcing stage is measured downstream of the time scheme, and its Root Mean
Square is evaluated over the set of Lagrangian markers (section 2.4). In presence of
moving surfaces, the root-mean squre error (RMSE) is found to be ∼ O(10−4) of
the reference velocity (see fig. 11 of (Nitti et al. 2020)).
The code is a collection of Fortran90 routines, and the flow solver is parallelized by
means of MPI libraries.
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Time integration of rigid-body dynamics
The equations of motion for the rigid body are integrated in time by means of a
CN scheme. Within this staggered approach, at each time step, the fluid and the
structural systems are solved in a sequential fashion: first, a low-order extrapolation
for the fluid-solid interface position and velocity is required to compute the IB
forcing terms and advance the flow field in time; then the coupling between fluid
and rigid-body dynamics is accomplished using the Eulerian load distribution f
coming from the IB procedure to obtain the total force and moment integrals (Lācis,
Taira, and Bagheri, 2016; Lai and Peskin, 2000) in the RHS of Newton’s equations
(2.3). This procedure avoids the integration of pressure and viscous stresses on the
contour of the body, circumventing the need for a reconstruction procedure. More
details about the hydrodynamic load evaluation are given in section 2.4.

Weak and strong coupling between fluid and rigid body dynamics

At this point, a distinction must be done between explicit and implicit fluid-structure
coupling schemes. When an explicit formulation is adopted to couple the fluid
and rigid-body dynamics, a specific time level for the IB forcing term should be
introduced.

Weakly coupled solver Specifically, the forcing function in the RHS of eq. (2.5)
employed to advance in time the solution of one time-step, from = to =+1, is evaluated
by using the structural solution obtained at =. Therefore, when the explicit coupling
approach is used, a time level = + 1/2 for the IB forcing is introduced. Namely, the
fluid solution at = + 1 depends upon f =+1/2

(
x=+1/2
�

)
, where x=+1/2

1
is a predictor

for the local interfacial displacement and velocity. For an undamped system, the
structural solution is then advanced in time following a CN scheme(

" + 1
2
 

) (
x=+1� − x

=
�

)
+  x=� = C

=+1/2, (2.11)

where the hydrodynamic load C=+1/2 is given by the integral of the forcing terms
f =+1/2 previously computed. In eq. (2.11), vector x� collects the structural dis-
placements and velocities, while " and  are, respectively, the mass and stiffness
matrices of the body.
The partitioned approach described above allows for fast FSI computations, how-
ever, its staggered nature reduces the temporal accuracy of the solution due to the



29

time lag introduced in the IB coupling procedure. Furthermore, loosely coupled
solvers are unstable for small solid-to-fluid density ratios d∗ (Causin, Gerbeau, and
Nobile, 2005; Förster, Wall, and Ramm, 2007) owing to the added-mass effect .

Iterative procedure To overcome these stability issues, an implicit approach is
needed. The one proposed in this work preserves the partitioned nature of the solver
by performing a set of iterations of the main loop. Iterative procedures enable
the decoupling of the fluid and structural steps, thus allowing one to use already
available solvers for both parts while still describing their instantaneous mutual
interaction. The simple iterative procedure is described below. To advance the
solution of one time-step, from = to = + 1, the following loop is repeated until the
desired convergence on the structural degrees of freedom is reached:

while ‖x=+1
�,;+1 − x

=+1
�,;
‖∞ > C>; do

f =+1; = f
(
u=+1; ,x=+1�,;

)
u=+1;+1 = �(

(
u=+1; , f =+1;

)
x=+1�,;+1 = ((

(
x�,; , f

=+1
;

)
end while

In the above equations, the flow and structural solvers are denoted by �( and ((,
respectively. The subscripts ; and ; + 1 refer to the iteration number, while the
superscripts indicate the time level. With the scheme described above, the output
from one solver is used as an input for the other solver and viceversa. The time lag of
the explicit procedure is eliminated since both the solid velocity and displacements
are treated implicitly. The stopping criterion is based on the infinity norm of the
structural DOFs. Specifically, iterations stop when the norm reaches a prescribed
tolerance, or a limiting number of iterations is reached.
It has to be noted, however, that iterative algorithms feature convergence difficulties
for low values of the density ratio, due to the dominance of the fluid force over the
solid inertia (Baek and Karniadakis, 2012). Furthermore, with the iterative coupling
procedure, the computational cost per time step increases considerably.
In the above-illustrated procedure, the time level notation has been retained also
for the IB forcing term, to keep the notation consistent with the explicit procedure.
However, within the implicit framework, the forcing term does not necessitate a time
level since it can be viewed as a Lagrange multiplier (Lācis, Taira, and Bagheri,
2016) required to impose the boundary conditions at the interface, just as the pseudo-
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pressure i is used to enforce the divergence-free constraint.

Hydrodinamic load evaluation

The accurate calculation of surface stresses and forces acting on the immersed
bodies is a crucial aspect of non-conforming methods. The expression for the
hydrodynamic load acting on a rigid body reads

F 4GC = d 5

∮
Γ�

τ · n3W, (2.12)

C4GC = d 5

∮
Γ�

r ∧ (τ · n) 3W, (2.13)

where F 4GC and C4GC represent, respectively, the vectors of hydrodynamic forces
and moments applied to a solid body occupying a volume (� (a surface in a two-
dimensional domain). Γ� is the contour of the body, n is the outward-pointing
unit normal vector, τ is the stress tensor, and r is the position vector of surface
points with respect to the center of mass. The evaluation of the above-defined
surface integrals would require knowing the flow quantities at the interface. This
is not the case with non-conformal approaches, since Eulerian grid points generally
do not coincide with the Lagrangian markers, therefore the direct computation of
integrals (2.12) necessitates an interpolation of the entries of the stress tensor onto
the interface.
To overcome these difficulties and avoid the estimation of inaccurate gradients, in
this method the forcing term in the momentum equations (2.1a) is used to evaluate
the stresses at the interface. Following Uhlmann (2005), the hydrodynamic loads
can be evaluated from a momentum balance over the fluid encompassed by Γ�

d 5

∮
Γ1

τ · n3W = 3

3C
d 5

∮
(�

u3( − d 5
∫
(�

f+3( − d 5
∮
Γ�

f(3W, (2.14)

where f+ and f( represent the contribution of volume and surface forces, respec-
tively, acting on the fluid. An analogous equation can be derived for the angular
momentum.
Within an IB framework, and in absence of other external fields, the second integral
in the RHS of (2.14) is simply the integral of the IB source term in the momentum
equations. The first term in the RHS of (2.14), instead, gives the linear acceleration
of the fluid enclosed by Γ�, which needs to be accounted for in the evaluation of
F 4GC . A simple approach to do so was presented by Uhlmann (2005), where it is
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assumed a rigid-body motion for the fictitious fluid inside the body. In this way,
the coefficients of the mass matrix of the body are modified to take into account the
inertia of the fictitious fluid. As pointed out by Kempe and Fröhlich (2012), this
approach leads to a singularity for dB = d 5 . Besides, the assumption of rigid motion
inside the solid could be questioned especially in problems involving the rotation
of the body. Therefore, the approach followed here is the one described by Lācis,
Taira, and Bagheri (2016). Specifically, it is based on the direct account of the fluid
inertia within the body, evaluated by means of a first-order approximation of the
time derivative of the volume integral in (2.14)

3&
=+1/2
G =

&GD
= −&GD=−1

ΔC
, (2.15)

where 3&=+1/2G is the discrete fluid inertia at the time level = + 1/2 for the coordi-
nate direction G, D is the component of velocity in the same direction, and &G is
the numerical evaluation of the volume integral, obtained through a second-order
midpoint quadrature rule

&GD
= =

∑
8 9

D=8 9U8 9ΔG8ΔH 9 . (2.16)

In the above equation, the subscripts of the cell spacings ΔG8 and ΔH 9 are necessary
for non-uniform stretched grids. The coefficient U8 9 in (2.16) gives the fraction of
the cell volume occupied by the solid a time =, and is computed as

U8 9 =

∑4
?=1 −Z?�

(
Z?

)∑4
?=1

��Z? �� , (2.17)

where � is the Heaviside step function, and Z is the distance from the surface of the
body of the four corners of cell (8, 9). The sign of Z is assumed to be positive for
points outside the body. An analogous expression can be derived for the rotational
inertia.
To obtain U8 9 and &GD=, it is necessary to know the actual position of each cell
with respect to the interface. This is trivial for rigid bodies whose surfaces can
be described as a locus of points in the Euclidean plane, such as ellipses. For
more complex geometries, this task can be accomplished by means of a ray-tracing
algorithm (O’Rourke, 1998).
The effect of the fictitious fluid inside the bodies is negligible for high-density ratios
d∗ for which the solid inertia dominates over the fluid contribution. For comparable
values of dB and d 5 , its effect on the accuracy of the results has been evaluated
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on the VIV case of a spring-mounted cylinder in an open flow, free to oscillate in
the cross-flow direction, at '4 = 60 for d∗ = 5 and d∗ = 2.5. In Figure 2.3 are
reported the time traces of the vertical displacement of a cylinder with d∗ = 5 (a) and
d∗ = 2.5 (b) obtained with and without the correction for the fictitious fluid inside
the cylinder, respectively. In both cases, the two simulations start from the same
steady solution, and no initial perturbation is added to the field. The simulations are
performed with a time-step size adapted to get keep the Courant-Friedrichs-Lewy
(CFL) number equal to 0.1. The selected Reynolds number of the simulations
is bigger than the linear instability threshold for an oscillating cylinder, therefore
numerical disturbances trigger an unstable mode and the cylinder starts oscillating.
The purpose of the validation is to evaluate the effect of the fictitious fluid upon
the initial growth of the oscillation amplitude. The results reported in Figure 2.3
show a good agreement between the time evolutions with and without the inner-flow
correction for the cases considered. Figure 2.4, instead, shows the effect of the
repetition of the forcing procedure, as described in section 2.4, on the computed
hydrodynamic loads. Six simulations have been carried out starting from the same
initial condition to evaluate the influence of the number of forcing iterations =B on
the hydrodynamic forces calculated according to (2.14). The configuration chosen
is the uniform flow past a fixed cylinder at '4 = 100, for which vortex shedding
occurs and three-dimensional modes do not affect the dynamics. According to the
results shown in Figure 2.4, there seems to be a small variation of the lift coefficient
with =B, while it is necessary to iterate the forcing procedure at least five times to
get an almost independent drag coefficient. This result is not surprising since the
inflow velocity is aligned along the G direction. This effect is present also without
the inner flow correction procedure given by (2.15), as shown in Figure 2.5. In
Figure 2.6, instead, are reported the time histories of the RMSE of the no-slip
condition over the set of Lagrangian markers, for the same flow. As can be seen,
the difference between structural velocity and interpolated fluid velocity, integrated
over the interface, is always kept as a O(10−4) fraction of the free-stream velocity.
At first, the error diminishes appreciably with the increase of =B, but the decrease is
negligible for =B > 3, suggesting that further increasing =B is useless for the accuracy
of the computation.

Immersed boundary procedure
The boundary conditions at the fluid-structure interface are imposed on the in-
termediate velocity field ũ using a direct-forcing immersed boundary technique.
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(a)

(b)

Figure 2.3: Vertical displacement of a spring-mounted rigid cylinder in a cross flow
at '4 = 60, with and without the inner flow correction for different values of the
density ratio: (a) d∗ = 5 and (b) d∗ = 2.5.The simulations have been conducted at
constant ��! = 0.1.

Following Uhlmann (2005), body-force terms are computed over a set of suitably
spaced Lagrangian markers laying on the immersed surface. Each velocity compo-
nent is interpolated at the Lagrangian markers via an MLS approximation (Vanella
and Balaras, 2009):

+̂8 (x;) = 	ᵀ
8
(x;)û8, (2.18)

where û8 is the array that collects the 8–th velocity component at the face centers
within the support domain of each Lagrangian marker and +̂8 is the 8–th velocity
component at the Lagrangian position x; . In two dimensions, the minimum number
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(a)

(b)

Figure 2.4: Time histories of the non-dimensional lift �H and drag �G forces for a
fixed cylinder in a uniform flow at '4 = 100. The calculations have been performed
with a different number of iterations =B of the forcing procedure after the solution
of the Helmholtz equation.

of grid cells =4 contained in the support domain is equal to 9. The linear operator
	T
8 (x;) is the MLS transfer function for the 8–th velocity component, defined as

	T(x;) ≡ pT(x;) (A(x;))−1B(x;), (2.19)

where

pT(x;) = [1, G; , H;],

A(x;) =
=4∑
:=1
,

(
x; − x:

)
p

(
x:

)
pT (

x:
)
,

B(x;) =
[
, (x; − x1)p(x1) . . ., (x; − x=4)p(x=4)

]
.

(2.20)

The weight function , (x; − x: ), used in the definition of matrices A and B,
plays the role of a convolution kernel. Different kinds of weighting functions can
be used in (2.20), provided that they are adequately smooth, respect the partition
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Figure 2.5: Time traces of the drag coefficient �G of a fixed cylinder immersed in a
uniform flow at '4 = 100. The image shows the variation of �G as the number of
iterations of the forcing procedure is increased, in absence of the correction for the
inner fluid inertia.

of unity and compatibility properties, and generate shape functions that reproduce
exactly the linear polynomial contained in their basis (Vanella and Balaras, 2009).
Two commonly used weighting functions are the cubic spline and the exponential
function. Indeed, both the weightings hold comparable results and possess the
desirable property of monotonicity. Cubic splines weight functions are defined as

, (x − x: ) =


2
3 − 4A2

:
+ 4A3

:
, for A: ≤ 0.5

4
3 − 4A: + 4A2

:
− 4

3A
3
:
, for 0.5 < A: ≤ 1.0

0, for A: > 1.0

(2.21)

where A: = |x−x: |/A8, and A8 is the size of the support domain in the 8-th direction.
The exponential function has the following form

W(x − x: ) =

4−(A:/])

2
, for A: ≤ 1

0, for A: > 1
(2.22)

where ] is a shape parameter. For the results presented in this work, the exponential
function is used with ] = 0.3.
After the interpolation step for the velocity, a volume force component is computed
for each Lagrangian marker ;,

� ;8 =
+ ;
8
− +̂8 (x;)
ΔC

, (2.23)

where + ;
8
is the 8−th component of velocity to be imposed at the interface and ΔC is

the time-step of the numerical scheme. Finally, the forcing term to be added to the
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(a)

(b)

Figure 2.6: Time histories of the RMSE of the velocity components on the body as
a function of the total number of force iterations =B

RHS of the Navier-Stokes equations (2.1a) is computed at each Eulerian grid point
using again the shape functions of the interpolation procedure

5 :8 =

=;∑
;=1

2;Ψ
;
:�

;
8 , (2.24)

where 5 :
8
is the 8−th component of the forcing for the :−th Eulerian grid point, =;

is the number of Lagrangian markers whose support domain contains the selected
Eulerian point and 2; is a scaling coefficient needed to ensure the conservation of
momentum through the forcing operation (Nitti et al. 2020).
The above-described procedure correctly enforces the boundary conditions, pro-
vided that the Lagrangian markers are distributed uniformly on the body and provide
sufficient resolution. Hence, themaximum spacing between two contiguousmarkers
has to be comparable to the local size of the Eulerian grid (de Tullio and Pascazio,
2016). In the present solver, Lagrangian markers are separated by a distance that is
about 0.7ℎ, where ℎ indicates the local cell size of the Eulerian grid.



37

Figure 2.7: Scheme of the IB forcing. The green area contains the Eulerian nodes
belonging to the support domain of the selected marker.
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C h a p t e r 3

GLOBAL STABILITY ANALYSIS OF FLUID-STRUCTURE
INTERACTION PROBLEMS

A method is more important than a discovery since the
right method will lead to new and even more
important discoveries.

Lev D. Landau
This chapter starts with an introduction to the modal linear stability
theory. Then, a general time-stepping procedure is described for the
stability analysis of systems involving a reduced structure immersed in
an incompressible viscous flow. The algorithm is implemented practi-
cally using the finite-differences code described in the previous chapter.
Eventually, the method is validated on a classic fluid-structure bench-
mark problem. The results show a good agreement with instability
studies reported in the literature and obtained with body-conformal
approaches. Additionally, details are provided on the appropriate se-
lection of the linearization parameters.

3.1 Introduction
Over the nineteenth century, the majority of research efforts in the context of hydro-
dynamic linear stability theory have been focused on understanding the early stages
of laminar-turbulence transition in parallel flows (Peter J. Schmid and D. Hen-
ningson, 2001). The evolution of disturbances of such monodimensional velocity
profiles is traditionally investigated by means of a modal decomposition, resulting
in a relatively small eigenproblem that does not require high computing power to be
solved. Over the last decades, as a result of the advancement in computing resources
and algorithmic developments, the scope and applications of linear instability anal-
yses have expanded significantly (Vassilios Theofilis, 2003), including the study of
two-dimensional and three-dimensional nonparallel flows. In this case, the literature
is generally concurrent to refer to the linear stability analysis as global.
From a computational point of view, even with modern hardware, the size of the re-
sulting non-symmetric generalized EVPs might represent a challenge for large-scale
problems. To alleviate the restrictions on the size of the systems, many iterative



43

approaches have been developed that rely on matrix-free techniques (Mettot, Renac,
and Sipp, 2014) to extract information from the flow. The focus here will be on iter-
ative time-stepping methodologies, which couple common iterative algorithms for
the solution of EVPs with validated codes for direct numerical simulations (DNS).
In recent years, thanks to the advancement in computational hardware, accurate and
fast DNS solvers have become affordable for the average user. High-fidelity simula-
tions are able to capture all the relevant flow physics, provided that all the relevant
scales are resolved, hence they have become the method of choice for the analysis
of complex flow problems. Furthermore, quoting Orlandi (2001), "it is indeed true,
as someone claims, that codes to solve the 3D Navier-Stokes equations are available
at the supermarkets".
In this chapter, a time-stepping methodology is presented for the global linear sta-
bility analysis of FSI problems. The method makes use of high-fidelity nonlinear
simulations obtained with a direct-forcing IB method, based on an MLS approach.
One of the main advantages of the IB formulation resides in the fact that it can
handle multi-body configurations with no additional complexity. In addition, the
fluid equations are resolved on a staggered Cartesian grid, which makes the method
prone to a simple parallel implementation for three-dimensional computations.
The choice of the specific IB forcing technique is crucial for the success of the
computation. It has been noted that the use of a sharp forcing field usually leads to
the appearance of unphysical fluctuations of the hydro-dynamical force acting on the
solid body (Uhlmann, 2003). Seo and R. Mittal (2011) attributed the emergence of
pressure oscillations to an unintended transpiration effect at the immersed boundary,
due to the fact that the role of the Eulerian nodes close to the interface can change
from a time-step to the next as the body moves. These spurious oscillations can be
suppressed by spreading the forcing term over a wider stencil through the use of a
smoother Lagrangian-Eulerian transfer function (X. Yang et al. 2009). In view of
these considerations, the MLS forcing procedure exposed in section 2.4 is selected,
which provides a good trade-off between accuracy and robustness.
The proposed strategy involves the adoption of the matrix exponential, first intro-
duced by Eriksson and Rizzi (1985) in the context of global stability analysis. In
their paper, the authors proposed to approximate the action of the Jacobian matrix
via finite differences to investigate the instability of the transonic flow over an airfoil,
a phenomenon modeled by the two-dimensional Euler equations. They also high-
lighted the need for a matrix transformation to retrieve the least stable portion of the
spectrum of the discrete operator. The same approach was later extended to the full



44

Navier-Stokes equations by Chiba (1998), who performed a linear stability analysis
of the two-dimensional square lid-driven cavity flow, and by Tezuka and Suzuki
(2006), who carried out a TriGlobal stability analysis (V. Theofilis and Colonius,
2011) of the flow around various spheroids.
Gómez, Gomez, and V. Theofilis (2011) incorporated the approach of Tezuka and
Suzuki (2006) into publicly-available computational fluid dynamics (CFD) solvers,
highlighting the flexibility of the method that looks at the CFD solver as a black-box
source. In a successive paper, Gómez, Pérez, et al. (2015) extended that work by
inserting a shift-invert strategy to grant access to specific portions of the spectrum.
This contribution builds on the above-mentioned series of papers and provides an
extension of Chiba’s approach to FSI problems.

3.2 Iterative eigenvalue computation
Iterative eigenspectrum retrieval is, without a doubt, the method of choice for
global stability analyses of complex flows, owing to the reduced computational
requirements with respect to direct methods. In this context, projection methods
are by far the most popular technique employed to reduce the size of an eigenvalue
problem. Among these, Krylov subspace methods (D. Sorensen, 2002) have been
extensively used by the fluid mechanics community. The underlying idea is to search
for an approximate solution to an eigenproblem with size # by projecting it on an
<–dimensional Krylov subspace obtained by repeated applications of the system
stability matrixQ on a starting vector v1

K< (Q, v1) = B?0={v1,Qv1,Q
2v1, ...,Q

<−1v1}. (3.1)

The assembly of the sequence given by (3.1) requires only a series of matrix-vector
multiplications, hence the algorithm performing them is used as a black box from the
iterative procedure. This aspect constitutes a big advantage of projection methods
and lays the foundation of time-stepping methodologies. The simplest algorithm
of this kind is the power iteration method, which uses only the last element of the
sequence to approximate the largest eigenvalue (in modulus) of the matrixQ.
The first application of Krylov methods in the field of hydrodynamic stability dates
back to Edwards et al. (1994), who carried out an LSA of the incompressible
NS equations via the Implicitly Restarted Arnoldi Method (IRAM) . The clas-
sic Arnoldi algorithm is undoubtedly the most popular method belonging to the
Krylov-subspace’s family. It consists in the assembly of an orthonormal basis
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V< = [v1, v2, ..., v<] of the Kylov subspace K<, which is then used to create a
reduced Hessenberg matrix :

QV< = V H< + r<eᵀ<, (3.2)

where H< is the < × < Hessenberg matrix, r< is the residual vector and eᵀ< is
the <–th unit vector in R<. The outline of the basic Arnoldi factorization is given
below. The entries of the Hessenberg matrix are indicated with ℎ8, 9 . Thanks to

Algorithm 1 Arnoldi method
Select: <, v1 ∈ R=
v1 → v1/‖v1‖2
for : = 1 to < do
z = Qv:
for 8 = 1, ..., : do

ℎ8,: = v
ᵀ
8
z

z = z − ℎ8,:v8
end for
ℎ:+1,: = ‖z‖2
v:+1 = z/ℎ:+1,:

end for

its small dimension, the eigenvalues of matrix H<, the so-called Ritz values, can
be computed by direct means. Their value constitutes an approximation of the
eigenvalues of matrixQ.
In the following section, after the introduction of the linear stability problem for a
generic system, a time-stepping methodology is proposed for FSI applications.

3.3 Governing equations
The evolution in time of a generic continuous-time physical system (also called a flow
(Bhatia and Szegö, 1970)) is frequently governed by differential equations that arise
from conservation principles. For a fluid system, for instance, these basic principles
include the conservation of mass, momentum, and energy. In the continuum model,
these concepts often assume the form of an ordinary differential equation,

3q

3C
= R(C, {V8}, q) (3.3)

where q is a state vector , collecting all the variables that describe the system, {V8}
is a set of parameters that influence the dynamics andR is a smooth function called
the evolution operator of the system. For instance, for a two-dimensional flow
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interacting with a rigid body, q = [u, ?,x�]ᵀ.
According to the linear theory, we are interested in asymptotic solutions of the IVP
(3.3), i.e. steady solutions or periodic ones. In this thesis, only steady solutions q1
to (3.3) will be considered, for which

R (C, {V8}, q1) = 0. (3.4)

The stability of periodic orbits, for which q1 (C + )) = q1 (C), can be analyzed in the
same fashion under the Floquet theory . According to the linear theory, the state
vector can be decomposed as the sum of the basic state q1 and a small-amplitude
perturbation q′

q (C) = q1 + nq′ (C) , (3.5)

where n is a small scalar. Injecting this expansion into (3.3), the time derivative of
q can be approximated by a Taylor series

3q

3C
= n

3q′

3C
≈ n mR

mq

����
q1

q′ + O(n2). (3.6)

Neglecting higher order terms in n , the stability of the system is predicted by the
solutions of an IVP for q′,

3q′

3C
=
mR

mq

����
q1

q′ = J (q1) q′, (3.7)

whereJ (q1) is the linear Jacobian operator evaluatedwith respect to the steady-state
q1. Then, following the traditional modal approach, the perturbation is expanded
into a series of normal modes

q′(C) =
∑
8

(
q̂84

l8C + 2.2.
)
, (3.8)

where l8 is a complex eigenvalue 1, q̂8 is the corresponding eigenfunction and 2.2.
indicates the complex conjugate. Accordingly, the stability characteristics of the
system can be deduced from solutions of an EVP for the Jacobian operator

(J (q1) − Il) q̂ = 0, (3.9)

where I is the identity tensor. In the case of an autonomous system, i.e. a system for
which R does not depend explicitly on time, the exact solution of the linear initial
value problem expressed by eq. (3.9) is given by

q′(C0 + )) = 4J (q1))q′(C0) = �())q′(C0), (3.10)
1q′ is actually equal to the real part of the expansion.
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where the operator � is known as the exponential propagator of the system. The
propagator can be interpreted as the operator that advances in time the small ampli-
tude perturbations on q1. Injecting into (3.10) the modal decomposition, one gets
the following eigenvalue problem

`q̂ = �())q̂. (3.11)

The eigenvalues of the two problems are related through the exponential transfor-
mation ` = 4l) , while the eigenvectors remain unchanged. The asymptotic linear
stability properties of the system are dictated by the module of the eigenvalues `.
If all eigenvalues have |` | < 1, the system is linearly stable, while it is unstable
if at least one eigenvalue has |` | > 1. For |` | = 1, the system is neutrally stable.
For periodic base states, the propagator is denoted as monodromy operator and its
eigenvalues are known as Floquet multipliers. The exponential transformation alters
the spectrum in such a way that the dominant eigenvalues, i.e. the eigenvalues of
largest modulus, correspond to the leading ones in the original eigenvalue problem,
where with the term leading, we refer to the eigenvalues with the largest real parts.
This is a desirable feature, since iterative solvers, such as the Arnoldi algorithm,
identify the dominant eigenvalues of the system, if not used in conjunction with
some spectral transformation.

(a) (b)

Figure 3.1: Exponential tranformation of the spectrum. The eigenvalues l of
operator J (a) are shifted to the right after the exponential transformation ` = 4l)
(b). On the right, the unit circle is reported to show the clustering of the least stable
eigenvalues near the circumference.
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3.4 Numerical strategy
The problem of linear stability is now reduced to finding the eigenvalues of the
propagator�. In a discrete framework, this reduces to finding the eigenvalues of an
#×# matrix, where the size of the system # is given by the number of cells or nodes
of the discretized domain times the number of flow variables, plus the degrees of
freedom of the body. For real-world systems, the explicit calculation (and storage)
of the matrix exponential often carries a prohibitive computational load and one
must resort to iterative algorithms, such as those belonging to the class of Krylov-
subspace projection methods. In these algorithms, an <–dimensional Hessenberg
matrixH (with < � #) approximates the matrix exponential in a low-dimensional
Krylov subspace, which is constructed via the repeated action of operator � on a
given starting vector. The eigenvalues of the Hessenberg matrix, the so-called Ritz
values, constitute an approximation of the eigenvalues of the exponential matrix.
Given the matrix-free framework of this method, one aims at approximating the
action of � on a perturbation vector. This is done by introducing the propagator
F (q) of the complete solution,

q(C0 + )) = F (q0, {V8}, )), (3.12)

where q0 is the value assumed by the state vector q at a given time C = C0 and
q(C0 +)) represents its evolution after a period ) . The solution at time C = C0 can be
expressed as the superposition of the previously defined steady-state q1 and a small
amplitude deviation from it nq′(C0). A Taylor expansion of operator F around the
base state q1 yields

F (q1 + nq′(C0), )) = F (q1, )) +
mF (q, ))

mq

����
q1

nq′(C0) +$ (n2), (3.13)

where the dependence of F upon the set of parameters {V8} has been neglected for
conciseness. It can be shown that the second term on the RHS is, up to the scalar n ,
an approximation of (q′(C0 + )) − q′(C0)) for small values of ) . The details of this
derivation are provided in section A.1 of the appendix.
Substituting this expression into the RHS of (3.13) and neglecting higher order
terms in n , one gets an expression for evaluating the advancement in time of the
perturbation based only on the propagator of the complete solution

q′(C0 + )) ≈
F (q1 + nq′(C0), )) − F (q1, ))

n
. (3.14)

Taking the limit of (3.14) as n −→ 0, the RHS gives a Gateaux derivative of F at q1,

lim
n→0

F (q1 + nq′(C0), )) − F (q1, ))
n

. (3.15)
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In a discrete context, the action of the time-marching matrix of the perturbation can
be recovered through a finite difference that only involves calls to the time-stepping
scheme described in section 2.4. Here the same nomenclature is used to refer to
both the time-discrete and time-continuous operator

q=+1 = F ({V8}, q=) (3.16)

In the equation above, F is the time-stepper used to advance the solution from time
level = to = + 1. Selecting a small but non-zero value of n , the derivative given by
eq. (3.15) can be approximated by

F (q1 + nq? (C0), =BCΔC) − F (q1, =BCΔC)
n

, (3.17)

where q? represents the perturbation vector in the discrete system. For ease of
notation, the same notation q1 is employed to refer to both the continuous and
spatially discretized base state. The parameter =BC is the number of time-steps by
which the solution is advanced in time and ΔC is simply the time-step of the scheme,
chosen according to the desired ��! condition.
A better approximation of (3.15) can be built via higher-order finite differences. For
the results presented in this thesis, a second-order central finite difference is used to
approximate the evolution of a given perturbation q? (C0)

q? (C0 + =BCΔC) =
q+ − q−

2n
, (3.18)

where q+ and q− are the results of two separate calls to the FSI solver, advancing in
time the base state after the addition and subtraction, respectively, of the same small
perturbation:

q+ = F (q1 + nq? (C0), =BCΔC), (3.19)

q− = F (q1 − nq? (C0), =BCΔC). (3.20)

Although such an approach presents the disadvantage of requiring two calls to
the time-stepper, it reduces the number of required iterations by providing a more
accurate estimate for the matrix-vector product (Knoll and Keyes, 2004).
A set of the least stable eigenvalues can now be computed via a Krylov projection
method. In this work, approximations to the leading eigenvalues of the system are
computed using the IRAM algorithm (Danny C. Sorensen, 1992) as implemented in
the open source package ARPACK (Lehoucq, D. C. Sorensen, and C. Yang, 1998).
The base states here considered are equilibrium solutions of the fully coupled



50

nonlinear system, therefore their evaluation requires the solution of a nonlinear
algebraic system.
For large-scale problems, a pure Newton-Raphson method is prohibitive because of
the size of the systems, hence the most common approach to overcome this difficulty
is the use of a Newton-Krylov technique. With the proposed methodology, the base
state for each test casewas computed usingBoostConv (Citro et al. 2017), an iterative
residual recombination procedure belonging to the class of Krylov methods.
The choice of such an algorithm fits perfectly into the proposedmatrix-free approach
since BoostConv can be easily applied as a black-box procedure that requires only
several calls to a pre-existing time-marching algorithm, without any modification.
The outline of the algorithm is shown below
For all cases shown in this thesis, a non-zero pseudo-random perturbation has been

Algorithm 2 Proposed methodology
Compute base state with BoostConv (Citro et al. 2017)
Select starting vector q0

?

while Covergence is not reached do
q:? → Call ARPACK (Lehoucq, D. C. Sorensen, and C. Yang, 1998)
Call time-stepper→ q:+1? =

q+−q−
2n

Reverse communication with ARPACK
Check convergence of the desired Ritz pairs

end while
Perform the logarithmic transformation to recover the original eigenvalues:
l = (log |` | + 8 arg(`)) (=BCΔC)−1.

employed as a starting vector for the Arnoldi iterations, with the only requirement of
respecting the divergence constraint on the velocity. It is worth pointing out that the
present approach circumvents the need to select appropriate boundary conditions
for the perturbation field, while the boundary conditions of the nonlinear evolution
problem are included in the discrete operator F .

Some remarks on the effect of the IB interface on the linear results With the
IB approach, the solid-fluid interface is enforced by a time-varying distribution of
forcing terms that mimics the effect of the body on the flow. Since, in general,
the interface does not coincide with the grid lines, the need for an interpolation
procedure arises. The way this transfer of information is done defines the specific
variant of the IB method.
In the presence of a moving interface, the choice of the interpolation scheme is even
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more important. It has been noted, for instance, that non-physical force oscillations
arise, in this case, with some variants of the IB method (X. Yang et al. 2009),
like the discrete Delta function formulation. Complications emerge also with the
Cartesian grid (or cut-cell) approach, in which the fluid-solid interface is sharply
tracked, in view of the fact that the role of the grid points near the interface can
change from time-step to time-step (J. Yang and Balaras, 2006) (i.e. a grid point
that belongs to the portion of the domain occupied by the solid at a given time-step
can drop out of the body contour at the next time-step and viceversa). While the
role of the node changes, it still carries the physical information about its previous
phase, consequently, the local pressure field is strongly perturbed.
The choice of the above-described MLS technique, among the diverse options
belonging to the class of non-conforming methods, is motivated by the need for a
smooth transfer between Lagrangian and Eulerian nodes (Vanella and Balaras, 2009;
Uhlmann, 2003). Indeed, the emergence of non-physical pressure oscillations in
the nonlinear solution would have a detrimental impact on the accuracy of (3.18),
involved in the computation of the linear modes with respect to the steady-state. The
present method shows reduced spurious oscillations in the vicinity of the interface
due to the fact that the IB forcing field is slightly smeared within the compact support
of the MLS interpolation.
One issue of interest is to what extent the smeared representation of the interface
affects the accuracy of the computation for higher Reynolds number flows. Thewall-
resolved computation of the viscous shear layer in presence of moving immersed
boundaries is still an open research area. Oneway to improve the local accuracywith
reasonable computational expense within an IB framework is to employ a locally
refined semi-structured grid (Durbin and Iaccarino, 2002; de Tullio et al. 2007) in
order to increase the grid resolution near the body. It is worth recalling that the
present method relies on the linearization of the system around steady solutions
of the Navier-Stokes equations, which usually exist for sufficiently low Reynolds
numbers.
Another point to be considered is the effect of the IB treatment on the evaluation of
the finite difference in (3.18) itself. When the position of a given Lagrangian marker
falls into a certain grid cell in the solution q+ and into an adjacent cell in q−, the
subtraction (q+−q−) involves grid points that are included in the support domain of
the marker in one case and left out in the other. To avoid this problem, the support
domain of each marker is kept fixed during the evaluation of q+ and q−, such that
the forced fluid cells are the same in the two solutions. The corresponding marker
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is prevented from falling outside of the fixed support owing to the short integration
time) and the small scaling factor n employed in the linearization procedure. In this
way, the procedure provides an accurate and robust computation of leading modes
with a finite difference approach.

Selection of the linearization parameters

One critical aspect of the presented procedure is the selection of the linearization
parameters, i.e. the integration period ) = =BCΔC and the perturbation scaling factor
n .
The choice of the integration time is somewhat problem dependent. As reported
by Goldhirsch (Goldhirsch, Orszag, and Maulik, 1987), for a given number of
requested eigenvalues : , the order of the error related to the model reduction is
given by

���4(l:−l<)) ���. This means that the accuracy can be improved either by
increasing the number of integration time steps =BC , or by augmenting the dimension
of the basis <. Eriksson and Rizzi (1985) refer to =BC as a selectivity parameter, in
the sense that, as it increases, the separation among the least damped eigenvalues
is magnified. Both options can provide sufficient separation between the desired
eigenvalues and the remaining part of the spectrum.
In spite of that, it is worth noting that this methodology is based on an approximation
of the evolved perturbation, given by (3.14), which is valid for short integration
periods. For this reason, it is legitimate to keep ) small while increasing the value
of < for particularly clustered eigenvalues. Table 3.1 reports the results of the LSA
of the uniform flow past a fixed circular cylinder at '4 = 60, as the number of time
steps =BC employed by the linearization procedure is varied. All the computations are
carried out using the same dimension< = 30 for the Krylov subspace and requesting
the same number of eigenvalues with tolerance 10−6. As can be seen in Table 3.1,
the number of Arnoldi iterations required for convergence decreases almost linearly
and, consequently, so does the total number ofmatrix-vectormultiplications required
(see Figure 3.2a ). However, given that the simulations are carried out with a fixed
time step equal for all cases, the actual cost of the operation is given by the total
number of single time step advancements, reported in Figure 3.2b. For the case under
investigation, this shows that it is not convenient to select a large value for =BC . It must
be noted, however, that in this case there is only one unstable eigenvalue. In presence
of multiple clustered unstable eigenvalues, a bigger value of =BC could be a more
suitable choice. One issue to be considered when dealing with iterative methods
is the need for convergence acceleration that arises for high-resolution simulations.
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=BC #� lA l8

1 317 0.0483 0.7444
2 266 0.0477 0.7441
4 138 0.0479 0.7457
10 81 0.0484 0.7435
20 51 0.0485 0.7448
30 36 0.0481 0.7436
50 27 0.0485 0.7446
100 15 0.0482 0.7440

Table 3.1: Results of the eigenvalue calculation for the uniform flow past a fixed
circular cylinder at '4 = 60. The table shows the growth rate lA and circular
frequency l8 of the leading eigenvalue computed for a different number of time
steps =BC in the linearization procedure. The dimension of the Krylov subspace is
< = 30 for all the calculations, as the size of the single time step ΔC = 3×10−3. The
table also reports the total number of Arnoldi iterations #� for each calculation.

(a) (b)

Figure 3.2: Number of matrix-vector multiplications #$% (a) and total number of
time steps #BC (b) required for the convergence of the Arnoldi method with different
values of the integration time ) . The case under investigation and the setup of the
solver are the same as Table 3.1.

The rate of convergence of an iterative method decreases with the condition number
of the Jacobian matrix, which in turn increases as the grid is refined. To address
this issue and improve the performance of the method, adequate preconditioning is
usually required. Building a preconditioner in a matrix-free context is not a trivial
task because the matrix is never formed and standard preconditioning techniques
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cannot be directly applied.
To preserve the flexibility of the time-stepping global stability solver, the technique
employed to control the convergence must be iterative and matrix-free. As an
example, Mack and Peter J. Schmid (2010) proposed a Jacobian-free DNS-based
global stability solver for compressible flows with the addition of a preconditioning
matrix in explicit form. Instead, Asgharzadeh and Borazjani (2017) addressed this
issue through the use of an analytical Jacobian as a preconditioner in a Newton-
Krylov method for the implicit solution of the Navier-Stokes equations. Some other
options for matrix-free preconditioning are discussed in (Knoll and Keyes, 2004).
The remaining parameter that must be selected by the user is the linearization
coefficient n , i.e. the amplitude of the discrete perturbation. Its value should result
from a trade-off between the truncation error of the finite difference and round-off
errors related to the finite precision arithmetic.
Literature provides some guidelines for the appropriate choice of n , the interested
reader is referred to the works of Eriksson and Rizzi (1985), Knoll andKeyes (2004),
Schulze, P. J. Schmid, and Sesterhenn (2009) and Mack and Peter J. Schmid (2010).
In this thesis, it is adopted a commonly used approach that selects the scaling factor
of the perturbation at each time-stepper call as

n = n0
‖q1‖2 + ‖q? ‖2
‖q? ‖2

, (3.21)

where ‖q‖2 is the !2 norm of vector q and n0 is a user-defined parameter related to
the truncation error (An, Wen, and Feng, 2011) of the FSI time-stepping scheme.
The choice of n0 has a great influence on the success of this time-stepping approach,
and the user should keep in mind that this task is somewhat solver-dependent.
Following the example of Mack and Peter J. Schmid (2010), in A.3 it is reported a
parametric study that illustrates the influence of the parameter n0 on the accuracy of
the results obtained for a given configuration.
One final observation can be done regarding the linearized approach. The procedure
enables the emergence of exponentially growing modes that are rarely observed in
natural systems or in time-marching simulations. The reason lies in the fact that,
since a perturbation is usually a superposition of all the modes, the exponential
growth is observable only after a long transient, when the leading mode overcomes
the others. In reality, the disturbances are not infinitesimal, hence nonlinearity
becomes relevant before the exponential growth phase is reached. Constraining
the size of the perturbation to a relatively small value, the numerical linearization
procedure, instead, enables the emergence of the exponential growth stage.
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3.5 Validation case: VIV of an isolated cylinder
The proposedmethodology has beenfirst validatedwith respect to the two-dimensional
flow past a fixed circular cylinder, which is the subject of abundant literature in the
field of hydrodynamic instability as it is considered the prototype flow around bluff
bodies.
For this case, the flow quantities are made dimensionless by taking the diam-
eter of the cylinder � and the incoming flow velocity *∞ as reference vari-
ables. The reported results are obtained over a rectangular domain with size
[−28� : 52�] × [−28� : 28�], with the origin placed on the cylinder axis.
A uniform streamwise velocity is imposed at the inlet boundary along with a zero
cross-sectional velocity (D = 1, E = 0), while free-shear boundary conditions are
enforced on the lateral boundaries. At the outlet, a convective boundary condition
allows the outgoingwaves to exit the computational domainwithminimal reflections
while preserving local continuity. No-slip conditions are applied to the velocity at
the surface of the cylinder via the IB procedure described in the previous section.
Figure 3.4 illustrates an example of the stretched Cartesian grid used for the compu-
tations. To obtain the results here presented, a grid containing 900 × 570 cells has
been employed, with a minimum grid spacing of 0.022� attained over a uniformly
spaced rectangular region around the cylinder measuring 10� in the streamwise
direction and 4� in the cross-stream direction.
An estimate for the globally unstable eigenvalue l at '4 = 50 is reported in Ta-
ble 3.2 along with results from references (Siconolfi et al. 2017; Negi, Hanifi, and
D. S. Henningson, 2020), while Figure 3.3 shows the vorticity (a,b) and streamwise
velocity component (c,d) fields of the real (a,c) and imaginary parts (b,d) of the
related unstable eigenmode.

Reference l (%)

Siconolfi et al. (2017) 0.0160 + 0.7598 2.85
Negi, Hanifi, and D. S. Henningson (2020) 0.0133 + 0.7428 0.61

Present 0.0154 + 0.7388 -

Table 3.2: Unstable eigenvalue for the flow past a fixed circular cylinder at '4 = 50.
The results obtained with the presented methodology show good agreement with
values present in the literature, as indicated by the relative error reported on the
right.
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(a) (b)

(c) (d)

Figure 3.3: Real (left) and imaginary (right) part of vorticity (a,b) and streamwise
velocity (c,d) fields for the unstable eigenmode of the flow past a fixed circular
cylinder at '4 = 50. Flow is from left to right.

Figure 3.4: Example of a grid used for the linear stability analysis of the flow past a
circular cylinder (for both the fixed and oscillating cases). To make the graph more
readable, every tenth grid point in each direction is displayed. The inset shows a
close-up of the cylinder region for the actual grid employed in the calculations.

The selected validation case for FSI configurations is the linear stability analysis
of the VIV of an isolated elastically mounted circular cylinder. This test aims at
demonstrating the ability of the IB solver to accurately capture the dynamics of a
small perturbation of the fluid-structure system.
The size of the domain and the distance of the center of mass of the cylinder from its
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boundaries are the same as in the case of the fixed cylinder, as well as the boundary
conditions. For all cases investigated, the Reynolds number based on the cylinder
diameter is kept fixed at '4 = 60, the cylinder being free to oscillate only in the
cross-stream direction with no structural damping.
The dynamics of this configuration is governed by three non-dimensional parame-
ters, namely, the Reynolds number '4, the density ratio d∗, and the reduced velocity
*∗, which gives the ratio of two characteristic time scales of the problem, i.e. the
period of one natural mode of the body and that of the convective motions of the
flow. It is defined as

*∗ =

√
�∗d∗4c2

bH
. (3.22)

For the computations, the same grid used for the case of the fixed cylinder was
employed after a grid convergence study. Results and details of the grid refinement
study are reported in section A.2 together with an investigation of the influence of
the domain size on the accuracy of the results.
In Figure 3.5, it is reported the variation of the non-dimensional frequency and
growth rate of the two least stable eigenvalues with the reduced velocity*∗, for two
distinct values of the relative density, namely, d∗ = 20 and d∗ = 5. For the largest
density ratio, the two leading modes exhibit a clear distinction for each value of the
reduced velocity*∗. Following Navrose and S. Mittal (2016), here they are denoted
as the fluid mode (FM), due to the high affinity that it shows with the wake mode of
the fixed cylinder (see Figure 3.6), and the elastic mode (EM). This classification is
further confirmed by noticing how the frequency of the FM remains close to that of
the unstable mode for the flow around a fixed cylinder at the same Reynolds number
(see Table 3.1) for all values of *∗, while the frequency of the EM, on the other
hand, decreases following the variation of the natural frequency of the cylinder,
given by 1/*∗.
For d∗ = 5, the two modes lose their distinction for intermediate values of *∗,
therefore, following Navrose and S. Mittal (2016), they are referred to as the coupled
fluid-elastic modes (FEM) I and II. For low values of*∗, modes ��"� and ��"��
resemble the stationary wake mode (i.e. the mode associated with the vortex-
shedding in the wake of the fixed cylinder) and the elastic mode, respectively;
however, as *∗ increases, the two eigenmodes become coupled and exchange their
characteristics (see Figure 3.7).
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(a) (b)

(c) (d)

Figure 3.5: Linear stability results: change of the growth rate lA and the Strouhal
number, (C = ( 5 �)/*∞, of the two least stable modes with*∗ for d∗ = 20 (a,c) and
d∗ = 5 (b,d) at '4 = 60. Continuous red line: results from Sabino et al. (2020);
dashed blue line: results from Navrose and S. Mittal (2016); gray circles: present
results. The red curves were reproduced using the open-source Matlab drivers of
the StabFem project (StabFem).

https://gitlab.com/stabfem/StabFem
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(a) (b)

(c) (d)

Figure 3.6: Spanwise vorticity field of the real part of FM (a,c) and EM (b,d) for
('4 = 60, d∗ = 20) at *∗ = 7 (a,b) and *∗ = 9 (c,d). The fluid flows from left
to right. The fluid mode closely resembles the unstable mode for a fixed cylinder
reported in Figure 3.3

(a) (b)

(c) (d)

Figure 3.7: Spanwise vorticity field of the real part of FEMI (a,c) and FEMII (b,d)
for ('4 = 60, d∗ = 5) at *∗ = 5 (a,b) and *∗ = 6 (c,d). The fluid flows from left to
right.
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(a) (b)

(c) (d)

Figure 3.8: Streamwise velocity field of the real part of FM (a,c) and EM (b,d) for
('4 = 60, d∗ = 20) at *∗ = 7 (a,b) and *∗ = 9 (c,d). The fluid flows from left to
right.

(a) (b)

(c) (d)

Figure 3.9: Horizontal velocity field of the real part of FEMI (a,c) and FEMII (b,d)
for ('4 = 60, d∗ = 5) at *∗ = 5 (a,b) and *∗ = 6 (c,d). The fluid flows from left to
right.
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C h a p t e r 4

VORTEX-INDUCED VIBRATIONS OF CYLINDERS IN
TANDEM

Practical application is found by not looking for it,
and one can say that the whole progress of civilization
rests on that principle.

Jacques Hadamard

In this chapter, the vortex-induced vibrations of two identical elasti-
cally mounted rigid cylinders in tandem arrangement is investigated
numerically. The dynamics of the system is initially explored by means
of time-marching simulations, carried out with the solver presented in
Chapter 2.
Subsequently, the leading eigenvalues of the system are computed at
'4 = 100 by using the time-stepping procedure introduced in Chap-
ter 3. To the author’s knowledge, linear stability had not been yet applied
to fluid-structure interaction problems involving multiple bodies, with-
out any approximation made about the dynamic coupling between the
solid and the fluid.
The obtained results provide further confidence in the robustness of the
method and open the way to the instability analysis of generic multi-
body configurations. Besides, the linear predictions could explain the
change of behavior of the system that happens for *∗ = 5 and that has
been observed in previous studies.

4.1 Introduction
The case considered in this chapter is the configuration proposed by Borazjani and
Sotiropoulos (2009), with two identical elastically mounted cylinders in tandem
arrangement placed in a free-stream flow. This configuration is a prototype problem
for cross-flow-induced vibrations of interfering bodies, such as offshore structures,
submerged pipelines, and overhead transmission cables.
These systems are known to develop self-excited oscillations, and this is in general
not worrisome as far as their amplitudes remain small. This may not be the case
in presence of the lock-in phenomenon, during which the oscillation frequency is
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close to the natural frequency of the cylinder in vacuum. For supercritical Reynolds
numbers, i.e. Reynolds numbers bigger than the instability threshold for the fixed
configuration, lock-in is seen to occur for a certain range of *∗. It has been also
observed through numerical and experimental investigations that the lock-in region
of *∗ for the tandem arrangement is wider than that for the isolated cylinder case
explored in Chapter 3.
A parametric exploration of the nonlinear dynamics of the system is beyond the
scope of the current work, the number of publications on the subject being already
consistent. The purpose of this work is thus to assess the robustness of the method-
ology with respect to multi-body configurations. The analysis here is restricted to
the 1–DOF case in which the cylinders are free to oscillate only in the cross-stream
direction. The streamwise distance between their centers is equal to 1.5 diameters,
while the cross-stream offset is zero. No structural damping is considered and the
solid-to-fluid density ratio is kept constant at d∗ = 2.546 for all simulations. Given
the low value of the density ratio and the close proximity of the cylinders, the prob-
lem under investigation represents a more challenging test case compared to the
single-cylinder problem investigated in Chapter 3.
At first, the nonlinear response of the cylinders is reported for a diameter-based
Reynolds number '4 = 200, for values of the reduced velocity spanning the range
1.5 ≤ *∗ ≤ 14. A sketch of the computational domain along with the boundary
conditions employed is shown in Figure 4.1. The inlet is located at a distance
!8= = 15� from the midpoint between the centers of the cylinders, with the total
length of the domain being equal to !8= + !>DC = 55�, while the lateral boundaries
are placed at a distance !;0C = 15� from the centers. A uniform Dirichlet boundary
condition is given at the inlet and on the lateral boundaries, and a convective condi-
tion is assigned at the outlet with a convective velocity 2 = 0.8. In Figure 4.1, G is
the streamwise direction and H is the cross-stream coordinate direction. The com-
putations have been performed over a stretched Cartesian grid containing 900× 520
cells, with a minimum grid spacing of 0.0154� in the regularly spaced box region
around the origin, measuring 4� in each direction.
All simulations have been initialized with the steady base flow computed via Boost-
Conv (Citro et al. 2017) by keeping the cylinders fixed at their initial positions.
This is allowed since the configuration is symmetrical with respect to a horizontal
axis passing through the centers of the cylinders. No starting perturbation is su-
perposed to the stabilized solution; thus, the initial departure from the basic state
is triggered only by round-off errors. Figure 4.2 shows the temporal evolution of
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Figure 4.1: Sketch of the computational domain employed for the direct numerical
simulations of the flow interactingwith two circular cylinders in tandem arrangement
at '4 = 200.

the position of the centers of mass of the two cylinders for different values of *∗,
each one being representative of a distinct behavior of the system. For *∗ = 3
(see Figure 4.2a) the cylinders experience a longer transient phase characterized by
low-amplitude vibrations before reaching a periodic regime where the two cylinders
oscillate out-of-phase with the front one exhibiting higher amplitude than the rear.
Borazjani and Sotiropoulos (2009) classified this behavior as state 1 of the system,
referring to the vibration state where the rear cylinder achieves a larger oscillation
amplitude as state 2. When the reduced velocity is increased to*∗ = 4, the dynamic
response of the fluid-structure system changes noticeably as the two cylinders ex-
hibit a quasi-periodic behavior distinguished by larger amplitudes of vibration that
undergo a low-frequency modulation in time. As can be seen from the close-up
region in Figure 4.2b, such modulations come with a change in the phase difference
between the two oscillatory motions, as the phase angles are generally out of phase,
but match periodically.
As the reduced velocity is further increased to *∗ = 5, a shift from state 1 to state
2 is observed as the two cylinders oscillate in phase opposition, with the rear one
exhibiting greater amplitude than the front one. For higher values of the reduced
velocity, there is no qualitative change in the dynamical response of the system.
The trailing cylinder continues to oscillate at a higher amplitude and out-of-phase
with respect to the front one. Figure 4.3a shows the variation of the maximum
displacement �∗

"�-
with the reduced velocity for each cylinder; the value �∗

"�-
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(a) (b)

(c) (d)

Figure 4.2: Flow past two freely vibrating cylinders in tandem at ('4, d∗) =
(200, 2.546): time evolution of the vertical nondimensional displacement of the
cylinders for different values of *∗; (a): *∗ = 3; (b): *∗ = 4; (c): *∗ = 5; (d):
*∗ = 7. The inset in the lower-left corner of each figure provides a zoom-in of the
region delimited by the black rectangle.

was measured disregarding the early transient phase. Results from Borazjani and
Sotiropoulos (2009) and Griffith et al. (2017) are also included for comparison,
showing a good overall agreement with the present outcome. The main discrepancy
observed for the higher values of *∗ can be ascribed to the different initial condi-
tions. To verify this assumption, the computations were repeated for 11 ≤ *∗ ≤ 14
starting from a snapshot of the unsteady solution at *∗ = 10; the results, repre-
sented in Figure 4.3a by dashed lines, are markedly closer to the data present in
the literature. These findings could indicate the existence of a hysteresis effect,
already observed for the case of two stationary cylinders in tandem (Papaioannou et
al. 2006) and for the VIV of a single cylinder (Prasanth and Mittal, 2009; Singh and
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Mittal, 2005). Figure 4.4 reports the vorticity contours throughout an oscillation

(a) (b)

Figure 4.3: Variationwith the reduced velocity*∗ of themaximumnon-dimensional
displacement �∗

"�-
of two identical cylinders in tandem (! = 1.5) at '4 = 200

(a) and '4 = 100 (b). Squares: front cylinder; circles: rear cylinder. The present
results for '4 = 200 are compared with the ones from Borazjani and Sotiropoulos
(2009) and Griffith et al. (2017). Dashed line: the simulations were initialized from
an instantaneous snapshot of the solution for a smaller value of*∗.

cicle at '4 = 100 for *∗ = 6. In this case, the cylinders oscillate out-of-phase, and
the rear cylinder exhibits larger amplitudes. As shown in Figure 4.3a, for*∗ = 6 the
difference between the peak displacements of the cylinders is maximum. Due to the
higher (periodic) spacing between the cylinders, a vortex pair starts forming in the
gap, but the ascending (or descending, depending on the position in the cycle) rear
cylinder cuts through the shear layer of the front one, thus vortices actually detach
from the rear cylinder. This mode is referred to as 2% vortex shedding since two
vortex pairs are shed per cycle.

Results obtained by running simulations of the same configuration at '4 = 100 are
presented in Figure 4.3b; the behavior of the system is found to depend strongly
on the reduced velocity with a good qualitative agreement with the '4 = 200 case.
Time traces of the displacements of the two cylinders are reported in Figure 4.5
for four different values of the reduced velocity, along with the spectral content
of the time history of the vertical separation ΔH between the centers of the two
cylinders. For low values of the reduced velocity, the cylinders are found to oscillate
in phase with small amplitudes, indicating that they are still outside the lock-in
regime. For *∗ = 3 (see Figure 4.5a), the phase difference between the front and
rear cylinders is small, with the rear one exhibiting somewhat larger displacements.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Vorticity contours of the tandem cylinder arrangement for *∗ = 6 and
'4 = 100. The figures describe (from (a) to (h)) a complete oscillation cycle.

When the reduced velocity is increased to *∗ = 4, the dynamic response of the
system changes considerably as the cylinders enter the lock-in regime, oscillating
out-of-phase at a higher frequency and with the front cylinder now exhibiting wider
oscillations. As the velocity is further increased to*∗ = 5, a change in the behavior
of the system is observed again since the rear cylinder now oscillates with larger
relative amplitude, while the vertical separation between the cylinders undergoes
oscillations with a periodic amplitude modulation that closely resembles a beating
motion. This observation is confirmed by looking at the frequency content in
Figure 4.5c, which shows two main peaks having similar frequencies. In a linear
system, the superposition of these two harmonicswould result in a beating frequency,
given by 51 = | 52 − 51 |, and a corresponding period of about 97 time units, which
is very close to the characterizing period of the oscillations of both cylinders. This
beating phenomenon disappears by further increasing the reduced velocity as the
frequency of vibration diminishes. It is interesting to notice that Borazjani and
Sotiropoulos (2009) identified*∗ = 5 as the critical state of the system at '4 = 200,
delimiting the transition from state 1 to state 2.

Global stability

In this section, the interaction between the fluid and the two elastically mounted
cylinders in tandem is investigated through a global linear stability analysis, to
further ascertain the validity and robustness of the proposed methodology.
The computations have been performed on the same grid used to conduct the flow
analysis presented in the previous section. Given the low value of the density ratio
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(a)

(b)

(c)

(d)

Figure 4.5: Flow past two freely vibrating cylinders in tandem arrangement at
('4, d∗) = (100, 2.546): time evolution of the vertical displacement of the cylinders
for different values of *∗; a: *∗ = 3; b: *∗ = 4; c: *∗ = 5; d: *∗ = 7. The inset
in the lower-left corner of each figure shows the time history of the vertical distance
ΔH2 between the cylinders for the time interval marked by the black rectangle. On
the right, it is reported the single-sided amplitude spectrum of ΔH2.

d∗, the results of the nonlinear simulations obtainedwith a weak coupling of the fluid
and solid dynamics were compared with those obtained via a strong coupling. Even
though the two procedures exhibited very similar results, the iterative procedure
provided more accurate results with a reduced number of Arnoldi iterations for the
stability calculations. The fixed time-step size was chosen in order to keep the
CFL number under the 0.4 value. As in the case of the single cylinder, the linear
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(a) (b)

(c) (d)

Figure 4.6: Real (a,c) and imaginary (b,d) parts o the modal vorticity (a,b) and
horizontal velocity component (c,d) of the unstable eigenmode for the flow past two
stationary cylinders in tandem arrangement at '4 = 100.

stability analysis of the fluid alone predicts the existence of an unstable eigenvalue
lB = 0.0404 + 0.79078 associated with the vortex shedding in the wake of the
two cylinders. In the following, this eigenvalue is referred to as the stationary wake
mode. The corresponding eigenmode (see Figure 4.6) closely resembles the unstable
eigenmode of the single cylinder case. This observation is consistent with results
from literature asserting that, for small streamwise spacings, the two cylinders shed
like a single body (Papaioannou et al. 2006).
When the cylinders are free to move in the cross-stream direction, the LSA identifies
the presence of an additional eigenmode for the range of parameters considered. In
Figure 4.7, the two least stable eigenvalues are tracked over a wide range of reduced
velocities, in an attempt to identify themechanisms responsible for the lock-in regime
and for the change of behavior that occurs around*∗ = 5. It is observed that, for the
lower values of *∗, the two leading modes are quite distinct, with the frequency of
the first mode (represented by blue dots in Figure 4.7b and Figure 4.7d) being close
to the nondimensional frequency of the stationary wake mode, 5B�/*∞ = 0.1258.
Conversely, the frequency associated with the second mode (red dots in Figure 4.7b
and Figure 4.7d) is slightly smaller than the natural frequency of the cylinders for
values of the reduced velocity up to *∗ = 7, where the frequencies of the two
modes are almost coincident and remarkably close to that of the limit cycle shown
in Figure 4.5d. Therefore, for the lower values of *∗, the first mode is associated
with the wake instability and the second one with the structural mode. For *∗ = 5
the two modes show comparable growth rates and close frequencies, flagging an
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interaction that is visible in the nonlinear evolution as well. The peak frequencies
revealed by the amplitude spectrum on the right side of Figure 4.5c are, indeed, quite
close to the frequencies of the leading modes at *∗ = 5 reported in Figure 4.7d.
After the crossing of the two modes, both frequencies remain close to that of the
stationary wake mode for all*∗, and a classification of the modes as fluid mode and
structural mode is not possible.
For values of the reduced velocity lower than *∗ = 4, the mode associated with

(a) (b)

(c) (d)

Figure 4.7: Results of the LSA for the flow around two elastically-mounted cylinders
in tandem at '4 = 100. Evolution with *∗ of the growth rate lA and the Strouhal
number (C of the two least stable modes. Fig. (a,c): only the rear cylinder is free to
oscillate; fig. (b,d): both cylinders are free to move.

the structure is still stable. This finding is coherent with the small amplitude of
oscillation observed in the calculations. Then, at the critical value *∗ = 5, the
growth rate of mode 2 surpasses that of mode 1, possibly explaining the transition
from state 1 to state 2 and the greater amplitudes of vibration observed in the
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nonlinear simulations. In an attempt to shed further light on this phenomenon,
in Figure 4.7a and Figure 4.7c are reported the growth rate and the frequency,
respectively, of the two least stable modes for the same tandem arrangement when
only the rear cylinder is free to move. For this configuration, the results show that
the growth rate of the unstable mode increases considerably for *∗ ≥ 5, while the
growth rate of the stable mode attains its maximum value.
These findings indicate that the mechanism responsible for the large amplitude
oscillations is already present in this fixed-free case. The temporal evolution of
the flow starting from the base state shows that, for all the values of the reduced
velocity, a regular vortex street excites the oscillation of both cylinders, with the rear
one undergoing larger vibrations. This is due to the fact that vortices are initially shed
only from the rear cylinder, which thus experiences a greater pressure difference.
The outcome is coherentwith the observations of Borazjani and Sotiropoulos (2009),
who suggest that it is the vortex-shedding in the wake that initiates the excitation of
the system and subsequently generates a vertical separation between the cylinders.
When this separation becomes large enough, other interaction mechanisms come
into play and give rise to different dynamical states.
There is, however, another point to address which is the passage from state 2 to
state 1 that is observed when changing the value of *∗ from *∗ = 3 to *∗ = 4
and the switch from state 1 to state 2 that occurs at *∗ = 5. To investigate this
phenomenon, in Figure 4.8 the early transient is reported of the time history of
the vertical displacement of the cylinders for *∗ = 4. It is clearly visible that the
cylinders oscillate almost in phase, with a low amplitude of vibration as in the case
*∗ = 3 (Figure 4.8b) and the rear cylinder exhibits larger oscillations, following the
characteristics of the first mode. The temporal evolution shows that the growth of the
first mode saturates as the oscillations approach a limit cycle with a small amplitude.
Later, the cylinders lose their synchronization owing to the emergence of the second
mode. The greater amplitude of vibration of the front cylinder, however, cannot be
explained with linear arguments. For*∗ > 5, the dynamics of the linearized system
is governed by the second mode, characterized by the counter-phase oscillation of
the cylinders, with the rear one undergoing larger vibrations.
Figure 4.9 shows the vorticity fields of the two unstable eigenmodes related to the
eigenvalues reported in Figure 4.7, for three different values of the reduced velocity.
Again, for *∗ = 3 and *∗ = 4, mode 1 resembles the stationary wake mode of
Figure 4.6 but departs from it for the higher values of *∗. On the other hand, the
shape of mode 2 also changes when the reduced velocity is increased from *∗ = 4
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(a) (b)

Figure 4.8: Time evolution of the vertical displacement of two freely vibrating
cylinders in tandem arrangement at ('4, d∗) = (100, 2.546) for *∗ = 4 (a) and
*∗ = 3 (b).

to *∗ = 5, while a further increase in the value of *∗ produces a shift upstream
of the high vorticity region. Figure 4.10 confirms this observation by showing the
streamwise real velocity components of the leadingmodes for the same values of*∗.
For *∗ = 3, mode 2 is clearly a structural mode, as the flow far from the cylinders
is slightly perturbed, while mode 1 is clearly the wake mode. As *∗ increases, the
two modes lose their clear distinction.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.9: Flow past two spring-mounted circular cylinders in tandem arrangement
at '4 = 100. Spatial distribution of the vorticity of the real part of mode 1 (a,c,e,g,i)
and mode 2 (b,d,f,h,j) for *∗ = 3 (a,b), *∗ = 4 (c,d), *∗ = 5 (e,f), *∗ = 6 (g,h) and
*∗ = 7 (i,j).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.10: Flow past two spring-mounted circular cylinders in tandem arrange-
ment at '4 = 100. Spatial distribution of the horizontal velocity component of the
real part of mode 1 (a,c,e,g,i) and mode 2 (b,d,f,h,j) for *∗ = 3 (a,b), *∗ = 4 (c,d),
*∗ = 5 (e,f),*∗ = 6 (g,h) and*∗ = 7 (i,j).



78

References

Borazjani, Iman and Fotis Sotiropoulos (2009). “Vortex-induced vibrations of two
cylinders in tandem arrangement in the proximity–wake interference region”. In:
Journal of FluidMechanics621, pp. 321–364.doi:10.1017/S0022112008004850.

Citro, V. et al. (2017). “Efficient stabilization and acceleration of numerical sim-
ulation of fluid flows by residual recombination”. In: Journal of Computational
Physics 344, pp. 234–246. issn: 0021-9991. doi: https://doi.org/10.1016/
j.jcp.2017.04.081.

Griffith, Martin D. et al. (2017). “Flow-induced vibration of two cylinders in tandem
and staggered arrangements”. In: Journal of Fluid Mechanics 833, pp. 98–130.
doi: 10.1017/jfm.2017.673.

Papaioannou, GeorgiosV. et al. (2006). “Three-dimensionality effects in flow around
two tandem cylinders”. In: Journal of Fluid Mechanics 558, pp. 387–413. doi:
10.1017/S0022112006000139.

Prasanth, T. and SanjayMittal (May 2009). “Vortex-induced vibration of two circular
cylinders at low Reynolds number”. In: Journal of Fluids and Structures 25,
pp. 731–741. doi: 10.1016/j.jfluidstructs.2008.12.002.

Singh, Satya and Sanjay Mittal (Nov. 2005). “Vortex-induced oscillations at low
Reynolds numbers: Hysteresis and vortex-shedding modes”. In: Journal of Fluids
and Structures 20, pp. 1085–1104. doi: 10.1016/j.jfluidstructs.2005.
05.011.

https://doi.org/10.1017/S0022112008004850
https://doi.org/https://doi.org/10.1016/j.jcp.2017.04.081
https://doi.org/https://doi.org/10.1016/j.jcp.2017.04.081
https://doi.org/10.1017/jfm.2017.673
https://doi.org/10.1017/S0022112006000139
https://doi.org/10.1016/j.jfluidstructs.2008.12.002
https://doi.org/10.1016/j.jfluidstructs.2005.05.011
https://doi.org/10.1016/j.jfluidstructs.2005.05.011




80

C h a p t e r 5

LINEAR STABILITY OF A GAS BUBBLE IN A STRAINING
FLOW

The shortest path between two truths in the real
domain passes through the complex domain.

Jacques Hadamard
In this chapter, the problem of the behavior of a gas bubble immersed in
an axisymmetric straining flow is investigated. The dynamics is explored
by means of a linear stability analysis of the steady solutions of the
system conducted within a linearized Arbitrary Lagrangian Eulerian
framework.
The maximum Weber number ,42 is determined, beyond which no
steady state is possible. Besides, by means of a pseudo-arc-length
continuation method, an unstable branch of solutions is identified and
a saddle-node bifurcation is detected. Edge states along this unstable
branch constitute routes to the bubble breakup through an end-pinching
mechanism. A new unstable non-oscillating mode is discovered, never
identified before. The mode behaves in a counterintuitive way, as it
corresponds to a drift of the bubble in the direction perpendicular
to the axial strain, where the flow exerts compressive forces on the
bubble. This surprising dynamics is made possible by a self-propulsion
mechanism that exploits the asymmetric deformation of the bubble.

5.1 Introduction
The formation of bubbles and droplets is part of our daily life, from geophysical flows
to the fizz of a Champagne bottle, or kids blowing soap bubbles. From a technical
point of view, the use of air bubbles is a promising approach for various Lab on
Chip applications, while it is already recognized as effective in drug-reduction
applications. As a result of its universality, this phenomenon has long attracted
the interest of researchers since the early studies of Leonardo, who first noticed the
spiraling or zigzag paths of ascending bubbles (Herrada and Eggers, 2023).
The dynamics of a gas bubble suspended in a uniaxial straining flow is considered
here. This problem has received great attention since the pioneering experiments
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of Taylor (1934), who placed a liquid drop in a straining flow generated by counter-
rotating rollers. Differently from the cases investigated in the previous chapters, the
dynamics of bubbles and droplets is characterized by the presence of an interface
delimiting two different fluid phases, rather than a solid-fluid one. The dynamics of
the interface is predicted by the interplay of capillary, pressure, and viscous forces.
When the action of viscous forces overcomes the restoring effect of capillary forces,
the bubble cannot undergo further elongation and breaks up. This phenomenon is
typically described in terms of two non-dimensional parameters that can be selected
out of three possibilities, namely the Reynolds number '4, the Weber number
,4 , defined as the ratio of inertial forces to capillary forces, and the Ohnesorge
number$ℎ , which compares the magnitudes of viscous and capillary forces. Many
researchers have conjectured the existence of a critical Weber number,42 beyond
which no steady bubble shape can exist. The first contribution to this theory was
made by Acrivos and Lo (1978), who showed that for low-Reynolds number flows
the critical Weber goes as ,42 ∝ '43/4. Later, steady-state solutions for the
finite deformation of a bubble in a uniaxial straining flow were found numerically
by Miksis (1981), who considered the bubble breakup in the inviscid limit and
determined,42 for the convergence of steady solutions. Subsequently, Ryskin and
Leal (1984) numerically identified steady bubble shapes for non-zero viscosity cases
over a wide range of,42 and for a set of finite '4, by solving the complete Navier-
Stokes equations on a body-fitted grid. For each Reynolds number, steady solutions
could only be found for ,4 < ,42, with ,42 increasing monotonically with '4.
The results matched reasonably well with the predictions of Acrivos and Lo, 1978
and Miksis, 1981 in the respective limits. The critical values predicted by Ryskin
and Leal (1984) were later confirmed by Kang and Leal (1987), who considered the
unsteady bubble deformation in uniaxial straining both at finite '4 and under the
potential assumption. They showed that the bubble becomes infinitely elongated for
,4 > ,42, and that the critical Weber is highly sensitive to the initial shape of the
bubble. In addition, the unsteady analysis of oscillating bubbles revealed that the
oscillation frequency decreases with,4.
In this work, this phenomenon is investigated with the help of a global linear stability
approach. The difficulties arising because of the unknown shape and location of the
interface are addressed here by making use of a recently developed ALE formalism
(Bonnefis, 2019), which enables the coupling between the fluid and the interface
in a consistent manner. Here it is considered an incompressible gas bubble with
volume +1 placed in a uniaxial straining flow. The dimensional velocity field far
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r
θ

z

Figure 5.1: Sketch of the physical configuration with the symmetry axis A = 0 and
the symmetry plane I = 0 of the undisturbed straining flow, and the corresponding
(eA , e\ , eI) basis.

from the interface, outlined in Figure 5.1 is the hyperbolic steady flow given by

U∞ = −
(

2
AeA + (IeI, (5.1)

where ( denotes the uniform strain rate, and (eA , e\ , eI) is the coordinate basis.
The density and viscosity of the lighter fluid inside the bubble are considered to be
negligible with respect to the external fluid, whose density d and dynamic viscosity
_ are assumed to be constant . The effects of gravity are neglected and the surface
tension W is considered to be uniform throughout the interface. The bubble is
initially placed with its centroid at the origin of the coordinate system (I = 0). The
dynamics is governed by the following set of equations

mCv + v · ∇v = d−1∇ · � in Ω(C) , (5.2)

∇ · v = 0 in Ω(C) , (5.3)

mC[ = v · n on Γ1 (C) , (5.4)

� · n = (−?1 + W^)n on Γ1 (C) , (5.5)

In the above-described system, Ω(C) and Γ1 (C) denote the fluid domain and bubble-
fluid interface, respectively, [ is the normal displacement of the interface, n is the
local unit normal vector directed into the fluid and ^ is the curvature at the surface.
Equation 5.2 and 5.3 are the dimensional Navier-Stokes and continuity equations,
respectively, where v is the flow velocity and � = −?I + _ (∇v + ∇ᵀv) is the
stress tensor. Equation 5.4 gives the kinematic boundary condition, imposing the
coincidence of normal velocities at the interface, while Equation 5.5 imposes the
dynamic boundary condition, expressing the equilibrium of stresses at the interface.
Specifically, the jump in normal stress across the interface is proportional to its
curvature, and ?1 is the pressure inside the bubble. The system must be closed by
appropriate boundary conditions at A = 0, I = 0, and in the far field.
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Compared to the FSI problems investigated in the previous chapters, fluid-fluid
problems differ in the way they impose the boundary conditions as slipping is
allowed at the interface in absence of surfactants. Hence, tangential stresses cancel
out at the interface and the free-shear condition t cot (� · n) closes the system.

5.2 Steady solutions and bifurcation diagram
The symmetry of the boundary conditions is reflected in the base flow, which is
axisymmetric with respect to the I-axis (A = 0) and shows a mirror symmetry with
respect to the midplane I = 0 Figure 5.1. In addition to the boundary conditions
given above, the bubble equilibrium shape must ensure that its volume remains
constant and equal to +1 = c

6 3
3, where 3 is the equilibrium diameter.

The first objective of this work is to track the equilibrium solutions in the state space
($ℎ,,4), where the Ohnesorge $ℎ =

`√
dW3

corresponds to a capillary number

�0 =
*2`

W
based on the capillary velocity scale *2 = (W/(d3))1/2, and the Weber

number is defined as,4 =
d(233

4W
. In section 5.1 it was stated that only two out of

three non-dimensional parameters are needed to characterize the dynamics of the
system. This is indeed true as an appropriate definition of the Reynolds number

may be obtained by combining the other two parameters as '4 =
√
,4

$ℎ
=
d*23

`
.

Given the symmetry of the equilibrium solution, the deformed bubble shape may be
described through the aspect ratio j = 3I/3A , with 3I and 3A the major and minor
axis lengths, respectively.
The difficulties arising due to the dependence of the flow domain over time are han-
dled through the adoption of a Linearized Arbitrary Lagrangian Eulerian formalism
(L-ALE), which allows to rewrite the fluid equations in a fixed reference domain
and accounts for the deformation of the actual domain introducing an extension by
introducing an extension displacement field ξ that propagates the deformation of
the interface into the fluid domain. It is arbitrary as it only needs to respect the
no-penetration condition and ensure a smooth propagation of the interface displace-
ment. The L-ALE method employed for this investigation, developed by Bonnefis
(2019), is especially suited for the class of problems involving free surfaces. Fig-
ure 5.2 illustrates the basic principle of the L-ALE methodology. The sketch shows
how the interface Γ1 in the physical domain Ω is linked to the reference configu-
ration Γ1. The quantities of interest are evaluated in the reference domain, then
they are mapped onto the physical domain. The flow equations and the deformation
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Figure 5.2: Sketch of the L-ALE approach. (0): the general framework, showing
the physical domain Ω and the reference domain Ω0 (the bubble surface in these
two domains is Γ1 and Γ1,0, respectively); (1): successive updates of the reference
domain during the iterations of the Newton method; (2): reference domain for the
linear stability problem.

of the interface are solved simultaneously, yielding a monolithic approach, which
ensures the stability of the calculations. In order to determine equilibrium solutions
with varying ('4,,4), it is used a continuation method based on a Newton algo-
rithm. Specifically, a pseudo-arch-length is implemented, which consists in adding
an additional column and row to the Jacobian matrix of the system, i.e. adding an
unknown in the Newton iteration. In this case, the state vector is augmented with the
update of the strain rate. The solver utilizes the finite-element software FreeFem++
(Hecht, 2012) to assemble all the matrices resulting from the variational formulation
of the equations. The arch-length continuation is performed via the Matlab drivers
of the StabFem project (StabFem). As the bubble shape deforms in the continuation
process, the starting mesh can become too distorted, thus a re-meshing step may be
required at some point.
Figure 5.3b shows the variation of ,42 with the Reynolds number. For low

Reynolds numbers, the critical Weber grows almost linearly with '4. The result is
in good agreement with the predictions of Acrivos and Lo (1978) for the creeping
flow. For larger values of '4, the critical Weber tends to the inviscid limit, as
expected. The present results confirm those of Ryskin and Leal (1984) (solid black
line). It may be observed that the stationary bubble shape corresponding to critical

https://gitlab.com/stabfem/StabFem
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Figure 5.3: (a): variation of the bubble elongation with the Weber number for
a fixed value of the Ohnesorge number, here $ℎ = 10−2; (b): variation of the
critical Weber number with the Reynolds number. Grey, green, and red circles:
present results obtained with the L-ALE approach (the red bullet corresponds to
the critical Weber number where the saddle-node bifurcation takes place); thick
solid black line: empirical correlation proposed in (Ryskin and Leal, 1984). In
(b), the red dashed line is the limit beyond which the Mode 1-S (s) is unstable; the
blue dashed line is the maximum Weber number,4 = ,4∗2 ('4) beyond which the
bubble stops oscillating. In both panels, bubble shapes are shown for selected values
of the parameters corresponding to the green bullets; the black and red contours
correspond to the steady state and the unstable Mode 0-S (s), respectively.

conditions is convex for intermediate and large Ohnesorge numbers, but becomes
slightly concave in the neighborhood of the symmetry plane at lower$ℎ. Here,42
indicates the maximum Weber number for which convergence of the steady state
could be obtained. The corresponding bubble shapes are reported on the figure,
for the Reynolds numbers indicated by the green circles in the graph, with black
contours. The corresponding value of the Ohnesorge number is reported under each
shape.
A bifurcation diagram for the Ohnesorge value$ℎ = 0.01 is reported in Figure 5.3a.
It is identified a saddle-node bifurcation at a critical Weber number We2 ≈ 2.27
beyond which no stationary solution exists. The bifurcation connects a stable and
an unstable branch. As shown in the graph, the stable branch (indicated by a solid
black line) corresponds to the previously computed steady states. Previous studies
(Kang and Leal, 1987) showed that the bubble extends indefinitely for,4 > ,42,
and eventually breaks up. The unstable branch, which was reported before under
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the creeping-flow assumption (Gallino, Schneider, and Gallaire, 2018), is associated
with the breakup of the bubble under subcritical conditions. Within the creping-flow
limit, Gallino, Schneider, and Gallaire (2018) indicated this branch as the orbit of
edge states, i.e. unstable equilibria that behave as attractors if the initial condition
lies in their basin of attraction. Practically speaking, the edge states "guide" the
bubble to break up in a sub-critical flow, selecting a precise mechanism for the
rupture. Physically, this mechanism corresponds to the emergence of a neck in the
symmetry plane. Edge states for lower Weber numbers have not been calculated
since their computation becomes tricky due to the high concavity of the bubble neck.
Figure 5.4a shows the result of the continuation procedure for different values of
the Ohnesorge number. The solid line is used to represent the stable branch, while
the dashed line indicates the edge states. In red is reported the value of $ℎ for each
curve. For larger values of the Ohnesorge number, the critical Weber number is
seen to decrease rapidly with $ℎ, as reported also in Figure 5.4b.

(a) (b)

Figure 5.4: Bubble aspect ratio j versus the Weber number,4, for different values
of $ℎ. The critical Weber number ,42 for each curve is represented with a grey
circle, while the value of $ℎ is reported in red. (b): Variation of the critical Weber
number,42 with the Ohnesorge number $ℎ.

One intriguing result to notice is that, for the Ohnesorge number selected in Fig-
ure 5.3a, this concavity does not emerge at the critical,4, but appears at some point
on the unstable branch. It coincides with the saddle-node only in the high-Reynolds
limit.
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5.3 Linear Stability
The stability of steady states is investigated by means of a modal LSA analysis that
looks at the evolution of perturbations with a specific form. Namely, in this work are
considered perturbations of the form Ψ(A, I)48<\−8lC , where \ is the polar angle of
the cylindrical coordinate system sketched in Fig. 5.1, < is the polar wavenumber
and l is the complex eigenvalue. Eigenmodes of the kind defined above can be
classified depending on the value of < and their symmetry characteristics. The
nomenclature employed here to designate the linear modes makes use of the polar
wavenumber and two letters, the first one indicating the symmetry type (symmetric
S or antisymmetric A) with respect to I = 0, and the second one indicating the
oscillatory (o) or steady (s) nature of the mode. It is worth recalling that within this
framework, the frequency of the mode is given by the real part of the eigenvalue
l, and the growth rate corresponds to the imaginary part, in contrast with the
convention adopted in the previous chapters. The steady solutions on the lower
branch of the bifurcation diagram of Figure 5.3a are found to be linearly stable
as any small disturbance to their shape dies out owing to the effect of viscosity
and surface tension. The edge states, by contrast, are linearly unstable due to the
existence of an amplified eigenmode of the 0-S(s) type.

Symmetry-preserving modes
The eigenmodes considered here belong to the class 0-S, as they are symmetric
with respect to I = 0. This characteristic is common to many experimental studies,
where the bubble centroid is kept fixed at the stagnation point through computer-
controlled devices (Bentley and Leal, 1986b; Bentley and Leal, 1986a). Under such
circumstances, two leading eigenmodes are found. One is the previously mentioned
unstable breakup mode 0-S (s), found along the upper branch of the bifurcation
diagram. This mode is stationary (<(l) = 0) and emerges at the critical Weber
,42. The second mode, instead, has an oscillatory nature (0-S (o)) and it is stable.
In Figure 5.6(0) it is shown how the frequency of this mode (black line) decreases
with ,4 and becomes eventually zero for ,4 = ,4∗2, as the complex eigenmode
splits into two real stable modes. Then, one of these modes increases as,42 grows
towards ,4∗2 ( red one), and the other one decrease (green one). The damping
rate of the eigenvalue with the smallest module (red line) vanishes eventually for
,42 = ,4

∗
2, leading to the emergence of the amplified mode 0-S (s) beyond the

saddle-node point, which corresponds to infinite elongation breakup. The damping
rate of the original mode 0-S (o) (green line), instead, increases continuously from
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,4∗2 to,42.
Figure 5.6 reports the eigenfunctions corresponding to modes 0-S (o) and 0-S (s)
at a slightly subcritical Weber number. Owing to the competition of inertial and
capillary effects, the bubble undergoes a periodic compression and elongation in the
I-direction under mode 0-S (o).
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Figure 5.5: Variation of the oscillation frequency lA of Mode 0-S (o) with ,4.
The black dashed lines correspond to the asymptotic scalings suggested by the
present result. The red line shows the low-,4 expansion of (Kang and Leal,
1988). The green circles, red squares, blue triangles, and grey triangles refer to
$ℎ = 10−4, 10−3, 10−2 and 10−1, respectively.

Figure 5.7(0), instead, reports the variation of the growth rate of mode 0-S (s) with
respect to (,42 −,4). In the high and low Reynolds number limit, the growth
rate goes as (,42 − ,4)U, with U = 1/4 and U = 1/2, respectively. The same
coefficients hold for the frequency of mode 0-S (o), which varies as (,4∗2 −,4)U.
The similarity of the scalings suggests a close connection between the dynamics of
the two modes. As can be seen from Figure 5.6(0), ,4∗2 is slightly smaller than
,42 when viscous effects are predominant (higher$ℎ values), and it coincides with
,42 when they are negligible ($ℎ → 0). These results are consistent with those
of Kang and Leal (1987). The aperiodically damped oscillations of mode 0-S (o)
were also noticed by Kang and Leal (1988), who predicted the emergence of this
behavior for $ℎ & 0.12.
The inset in Figure 5.8 shows a close up of the change in lA with (,4∗2 − ,4)
for (,4∗2 −,4) & 0.3. The red dashed line reports the predicted behavior of lA
based on an expansion around,4 = 0. This prediction is shown to hold in the inset
region, but it fails to predict the rapid variations of the frequency near the critical
Weber number.
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Figure 5.6: (0): Variation of the frequency (solid lines) and growth rate (dashed
lines) of Mode 0-S (o) (with thick and thin black lines forWe ≤ We∗2 andWe > We∗2,
respectively) and Mode 0-S (s) (red lines) with respect to We, for three values of the
Ohnesorge number. The black circle and red square indicate the critical values We∗2
and We2, respectively. (1) − (2): Pressure disturbance (colors) and bubble shape
(thick contours) for Mode 0-S (o) in (1) and Mode 0-S (s) in (2), both at We = 2.5
and Oh = 1× 10−4. The black contour and thin grey lines respectively represent the
bubble shape and the streamlines in the base state, which stands on the lower branch
of the bifurcation diagram in (1) (l = −0.0044 + 1.3284i) and on the upper branch
in (2) (l = +0.2797). In (1), the colors show the imaginary part of the pressure
disturbance at time C = )/4 and the bubble shape is displayed at C = )/4 (light blue
solid line), C = )/2 (light blue dashed line), C = 3)/4 (dark blue solid line), and
C = ) (dark blue dashed line), with ) the period of oscillation.
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Figure 5.7: Variations of the growth rate of modes 0-S (o) and 0-S (s). (0): with
respect to We2 −We for Mode 0-S (s) on the unstable branch; (1): with respect to
Oh for Mode 0-S (o) on the stable branch. In (0), the green bullets, red squares, blue
triangles, and grey triangles refer to Oh = 10−4, 10−3, 10−2 and 10−1, respectively;
in (1), the green circles, red squares, and blue triangles refer to We = 0.1, 0.2 and
0.4, respectively. The dashed lines indicate the asymptotic scalings.

In Figure 5.7(1), the decay rate of mode 0-S (o) is reported as a function of$ℎ. The
mode is always stable and the growth rate decreases linearlywith$ℎ, with apparently
no dependence on,4. In the inviscid limit ($ℎ→ 0), the mode becomes neutrally
stable. This result is consistent with the observation that two purely complex
eigenvalues become two real ones (see Figure 5.6(0) ). The oscillating mode 0-S
(o), therefore, cannot lead to the bubble breakup since viscous damping and capillary
tension act as stabilizers, at least for non-zero viscosity values. It is clear that the
symmetry-preserving mode leading to rupture is the stationary mode 0-S (s) linked
to the infinite elongation of the bubble. For instance, when the initial bubble shape
is characterized by a high aspect ratio, the capillarity force in the neck region fails
to balance the higher pressure acting in the mid-plane. Beyond the linear stage
considered here, this situation leads unavoidably to break up through the classic
end-pinching scenario (Stone, Bentley, and Leal, 1986; Stone and Leal, 1989).

Symmetry-breaking unstable modes
Here they are considered eigenmodes of the type 0-A, i.e. modes showing an
asymmetry with the midplane.
These modes can arise when the bubble is not forced to remain centered in the
stagnation point. Two new unstable modes are identified in this way. One of them,
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denoted as mode 0-A (s), is unstable for every (,4, '4) couple and shows an
asymmetry with respect to the plane I = 0. The mode, reported in Figure 5.9(1),
tends to move the bubble away from the hyperbolic point of the base flow. The
escaping mechanism of the bubble can be easily explained: an initial perturbation
breaks the symmetry of the base state as the bubble centroid is displaced along the
I axis. As a consequence of this movement, the bubble drifts away with the flow as
the fore-aft symmetry of the pressure distribution is broken.
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Figure 5.8: Variation of the oscillation frequency lA of Mode 0-S (o) with ,4.
The black dashed lines correspond to the asymptotic scalings suggested by the
present results. The red line shows the low-We expansion of (Kang and Leal,
1988). The green bullets, red squares, blue triangles, and grey triangles refer to
Oh = 10−4, 10−3, 10−2 and 10−1, respectively.

The second unstable mode, denoted as mode 1-S (s), is also a stationary mode, but
it is antisymmetric with respect to the A = 0 plane and associated with a < = 1
polar number. In this case, the bubble still drifts away, but this time it is not carried
by the straining flow, instead, its movement opposed the direction of the baseflow.
This result is quite surprising since it is counterintuitive that the bubble can move
towards higher-pressure regions.
The explanation for this self-propulsion lies in the asymmetric deformation of the
surface. Indeed, a massless deformable moby immersed in a potential flow can self-
propel by experiencing a net rate of deformation (Saffman, 1967) and (Miloh and
Galper, 1993). Of course, since the mode involved in the present case is stationary,
this self-propulsion lasts only as long as this mode grows, and it necessarily stops due
to the nonlinear saturation. This hypothesis is confirmed by investigating analytically
the leading-order perturbation of the solution obtainedwith the potential assumption,
following the approach of Kang and Leal (1988) and Yang, Feng, and Leal (1993).
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Figure 5.9: Modes 0-A (s) and 1-S (s) in a high-Reynolds-number case. (0):
variation of the growth rate of the two modes with respect to,4, computed through
the truncated inviscid potential solution (lines), and the L-ALE approach in a slightly
viscous flow with Re=103 (bullets); black/grey: Mode 0-A (s), red/pink: Mode 1-S
(s). (1): pressure disturbance (colors) and bubble shape (contours) for Mode 0-A
(s) with ,4 = 10−1 and '4 = 103 (corresponding to the black bullet in (0)). The
blue solid and pink dashed lines refer to the results provided by the L-ALE approach
and the truncated potential flow expansion, respectively. (2): same with Mode 1-S
(s) (corresponding to the red bullet in (0)). In (1) − (2), the black contour represents
the bubble shape in the base state and the thin grey lines show the corresponding
streamlines.

Specifically, assuming v = ∇q, solutions are sought in the form of harmonic
functions satisfying

mC[ = ∇q · n , mCq +
1
2
(∇q · ∇q) + d−1?1 = d

−1W∇ · n on Γ1 . (5.6)

Expanding the velocity potential q and the surface [ of the bubble in the form

q = (32

4 (qB + Yq
<
D ) , [ = 3

2 ([B + Y[
<
D ) ,

qB = %0
2 (Z) (

1
2A

2
B + 1

3A
−3
B ) , [B = 1 ,

q<D =
∑∞
==0 j

<
= (C)A

−(=+1)
B .<= (Θ, i) , [<D =

∑∞
==1 X

<
= (C).<= (Θ, i) ,

(5.7)
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with .<= (Θ, i) = %= (Z)4−i<i the spherical harmonics, %= the associated Legendre
polynomial and Z = cosΘ. The spherical coordinate system is such that Θ = 0(c)
on the positive (negative) semi-axis in the I direction (see Figure 5.1). Here the
meridional angle q is equivalent to \, AB denotes the non-dimensional radial position
in the spherical coordinate system. Injecting the ansatz (5.7) into Equation 5.6, with
Y � 1 and keeping only terms of O(Y) yields an eigenvalue problem. The solution
of this EVP for < = 0 and < = 1 reveals the existence of two leading modes, 0-A
(s) and 1-S (s). Their growth rate is reported in Figure 5.9(0) as a function of
,4. The circles in the figure represent the growth rates of the corresponding modes
obtained with the L-ALE approach. As can be observed, the values obtained with
the L-ALE framework are slightly lower, this is due to the fact that the potential
flow assumption does not take into account stabilizing viscous effects. Although
these effects are expected to be weak for '4 = 103, they are nonetheless to be
stabilizing. Despite these limitations, the truncated potential flow solution is found
to provide a reliable estimate of the bubble deformation for modes 0-A (s) and 1-S
(s) (dashed line in Figure 5.9(1) − (2)). This perturbative approach confirms that the
unexpected presence of the unstable mode 1-S (s) is indeed physically admissible
and it is not a numerical artifact of the L-ALE approach. One last thing to point out
is that the growth rate of mode 1-S (s) is slightly smaller than the one of mode 0-A
(s). Consequently, to observe the former in a laboratory experiment, it is necessary
to constrain the bubble displacement to prevent it from moving along the I-axis.
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C h a p t e r 6

CONCLUDING REMARKS AND PERSPECTIVES

This thesis represents a contribution towards the analysis of complex fluid-structure
interaction problems from a linear perspective. The role played by linear effects in
the loss of stability of a fluid-structure system has motivated researchers to develop
new techniques to perform linear stability analyses of coupled FSI problems. The
main contribution of this work is the introduction of a matrix-free procedure that
extends time-stepping approaches to the analysis of fully coupled flow-structure
systems. To the author’s knowledge, in the context of FSI systems, the global linear
approach has not been extended to problems involving multiple elastic bodies up
to now. The numerical linearization proposed in this thesis accounts for the fully
coupled solid and fluid dynamics and thus is able to identify all the instability mech-
anisms arising in the system. The proposed time-stepping IB approach, indeed, is
able to extract stability information from simulations irrespective of the total num-
ber of immersed bodies or the complexity of the multi-physics phenomenon under
investigation.
In the first chapter, an introduction to FSI problems was given, together with a short
preamble to the broad subject of fluid-structure instability. In the second chapter,
after a brief literature review on the most common numerical methods employed for
the solution of FSI problems, the IB computational framework utilized throughout
the manuscript is presented. A direct-forcing IB method is adopted to simulate fully
coupled nonlinear FSI problems, based on an MLS procedure to impose the bound-
ary conditions at the interface. The principal advantage offered by the method is
its versatility and efficiency in handling complex geometries of arbitrary thickness.
Some details are given about the tricky task of hydrodynamic load evaluation with
partitioned algorithms.
In the third chapter, a simple and robust approach to perform linear stability analyses
of FSI configurations was presented. A time-stepping iterative procedure, based on
the exponential transformation of the Jacobian matrix, was derived in a general
setting. This was implemented within the IB framework described in the second
chapter and validated against well-documented cases of flow-induced vibrations of
rigid bodies. The outcomes of the linear stability analysis showed a good overall
agreement with the results from the literature, obtained using mesh-conforming
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methods.
In the fourth chapter, the methodology was applied to study the VIV of two cylin-
ders in tandem; the results of the stability analysis matched reasonably well with the
nonlinear simulations, providing further confidence in the robustness of the method
and opening the way to the instability analysis of multi-body configurations. Two
dominant modes were identified across the range 3 ≤ *∗ ≤ 14. For values of the
reduced velocity *∗ < 4, only one mode is unstable and the cylinders oscillate out
of lock-in. At *∗ = 4 the second mode loses its stability and the cylinders enter the
lock-in zone, then for *∗ = 5 the modes cross and their interaction gives rise to the
beating phenomenon observed in the nonlinear simulations. For*∗ > 5 the growth
rate of the dominant mode is significantly greater than that of the other one, justify-
ing the higher amplitude of vibration observed in the calculations. The comparison
with the linear stability of the fixed-free configuration shows that the mechanism
giving rise to large amplitude oscillations is already present in the latter case, as
the growth rate of the unstable mode grows in a similar fashion for *∗ > 5 while
its frequency is always close to that of the stationary wake mode. This observation
implies that the vortex-shedding plays a major role in triggering the vibrations of the
rear cylinder and that interference effects between the cylinders come into play only
when the vertical separation between the two cylinders is large enough, as suggested
in the literature.
The matrix-free nature of the algorithm presented makes it particularly convenient
for the analysis of three-dimensional flows around structures with complex geome-
tries, where an analytical linearization of the coupled systems of equations would
be impracticable. In addition, multiple bodies can be handled by the methodology
with no added complexity. Moreover, the Cartesian grid employed within the IB
framework facilitates the parallelization of the numerical scheme, which is an essen-
tial feature for solving three-dimensional problems within a reasonable time. One
major advantage of the methodology resides in the generality and modularity of the
formulation, which does not depend on the specific time-stepping scheme chosen
for integrating the governing equations. Without the pretense of being exhaustive,
some guidelines were provided for the selection of the linearization parameters, with
the purpose to furnish the reader with the necessary tools to implement the strategy
within existing codes.
Future developments of the method could include a local grid refinement to achieve
a higher resolution near the immersed surface at a lower cost. The validation tests
were limited to the case of rigid-body motion, nevertheless, it is straightforward to
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extend the range of applicability of the method to deformable structures.
In the last chapter, an Arbitrary Lagrangian Eulerian framework was adopted to
investigate the linear dynamics of a gas bubble placed in an axisymmetric straining
flow. The maximum Weber number,42 was determined, beyond which no steady
state is possible. Besides, by means of a pseudo-arc-length continuation method,
an unstable branch of solutions was identified and a saddle-node bifurcation is de-
tected. Edge states along this unstable branch constitute routes to the bubble breakup
through an end-pinching mechanism.
Besides, the analysis revealed the existence of a self-propelling unstable mode,
which is counterintuitive as the mode drifts the babble towards a higher-pressure re-
gion. It was shown that the observed dynamics is made possible by a self-propulsion
mechanism that exploits shape asymmetries to create positive pressure differences.
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A p p e n d i x A

APPENDIX

A.1 Derivation of the Gateaux derivative
In this annex it is reported, for the sake of completeness, the detailed derivation of
Equation 3.14 presented in section 3.4.
Combining the definitions of F andR(q) given in section 3.4, we get

F (q(C0), )) =
∫ C0+)

C0

R(q(C))3C + q(C0). (A.1)

We now consider the second term on the right-hand side of Equation 3.13. Substi-
tuting the expression above, it reads

mF (q, ))
mq

����
q1

q′(C0) =
m

mq

����
q1

[∫ C0+)

C0

R(q)3C
]
q′(C0) + q′(C0). (A.2)

Recognizing that the extremes of integration do not depend on q and that q′(C0) does
not depend on time, we can interchange integration and differentiation and bring
q′(C0) inside the integral,

mF (q, ))
mq

����
q1

q′(C0) =
∫ C0+)

C0

mR(q)
mq

����
q1

q′(C0)3C + q′(C0). (A.3)

Supposing then a little variation of q′(C) in the interval [C0, C0 +)], which is true for
small values of ) , we have replaced q′(C0) into the integral with q′(C).∫ C0+)

C0

mR(q)
mq

����
q1

q′(C0)3C ≈
∫ C0+)

C0

J (q1)q′(C)3C. (A.4)

Finally, we recognize that Equation A.4 is simply the integration of the initial value
problem given by Equation 3.7, and therefore

mF (q, ))
mq

����
q1

q′(C0) ≈ q′(C0 + )) − q′(C0). (A.5)

A.2 Grid convergence tests
To assess the grid and domain convergence of the stability results, eigenvalue com-
putations were performed on different grids for the VIV case presented in 3.5, with
(d∗,*∗) = (20, 7).
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Table A.1 reports the growth rate lA and the Strouhal number (C of the least
stable eigenvalue for four different discretizations of the same domain of size
[−28� : 52�] × [−28� : 28�], with the origin placed on the cylinder axis.
On the rightmost column, it is reported the percentage error 4% 9 made in computing
the eigenvalue l 9 , as the finest grid is taken as reference,

4% 9 =
|l 9 − lA4 5 |
|lA4 5 |

× 100. (A.6)

Grid #2 ΔG<8= lA (C 4%

1 310800 0.0286 0.0427 0.1205 0.662
2 513000 0.0220 0.0447 0.1210 0.221
3 765600 0.0182 0.0448 0.1211 0.106
4 1068600 0.0154 0.0447 0.1213 —

Table A.1: Convergence study with respect to grid resolution. For each of the
four grids, the total number of cells #2 and the minimum cell dimension ΔG<8= are
reported, together with the growth rate lA and the Strouhal number (C of the least
stable mode for ('4, d∗,*∗) = (60, 20, 7). Grid 2 was used to obtain the results
presented throughout the manuscript, while the relative error 4% is computed with
respect to the values obtained with grid 4.

TableA.2 reports the growth rate and the non-dimensional frequency of both the fluid
and elastic modes for three distinct domains. The corresponding grids are coincident
in the uniformly spaced rectangular zone around the cylinder, the minimum spacing
being equal to ΔG<8= = 0.022. In particular, the grid used for the medium domain
�2 corresponds to grid 2 in A.1. The analysis shows a minor difference between the
medium and big domains, thus motivating the choice of �2 as the computational
domain for the cases presented in section 3.5 The blockage ratio reported in A.2 is
defined as the ratio of the cylinder diameter to the cross-stream dimension of the
computational domain.

A.3 Effect of the linearization parameter n0
To evaluate the influence of the user-defined linearization parameter n0 on the
accuracy of the results, it is reported in Figure A.3.1 the variation of the relative
error 4A and the residual ‖r‖ of the least stable Ritz pair against n0. The former is
given by

4A =
|l − lA4 5 |
|lA4 5 |

, (A.7)
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D1 D2 D3
1.43% 1.78% 2.38%

lA (C lA (C lA (C

FM 0.0440 0.1206 0.0447 0.1210 0.0461 0.1219
EM 0.0086 0.1309 0.0085 0.1309 0.0080 0.1308

Table A.2: Sensitivity of the rightmost eigenvalues to the size of the computational
domain for ('4, d∗,*∗) = (60, 20, 7). �1: [−35 : 65] × [−35 : 35], �2: [−28 :
52] × [−28 : 28], �3: [−21 : 39] × [−21 : 21]. All the grids used for the analysis
have the same minimum cell dimension ΔG<8=. The percentage blockage ratio is
reported for each domain size.

wherel is the least stable eigenvalue computed for a given value of n0 on the chosen
grid and lA4 5 is a reference value. In the absence of an exact solution of the EVP,
the selected lA4 5 is the least stable eigenvalue computed on a reference grid with
the parameter n0 chosen so as to minimize the residual ‖r‖. The results displayed in
A.3.1 refer to the VIV case introduced in section 3.5 with ('4, d∗,*∗) = (60, 20, 7).

(a)

grid 2

grid 3

(b)

Figure A.3.1: Effect of the input parameter n0 on the relative error (a) and direct
residual (b) for the VIV case reported in section 3.5 with the following set of
parameters (d∗ = 20, '4 = 60,*∗ = 7). Results are reported for two different grids
(see Table A.1 for details), the relative error is computed with respect to the finest
grid in Table A.1
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