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EXTENDED ABSTRACT (eng) 

 

Plant stress responses cause a biochemical cascade in which gene expres-

sion is altered. Such an event leads to further downstream changes that result in 

alterations in metabolism to reduce the effect of the stress so the plant can sur-

vive/resist it. Stress can induce phenotypic changes, i.e. changes observable to 

the human eye such as colour modification, inhibition of growth, and change in 

fruit size. Technological development leads to the ability to study organisms such 

as plants on different biological levels. Omics is a term that encompasses a wide 

range of domains in biology such as genomics, transcriptomics, proteomics, and 

metabolomics which are the science of studying genome, transcriptome, and 

metabolome of a sample, respectively. This PhD project focused on the chemo-

metric (non-targeted) approach of spectroscopic data for studying both abiotic 

and biotic stress responses in plants. Three studies described in this PhD thesis 

demonstrated the feasibility of spectroscopic methods to decipher biological 

phenomena such as plant abiotic stress as well as biotic stress.  

In the first study, hemp plant grown in soil contaminated with heavy met-

als was combined with spirulina for bioremediation purposes. The non-targeted 

nuclear magnetic resonance (NMR) analysis in addition to the quantitative induc-

tively coupled plasma--atomic emission spectroscopy (ICP-AES) analysis showed 

specific changes at the metabolic and ionomic levels for the hemp plant affected 

by the abiotic stress caused by heavy metals. ICP-AES provided an efficient way 
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for detecting residual heavy metals within plant tissues and soil. Importantly, 

non-targeted metabolomic analysis helped to reveal the relationships between 

metabolites’ distribution in hemp tissues and the sequestered metals. Results re-

ported in this work indicate that the hemp/spirulina system represents a suitable 

tool for remediation of metal-contaminated soils by modulating biomass produc-

tion and metals uptake. Also, the combination of spirulina with the hemp plant 

aided the latter, mainly in terms of health condition, which allows for more sur-

vivability during bioremediation. It was demonstrated that hemp accumulates 

copper, chromium, nickel, and zinc preferentially in the leaves, while lead is dis-

tributed mainly in the stems of the plant. Moreover, it was found that, at higher 

concentrations, spirulina acts as a growth promoter, contributing to an increase 

in the final generated biomass.  

In the second study, olive plants grown in a controlled environment were 

considered. The analysis focused on cultivated asymptomatic olive leaves. Young 

olive trees were artificially infected by Xylella fastidiosa subsp. pauca ST53 re-

sponsible of olive quick decline syndrome (OQDS). After 2 years of growth, sam-

ples from leaves were collected and analysed. By using 1H NMR, HSR, and chemo-

metrics, different OQDS-related diagnostic signals and wavelengths were identi-

fied for infected but asymptomatic leaves. These signals are necessary for the 

development of sensors capable of detecting the disease at the very early stages.  

In the third study, olive plants grown in uncontrolled field conditions were 

considered. Though it is almost impossible to discriminate between healthy 

leaves and asymptomatic infected leaves at the early stage of infection using vis-

ual assessment, chemometrics applied to spectroscopic data provided another 

way to discriminate amongst both classes. Furthermore, the different supervised 

chemometric techniques applied to HSR and NMR data were able to discriminate 

between healthy and asymptomatic infected samples. Also, the Fisher Discrimi-

nant (FD) proved to be useful in decreasing the number of features to be used 
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while having good performance for the three tested supervised machine-learning 

techniques. 

 

key words: plant stress; heavy metals; Xylella fastidiosa; hemp; spir-

ulina; olive; ICP-AES; NMR; hyperspectral reflectance; metabolom-

ics; spectranomics; chemometrics. 
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EXTENDED ABSTRACT (ita) 

 

Le risposte delle piante allo stress causano una cascata biochimica in cui 

l'espressione genica è alterata. Un tale evento porta a ulteriori cambiamenti a 

valle che provocano alterazioni del metabolismo per ridurre l'effetto dello stress 

in modo che la pianta possa sopravvivere / resistere. Lo stress può portare a  

cambiamenti fenotipici, cioè cambiamenti osservabili all'occhio umano come la 

modifica del colore, l'inibizione della crescita e il cambiamento nelle dimensioni 

dei frutti. Lo sviluppo tecnologico porta alla capacità di studiare organismi come 

le piante a diversi livelli biologici. Omica è un termine che comprende una vasta 

gamma di domini in biologia come genomica, trascrittomica, proteomica e 

metabolomica che sono, rispettivamente, lo studio del genoma, del trascrittoma 

e del metaboloma. Questo progetto di dottorato si è concentrato sull'approccio 

chemiometrico (non-targeted) per analizzare i dati spettroscopici dalle 

tecnologie omiche mettendo in luce le reazioni nelle piante in seguito ad uno 

stress biotico o biotico. Itre studi descritti in questa tesi di dottorato hanno 

dimostrato le potenzialità dei metodi spettroscopici al fine di individuare 

fenomeni biologici, come lo stress abiotico e biotico nelle piante.  

Il primo studio, ha riguardato il biorisanamento di un terreno contaminato 

con metalli pesanti da parte della pianta di canapa in combinazione con la 

spirulina. L’analisi mediante Risonanza Magnetica Nucleare (NMR) non-targeted 

e l’analisi quantitativa mediante spettrometria di emissione atomica al plasma ad 

accoppiamento induttivo (ICP-AES) hanno permesso di rilevare cambiamenti 

specifici ai livelli metabolici e ionomici all’interno dei tessuti della pianta di 
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canapa affetta dallo stress abiotico dovuto alla presenza di metalli pesanti nel 

terreno. L’ICP-AES ha permesso di rilevare efficacemente i metalli pesanti residui 

all'interno dei tessuti vegetali e del suolo. È importante sottolineare che l'analisi 

metabolomica non-targeted ha contribuito a rivelare le correlazioni tra la 

distribuzione dei metaboliti nei tessuti della pianta e la tipologia dei metalli 

sequestrati. I risultati riportati in questo lavoro indicano che il sistema costituito 

da canapa/spirulina rappresenta uno strumento adatto per la bonifica dei suoli 

contaminati dai metalli modulando la produzione di biomassa e l’assorbimento 

dei metalli. Inoltre, l’utilizzo di acqua contenente spirulina per irrigare la pianta 

di canapa ha permesso a quest’ultima sopravvivere in modo più vigoroso durante 

il processo di biorisanamento. E’ stato dimostrato che la pianta di canapa 

accumula alcuni metalli pesanti (rame, cromo ecc.) preferibilmente nelle foglie, 

mentre il piombo viene localizzato principalmente nello stelo della pianta. E’ 

stato anche evidenziato come la spirulina, a maggiori concentrazioni agisca da 

promotore della crescita, contribuendo ad un aumento della biomassa finale.  

Nel secondo studio sono state prese in considerazione piante di olivo 

coltivate in ambiente controllato. L’analisi si è concentrata sulle foglie 

asintomatiche. I giovani olivi sono stati infettati artificialmente da Xylella 

fastidiosa subsp. pauca ST53 responsabile del complesso del disseccamento 

rapido dell’olivo (OQDS). Dopo 2 anni di crescita, sono stati raccolti e analizzati 

campioni di foglie. Utilizzando 1H NMR, HSR e chemiometria, sono stati 

identificati diversi segnali diagnostici e lunghezze d'onda correlate a OQDS per 

foglie infette ma ancora asintomatiche. La determinazione di metaboliti 

(mediante NMR) e di lunghezze d’onda (mediante HSR) specifici sono necessari 

per lo sviluppo di sensori in grado di rilevare la malattia nelle fasi iniziali.  

Nel terzo studio sono state prese in considerazione piante di olivo 

coltivate in condizioni di campo non controllate. Sebbene sia quasi impossibile 

discriminare tra foglie sane e foglie infette asintomatiche nella fase iniziale delle 

infezioni utilizzando la valutazione visiva, la chemiometria applicata ai dati 

spettroscopici ha fornito un’alternativa per discriminare tra queste le classi. 
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Inoltre, le diverse tecniche chemiometriche supervisionate applicate ai dati HSR 

e NMR sono state in grado di discriminare tra campioni di foglie sane e infette 

ma asintomatiche. Inoltre, la discriminante di Fisher (FD) si è dimostrata utile per 

ridurre il numero di variabili da utilizzare mantenendo prestazioni soddisfacenti  

key words: stress delle piante; metalli pesanti; Xylella fastidiosa; 

canapa, spirulina, ulivo, ICP-AES; NMR; reflettanza iperspettrale; 

metabolomica; spettranomica; chemiometria  
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INTRODUCTION 

 

 

 

The general goal of this PhD thesis is to explore the application of spec-

troscopy in the field of plant stress and applying advanced chemometric methods 

for the analysis of omics data generated from spectroscopic techniques. This was 

carried out under the light of two independent projects. The first project is re-

lated to plant abiotic stress (heavy metals in hemp; results presented in chapter 

5) and the other is related to biotic stress (Xylella fastidiosa in olive trees; results 

presented in chapter 6 and 7). 

Plant stress causes a biochemical cascade in which gene expression is al-

tered leading to further downstream changes that result in a change in metabo-

lism to reduce the effect of the stress so the plant can survive/resist the stress. 

Different types of stress can induce phenotypic changes, of which are observable 

to the human eye such as colour modification, inhibition of growth, and change 

in fruit size. Plant stress factors are categorised as either abiotic or biotic.  

As an abiotic stress factor, heavy metals are toxic to organisms when ex-

ceeding a certain threshold of concentration, usually parts per million (Edelstein 

& Ben-Hur, 2018). They generally do not get degraded and remain a risk to bio-

logical entities for several years after their introduction into an ecosystem 

(Zielonka et al., 2020; Yadav, 2010; Ahmad et al., 2016; Vardhan et al., 2019).  

As a biotic stress factor, Xylella fastidiosa is the causal agent of various 

plant diseases, amongst which is the most recently disease affecting olive trees 

in southern Italy, the olive quick decline syndrome (OQDS). Xylella fastidiosa re-

main in an incubation period after infection until favourable conditions are avail-

able, e.g. warm temperature. Then, the bacteria start to form a biofilm that 

blocks the xylem vessels of the olive tree causing a hindrance in the water move-

ment inside the plant and affecting vital processes such as photosynthesis and 

transpiration, which eventually leads to the death of the tree (Hornero et al., 
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2020). Amongst the detection techniques, qPCR (real-time quantitative Polymer-

ase Chain Reaction) is the most sensitive test. Nonetheless, the feasibility to 

adopt this technique in field conditions is limited by sampling frequency and the 

irregular distribution of Xylella fastidiosa in a canopy, especially at the early stage 

of the disease (Zarco-Tejada et al., 2018).  

Over the past decades, technological development allowed for a more ho-

listic approach to understanding plant stress in which a more comprehensive 

view is adapted for the identification of key components in the hidden patterns 

of the mechanisms involved behind (Crandall et al., 2020). 

Technological development leads to the ability to study organisms, such 

as plants, on different biological levels. The comprehensive study of the complex 

interactions among molecules in different biological systems defines the “omics” 

sciences. Omics aims at the collective characterization and quantification of pools 

of biological molecules (Wheelock & Wheelock, 2013). Metabolomics aims at the 

systematic study of the chemical fingerprint correlated with specific cellular pro-

cesses, genomics focuses on the structure and function of genomes, proteomics 

studies the entire set of proteins produced and modified by an organism. In con-

trast to genomics and proteomics, metabolomics is less developed in terms of 

hardware (instrumentation), software (algorithms and tools), and databases. This 

mainly due to the complexity of the metabolome and the period of development 

as compared to genomics and proteomics (Wishart, 2011; Wishart et al., 2022a). 

 Metabolomics is widely applied in studying various topics such as disease 

diagnosis, crop breeding, deception of adulteration of food, food authentication, 

tracing the origin of food production, metabolic pathway analysis, genetic engi-

neering, monitoring of medical interventions effects as in organ transplantation, 

and effects of aging—nutrition—activities—and lifestyle—on the metabolic net-

works (Taha et al., 2022; Razzaq et al., 2022). Metabolomics is less developed 

than genomics and proteomics in terms of databases, identification technologies, 

and algorithms (Ryan & Robards, 2006; Hall et al., 2022; van der Hooft et al., 

2020). Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main 
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techniques used in metabolomics. The potential of NMR spectroscopy is well 

known for the qualitative and quantitative analysis of chemical compounds of 

complex mixtures without the need to separate the chemical compounds. Fur-

thermore, NMR spectroscopy is the most robust technique for the elucidation of 

unknown compounds. Since it is not selective, it allows for an unbiased view of 

the chemical composition of the sample. Moreover, NMR samples can be reused 

for subsequent analyses as it is not required for the sample to be pre-treated or 

destroyed (Wishart, 2011). Hyperspectral reflectance provides high-throughput 

data which can be related to plant biophysical and biochemical traits and is key-

stone for the development of early-detection sensors for plant disease (Zheng et 

al., 2021a). Such spectroscopic techniques measure a large set of variables for 

every single sample analysed that result in high-dimensional datasets with thou-

sands of variables. For the analysis of such high-dimensional data, chemometrics 

applies multivariate data analysis and machine learning with the aim of unravel-

ling the hidden patterns of valuable information (Martens, 2015). Spectranomics 

is a new filed in which the combination of spectroscopy with physiochemistry and 

taxonomy is used to link the plant spectral profile to its trait (Asner & Martin, 

2009).  

In this thesis, two research line were followed under two different inde-

pendent projects, with both having the common theme of the combination of 

spectroscopic and chemometric methods for the investigation of plant stress. On 

one hand, the first research line is considered with plant abiotic stress by means 

of hemp growing in heavy metals-contaminated soil with the addition of Spir-

ulina. On the other hand, the second research line is considered with plant biotic 

stress by means of olive trees infected with Xylella fastidiosa under greenhouse 

and open field conditions. 
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CHAPTER 1 

On plant stress 

 

Plants are very important to humans as they provide us with many things 

to consider in a wide range of aspects including environmental, biological, medi-

cal, pharmaceutical, and industrial, as well as cultural and aesthetical. However, 

when plants are exposed to stress, these aspects get affected. Stress conditions 

are caused by biotic and/or abiotic factors. Biotic factors are biological entities 

such as insects, plants, as well as fungi, bacteria and viruses, the latter being often 

able to cause infections. On the other hand, abiotic factors are physical agents, 

including cold, heat, and light as well as chemical agents such as heavy metals, 

salinity, and oxidative stress. Biotic and abiotic factors can be found in combina-

tion leading to highly complex plant responses leading to particularly complex 

responses and, often, to particularly serious damages to the plant. 

The result of biotic or abiotic stress factors is the production of reactive 

oxygen species (ROS) in the cell. If ROS are over-produced and accumulates in the 

cell environment, there is the onset of oxidative stress, a complex phenomenon 

that can lead to the damaging of cell component and to the dysfunction of the 

cell regulatory system. The effect of a certain stress factor can be very contrasting 

depending on the strength and time of exposure, in other words the effect of 

acute stress can be completely different from the effect of chronic stress, as re-

ported in the study made by Choi and colleagues (2021) where was established 

that acute gamma irradiation of Oryza sativa causes instantaneous and signifi-

cant damages to plant physiology, whereas chronic gamma irradiation leads 

mainly to reproductive failure causing long-term damage. 

Plant stress responses cause a biochemical cascade in which gene expres-

sion is altered leading to further downstream changes that result in a change in 

metabolism to reduce the effect of the stress so the plant can survive/resist the 

stress. Stress can lead to a phenotypic change, i.e. changes observable, or made 
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observable by a technical procedure, such as in colour, in growth, or in sugar con-

tent. Technological development leads to the ability to study biological organisms 

such as plants on different biological levels (Fiorani & Schurr, 2013; Wahabzada 

et al., 2016; Mahlein et al., 2019). 

Of interest is the stress caused by heavy metals in the application of using 

plants to remediate the environment from heavy metals in a process known as 

phytoremediation, as well as the use of eukaryotic algae and cyanobacteria. 

Heavy metal(loid)s are elements with an atomic density greater than 4 – 

6 g cm-3, except for arsenic (As), boron (B), and selenium (Se). These elements 

are also classified as biologically essential such as cobalt (Co), chromium (Cr), cop-

per (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn), as well as non-

essential such as As, cadmium (Cd), mercury (Hg), and lead (Pb), in which the 

formers are needed for the normal biological functions of the cell in specific 

ranges of concentrations. Nonetheless, they are toxic to organisms when exceed-

ing a certain threshold of concentration, mainly in parts per million (Edelstein & 

Ben-Hur, 2018). They generally do not get degraded and remain a risk to biologi-

cal entities for several years after their introduction into an ecosystem (Zielonka 

et al., 2020; Yadav, 2010; Ahmad et al., 2016; Vardhan et al., 2019).  

Heavy metals cause toxicity in plants through four main mechanisms: i) 

analogy to nutrient cations, that consequently creates a state of competition in 

their absorption at the root surface e.g. Cadmium vs. Zinc; ii) disruption of en-

zymes function by changing their structure through interaction with sulfhydryl 

groups (-SH); iii) replacing enzymes cofactors through irreversible binding; iv) in-

ducing oxidation stress through generation of reactive oxygen species (ROS), that 

leads to lipid peroxidation (Singh et al., 2016; Ahmad et al., 2016; Dalcorso et al., 

2013; Sharma & Dietz, 2009). 

Agricultural soils contaminated with heavy metals–either from fertilizers, 

residues from mining activities, or chemical plants–are of critical concern due to 

the risk they possess to the surrounding environment. Such risk can be the toxic 

effect on plants grown in that contaminated soil or the contamination of nearby 
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water supplies that in either way would end up in the whole food chain, 

(Edelstein & Ben-Hur, 2018).   

 The first response of plants upon exposure to a high dose of heavy 

metals is producing ROS either through Fenton reaction or accumulation of ROS, 

which will subsequently induce oxidative stress as well as lipid peroxidation 

(Yadav, 2010). Cd-affected plants have reduced water uptake, nutrient uptake, 

and photosynthesis. Subsequently, they show chlorosis, inhibition of growth, 

root tips browning, and eventually death (Wojcik & Tukiendorf, 2004; 

Mohanpuria et al., 2007; Pandey & Sharma, 2002). Cr-affected plants show chlo-

rosis in young leaves, inhibition of growth, and injuries of the crown and root 

(Scoccianti et al., 2006). Although regarded as a micronutrient for plants, which 

is important in ATP synthesis and assimilation of CO2, excess of Cu in soil induces 

phytotoxicity, which leads to poor growth and chlorosis (Lewis et al., 2001; 

Thomas et al., 1998). Ni-affected plants show chlorosis and necrosis, which is 

probably caused by the imbalance of nutrients as a consequence of the disrup-

tion of cell membrane functions, as well as the decrease in water uptake (Rahman 

et al., 2005; Pandey & Sharma, 2002). Pb-affected plants have water imbalance 

as a consequence of disruption of the membrane permeability and are also one 

of the most ubiquitous toxic elements in the soil (Sharma & Dubey, 2005). Even 

though nutritionally essential to the plant, Zn may also cause phytotoxicity when 

it is in higher concentrations than required by the plants. Zn toxicity appears as 

poor growth and decline. Symptoms first appear in younger leaves and extend to 

older leaves if the exposure to high levels of Zn is prolonged (Choi et al., 1996; 

Ebbs & Kochian, 1997; Fontes & Cox, 1998). Therefore, the remediation of heavy 

metals-contaminated soil is a critical prerequisite for the sustainable develop-

ment of agriculture (Kos et al., 2003). In general, the phytoremediation process 

as well as the use of eukaryotic algae and cyanobacteria is of great interest for 

the remediation of metal contamination of soils. Also, the stress caused by heavy 

metals on the plants used for phytoremediation is an interesting parameter to 

investigate as well. According to Italian national law (Decreto Legislativo 
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152/2006; Decreto Legislativo 152/2006 - Supplemento ordinario; 

IP/A/ENVI/IC/2006-183), which is an amendment of the Italian law 99/1992 

(Decreto Legislativo 99/1992) that follows the European Economic Council di-

rective 86/278/EEC (86/278/EEC), the maximum levels of heavy metals in soils 

for the use in agriculture, residence, or green areas is 2, 150, 120, 100, 120, and 

150 mg kg−1 of dry weight for Cd, Cr, Cu, Pb, Ni, and Zn, respectively.  

Metals are absorbed from the soil into the roots and shoots of the plant 

by the translocation/phytoextraction process. It is generally not feasible to re-

move plant roots, and therefore the translocation into the plant shoots is the 

main goal rather than the translocation into roots (Girdhar et al., 2014). A good 

candidate for bioremediation of heavy metals-contaminated soil is the hemp 

plant (Ahmad et al., 2016).  

Hemp, the non-psychoactive variety of Cannabis sativa L., is an annual di-

oecious high yielding industrial crop, and it is mainly grown for its fibres and seeds 

and used for textiles, clothing, insulation, biodegradable plastics, food, animal 

feed, and biofuel production (Morin-Crini et al., 2019; Praspaliauskas et al., 

2020). The bifurcation from the medicinal C. sativa L. is in the different ratios of 

cannabinoids they contain, with hemp having very low to no concentration, usu-

ally <0.3%, of the psychotropic compound tetrahydrocannabinol (THC), which in 

such amount is not adequate for psychological effect (Small & Beckstead, 1973).  

Hemp has an industrial-favourable short life cycle of 180 days, a strong 

capability to eliminate heavy metals from contaminated soils, and even proved 

to be effective around the Chernobyl nuclear disaster area (Vandenhove & Van 

Hees, 2005). Hemp was strongly suggested for use in phytoremediation for its 

feasibility (Kos et al., 2003; Linger et al., 2005; Citterio et al., 2003; Ahmad et al., 

2016). Depending on its genotype, hemp can tolerate, accumulate, and stabilize 

heavy metals. The ability to absorb heavy metals generally depends on the bio-

mass produced as well as the ability of the plant to accumulate and translocate 

heavy metals in its biomass (Galić et al., 2019; Zielonka et al., 2020).  
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Spirulina [Arthrospira platensis; (Gomont, 1892)] is a filamentous cyano-

bacterium that is mostly known for its use as a nutritional supplement because 

of its high nutritional value and high content of protein (Ho et al., 2018; Ye et al., 

2018). On one hand, spirulina was used as a plant growth promoter to enhance 

growth, increase yield, and speed up seed germination of different crops such as 

rice, cabbage, and other leafy vegetables (Watanabe et al., 1951; Tripathi et al., 

2008; Wuang et al., 2016). On the other hand, spirulina was also used for the 

bioremediation of heavy metals contaminants (Zinicovscaia et al., 2019, 2015; 

Balaji et al., 2014; Rezaei, 2016; Nalimova et al., 2005; Şeker et al., 2008; 

Hernández & Olguín, 2002; Konig-péter et al., 2015; Cepoi et al., 2020).  

Spirulina bioremediation of heavy metals depends mostly on the ability to 

absorb heavy metals inside their cells. This ability is affected by many physical 

and chemical factors such as initial metal concentration, dosage, adsorption time, 

temperature, and pH (Rezaei, 2016; Konig-péter et al., 2015).  

Biotic stress in plants is caused by biological agents especially fungi, bac-

teria, and viruses as well as nematodes, insects, arachnids, and weeds (Dangi et 

al., 2018). Biotic stress agents directly compete against their hosts for their nutri-

ents causing a diminishment of plant biological functions and in severe cases 

leading to the death of the plant. Biotic stress is a major cause of both pre- and 

post-harvest losses.  

Plants respond to biotic stress through different defence mechanisms. Af-

ter infection, plants can produce reactive oxygen species (ROS) to exert an oxida-

tive condition to reduce the pathogen spread (Mithöfer et al., 2004). Also, plants 

increase cell lignification to block the spreading of parasites inside the plant. De-

fence mechanisms against biotic stress agents include physical and structural 

modification, as well as the production of certain metabolites, proteins, and en-

zymes such as β-aminobutyric acid (BABA). 

Plant diseases are caused by pathogenic organisms such as viruses, bac-

teria, or fungi or by unfavourable environmental conditions such as the excess or 

deficiency of essential minerals or other substances, as well as by the presence 
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of toxic substances. Plant diseases cause drastic monetary harm to crops when 

exceeding the tolerance level. Early detection of plant diseases is essential for 

managing the diseases and is an integral part of the integrated pest management 

strategy of a disease. In fact, early detection of biotic stresses, in general, is a 

critical research area in epidemiology (Zarco-Tejada et al., 2018, 2021; Poblete et 

al., 2020; Camino et al., 2021; Rey et al., 2019; Galvan et al., 2022).  

The severity of biotic stress occurrence depends on the environment, the 

host plant, and the biotic stress agent itself. This is known to phytopathologists 

as the plant disease triangle (Fig. 1). In general, hot and humid environments, 

susceptible cultivars, and lethal strains as well as poor agricultural practices result 

in a highly-vulnerable condition for the plant.  
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Fig. 1 - The plant disease triangle encompassing the three main axes for disease development. 

The host, the environment, and the pathogen. 

 

Plant hormones such as ethylene, jasmonic acid, and salicylic acid play im-

portant roles in stress signalling. Plant defence mechanism against stress com-

prises several signal transduction pathways that also includes different transcrip-

tion factor as mediators. 

Xylella fastidiosa is the causal agent of various plant diseases, such as 

Pierce’s disease of grapevine (PD), citrus variegated chlorosis (CVC), phony peach 

disease, plum leaf scald, almond leaf scorch, and most recently olive quick decline 

syndrome (OQDS).  
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Environment
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Xylella fastidiosa is a gammaproteobacterium in the family Xanthomono-

daceae. Taxonomically it is classified as follows: 

 

Kingdom: Bacteria 

Phylum: Pseudomonadota (synonym Proteobacteria) 

Class: Gammaproteobacteria 

Order: Xanthomondales 

Family: Xanthomonadaceae 

Genus: Xylella 

Species: Xylella fastidiosa 

 

Initially, it was assumed to be a virus until the 1970s when it was proven 

to be a bacterium (Purcell, 2013). It was first named and described by Wells and 

colleagues (1987). Hitherto, the genus Xylella is composed of only single species, 

Xylella fastidiosa. Furthermore, Xylella fastidiosa itself has a considerable 

amount of genotypic and phenotypic diversity exerting a wide host range of 655 

plants so far (Schuenzel et al., 2005; EFSA (European Food Safety Authority) et 

al., 2022). 

Xylella fastidiosa has different subspecies (ssp.). Amongst those, are four 

widely reported viz. Xylella fastidiosa ssp. – fastidiosa, multiplex, sandyi, and 

pauca (Baldi & La Porta, 2017). Isolates within the Xylella fastidiosa spp. pauca 

are responsible for CVC in Brazil and are thoroughly characterized (Nunney et al., 

2012b). The bacteria responsible for OQDS in Italy is a recombinant of alleles 

within the spp. pauca (Cariddi et al., 2014). 

Several genotyping techniques were used to differentiate Xylella fastidi-

osa at different levels of genetic diversity (Sicard et al., 2018). In relationship to 

Xylella fastidiosa subspecies and host plant, multi locus sequence typing (MLST) 

a procedure for characterising isolates of bacterial species using the sequences 

of internal fragments of some house-keeping genes (typically) seven, proved to 
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be a sound method for the understanding of  Xylella fastidiosa genetic diversity 

(Nunney et al., 2012a; Elbeaino et al., 2014; Jolley & Maiden, 2010).  

Further genotypic analysis using multilocus sequence typing (MLST) found 

that the strain of Xylella fastidiosa spp. pauca infecting olive trees in the Apulia 

region had a novel sequence type profile (ST53). This strain is also known as the 

“De Donno” strain as well as the “CoDiRO” strain; an abbreviation of “Complesso 

del Disseccamento Rapido dell’Olivo” meaning olive quick decline syndrome 

(Elbeaino et al., 2014). 

This plant pathogenic bacterium lives in the xylem tissue of the plant and 

is naturally transmitted by xylem-feeding insect vectors. It was originally present 

on the American continents but now spread to different continents. In Europe, it 

was first detected in the Apulia region in Southern Italy in October 2013 after the 

large damage in the olive groves (Almeida, 2016) and later in Southern France 

and Spain. In the case of Italy, the bacterium is suspected to be introduced earlier 

around 2009, and that is probably due transportation of an infected ornamental 

coffee plant from Latin America (Martelli, 2016). Furthermore, recent studies 

suggest that more than a million olive trees in the Salento Peninsula (south of the 

Apulia region) have been infected during the last couple of decades (A. M. 

D’Onghia et al.eds. , 2017). 

Hitherto, the spread of Xylella fastidiosa has not been contained in the 

Apulia region, which has raised concerns about the risk Xylella fastidiosa might 

appoint to olive trees in the other areas of the Mediterranean region. Transmis-

sion of Xylella fastidiosa from an infected tree to a healthy one happens through 

insects that feed on the xylem-sap of the plants. These insect vectors include Phi-

laenus spumarius known as the meadow spittlebug that pierces the plant with its 

stylet to feed on the sap of the tree. 

The only available strategy is to uproot and cut infected trees. However, this 

strategy is not very effective since it is a destructive strategy and most im-

portantly that trees could remain infected while showing slight to no symptoms 

at all and remaining asymptomatic for more than 5 months (Almeida, 2016)  
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Xylella fastidiosa remain in an incubation period after infection until favourable 

conditions are available, e.g. warm temperature. Then, the bacteria start to form 

a biofilm that blocks the xylem vessels of the olive tree causing a hindrance in the 

water movement inside the plant and affecting vital processes such as photosyn-

thesis and transpiration. Moreover, the early symptoms of discoloration start to 

occur on the tree tops followed by defoliation. At later stages, olive trees show 

symptoms of dieback and then finally the death of the tree (Hornero et al., 2020).  

Amongst the detection techniques, qPCR (real-time quantitative Polymer-

ase Chain Reaction) is the most sensitive test. Nonetheless, the feasibility to 

adopt this technique in field conditions is limited by sampling frequency and the 

irregular distribution of Xylella fastidiosa in a canopy, especially at the early stage 

of the disease (Zarco-Tejada et al., 2018).  

Since the combined agricultural, economical, and environmental adver-

sity caused by Xylella fastidiosa in the Apulia region, the European Commission 

approved countermeasures in February 2014 to limit the spread and further in-

troduction of Xylella fastidiosa. The measures included the elimination of in-

fected trees as well as other hosts that are susceptible to Xylella fastidiosa within 

100 m. Further measures are the treatment against the insect vectors to reduce 

the rate of transmission as well as the monitoring of areas around the spots 

where the infection is reported. Nonetheless, such measures were not followed 

by all member states of the EU (Almeida, 2016). 

Xylella fastidiosa occupies the xylem vessels of plants and can move both up- and 

downstream. Growth of bacterial populations within the xylem inhibits water 

movement and it was found that disease symptoms development was linked to 

a high amount of blocked xylem vessels (Sabella et al., 2019, 2020). 

Many host plants of Xylella fastidiosa remain asymptomatic after infec-

tion and act as a reservoir of Xylella fastidiosa for the insect vectors to spread 

(Hopkins & Purcell, 2002). The variability of disease severity from the persistence 

of asymptomatic infections to plant death within months depends on the host 

plant species as well as the genotype of the pathogen (Purcell et al., 1999; Purcell 



 25 

& Saunders, 1999). By adding up the surface area of the infection foci that are 

individually scattered, around 10,000 hectares of olive were estimated to be af-

fected by Xylella fastidiosa. Moreover, this was estimated to have around one 

million infected trees (Martinelli et al., 2019). 
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CHAPTER 2 

On the omics technologies 

 

Traditionally, managing plant stress consisted of a reductionist approach 

in research for single components concerning a certain disease instead of the 

complex interactive system amongst the components of the disease triangle, i.e. 

the pathogen, the host, and the environmental conditions. Over the past dec-

ades, technological development allowed for a more holistic approach to under-

standing plant stress in which a more comprehensive view is adapted for the 

identification of key components in the hidden patterns of the mechanisms in-

volved behind (Crandall et al., 2020).  

The ability to discern characteristics of such complex systems enabled ad-

vancement in management strategies, beginning from plant breeding programs 

to counter stress factors to agricultural practices to diminish the favourable con-

ditions for plant stress especially plant disease (Moriana et al., 2002). The ad-

vances in omics-technologies had a fundamental impact on understanding plant 

stress, especially with the contemporary climate change and rapid change of en-

vironmental conditions (Brito et al., 2019). With the emergence of more biotic 

and abiotic plant stress factors that affects plant health, it is crucial for plants to 

adapt to such stress factors and overcome their consequences to be able to man-

age healthy agricultural systems and safe ecological areas. 

Worldwide traveling and international trade can considerably change the 

ecological makeup of habitat by introducing invasive species that can be patho-

genic to plants. This can be even more dangerous when such species are charac-

terized by having a broad range of hosts, this  can lead to the death of a significant 

number of trees within a landscape (Sicard et al., 2018; Scortichini, 2022; Abou 

Kubaa et al., 2019). Furthermore, climate change can affect the nature of inter-

actions between a stress factor and the plant, as well as add further stress factors 

to the plant. This could be in the form of variation and fluctuation of 
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temperatures as well as changing the exposure frequency and duration of a cer-

tain meteorological state over a period. Consequently, such variations can lead 

to unfavourable conditions for the plant, making the plant's health at risk 

(Crandall et al., 2020)  

The Central Dogma of Molecular Biology is a term first coined by Francis 

Crick in 1956 to introduce his proposal for the generalized process of gene ex-

pression. This process is described as the flow of information from the gene, in 

the form of a DNA sequence, through RNA, and then to protein, in the form of an 

amino acid sequence (Crick, 1970). 

Omics is a term that encompasses a wide range of domains in biology, such as 

genomics, transcriptomics, proteomics, and metabolomics, which are the science 

of studying the genome, the transcriptome, and the metabolome of a sample, 

respectively. The suffix -ome is used to denote “whole”. Therefore, metabolom-

ics can be defined as the study of the whole metabolic makeup of a sample 

(Wishart, 2011; Fiehn, 2001).  

Omics is a suffix that is utilized to refer to research work of analysis of the 

qualitative and quantitative composition of the constitutive system (Karahalil, 

2016; Pinu et al., 2019; Furbank & Tester, 2011). The related derivation suffix “-

ome” is added to address the objects in consideration for measurements such as 

the genome (genetic material), metabolome (metabolites), ionome (ions i.e. ele-

ments with an electrical charge), or phenome (phenotypic traits). Therefore, the 

composition could be, but not restricted to, the genetic material (genomics and 

metagenomics), RNA transcripts (transcriptomics), proteins (proteomics), metab-

olites (metabolomics), elements (ionomics), or phenotypic traits (phenomics). 

Furthermore, the constitutive system could be but is not restricted to, cells, tis-

sues, organisms, or environmental samples (Nielsen, 2017; Baxter et al., 2008; 

Tardieu et al., 2017). 

Metabolomics refers to the branch of ‘omics’ that studies the metabo-

lome. The metabolome refers to the whole set of metabolites found in a sample. 

Metabolites are defined as low atomic mass molecules of <1.5 kDa, that include 
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a wide range of endogenous and exogenous small molecules such as peptides, 

amino acids, nucleic acids, carbohydrates, organic acids, vitamins, drugs, drug 

metabolites, food additives, phytochemicals, toxins, and the vast array of chem-

icals that can be used, ingested or synthesized by a certain cell or organism 

(Wishart, 2008a; Fiehn, 2002).  

The term “metabolomics” was first introduced by Oliver Fiehn (Fiehn, 

2002). Nonetheless, Jeremey Nicholson and colleagues introduced the term 

“metabonomics” earlier in 1999 and defined it as “the quantitative measurement 

of the dynamic multiparametric metabolic response of living systems to patho-

physiological stimuli or genetic modification” (Nicholson et al., 1999). Someone 

might argue that metabonomics would rather be concerned with endogenous 

metabolites (Ramsden, 2015). Nevertheless, both metabolomics and metabo-

nomics terms are used interchangeably (Alseekh & Fernie, 2018; Ciampa et al., 

2022). 

The omics cascade is the flow of biological information from the genotype 

to the phenotype. This conforms to the central dogma of molecular biology that 

indicates the flow of information from DNA to RNA to proteins (Crick, 1970). The 

metabolome is downstream of the omics cascade and is the most sensitive to 

environmental or disease effects (Feussner & Polle, 2015). This is because me-

tabolites are closer to the phenotype than genes and proteins. Changes at the 

genes and proteins level due to a pathogen include epigenetic and post-transla-

tional modifications, respectively. However, the effect of such changes is ampli-

fied at the metabolic level. Thus, the metabolomic profile is more consistent with 

the phenotype as opposed to the genomic, transcriptomic, and proteomic pro-

files in descending order (Fiehn, 2001; Kim & Lun, 2014). 

Metabolomics is widely applied in studying various topics such as disease 

diagnosis, crop breeding, deception of adulteration of food, food authentication, 

tracing the origin of food production, metabolic pathway analysis, genetic engi-

neering, monitoring of medical interventions effects as in organ transplantation, 

and effects of aging—nutrition—activities—and lifestyle—on the metabolic 
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networks (Taha et al., 2022; Razzaq et al., 2022). Metabolomics is less developed 

than genomics and proteomics in terms of databases, identification technologies, 

and algorithms (Ryan & Robards, 2006; Hall et al., 2022; van der Hooft et al., 

2020). 

Generally, there are two different schools of thought in studying metab-

olomics. On one hand, the quantitative approach, also mentioned as targeted 

approaches and quantitative or targeted metabolomics/profiling/methods, fo-

cuses on seeking to identify and/or quantify as many metabolites as possible in 

the sample (Wishart, 2008a). This is normally performed using a reference library 

of pure spectra of single compounds to compare against the sample’s data. 

Moreover, after the metabolites in the sample are identified and quantified, the 

data are then further analysed using advanced statistical methods, such as prin-

cipal component analysis or projection to latent structures-discriminant analysis 

to highlight significantly influential biomarkers. The quantitative approach may 

focus on targeting certain metabolites of interest, e.g. a class of compounds such 

as organic acids, amino acids, or lipids, or opt for a comprehensive quantification 

of all or almost all possibly detectable metabolites (Gika et al., 2014; Zheng et al., 

2021b). On the other hand, the chemometric or non-targeted approach focuses 

on the statistical comparison of spectral patterns and intensities for identifying 

the relevant features that distinguish sample values or class membership. Then, 

after such important features are found, their corresponding metabolites are 

identified (Wishart, 2008b). 

The most commonly used platforms in metabolomics studies are Nuclear 

Magnetic Resonance (NMR) and spectroscopy and Mass Spectrometry (MS) -

based techniques (Labine & Simpson, 2020). In general, both platforms have their 

advantages and disadvantages, mainly correlated to reproducibility and sensitiv-

ity (Wishart, 2016; Pinu et al., 2019).  

Regardless of the approach followed, a metabolomics study workflow ad-

heres to typical steps. First, the hypothesis is formed in light of the biological 

question to be answered. Second, the experiment is designed accordingly to 



 31 

reduce the source of error as much as possible and with careful consideration for 

the proper sample size. Third, the samples are collected and stored in a way that 

maintains their metabolomic status at the time of sampling. Fourth, the samples 

are prepared for analysis by the technique of interest. Fifth, the samples are an-

alysed by the platform of interest, and the data are acquired. Sixth, the data are 

analysed following either a targeted or a non-targeted approach. Finally, results 

are interpreted taking into account the biological question (Wishart et al., 2022b; 

Bedia et al., 2018; Gorrochategui et al., 2016). 

Ionomics is the process of studying the ionome as a whole, that is the el-

emental composition of a cell, tissue, organism, or other samples of interest 

(Baxter, 2009). Elemental analysis is commonly achieved by Inductively Coupled 

Plasma spectrometry, either Mass Spectrometry (ICP-MS) or Atomic Emission 

Spectrometry (ICP-AES) (Anguita-Maeso et al., 2021). This is very useful when 

studying the ability of plants to sequester heavy metals from soil (Musio et al., 

2022). 

Spectranomics combines the use of spectroscopy with physiochemistry 

and taxonomy. The recently introduced term was first mentioned by Greg Asner 

and colleagues (Asner & Martin, 2009). The premises on which spectranomics is 

built are that plants exert chemical fingerprints that are much more unique as an 

additional influential factor, such as genotype, phenological stage, and environ-

mental conditions, is added and that spectroscopic signatures confer the chemi-

cal profile of the plants (Jacquemoud et al., 1995; Asner & Martin, 2011; Asner et 

al., 2014a; Feilhauer et al., 2015; Ustin et al., 2004). This concept proved to be 

useful in relationship plant metabolite (Fine et al., 2021; Gold et al., 2020a). 
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CHAPTER 3 

On the spectroscopic methods for omics technology 

 

As a spectroscopic method, Nuclear Magnetic Resonance (NMR) spectros-

copy is based on measuring the interaction between electromagnetic waves and 

matter. However, what distinguishes it from other spectroscopic methods is that 

it requires a strong, static magnetic field. 

 NMR spectroscopy is one of the main techniques used in metabolomics. 

The potential of NMR spectroscopy is well known for the qualitative and quanti-

tative analysis of chemical compounds in complex mixtures without the need to 

separate the chemical compounds as in mass spectrometry where they are cou-

pled to a separation technique such as liquid or gas chromatography to be able 

to measure the compounds. Furthermore, NMR spectroscopy is the most robust 

technique for the elucidation of unknown compounds. Since it is not selective, it 

allows for an unbiased view of the chemical composition of the sample. Moreo-

ver, NMR samples can be reused for subsequent analyses as it is not required for 

the sample to be pre-treated or destroyed.  

The nuclei of different atoms from the periodic table can be studied using 

NMR spectroscopy but, considering biological samples, the most valuable nuclei 

are 1H, 13C, 15N, and 31P. Amongst the mentioned nuclei, NMR is the most sensi-

tive for the proton (1H) as its natural abundance is very close to 100%. Although 
31P comes second for sensitivity, because many metabolites studied are phos-

phorylated. However, 1H is the most studied nucleus in NMR spectroscopy-based 

metabolomics. 

The NMR phenomenon was first discovered by Isidor Isaac Rabi and col-

leagues in 1938 (Rabi et al., 1938). He was then awarded the Nobile Prize in Phys-

ics in 1944 for his resonance method for recording the magnetic properties of 

atomic nuclei. The work of Rabi and his colleagues was successful in measuring 

the magnetic properties of different isolated nuclei. However, it was not until 



 34 

1954 that NMR was demonstrated in condensed matter of water and paraffin by 

Felix Bloch and his colleagues at Stanford University and Mills Purcell and his col-

leagues at MIT, respectively (Bloch et al., 1946; Purcell et al., 1946). Both Bloch 

and Purcell were awarded the Noble Prize in Physics in 1952 for their develop-

ment of new methods for nuclear magnetic precision measurements and discov-

eries in connection therewith. Furthermore, NMR spectroscopy applications in 

chemistry were not widespread until the discovery of the “chemical shift”; this is 

the phenomenon by which an atom is energetically affected by the interactions 

of its chemical surrounding. 

Nuclear Magnetic Resonance is an intrinsic property of the nucleus inside 

the atom based on the nuclear magnetic moment that arises from the spin of 

protons and neutrons. Thus, we can consider the nucleus of the atom to have the 

ability to act as a special magnetic bar (Schmidt-Böcking et al., 2016). Further-

more, the spin angular momentum (I) is a conserved quantity carried by elemen-

tary particles and their composite. The spin of an atomic nucleus depends on the 

mass and the charge of the nuclei. The nuclei with even mass and charge num-

bers have no spin angular momentum. Such nuclei with no spin angular momen-

tum are called NMR inactive or NMR silent nuclei because the nuclear spin is es-

sential to allow NMR to occur. Proton (1H), carbon (13C), fluorine (19F), and phos-

phorus (31P) have I = ½ and therefore NMR can be achieved and they can be ana-

lysed by NMR spectroscopy. 

The nuclei spins are randomly oriented in every direction when they are 

not affected by any external magnetic field. However, if nuclei of I ≠ 0 are kept in 

a magnetic field (B0), they will undertake a possible number of different orienta-

tions, equal to 2I+I, that will correspond to specific energy levels.  

Applying this to the proton (1H), the B0 applied will make the protons undertake 

two possible orientations viz. α parallel of I = ½ or β antiparallel of I = -½, with 

each corresponding to an energy level. The difference between the energy levels 

is equal to:  
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ΔE = (h/2π) ⋅ γ ⋅ B0 

(1) 

 

Where h is the Planck constant 6.62607015×10−34 J⋅Hz, γ is the gyromagnetic ra-

tio, which is a constant for a given nucleus. For the specific case of the proton its 

value is γp = 2.6752 ×108 s-1⋅T-1, and B0 is the applied magnetic field 

 

Therefore, for an NMR active nucleus, the stronger the magnetic field the higher 

the gap in the energy levels observed, and, thus, higher the sensitivity in the NMR 

spectroscopy. 

The protons are distributed according to the Boltzmann distribution be-

tween two energy states: 

 

Nα/Nβ = e -ΔE /(k T) 

(2) 

 

where Nα and Nβ are the number of protons in the lower and upper energy levels, 

respectively, k is the Boltzmann constant of 1.380649 × 10-23 J K-1, and T is the 

temperature in kelvin (K). 

The two states do not have an equal number of nuclei since the lower 

energy state (α) is energetically more favourable than the higher state (β). The 

net magnetization, M0, will be aligned with the applied magnetic field, B0. When 

a radio frequency pulse is applied, the nuclei will absorb energy and will induce a 

nuclear spin transition from lower to higher energy levels. The energy gap can be 

calculated as follows: 

 

ΔE = h ⋅ v 

(3) 
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Where h is Planck’s constant = while v is the frequency, of the excitation 

pulse, that induces the transitions between the energy levels. This frequency de-

pends on the nucleus to be excited and the magnetic field applied and is known 

as the “Larmor frequency”: 

 

v = (γ ⋅ B0)/ (2π) 

(4) 

 

When the sample is under a static magnetic field, NMR signals are not 

observable since the nuclei are at equilibrium and the net magnetization vector 

will have no component on the xy plane at which the signal is detected by the 

detector coil inside the machine. A 90° pulse brings the magnetization to the xy 

plane and a 180° pulse flips the net magnetization on the negative z-axis. The 

duration of the magnetization pulse is usually very short and measured in micro-

seconds (µs). When the applied radiofrequency is turned off, the system will re-

turn to equilibrium, which is known as relaxation. The relaxation causes the NMR 

signal to decay over time and will produce the observed free induction decay 

(FID). The FID signals are in the time domain and are converted to the frequency 

domain using Fourier transformation (FT), which will produce the raw NMR spec-

tra. 

Since the proton is located in different positions in the molecule, they ex-

perience different magnetic fields because of the “shielding” phenomenon. This 

phenomenon is observed when the nucleus is surrounded by electrons that start 

a protective rotational motion when an external magnetic field (B0) is applied. A 

local small magnetic field Bloc is generated, that may resist the external applied 

magnetic field. Thus, the shielded nucleus experiences a slightly reduced applied 

magnetic field. This reduced magnetic field is known as Beff. Moreover, the den-

sity and the distribution of the cloud of electrons surrounding the nucleus are 

indicated by the shielding constant (σ). This constant ranges from 10-6 to 10-3 for 

lightly- and heavily shielded nuclei. This shielding effect is affected by the 
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presence of different functional chemical groups near the nucleus. For instance, 

an electronegative atom will withdraw electrons from the nucleus and, thus, re-

duce the density of the cloud of electrons creating what is known as the 

“deshielding” effect. Consequently, this deshielded nucleus will resonate at 

higher frequencies. Following Lenz’s law, Bloc is considered equal to B0 σ and Beff 

can thus be calculated as follows: 

 

Beff = B0 – Bloc = B0 – B0σ = B0(1 – σ) 

(5) 

 

 Therefore, the relationship between the degree of shielding and the res-

onance frequency can be given by: 

 

ν = (γ ⋅ B0)/ (2 ⋅ π) ⋅ (1 – σ)  

(6) 

 

 As a result, the protons located in different chemical environments will 

experience different magnetic fields. Therefore, these protons will resonate at 

different frequencies depending on their location in the molecule. Such effect is 

defined as the “chemical shift” (δ). The chemical shift is the basic metric for NMR 

experiments and it is rather fundamental to interpret the frequencies of different 

nuclei independently from the applied magnetic field. Therefore, the chemical 

shift is calculated as follows:  

 

δ = v ⋅ vref / vref ⋅ 106
  

(7) 

 

where v is the frequency of the observed nucleus and vref is the frequency of a 

reference compound. The main reference compounds used for 1H NMR are tet-

ramethylsilane (TMS) and the sodium salt of trimethylsilyl propionic acid (TSP) 
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for organic solvents and aqueous solutions, respectively. These compounds have 

the maximum shielding that shows a higher shielding constant (σ) than most nu-

clei analysed via NMR. Precisely, the frequency of the observed nucleus of TSP 

and TMS (v) is equal to the Larmor frequency of the proton, due to their shielding 

constant of 1, thus their measured chemical shift is equal to 0 (δref = 0). 

The last equation converts the chemical shift frequencies into parts per 

million from the Larmor frequency. This allows the depiction of NMR signals on 

an axis that is independent of the applied magnetic field. In this way the same 

spin will always have the same value regardless of the applied magnetic field. 

Information exerted from the NMR spectra does not confine to the chemical shift 

only, but other valuable features are present. Another feature is the J coupling. 

This phenomenon appears as a result of the influence wielded by the magnetic 

moments of the nuclei on each other through space or chemical bonds, known 

as dipolar and scalar coupling, respectively. Attention is given to the scalar cou-

pling since it is visible from the NMR spectrum rather than the effect of the dipo-

lar coupling that can be neglected due to the rapid molecular tumbling that re-

sults in interactions that average 0. 

Moreover, the influence of one atom on another produces a split in the 

resonance signal acquired. This is visible for both nuclei, in which the perturbing 

nucleus will display a split in its signal when it is observed. This phenomenon is 

also known as spin-spin splitting. However, the observation of signal splitting by 

the interacting nuclei can occur when the interacting nuclei are bonded by prox-

imity as in vicinal (neighbouring carbons) and geminal positions (same carbon), 

or being oriented in specific optimal configurations. The signal splitting is usually 

measured in Hz (Hertz, s-1) and in 1H NMR spectra can range from 1 to 18 Hz. 

In order to enhance the sensitivity and resolution of the acquired data, 

different processing steps are performed before and after the Fourier transfor-

mation of the FID. Of interest are phase correction and baseline correction. Phase 

correction is applied to correct the phase errors in the spectra, as the name sug-

gests. The errors in the phase come from two main sources: the delays between 
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the RF pulse and the receiver opening for FID acquisitions as well as the inability 

of the RF pulse to excite all the nuclei equally, which are referred to as off-reso-

nance effects. Without being correctly phased, the NMR spectrum would have 

signals with dispersive line shapes and might as well have inverted signals. For 

such reasons, phase correction by both zero order and first order is applied. On 

one hand, the zero-order phase correction is independent of the chemical shift 

and affects all lines across the spectrum equally. On the other hand, the first-

order phase correction is dependent on the frequency, and therefore on the 

chemical shift. The phase change increases linearly with the distance from the 

reference signal.  

Baseline correction aims at solving issues usually caused by having the 

first few corrupted data points in the FID that add low frequency modulations 

during Fourier transformation, giving rise to a distorted baseline. This comes 

from two main sources: a too high signal amplification is applied or an incomplete 

recovery of information from the RF. Such a distorted baseline is commonly cor-

rected using a polynomial fitting and then subtracting the offset from the spec-

trum. 

For metabolomics research, one-dimensional (1D) 1H NMR spectroscopy 

is the most widely applied, mainly due to the less required time for spectral ac-

quisition as compared to 2D NMR. The most widely used pulse sequence for 1H 

NMR is the 1D Nuclear Overhauser Effect Spectroscopy (NOESY). The 1D NOESY 

pulse sequence consists of a first increment of NOESY pulse sequence, with water 

suppression during the relation delay as well as during the mixing time. The pulse 

sequence form -RD-90°-tm-90°-tm-90°-ACQ. Where RD, t, tm, 90°, and the ACQ 

represent the relaxation delay, the short delay time of around 3 µs, the mixing 

time, the RF pulse degree, and the data acquisition period. Using this pulse se-

quence, all non-exchangeable protons can be detected in a deuterated buffer so-

lution (Stryeck et al., 2018).  

For ionomics studies, the samples are usually analysed by techniques such 

as the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 
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following a standard procedure of sample drying and crushing to a fine powder, 

digestion for around 1h to 10 min at around 100°C to 180°C, respectively, using 

a microwave digestion system in mineral-free concentrated acid such as nitric 

acid. Then the samples are washed and subjected to simultaneous measurement 

of elements of such as Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, P, S, and Zn. The con-

centrations of the measured elements are determined by comparing the emis-

sion intensities to a standard curve made from standard certified mineral solu-

tions diluted serially with the same solvent used for the measured samples. The 

results are denoted as mg ⋅ kg-1 of dry matter (Musio et al., 2020). 

As for spectranomics and phenomics studies, technologies based on spec-

tral data acquisition have a broad application in both fields as they can be also 

for proximal and remote sensing applications in digital agriculture, which is also 

known as Agriculture 4.0. These technologies allow for the possibility of measur-

ing features associated with plant physiology (Asner et al., 2014a). Moreover, 

these technologies are applied at different scales of studies, such as from the 

leaf-, to the canopy-, to the tree-, to the field- level. 

In the last few decades, the leaf spectral properties have gained attention, 

probably due to the technological development that allowed for such studies. 

The leaf spectral properties follow the principle that any material subjected to a 

different wavelength of electromagnetic (EM) waves can reflect, absorb and 

transmit the EM waves differently, and thus different materials can be character-

ized based on their different spectral signature. The leaf spectral properties indi-

cate the amount, in percentage, of incident radiation that is reflected, absorbed, 

and transmitted by the leaf surface. These properties are known as reflectance, 

absorbance, and transmittance. For homogeneous isotropic media without par-

ticles, transmission measurements respect the Beer−Lambert (Bouguer-Beer-

Lambert) law: 

 

Aλ,c = -log(Tλ,c ) = ελ L c 

(8) 
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Where Aλ,c the absorbance, Tλ,c the transmittance, ελ the extinction coef-

ficient, L the light path length, c the concentration of the absorbing species, and 

λ the wavelength of the EM waves. In scattering media, two a modification of 

path length Lλ,c and a loss of photons fλ,c: 

 

Aλ,c = -log(Tλ,c ) = ελ L c + fλ,c  

(9) 

 

The measured EM wavelengths for the leaf are usually in the range of 350 

and 2500 nm, which consists of parts of ultraviolet (UV, 350-400 nm), visible (VIS, 

400-780 nm), and near-infrared (NIR, 780-2500 nm) regions of the EM spectrum. 

The measurement can be carried out using a spectroradiometer that can meas-

ure EM wavelengths. Depending on the spectral resolution acquired, the spectral 

data are mainly classified as hyperspectral (narrow band) data with a final reso-

lution of 1 nm wavelength bands or multispectral (wide-band) data with a final 

resolution around 10-20 nm wavelength bands. For healthy leaves, the low spec-

tral reflectance in the portion of the blue (450 nm), green (550 nm), and red (670 

nm) bands are related to the absorption by the leaf pigments such as chlorophyll. 

In the NIR region (700-1,300 nm), the high reflectance of the leaves can be re-

lated to cellular structure and the presence of water affects the region at 1450 

nm (Carter & Knapp, 2001; Li et al., 2021; Couture et al., 2016; Zheng et al., 

2021a). 

Such spectral data can show different trends and patterns related to the 

plant species, cultivars, nutritional conditions, and more recently abiotic and bi-

otic stress conditions (Galvan et al., 2022). Several studies showed a correlation 

between the spectral reflectance and leaf traits for different herbaceous, horti-

cultural, and arboreal species in different agricultural and forest conditions 

(Asner et al., 2014a; Fine et al., 2021; Ustin et al., 2004; Asner & Martin, 2009, 
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2016, 2011; Feilhauer et al., 2015; Galvan et al., 2022; Mahlein et al., 2018; Rumpf 

et al., 2010). 

Remote/proximal sensing offers a non-destructive way of measuring elec-

tromagnetic waves reflected by the plant surface, in which specific spectral 

bands/signatures are used to detect infections before the development of symp-

toms (Mahlein et al., 2018). Moreover, spectral signatures determine a gamut of 

chemicals found in plants, and the specificity of plant chemical fingerprints is re-

ported to be strongly influenced by several factors (Jacquemoud et al., 1995; 

Curran, 1989). Furthermore, hyperspectral reflectance data has been proven to 

provide valuable information on plant biophysical and biochemical features. 

These features include non-pigment biochemical features such as nitrogen, phos-

phorus, cellulose/lignin, and water content as well as pigment biochemical fea-

tures such as anthocyanins, carotenoids, and chlorophylls, in addition to biophys-

ical features such as plant and leaf area, biomass, stem diameter, and estimated 

height (Pacumbaba & Beyl, 2011; Zheng et al., 2021a; Calderón et al., 2013; 

Nguyen et al., 2021; Asner et al., 2014b; Féret et al., 2021; Couture et al., 2016; 

Fine et al., 2021; McManus et al., 2016). 



 43 

CHAPTER 4 

On chemometrics for the analysis of spectroscopic data 

 

Chemometrics is a branch of analytical chemistry that is concerned with 

the study of chemical and biochemical measurements. As the name suggests, 

“chemo-” implies chemical and “-metrics” implies measurement. Chemometrics 

addresses the application and development of mathematical and statistical 

methods to extract information from chemical data, usually hidden within the 

underlying patterns in the data. Chemometrics also addresses appropriate data 

collection, quality enhancement for the analytical signal through the identifica-

tion of noise sources and reducing it, and models building that predict or classify 

future measurements (Sumner et al., 2007; Yi et al., 2016; Martens, 2015).  

Spectroscopic techniques record thousands of variables for every single sample 

analysed, which produces high-dimensional datasets that are not suitable for uni-

variate data analysis. Chemometrics applies multivariate data analysis/machine 

learning taking into account causality to understand the hidden underlying pat-

tern that contains valuable chemical information (Martens, 2021; Vitale et al., 

2022). 

Chemometrics techniques can also be categorized depending on the type 

of analysis, which includes exploratory, classification, and predictive analyses. Ex-

ploratory analysis unsupervised methods allow for an unbiased overview of the 

data to reveal general patterns and detect anomalies. Classification analysis al-

lows for the distinction between groups, and in the case of biochemical data, it is 

used to find possible biomarkers that discriminate between groups. Predictive 

analysis allows for the quantitative comparison between blocks of data (Yi et al., 

2016; Tortorella & Cinti, 2021; Powers & Riekeberg, 2017).  

Unsupervised and supervised methods or machine learning are terms that 

are also used to categorize chemometric techniques. On one hand, unsupervised 

machine learning techniques look for the natural variation within the given data 
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without using a priori, which allows for exploratory analysis. On the other hand, 

supervised machine learning techniques look for variation between the samples 

in the given data based on prior knowledge of the sample class association or 

quantitative information, thus allowing for classification between groups of sam-

ples and predictive analysis of blocks of data (Granato et al., 2018; Behmann et 

al., 2015; Gromski et al., 2015). 

Considering the chemometrics or non-targeted approach (mentioned in 

chapter 2), spectroscopic data, in most cases, are not naturally ready for down-

stream analysis by chemometric methods. For NMR spectra, the intensity of each 

data point of the spectrum is considered. For hyperspectral reflectance each 

wavelength band (1 nm) is considered (Kaddurah-Daouk et al., 2008; Gold et al., 

2020b). 

Bucketing or binning is the process of segmenting the spectra into equal 

or non-equal distant segments. Thus, aiming at removing residual noise, such as 

chemical shift drift for NMR spectra, and decreases the complexity of the data. 

For NMR data, small buckets of around 0.04 ppm are considered adequate to 

include variation in peaks of NMR signals. Each bucket is calculated using the area 

under the curve in the bucket, which gives the bucket intensity. Regular size buck-

eting, in which all buckets would have the same size e.g. 0.04 ppm, diminishes 

some chemical shift misalignments and decrease the noise in the spectra but 

could rather mask low-intensity peaks around huge signals as well as peak 

shapes. For hyperspectral data, bucketing of the spectra usually is done not to 

increase the resolution in the first place but mainly to decrease the amount of 

data points for computational analysis as well as for developing multispectral 

sensors from hyperspectral data. Spectral buckets of 10 nm bandwidth are the 

most common size for buckets and, usually, the average value within the bucket 

is taken (Parsons et al., 2009; Paulus & Mahlein, 2020; Augustijn et al., 2021; 

Abdulridha et al., 2016). 

The normalization of the features present in each sample aims to make 

the observations comparable to each other. For NMR data, normalization can be 



 45 

applied using an internal standard, a reference peak, Probabilistic Quotient Nor-

malisation (PQN), an artificial signal, or the total intensity. Normalization is a row-

wise operation since it is applied on the observation (sample) level 

(Gorrochategui et al., 2016; Wang et al., 2022; Weiss et al., 2020). 

Scaling the dataset is also common in chemometrics, in which a mathe-

matical operation is applied to the dataset to balance signal intensity variances. 

Unlike normalization methods, scaling is a column-wise operation that affects all 

observations together on the feature level. Scaling is applied to account for small, 

but maybe important, variations within features with low intensity. Scaling meth-

ods include mean centring, autoscaling (also known as standardization or unit 

variance scaling), and Pareto scaling (Wheelock & Wheelock, 2013).  

Mean centring transforms the values of the features so they would repre-

sent variance around zero instead of the mean value. Thus, the values are now 

considered as distances from the mean instead of zero. This is applied by sub-

tracting the column (feature) mean intensity from each value. Furthermore, au-

toscaling, or standardization or unit variance scaling, applies a unit variance to 

the features by dividing the feature by its standard deviation after mean centring, 

giving each feature a substantial amount of influence on the dataset. However, 

autoscaling may result in noise inflation if small variations in a distorted baseline 

are considered. Moreover, Pareto scaling follows the same principle of autoscal-

ing but rather divides the mean-centred feature with the square root of its stand-

ard deviation, hence reducing the possibility of noise inflation accounted for by 

small variations (Femenias et al., 2021; Del Coco et al., 2021; Pane et al., 2022; 

Taraji et al., 2017). 

Principal Component Analysis (PCA) is one of the most used unsupervised 

techniques in chemometrics. It was initially conceptualized and designed by Karl 

Pearson in 1901 in analogy to the principal axis theorem in mechanics (Pearson, 

1901). Nevertheless, Harold Hotelling further developed PCA to its present form 

and gave it its current name (Hotelling, 1933). Furthermore, PCA started to gain 

attention in chemistry in the ’60s (Wold et al., 1987). 
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PCA is defined as an unsupervised pattern recognition method that applies di-

mensionality reduction to provide a visual representation of the major variance 

of a dataset that consists of a large number of variables. PCA considers the da-

taset as a data matrix of N rows and K columns of observations and variables, 

respectively (Bro & Smilde, 2014). 

On one hand, the observations are the samples, which can be biological 

samples from different individual organisms, technical/analytical samples, con-

tinuous process time point samples, batches from process, and so forth. On the 

other hand, variables, or features, are the values that can arise from measure-

ments of different origins, including spectroscopic measurements such as NMR 

spectroscopy and hyperspectral reflectance (Rizzuti et al., 2018; Musio et al., 

2022; Gupta et al., 2021). 

Principally, the original set of variables is transformed into a new smaller 

set of variables that are orthogonal i.e. uncorrelated. These new orthogonal var-

iables are called Principal Components (PCs) and are organized in descending or-

der based on the amount/percentage of variance explained by each component. 

Thus, the first PC has the highest explained variance and the first few PCs, in most 

cases, contain most of the relevant information about the variance within the 

dataset. Each PC has two outcomes that are named scores and loadings that rep-

resent the observations and the variables, respectively (Tang & Hatzakis, 2020; 

Cozzolino et al., 2019; Jlilat et al., 2021).  

When plotted, the scores plot and the loadings plot will show points that 

represent the observations and the variables, respectively, with the new trans-

formed values for each PC. These two plots are inspected together since the load-

ings plot shows the influence of variables on how the observation is represented 

in the scores plot. Furthermore, usually each two or three PCs are plotted in 2D 

or 3D plots, respectively, to visualize possible groupings or trends across the axes 

and the variables responsible for such groupings or trends (Luo et al., 2016; Hall 

et al., 2022). 

The PCA mathematical model is represented as follows: 
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X = TPT + E 

(10) 

 

where T is the scores matrix, PT is the transposed loadings matrix, and E is 

the residual matrix. 

The scores can also be considered as elements of the matrix T, in which 

each row is a single observation, and each column is the value of the observation 

along each PC. The loadings can also be considered as the weights of the variables 

for each PC. The residuals are not part of the PCA model and therefore should be 

minimized to reduce the amount of unmodeled information. Nevertheless, too 

many components would include irrelevant information that might come from 

noise in the measured data. Therefore, the data matrix is considered to be com-

posed of two parts, a structure part and a noise part: 

 

X = TPT + E = Structure + Noise  

(11) 

 

Explained Variance + Residual Variance = 100% 

(12) 

 

Partial Least Squares regression or discriminant analysis (PLS regression or PLS-

DA, respectively), also known as a projection to latent structures, are supervised 

techniques applied also in chemometrics that use a priori knowledge about the 

observations, such as quantitative information or class membership, respectively 

(Brereton, 2015).  

As a multivariate method, PLS evaluates the relationship between two 

blocks of data considering a descriptor matrix X that contains the measured data 

and a response matrix Y that contains the quantitative or class membership. 

When the Y matrix consists of quantitative data, the analysis is known as PLS 
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regression, while when the Y matrix consists of qualitative data, the analysis is 

called PLS-DA. Therefore, PLS-DA is different from PLS regression in the way the 

responses matrix Y is used: 

 

X = TPT + E  

(13) 

 

Y = UQT + F  

(14) 

 

where X is the descriptors matrix and Y is the responses matrix. T and U 

are the scores matrices, PT and QT are the transposed loadings matrices, and E 

and F are the residuals matrices for X and Y, respectively. 

The PLS model is built using the descriptor X and response Y matrices to 

highlight possible correlations. PLS performs a PCA, in which from the matrix X, a 

scores matrix T and loadings matrix P is obtained, while for the matrix Y, a scores 

matrix U and loadings matrix Q is obtained. Then, PLS uses the scores of the Y 

matrix to decompose the X matrix and calculate its loadings and the scores of Y 

scores is substituted with the X scores to decompose Y. Thus, the decomposition 

is influenced mutually and it is iterated until this process converges. This process 

seeks the intercorrelation between descriptor X and response Y matrices to re-

duce the variance of descriptor matrix X that is not correlated to response matrix 

Y. These decompositions of descriptor X and response Y matrices are performed 

to maximise the covariance between scores T and scores U matrices. In PLS-DA, 

the maximum separation amongst the classes is done using a dummy matrix Y 

that accounts for the variations amongst classes (Triba et al., 2015; Eriksson et 

al., 2001; Innamorato et al., 2020). 

Correlation analysis and heatmaps representation allow for seeking a 

straightforward relationship between variables. It is regularly based on pairwise 

comparison, most commonly Pearson’s correlation for linear correlation 
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between correlations as well as other correlation analyses such as Spearman cor-

relation for non-linear correlation. Nevertheless, correlations do not entitle cau-

sations per se (Fine et al., 2021; Rizzuti et al., 2018; Rosato et al., 2018).  

Furthermore, heatmaps can be considered as a tool to visualize correla-

tion using a coloured scale to indicate the degree of positive and negative corre-

lations. Nonetheless, other parameters besides the degree of correlation should 

be considered when analysing heatmaps, such as the significance of the correla-

tion (p-values) as well as visualizing the correlation plots (Picone et al., 2016). 
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CHAPTER 5 

A spectroscopic study to assess heavy metals absorption by a com-

bined hemp/spirulina system from contaminated soil 

 

In this chapter, the peer-reviewed published work in collaboration with 

ApuliaKundi S.r.L. in the project “BIO.SP.HE.RE” (BIO-integrated SPirulina and 

HEmp REmediation) is presented. This work describes the application of a com-

bined system constituted of hemp (Cannabis sativa) of the industrial cultivar 

Kompolti and Spirulina algae (Arthrospira platensis). Hemp is very suitable for 

phytoremediation not only because it showed a strong ability to sequester heavy 

metals (such as Cd, Zn etc) in soil and in water, but also because it has high bio-

mass, long roots and a short life cycle of 180 days. On the other hand, the use of 

eukaryotic algae and of cyanobacteria for the remediation is documented, alt-

hough mainly for the treatment of wastewater. Among the cyanobacteria, Ar-

throspira platensis possesses excellent chelating properties towards heavy met-

als but is also effective as a plant growth promoter, enhancing the growth, in-

creasing the yield, and speeding up the seed germination. In this study, hemp 

was chosen as the main agent for biological remediation, and spirulina was added 

as an enhancer of both the plant growth and the translocation of heavy metals 

in the hemp. 

This system was tested for the bioremediation of soil contaminated with 

cadmium, chromium, nickel, lead, and zinc. The quantitative analysis of heavy 

metals inside parts of the hemp plant as well as in the contaminated soil provided 

valuable information on the accumulation of heavy metals in different parts of 

the hemp plant as well as the effect of the bioremediation system on the con-

taminated soil. The non-targeted NMR approach showed different metabolic re-

sponses to heavy metals by the hemp plant that was induced by the addition of 

spirulina that generally was associated with a positive health condition of hemp.  
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This published work is a prominent step towards the optimisation of the 

hemp-spirulina system in terms of spirulina dosage as well as for the localisation 

of heavy metals in specific tissues of hemp for the reuse of plant biomass of other 

useful purposes such as in the energy production. The article was first submitted 

to the journal “Chemosphere”, peer-reviewed, and transferred for publication in 

the journal “Environmental Advances” (Musio et al., 2022). 
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CHAPTER 6 

Non-Targeted Spectranomics for Early-Detection of Xylella fastidi-

osa-Infected Asymptomatic Olive Leaves 

 

 

In this chapter, we explored the possibility of performing an early-detection of 

the Xylella fastidiosa-infection in leaves collected exclusively from asymptomatic 

trees. 1H NMR, hyperspectral reflectance (HSR), and chemometrics were ex-

ploited to select diagnostic signals in the NMR spectrum and specific wavelengths 

in the HSR spectrum, respectively, as a probe to assess the presence of Xylella 

fastidiosa -infection at an early stage.  
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INTRODUCTION 

Olive quick decline syndrome (OQDS) is an olive disease that started to develop 

in the Salento peninsula (Apulia, southern Italy) ca. 2009 and subsequently heav-

ily destroyed olive orchards in that region (Saponari et al., 2013).  

The olive cultivar of “Cellina di Nardò” was the most susceptible to OQDS 

(Saponari et al., 2019; OEPP/EPPO, 2018). Tolerance of other cultivars to X. fas-

tidiosa was related to the ability of the host plant to reduce X. fastidiosa coloni-

sation as well as dysbiosis (Sabella et al., 2020). X. fastidiosa pathogenicity affects 

the universal function of water movement within the plant by hindering the 

transporting of nutrients and signals through the xylem vessels (Martelli et al., 

2016). In the course of the disease, from infection to the decline of the plant, the 

olive tree undergoes phenotypic and metabolic fluctuations. However, in the 

early stages of infection, trees often remain asymptomatic for years, hindering 

disease detection in infected plants, which undergo rapid decline. So far, the 

main strategy adopted to control the spread of infection is to eradicate infected 

plants when they are symptomatic. (European Commission, 2020). Hence, effi-

cient early detection of Xf infection would offer an advantage against the spread 

of the disease by allowing the early implementation of preventive actions to pro-

tect olive growing and the related agro-economic sector. 

In the context of spectroscopy-based metabolomics, nuclear magnetic 

resonance (NMR) offers a non-destructive strategy to detect metabolic fluctua-

tions due to the different stages of the disease (Hall, 2018; Bohnenkamp et al., 

2019). In a parallel way, hyperspectral reflectance (HSR) remote/proximal sens-

ing offers a non-destructive way of measuring electromagnetic waves reflected 

by the plant surface, in which specific spectral bands/signatures are used to de-

tect infections before the development of symptoms (Mahlein et al., 2018). 

Moreover, spectral signatures determine a gamut of chemicals found in plants, 

and the specificity of plant chemical fingerprints is reported to be strongly influ-

enced by several factors (Jacquemoud et al., 1995; Curran, 1989).  
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In this study, young trees of the Xf-susceptible variety, Cellina di Nardò, 

artificially infected with Xf, were cultivated for 2 years in a thermo-controlled en-

vironment. The spectral data obtained through the two analytical techniques 

were subjected to chemometric analysis, providing useful correlation matrices 

capable of linking the HSR spectral features with diagnostic NMR signals. Deter-

mining the diagnostic wavelength regions associated with specific metabolites is 

a keystone for the development of proximal and remote sensing devices capable 

of early detection of Xf-infection in olive trees. 
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MATERIALS AND METHODS 

 

Cultivation of Xylella fastidiosa 

A suspension was prepared from the “De Donno” strain (CFBP 8402) of Xylella 

fastidiosa subsp. pauca (Wells et al., 1987) taken from 8-10 days old Buffered 

Charcoal Yeast Extract Agar (BCYE) culture medium grown at 28°C, resuspended 

in Phosphate-Buffered Saline solution (PBS, 0.05 M, pH 7.2), and adjusted to 0.5-

0.6 absorbance at an optical density of 600 (OD600), which corresponds to a con-

centration of 109 colony forming unit (CFU)/mL (Koch, 1970). A sterile PBS solu-

tion was used as a control. 

 

Cultivation and artificial infection of the olive plants  

Olive plants (Olea europaea L. cv. Cellina di Nardò) were cultivated in a quaran-

tine greenhouse under a controlled environment of 23-24°C in winter and 25-

30°C in summer under >80% relative humidity at the CNR research area of Bari 

(Italy). After two years the plants were inoculated with Xf and according to a re-

ported procedure (Saponari et al., 2017). Table 1 summarizes the adopted exper-

imental design. 

Artificial infection with Xf was performed via pinprick inoculation (Saponari et al., 

2017, 2016; Hill & Purcell, 1995; OEPP/EPPO, 2019). Specifically, aliquots of 10 µL 

of the PBS suspension containing Xf, prepared according to the procedure de-

scribed above, were punched with sterile entomological pins 5-6 times. For each 

plant, the 9-12 inoculation sites were carried out on three consecutive leaf nodes 

of 3 to 4 twigs placed at 40-50 cm from the ground. 

 

Real-time Polymerase Chain Reaction (qPCR) for confirmation of Xf Presence in 

Inoculated Plants 

DNA was extracted from leaves using a CTAB (cetyltrimethylammonium bro-

mide)-based method (Murray & Thompson, 1980). Pieces of midveins and peti-

oles (ca. 0.5 g) were hammer-smashed in sterilized plastic bags. Then, 5 mL of 
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CTAB buffer (2%, 0.1 M Tris-HCl pH 8, 20 mM EDTA, and 1.4 M NaCl) was added, 

followed by homogenization through Homex 6 homogenizer (Bioreba, Reinach 

Switzerland). Aliquots of the resulting homogenized suspension (1 mL) were 

transferred into 2 mL microcentrifuge tubes containing 1 mL of chloroform, fol-

lowed by incubation at 65°C for 30 min using a water bath. Finally, the aqueous 

phase was separated and treated with 0.7 volumes of cold isopropanol inducing 

the DNA precipitation, which was, subsequently, used for qPCR analysis 

(Loconsole et al., 2014). 

Quantitative real-time Polymerase Chain Reactions (qPCR) were per-

formed using 20 µL reaction volumes containing 10 µL of 2 X qPCR Supermix-UDG 

(Invitrogen; Thermo Fisher Scientific Inc., Waltham, MA, USA), reaching a final 

concentration of 4 mM MgCl2, 300 nM of X. fastidiosa forward (XF-F; 5`-CAC-

GGCTGGTAACGGAAGA-3`) and reverse (XF-R; 5`-GGGTTGCGTGGTGAAATCAAG-

3`) primers, 100 nM dual-labelled fluorescent probe (XF-P; 5`-TCG-

CATCCCGTGGCTCAGTCC-3`) labelled by 5’-Fluorescein/Black Hole Quencher 1 (6-

FAM/BHQ-1), bovine serum albumin (BSA) at 300 ng/µL (Sigma-Aldrich), and 2 µL 

of DNA template.  

Thermocycling conditions were 50°C for 2 min, 94°C for 2 min, then 40 

cycles of 94°C for 10 s and 62°C for 40 s (Harper et al., 2010). All samples were 

amplified in triplicates. Threshold values were applied automatically by the CFX 

Manager V1.6 software (Bio-Rad Laboratories).  

 

Hyperspectral reflectance (HSR) 

HSR was acquired by a hyperspectral acquisition system. This system consisted 

of a FieldSpec®3 spectroradiometer (Analytical Spectral Device [ASD], Boulder, 

CO, USA) linked by an optical fibre cable to a leaf probe (ASD) and a leaf clip 

holder (ASD) in addition to an instrument controller (laptop) to display and save 

the data. The plant probe was of 10 mm spot size with internal-illumination by a 

halogen bulb of 2901 K ±10% colour temperature. The HSR data were in the range 

of 350-1830 nm, with spectral sampling interval of 1.4 nm and 2 nm at spectral 
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ranges of 350–1050 nm (Full Width Half Maximum, FWHM: 3 nm) and 1000–1830 

nm (FWHM: 10 nm), respectively.  

The final resolution of 1 nm was obtained by subsampling and interpola-

tion of the spectral channels and recorded as relative reflectance values by the 

RS3™ software (ASD). All the acquired raw HSR spectra were stored in a “.asd” 

format while the pre-processed raw data were stored in “.ref” format then ex-

ported in as “.txt” format (American Standard Code for Information Interchange, 

ASCII) and imported in a MATLAB R2021a routine (The MathWorks Inc., Natick, 

MA, USA) developed by the authors for further pre-processing.  

The raw HSR spectra were pre-processed using a Savitzky-Golay filter 

(Savitzky & Golay, 1964; Nevius & Pardue, 1984) with frame size of 15 data points 

(2nd Degree polynomial) was applied. Then, the UV region from 350 nm to 400 

nm was truncated and the interval ranging between 400 nm and 1,800 nm was 

considered for further analysis. The pre-processed spectra were exported in 

comma-separated values “.csv” format. 

 

NMR Sample Preparation and Spectra Acquisition 

After HSR acquisition, the collected olive leaves were lyophilized at –50°C under 

0.180 mbar for 72 h in Christ Alpha 1-4 LSC lyophiliser (Martin-Christ Gefriertrock-

nungsanlagen GmbH, Osterode am Harz, Germany). The dried samples were then 

ground in a blender, sieved through a mesh of 0.5 mm pores, and stored at −20ºC. 

For each NMR sample, an amount of 50 mg of olive leaf powder and 1.5 mL of 

oxalate buffer at pH 4.2 (pH value was reached after addition of 37% HCl to 100 

mL an aqueous solution containing 0.25 M of Na2C2O4 and 2.5·10–3 M of NaN3) 

were mixed and then sonicated at 40 kHz for 10 min. After sonication, samples 

were vortexed at 2500 rpm for 5 min (Advanced Vortex Mixer ZX3, VELP Scien-

tifica Srl, Italy), then centrifuged at 4700 g. for 15 min (ROTOFIX 32 A, Hettich, 

Italy). After centrifugation, an automated system for liquid handling (SamplePro 

Tube, Bruker BioSpin GmbH, Rheinstetten, Germany) transferred 630 μL of the 
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supernatant solutions into NMR tubes containing 70 μL of 0.20% of sodium salt 

of 3-trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP) solution in D2O. 

The one-dimensional 1H NOESY pulse program was applied using a Bruker 

Avance I 400 MHz spectrometer equipped with an autosampler and a 5 mm in-

verse probe (Bruker BioSpin GmbH). The 1H NOESY spectra were acquired using 

Topspin 3.0 software (Bruker BioSpin GmbH) under an automatic process that 

lasted around 22 min that included sample loading, 5 min temperature stabiliza-

tion, tuning, matching, shimming. The free induction decays (FIDs) were Fourier 

transformed, the phase was manually corrected, the baseline was automatically 

corrected, and the spectra were shift referenced by setting the TSP singlet to 0 

ppm. 

 

Chemometric analysis 

The FIDs of the 1D 1H NOESY experiments, carried out on 55 aqueous extracts of 

olive leaves, were segmented into 237 buckets of 0.04 ppm intervals in the range 

of [10, 0.50] ppm using MestReNova 11.0 (Mestrelab Research SL, Santiago de 

Compostela, Spain). This is done with the aim of having a given peak in a bucket 

despite small spectral shifts between observations. The underlying area of each 

bucket was normalized to the total intensity. The 14 buckets in the region [5.18, 

4.60] ppm, corresponding to the residual water signal, were set to 0. The data 

matrix was imported into SIMCA 16 software (Umetrics, Umea, Sweden) to carry 

out chemometric analyses. The NMR data matrix constituted 55 observations and 

223 x-variables. Buckets were centred and subjected to unite variance scaling aka 

autoscaling. Initially, the unsupervised method of Principal Component Analysis 

(PCA) was performed to get an overview of the data. Then, the supervised Or-

thogonal Partial Least Square-Discriminant Analysis (OPLS-DA) was applied to 

identify variables that discriminate between observations, depending on a priori 

i.e. qPCR test, of the two classes of Xf-infected and non-infected, which count for 

27 and 28 observations, respectively.  
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The relationship between NMR and HSR data was exploited by a correla-

tion-based approach (Hall et al., 2022; Cavill et al., 2016). The pre-processed HSR 

spectra (see materials and methods) were bucketized to 141 buckets of 10 nm 

intervals. To obtain a homogenous sample size between both techniques, the 280 

HSR samples were conformed to the 55 NMR samples by taking the median of 

each corresponding groups of HSR samples; around five HSR spectra for each 

NMR spectrum. 

 The calculation and visualisation of the correlation matrix were per-

formed in RStudio IDE of  R programming language using core packages as well 

as the tidyverse metapackage (R Core Team, 2021; RStudio Team, 2021; Wickham 

et al., 2019).  
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RESULTS AND DISCUSSION 

 

Selection of asymptomatic leaves according to visual inspection 

A number of 280 leaves were sampled that corresponded to 55 NMR samples 

(around five leaves per sample) belonging to the severity levels of 0 and 1 which 

were regarded as asymptomatic/having early symptoms of OQDS, respectively; 

By visual inspection, leaves were given an integer number scaled from 0 to 4 cor-

responding to disease severity of OQDS symptoms (Saponari et al., 2019).  

For each of the Xf-infected leaves (146 out of 280), a qPCR test was done 

to molecularly check the presence of the bacterial cells in the plant. The qPCR 

test results were positive for 69 leaves. However, 77 leaves had a doubtful qPCR 

result, which might also be due to a false-negative qPCR test or very low bacterial 

cells in the leaf. Thus, each NMR sample from Xf-infected leaves were considered 

positive unless the majority of the leaves in that sample had a negative/doubtful 

qPCR result for Xf. Each Xf-infected sample had at least one qPCR positive leaf 

(Table 1). 

 

Table 1 - Real-time qPCR results for Xf-infected samples: 

 qPCR result Frequency 
Percent-

age (%) 

Non-infected Not-tested 27 (134) 49.1 

Xf-infected 

(28 NMR samples; 

146 leaves) 

Positive 12 (69 leaves) 21.8 

Doubtful 16 (77 leaves) 29.1 

 Total 55 (280 leaves) 100 

 

 

Metabolic profile from NMR spectral analysis 

The 1H-NMR spectra considered, excluding the region containing the residual sol-

vent signal, had signals related to oleuropein, oleuropein aglycone, malic acid, 
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mannitol, glucose, aromatic compounds, choline, alanine, tyrosol, and formic 

acid (Fig. 2). The identified metabolites were similar to those previously reported 

in the literature (Jlilat et al., 2021; Girelli et al., 2017). 

 

 

Fig. 2 - 1H NOESY NMR spectrum of a water extract obtained from olive leaves sample. “W” refers 

to the residual water signal. 

 

Chemometric analysis 

To assess the quality and homogeneity of the data, Principal Component Analysis 

(PCA) was performed. PCA was carried out and indicated an explained variance 

(R2) of 0.76 for 8 Principal Components [PCs] (Fig. 3). The first two components, 

PC1 and PC2, accounted for about 0.38 R2.  Nonetheless, there was no clear trend 

related to Xf-infection and the same remark was also observed for the other PCs 

(Fig. 4). 
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Fig. 3 - Summary of explained variance (R2) cumulated for each principal component (Comp[n]) 

of the Principal Component Analysis (PCA) model generated. 
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Fig. 4. Principal component analysis (PCA) of the NMR samples coloured according to Xylella fas-

tidiosa infection; t[1]/t[2] scores plot relating to PC1/PC2. Xf, Xylella-infected; A, non-infected by 

X. fastidiosa. 

 

 

To assess the differences in the NMR profile between related to Xf-infec-

tion, the orthogonal projection to latent structures discriminant analysis (OPLS-

DA) was applied to the bucketed NMR spectra. The OPLS-DA model was created 

with a 1 predictive (P1) and 2 orthogonal (O1-O2) components (1+2+0). The O1 
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explained 17.7% of the systematic information in x-space orthogonal to y-space 

(R2X[O1] = 0.177), O2 explained 11.7% (R2X[O2] = 0.117, and together O1-O2 ex-

plained 28.9% having R2X[cum] = 0.289. Furthermore, P1 explained 7.45% of x-

variance (R2X = 0.0745) and modelled 79.3% of y-variance (R2Y = 0.793). In total, 

an x-variance of 28.9% was explained by O1–O2 (R2X[cum] = 0.289).  

Subsequently, the generated OPLS-DA model was validated by both per-

mutation-test and Cross Validation ANalysis Of VAriance (CV-ANOVA). The 999-

permutations showed a y-intercept of < 0.5 for R2 and < −0.56 for Q2 considering 

both classes (Fig. 5 and Fig. 6) and the CV-ANOVA test had a computed p-value 

of 8.91·10–9. 

 

 

Fig. 5 - Permutation test for validation of the OPLS-DA model using 999 permutation for Xf-in-

fected class (Xf). 
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Fig. 6 - Permutation test for validation of the OPLS-DA model using 999 permutation for non Xf-

infected class (A). 

 

The P1 versus O1 (t[1] vs. tO[1]) scores plot showed a distribution of the 

observations in which they were separated along the P1 with one Xf-infected ob-

servation overlapping with a non-infected and another two lying in the area of 

non-infected class along P1 (Fig. 7). In fact, those three samples belonged to the 

doubtful positive Xf-infection according to the qPCR test (Fig. 8). Thus, they prob-

ably have a metabolic profile more similar to the non-infected samples. 
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Fig. 7 - Orthogonal partial least squares discriminant analysis (OPLS-DA) score plot of the NMR 

data. Xf: samples from X. fastidiosa inoculated plants; A: samples from non-inoculated plants). 

The t(1)/to(1) represent the first predictive and orthogonal components P1/O1, respectively. 

 

 

Fig. 8 - Orthogonal partial least squares discriminant analysis (OPLS-DA) scores plot of the NMR 

data. P: samples from X. fastidiosa inoculated plants with positive molecular test for Xf; N: sam-

ples from non-inoculated plants; and D, samples from X. fastidiosa inoculated plants with 
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doubtful positive molecular test for Xf). The t(1)/to(1) represent the first predictive and orthogo-

nal components P1/O1, respectively. 

 

To identify the potential diagnostic NMR signals that were differently ex-

pressed between Xf-infected (Xf) and non-infected (A) samples from NMR buck-

etised data, both the S-plot and the predictive Variable Importance in the Projec-

tion (VIP) values and were inspected (Fig. 9).  

 

 

 

Fig. 9 - Variable Importance in the Projection (VIP) predictive values ordered from highest to low-

est of the orthogonal partial least squares discriminant analysis (OPLS-DA) model presented in 

Fig. 7. 

 

 

The S-plot displays the p[1] versus p(corr)[1] vectors of the predictive com-

ponent, where p[1] is the loading vector that expresses the weight of each x-

variable on the selected component P1, and p(corr)[1] is p[1] scaled from −1 to 1 

as a correlation coefficient between each x-variable and t[1]. In the S-plot, the x-
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variables situated far out on the sides of the line do combine a high model influ-

ence with high reliability and are relevant in the search for up- or down-regulated 

signals (Fig. 10). 

 

 

Fig. 10 - S-plot of NMR data from the OPLS-DA model (Fig. 1). The values shown are for p(1) and 

pcorr(1) of to the predictive component P1. 

 

The VIP predictive values indicate the importance of each x-variable on 

the predictive part of the OPLS-DA model. Values larger than 1 are more relevant 

for explaining the y-response. The variables related to signals with the highest 

potential as diagnostic NMR signals were selected among those with |p(corr)| >0.5 

and VIPpredictive >1 (Fig. 11). 

These signals were related formic acid, malic acid, lactic acid, fructose, 

glucose, choline, and tyrosol, as well as other aromatic compounds. On one hand, 

NMR signals related to fructose, glucose, and choline were positively correlated 

in relation to Xf-infection. On the other hand, signals of formic acid, malic acid, 

Lactic acid, Tyrosol/DHBA were negatively correlated to Xf-infection. 
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Fig. 11 - Variables trend plot representing buckets (of 0.04 ppm width) from the OPLS-DA model 

of VIPpredictive >1 and |pcorr| >0.5. The variables represent the buckets at: a, 8.42; b, 4.38; c, 4.34; 

d, 4.14; e, 4.06; f, 3.82; g, 3.30; h, 2.74; j, 2.58, k, 2.54, m, 2.50; o, 1.98; and p, 1.94 ppm. The 

letters i and l were not used to eliminate confusion. The compounds related to these signals are: 

a, Formic acid; b, c, j, k, and m, malic acid; d, lactic acid; e, fructose; f, glucose; f, galactose; g, 

choline; and j and k, citric acid. 
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Of interest, the relative decrease of malic acid is often associated salt and 

drought stress affected trees. Malic acid is a key metabolite in The Citric Acid 

(TCA)/Krebs cycle and was also associated to fatty acid synthesis (Skodra et al., 

2021). Probably a plant reaction to the decrease of water supply as a result of Xf 

infection (Girelli et al., 2019). Fructose, glucose, and sucrose were also reported 

to play an important role in Xf infection. Coherently, higher amount of fructose 

was associated to Xf infection (De Pascali et al., 2022). Moreover, the decrease 

in sucrose and glucose was also reported in relation to Xf infection (De Pascali et 

al., 2022). Such decrease in sucrose and glucose, might be due the break-down 

of sucrose for the sake of consuming glucose but not fructose, hence the increase 

in fructose levels. 

 

HSR analysis 

The HSR spectra for both Xf-infected and non-infected leaves had an overall sim-

ilar spectral shape with no particular pattern related to the Xf-infection overall. 

This is probably due to the asymptomatic nature of the studied leaves. In contrast 

to typical symptoms of late stage of OQDS, asymptomatic leaves show no appar-

ent change neither in the colour nor the water content of the leaves, which ap-

pears in the visual (400-800) and NIR (800-1830) wavelengths regions, respec-

tively (Fig. 12). 
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Fig. 12 - Hyperspectral reflectance (HSR) spectra of the analysed samples as bucketized at 10 nm 

intervals. The original measured wavelength region ranges from 400 to 1830 nm with a spectral 

resolution of 1 nm. Red lines represent HSR of non-infected samples (A), and blue lines represent 

Xf-infected samples (Xf). 

 

Correlation of NMR diagnostics signals to HSR 

To investigate the correlation between the metabolic profile (NMR) and pheno-

typic profile (HSR) of the olive leaves related to Xf-infection. HSR profile of the 

leaves together with the NMR profile were subjected to Pearson’s correlation 

analysis using the cor.test function form the package {stats} in R programming 

language (R Core Team, 2021), and correlation matrices were obtained. 

On one hand, if there was an association between NMR and HSR profiles, 

the correlation matrix would show a strong negative or positive correlation (slope 

of the line), by a maximum of r = -1 and r = 1, respectively. On the other hand, if 

there was no relationship, the correlation would exert values near zero (Fine et 

al., 2021). Importantly, the p-value determines how well this slope fits the data 

points where a p-value of <0.05 is considered to be significant. 

Generally, diverse correlations between NMR and HSR profiles were ob-

served for both Xf-infected and non-infected samples. On one hand, the 
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correlation for Xf-infected samples seemed to appear in six regions around i) 400-

520, ii) 520-590, iii) 590-700, iv) 700-1150, v) 1150-1330, and vi) 1330-1830 nm 

(Fig. 13).  

 

 

Fig. 13 - Correlation of hyperspectral reflectance (HSR) and NMR for Xf-infected samples. 

 

On the other hand, the correlation for non-infected samples seemed to 

appear in six regions as well, viz i) 400-520, ii) 520-590, iii) 590-690, iv) 690-750, 

v) 750-1350, vi) 1350-1830 (Fig. 14). 
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Fig. 14. Correlation of hyperspectral reflectance (HSR) and NMR for non-infected samples. 

 

Furthermore, to identify the NMR signals correlating to HSR wavelengths 

in relation to Xf-infection, the Xf-infected correlation matrix was compared to the 

non-infected matrix using the Z-Fisher’s method (Fisher, 1921, 1915). The Z-

Fisher method first computes z scores from the correlation coefficients and then 

compares these z scores using the following equation: z1 = (1/2)×log( (1+r1) / (1-

r1) ); where n1 and r1 are the sample size and the correlation coefficient, respec-

tively. Then, a test's statistic is computed from z1 and z2: Z = (z1-z2) / sqrt((1 / (n1-

3)) + (1 / (n2-3))); If Z is above the limit given by the alpha value, in our case 0.05, 

then the difference between r1 and r2 is significant. In principal, this function 

compares two correlation coefficients obtained from different sample sizes using 

Z-Fisher transformation (Savary et al., 2021). Then, non-significant correlations 

for both matrices, i.e. P <0.05, were omitted. The resulted HSR-NMR significant 

correlations difference showed HSR bands of 10 nm at 405, 765-1165, 1215-1305, 

1325, 1335, 1445, and 1455 nm related to NMR buckets of 0.04 ppm at 8.46, 7.82, 

7.62, 7.58, 7.54, 6.82, 4.46, 4.1, and 3.54 ppm (Fig. 15). 
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Fig. 15 - The difference between correlation of hyperspectral reflectance (HSR) and NMR profiles 

related to X. fastidiosa infection. Red indicates more positive correlation differences related to 

Xf-infection, while blue indicates a negative correlation differences related to Xf-infection. 

 

The NMR buckets with significant correlation with the HSR bands were 

related to spectral noise, aromatic compounds at 6.82 ppm, fructose at 4.10 ppm, 

and glucose at 3.54 ppm (Fig. 16). Moreover, HSR bands with significant correla-

tion with the NMR buckets were related to the bands of 1335, 1445, and 1455 

nm (Fig. 17). These wavelength bands reside at the end of NIR and the beginning 

of SWIR. Importantly, the wavelength bands around 1400 nm are associated with 

water absorption which, interestingly, plays a major role in OQDS (Danson et al., 

1992). In which, Xf grows and multiplies within the xylem by forming a biofilm 

that, over time, hinders the regular water movement through the xylem vessels 

(Scortichini, 2020). 
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Fig. 16 - NMR Buckets with significant correlation to spectral reflectance. 
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Fig. 17 - Scatter plots of significant correlations (p <0.05) between NMR buckets (0.04 ppm, x-

axis) and HSR buckets (10nm, y-axis) of significant differences (p<0.05) between Xf-infected (Xf) 

and non-infected (A) samples; a, 4.10 ppm – 1335 nm; b, 3.54 ppm – 1445 nm; c, 3.54 ppm – 1455 

nm; and d, 6.82 ppm – 1455 nm. rxf and rA are the Pearson’s correlation coefficients for Xf-infected 

and non-infected samples respectively. Z is Fisher’s Z-score comparing both coefficients of corre-

lation for Xf and A. 
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Conclusions 

In conclusion, the analysis of the cultivated asymptomatic olive leaves, infected 

with Xylella fastidiosa subsp. pauca ST53 responsible for OQDS, using 1H NMR, 

HSR, and chemometrics allowed for selecting diagnostic signals and wavelengths 

related to OQDS. In specific, the correlation matrices between NMR and HSR 

showed a significant relationship between diagnostic NMR signals to HSR fea-

tures. This relationship revealed different wavelength regions with diverse asso-

ciations with the corresponding metabolites. The determination of diagnostic 

wavelength bands associated with certain metabolites is an important step in the 

development of sensors capable of early-detection of Xf-infection in olive trees. 
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CHAPTER 7 

Non-Targeted Spectranomics for Early-Detection of Xylella fastidi-

osa-Infected Asymptomatic Olive Leaves in Field Conditions 

 

 

In this chapter, part of the work done in collaboration with the Big Data 

Cybernetics group at the Norwegian University of Science and Technology 

(NTNU) is presented. This collaboration was part of the training-abroad period of 

the PhD candidate in Trondheim, Norway. The period lasted less than 4 months 

from the beginning of September until half of December of the year 2022. 
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INTRODUCTION 

Xylella fastidiosa subsp. pauca sequence type ST53 (Xf), also known as the “De 

Donno” strain, impacted severely the olive groves of the Apulia region in south-

ern Italy by causing a disease known as olive quick decline syndrome [OQDS] 

(Saponari et al., 2013; Martelli et al., 2016; Saponari et al., 2019). A projection of 

such impact for the next 50 years is estimated to be more than 5 billion euros 

(Schneider et al., 2020; Godefroid et al., 2020). Since the main control strategy 

adopted by EU is to destroy the infected plants, early detection of infected trees 

remains a key advantage against the spread of the disease for the applying pre-

ventive measure in advance (Saponari et al., 2016; Blekos et al., 2021). As spec-

troscopic and non-destructive techniques. hyperspectral reflectance (HSR) and 

nuclear magnetic resonance spectroscopy (NMR) may offer  means to detect the 

change at the phenotypic and metabolic level (Wishart et al., 2022a; Tanner et 

al., 2022). In this study, the samples of olive leaves from the susceptible variety 

Cellina di Nardò were collected from the field. These asymptomatic leaves were 

analysed using 1H NMR, HSR, and chemometrics to look for the potential differ-

ence at the early stage of disease development.  
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MATERIALS AND METHODS 

Sample collection from olive trees 

Olive leaves (Olea europaea L) were collected from Olive trees in the open field 

of the Salento Peninsula. All olive trees belonged to the cultivar Cellina di Nardò 

which is known to be very susceptible to Xylella fastidiosa subp. pauca ST53. 

More than 1000 leaves were collected over three time periods, of August, De-

cember, and May, to represent different seasonal variations as shown in Table. 

2. 

 

Table 2 - Frequency table of collected Olive leaf samples considering the different time points of 

sampling: 

Time Frequency Percent Valid Percent Cumulative Percent 

T0  398  39.641  39.641  39.641  

T1  403  40.139  40.139  79.781  

T2  203  20.219  20.219  100.000  

Missing  0  0.000        

Total  1004  100.000        

 

 

 According to the qPCR test, as detailed in the previous chapter, samples 

were characterized as negative (N) and positive (P), as well as doubtful (D) (Table 

3). 
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Table 3 - Frequency table according to the qPCR test: 

qPCR Frequency Percent Valid Percent Cumulative Percent 

D  49  4.880  4.880  4.880  

N  676  67.331  67.331  72.211  

P  279  27.789  27.789  100.000  

Missing  0  0.000        

Total  1004  100.000        

 

Leaves were first subjected to the acquisition of hyperspectral reflectance 

(HSR) by an HSR acquisition system that consisted of a FieldSpec®3 spectroradi-

ometer (Analytical Spectral Device [ASD], Boulder, CO, USA) coupled to a leaf 

probe (ASD) and a leaf clip holder (ASD) by an optical fibre cable, in addition to a 

laptop to show and store the data acquired. The HSR data were in the range of 

400-1830 nm with a final spectral resolution of 1 nm.  

After HSR acquisition, the collected olive leaves were lyophilized at –45°C under 

0.180 mbar for 48 h in Christ Alpha 1-4 LSC lyophiliser (Martin-Christ Gefriertrock-

nungsanlagen GmbH, Osterode am Harz, Germany). The dried samples were then 

ground by mortar and pestle, sieved through a mesh of 0.5 mm pores, and stored 

at −20ºC. Around 10 leaves corresponded to each NMR sample. 

For each NMR sample, an amount of 50 mg of olive leaf powder and 1.5 

mL of oxalate buffer at pH 4.2 (pH value was reached after the addition of 37% 

HCl to 100 mL an aqueous solution containing 0.25 M of Na2C2O4 and 2.5·10–3 M 

of NaN3) were mixed and then sonicated at 40 kHz for 10 min followed by vortex-

ing at 2500 rpm for 5 min (Advanced Vortex Mixer ZX3, VELP Scientifica Srl, Italy), 

then centrifuged at 4700 g. for 15 min (ROTOFIX 32 A, Hettich, Italy). After cen-

trifugation, an automated system for liquid handling (SamplePro Tube, Bruker 

BioSpin GmbH, Rheinstetten, Germany) transferred 630 μL of the supernatant 

solutions into NMR tubes containing 70 μL of a sodium salt of 3-trimethylsilyl-
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2,2,3,3-tetradeuteropropionic acid (TSP-d4) solution in D2O (0.20 %wt). The 1D 1H 

NOESY spectra, recorded on 120 aqueous extracts of olive leaves, were seg-

mented into buckets of 0.04 ppm intervals in the range of [10, 0.50] ppm using 

MestReNova 11.0 (Mestrelab Research SL, Santiago de Compostela, Spain). The 

underlying area of each bucket was normalized to the total intensity. The buckets 

in the region [5.10, 4.60] ppm that corresponds to the residual water signal were 

set to 0.  

For chemometrics, all calculations and visualizations were performed in 

RStudio IDE of  R programming language using core packages as well as other 

packages that include ggfortify, ggpubr, reshape2, prospectr, kernlab, random-

Forest, e1071, caTools, MASS, klaR, forecast, caret, and the tidyverse metapack-

age  (R Core Team, 2021; RStudio Team, 2021; Wickham et al., 2019).  

Considering the HSR data, a particular splice around 1000 nm occurred due to 

the difference between the mode of the few different sensors in the spectrora-

diometer that cover different wavelength ranges when used in field conditions; 

this did not occur during HSR acquisition in chapter 6. Then, the hyperspectral 

reflection spectra were transformed to absorbance to obtain a linear unit and 

were further pre-processed. The raw absorbance spectra were pre-processed us-

ing Standard Normal Variate (SNV), mean-centring, and autoscaling. Pre-pro-

cessing is a crucial step in chemometrics as it could improve and also cause noise-

inflation. The pre-processing processes were used to reduce the effect of less-

important variations to obtain more accurate models. 

Considering NMR data, the data matrix was imported into R studio for 

chemometric analyses as well. Buckets were mean-centred and auto-scaled (unit 

variance), where each variable is scaled to the standard deviation: [(value - 

mean)/st.dev], to give each variable a standard deviation of one, and therefore 

the data is analysed based on correlations instead of covariance.  

Initially, the unsupervised method of Principal Component Analysis (PCA) 

was performed to get an overview of the data. The HSR spectra were acquired 

for 1004 leaves that accounted for 120 NMR samples. From the 1004 leaves, 676 
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were found negative for Xylella fastidiosa and 328 leaves were found infected 

including 49 that had doubtful results for the qPCR test. Then, supervised ma-

chine learning techniques were applied. 
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RESULTS AND DISCUSSION 

 

In this chapter, the chemometric (non-targeted) approach to analyse the data 

was adopted (Wishart, 2008b; Nichani et al., 2021). The features are not initially 

identified and only their spectral patterns and intensities are recorded, statisti-

cally compared, and further used for the identification of the relevant spectral 

features that distinguish sample class membership.  

Plant diseases combine physiological and visual alterations of the host 

plants that later appear as symptoms that become clearer as the disease pro-

gresses. Nevertheless, the visual alterations are rarely noticed at the very early 

stage of the disease, which is known to be asymptomatic to the disease. There-

fore, the metabolic and spectral profiles of both asymptomatic and healthy trees 

would be very similar and very hard to distinguish between them. Nevertheless, 

such metabolic and spectral profiles could offer, to a certain degree, an ad-

vantage by retaining data that are untangled by the human eye. Thus, potentially 

providing a way to early detect plant diseases.  

For Hyperspectral data, a splice at the wavelength of 1000 nm was de-

tected using the 2nd derivative of the original spectra. The splice was corrected 

using the “spliceCorrection” function from the “prospectr” package. This function 

corrected the ASD FieldSpec spectroradiometer (Malvern Panalytical) which usu-

ally exhibits steps at the splice of the built-in detectors, positioned at 1000 nm 

[end of VNIR detector] (Fig. 18). 
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Fig. 18 - Splice detection and correction at 1000 nm. Top left, spectra with splice at 1000 nm; 

bottom left, 2nd derivative of top left; top right, splice-corrected spectra; bottom right, 2nd deriv-

ative of top right. Colours represents the different observations.  

 

Furthermore, after correcting the splice in the spectral reflectance, the 

reflectance spectra were transformed to absorbance and then subjected to SNV 

pre-processing to decrease the additive and multiplicative baseline variation 

without altering the shape of the spectra as shown for the whole set of collected 

spectra at the general level as well as for the average spectrum of each class con-

sidering the qPCR test as a class discrimination criterion (Fig. 19 and Fig. 20).   
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Fig. 19 - Absorbance spectra (right) and SNV pre-processed absorbance spectra (left) 

  

 

 

Fig. 20 - effect of SNV on the groups of belonging to different classes according to the qPCR test 

for Xylella fastidiosa. 
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After pre-processing with SNV, PCA was applied using mean-centring as well as 

autoscaling to gain an overview of the main variations amongst the samples. Con-

sidering the first five principal components, the cumulative variance explained 

reached 0.98 with first component explaining 69% of the variations, and the sec-

ond principal component explained 25%, thus amounting for 94% of the varia-

tions amongst the samples (Fig. 21). 

 

 

Fig. 21 - Cumulative variance plot showing the total variance explained by the new latent variables 

(Principal components; PCs) from PC1 to PC5 for HSR samples. 

 

The different principal components were investigated for any particular 

pattern related to the qPCR test for Xylella fastidiosa. This was done by plotting 

each of the first five principal component against each other using their scores 

matrices to visualise the spreading of samples as well as using the loadings ma-

trices to visualise the influence of the variables on the corresponding principal 

components. Nevertheless, there was no specific particular clustering amongst 

the samples was evident in relationship to the qPCR test results. This is probably 

due to the very little variations in the spectral profile of the collected healthy and 

asymptomatic leaf samples (Owomugisha et al., 2020; Martinelli et al., 2015). The 
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investigated combinations of principal components scores and loadings are 

shown in Fig 22-31. 

 

 

 

Fig. 22 - Principal component analysis (PCA) of the hyperspectral data samples coloured according 

to Xylella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC1/PC2. P, positive; 

N, negative; and D, doubtful to Xylella fastidiosa qPCR test. 
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Fig. 23 - Principal component analysis (PCA) of the hyperspectral data samples coloured according 

to Xylella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC1/PC3. P, positive; 

N, negative; and D, doubtful to Xylella fastidiosa qPCR test. 

 

 

Fig. 24 - Principal component analysis (PCA) of the hyperspectral data samples coloured according 

to Xylella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC1/PC4. P, positive; 

N, negative; and D, doubtful to Xylella fastidiosa qPCR test. 
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Fig. 25 - Principal component analysis (PCA) of the hyperspectral data samples coloured according 

to Xylella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC1/PC5. P, positive; 

N, negative; and D, doubtful to Xylella fastidiosa qPCR test. 

 

 

Fig. 26 - Principal component analysis (PCA) of the hyperspectral data samples coloured according 

to Xylella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC2/PC3. P, positive; 

N, negative; and D, doubtful to Xylella fastidiosa qPCR test. 
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Fig. 27 - Principal component analysis (PCA) of the hyperspectral data samples coloured according 

to Xylella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC2/PC4. P, positive; 

N, negative; and D, doubtful to Xylella fastidiosa qPCR test. 

 

 

Fig. 28 - Principal component analysis (PCA) of the hyperspectral data samples coloured according 

to Xylella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC2/PC5. P, positive; 

N, negative; and D, doubtful to Xylella fastidiosa qPCR test. 
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Fig. 29 - Principal component analysis (PCA) of the hyperspectral data samples coloured according 

to Xylella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC3/PC4. P, positive; 

N, negative; and D, doubtful to Xylella fastidiosa qPCR test. 

 

 

Fig. 30 - Principal component analysis (PCA) of the hyperspectral data samples coloured according 

to Xylella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC3/PC5. P, positive; 

N, negative; and D, doubtful to Xylella fastidiosa qPCR test. 
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Fig. 31 - Principal component analysis (PCA) of the hyperspectral data samples coloured according 

to Xylella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC4/PC5. P, positive; 

N, negative; and D, doubtful to Xylella fastidiosa qPCR test. 

 

 

For the NMR data, the bucketized spectra were subjected to PCA using 

both mean-centring and autoscaling. For the first five principal components 

(PCs), more than 85% of the variance was explained, with the first component 

accounted for almost 40% of the explained variance and the second principal 

component having 22%, both accounting for 62% of the explained variance. Fur-

thermore, the third, fourth and fifth principal components had 14%, 6%, and 4% 

of explained variance respectively (Fig. 32). 
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Fig. 32 - Cumulative variance plot showing the total variance explained by the new latent variables 

(Principal components; PCs) from PC1 to PC5 for NMR samples. 

 

PCA did not show a clear clustering between samples according to qPCR 

test for Xylella fastidiosa. However, by observing the scores plots of the first five 

principal components, NMR samples showed more distinction than of HSR. This 

could be argued as if the change at the metabolic level is more sensitive to Xylella 

fastidiosa infection as well as the kind of information exerted from the HSR and 

NMR (Crandall et al., 2020; Ryan & Robards, 2006; Fine et al., 2021). The investi-

gated combinations of principal components scores and loadings are shown in 

Fig. 33-42. Moreover, the clustering across PC1, as shown in Fig. 33-36, was ra-

ther related to the time of sampling i.e. environmental effect Fig. 43. 
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Fig. 33 - Principal component analysis (PCA) of the NMR data samples coloured according to Xy-

lella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC1/PC2. P, positive; N, 

negative; and D, doubtful to Xylella fastidiosa qPCR test. 

 

 

Fig. 34 - Principal component analysis (PCA) of the NMR data samples coloured according to Xy-

lella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC1/PC3. P, positive; N, 

negative; and D, doubtful to Xylella fastidiosa qPCR test. 
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Fig. 35 - Principal component analysis (PCA) of the NMR data samples coloured according to Xy-

lella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC1/PC4. P, positive; N, 

negative; and D, doubtful to Xylella fastidiosa qPCR test. 

 

 

Fig. 36 - Principal component analysis (PCA) of the NMR data samples coloured according to Xy-

lella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC1/PC5. P, positive; N, 

negative; and D, doubtful to Xylella fastidiosa qPCR test. 



 120 

 

Fig. 37 - Principal component analysis (PCA) of the NMR data samples coloured according to Xy-

lella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC2/PC3. P, positive; N, 

negative; and D, doubtful to Xylella fastidiosa qPCR test. 

 

 

Fig. 38 - Principal component analysis (PCA) of the NMR data samples coloured according to Xy-

lella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC2/PC4. P, positive; N, 

negative; and D, doubtful to Xylella fastidiosa qPCR test. 
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Fig. 39 - Principal component analysis (PCA) of the NMR data samples coloured according to Xy-

lella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC2/PC5. P, positive; N, 

negative; and D, doubtful to Xylella fastidiosa infection qPCR test. 

 

 

Fig. 40 - Principal component analysis (PCA) of the NMR data samples coloured according to Xy-

lella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC3/PC4. P, positive; N, 

negative; and D, doubtful to Xylella fastidiosa qPCR test. 
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Fig. 41 - Principal component analysis (PCA) of the NMR data samples coloured according to Xy-

lella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC3/PC5. P, positive; N, 

negative; and D, doubtful to Xylella fastidiosa qPCR test. 

 

 

Fig. 42 - Principal component analysis (PCA) of the NMR data samples coloured according to Xy-

lella fastidiosa qPCR test; scores plot as well as loadings plot relating to PC4/PC5. P, positive; N, 

negative; and D, doubtful to Xylella fastidiosa qPCR test.  
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Fig. 43 - Principal component analysis (PCA) of the NMR data samples coloured according to the 

three sampling times (T0, T1 and T2); scores plot relating to PC1/PC2-5 corresponding to scores 

plots shown in Fig. 32-35.  

 

Furthermore, to test the ability of hyperspectral data as well as NMR data 

to differentiate between infected and non-infected olive leaf samples, supervised 

machine learning methods were used. In particular, the support vector machines 

SVM, least squares support vector machines LS-SVM, and random forest RF were 

used. For each method, the data were split between training and testing set at a 

ratio of 0.7 and 0.3, respectively. The splitting of samples followed the EuroLab 

Guide which recommends a minimum of 20 samples per class in the test sets 

(Schönberger et al., 2016). 

Interestingly, performing SV, LS-SVM, or RF using the full set of variables 

for the data considered would need a relatively large amount of computational 

power. In particular, the amount of memory needed for some the techniques to 

run was with terabytes (>3000 GBs), which was rather not possible and feasible 

to do.  
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Nonetheless, to reduce the amount of features to be used by such super-

vised machine learning techniques, Fisher Discriminant (FD) analysis was applied 

(Lovatti et al., 2020). Based on the FD value, features with higher loading in the 

discrimination were selected. Considering both the SVM and the LS-SVM, the ker-

nel trick was used. In particular, the radial basis kernel was used. 

For each of the three applied techniques, the training set was used to 

build the model. Then, the testing set was used as input for the model and the 

accuracy of the models was compared. 

On one hand, the hyperspectral data showed a higher accuracy for the RF 

model which had an accuracy with 75%, followed by SVM and LS-SVM with both 

having an accuracy around 72% (Table 4). On the other hand, NMR data had both 

LS-SVM and RF models performing with the same exact accuracy of almost 73% 

as compared to SVM that had an accuracy of almost 68% (Table 5). 
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Table 4. Confusion Matrix and Statistics for Hyperspectral data: 

 RF SVM LS-SVM 

      N     P      N     P      N      P 

N N 182  21 N 188  15 N 180  23 

P P   54   44 P   68   30 P   61   37 

Accuracy 0.7508 0.7243 0.7209 

95% CI: (0.698, 0.7987) (0.6701, 0.774) (0.6666, 0.7709) 

    

Sensitivity: 0.7712 0.7344 0.7469 

Specificity: 0.6769 0.6667 0.6167 

Pos. Pred. Value: 0.8966 0.9261 0.8867 

Neg. Pred. Value: 0.4490 0.3061 0.3776 

Prevalence: 0.7841 0.8505 0.8007 

Detection Rate  0.6047 0.6246 0.5980 

Detection Prevalence: 0.6744 0.6744 0.6744 

Balanced Accuracy: 0.7241 0.7005 0.6818 
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Table 5. Confusion Matrix and Statistics for NMR data: 

 RF SVM LS-SVM 

     N   P     N   P     N   P 

N N 23  3 N 24  2 N 22  4 

P P   7   4 P 10  1 P   6   5 

Accuracy 0.7297 0.6757 0.7297 

95% CI: (0.5588, 0.8621) (0.5021, 0.8199) (0.5588, 0.8621) 

    

Sensitivity: 0.7667 0.70588 0.7857 

Specificity: 0.5714 0.33333 0.5556 

Pos. Pred. Value: 0.8846 0.92308 0.8462 

Neg. Pred. Value: 0.3636 0.09091 0.4545 

Prevalence: 0.8108 0.91892 0.7568 

Detection Rate: 0.6216 0.64865 0.5946 

Detection Prevalence: 0.7027 0.70270 0.7027 

Balanced Accuracy: 0.6690 0.51961 0.6706 
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CONCLUSIONS 

The RF, SVM, LS-SVM were somehow able to discriminate infected samples. How-

ever, SVM seems to be the less effective method among the tested ones. FD 

proved to be useful in decreasing the number of features to be used while having 

good performance for the three tested supervised machine learning techniques. 

Indeed, it is challenging to discriminate between vegetative samples grown in 

field conditions as the environmental conditions generally account for the major 

variations amongst the sample and it is not easy to decompose it. 
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CONCLUSIONS 

 

 

The work described in this PhD thesis demonstrate different examples of how 

spectroscopic methods can be of a great use to decipher biological phenomena 

such plant abiotic as well as biotic stress. In chapter 5, the analysis allowed for 

the identification of variations in the metabolic composition in hemp that were 

induced by the treatment with spirulina and the results described may encourage 

the application of spectroscopic methods for the rapid detection of structural 

changes in the various environmental spheres, allowing prompt intervention 

through the adoption of remediation schemes. In chapter 6, the case of young 

olive trees grown under controlled environmental conditions was considered. 

The artificially infected plants were studied after 2 years from infection 

considering only asymptomatic leaves. The analysis of the cultivated 

asymptomatic olive leaves, infected with Xylella fastidiosa subsp. pauca ST53 

responsible of OQDS, using 1H NMR, HSR, and chemometrics allowed for 

selecting diagnostic signals and wavelengths related to OQDS that are necessary 

for the development of sensors capable of early detection of the disease at the 

asymptomatic stage. In chapter 7, olive trees of the same cultivar as in chapter 6 

were considered, but the samples were collected from the field, in a geographical 

area affected by OQDS. The different supervised chemometric techniques were 

somehow able to discriminate between healthy leaves and asymptomatic 

infected ones. Furthermore, the application of FD (Fisher’s Discriminant) analysis 

was useful in decreasing the number of features to be used in the supervised 

chemometric techniques. Good performance was obtained for the three tested 

supervised machine learning techniques even though it is challenging to 

discriminate amongst vegetative samples at the early stage of asymptomatic 

infections in field conditions due to high environmental variations. 
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