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Abstract The search for suitable segmentations is a challenging and urgent issue for the analysis, plan-
ning and management of complex water distribution networks (WDNs). In fact, complex and large size
hydraulic systems require the division into modules in order to simplify the analysis and the management
tasks. In the complex network theory, modularity index has been proposed as a measure of the strength of
the network division into modules and its maximization is used in order to identify community of nodes
(i.e., modules) which are characterized by strong interconnections. Nevertheless, modularity index needs to
be revised considering the specificity of the hydraulic systems as infrastructure systems. To this aim, the
classic modularity index has been recently modified and tailored for WDNs. Nevertheless, the WDN-oriented
modularity is affected by the resolution limit stemming from classic modularity index. Such a limit hampers
the identification/design of small modules and this is a major drawback for technical tasks requiring a
detailed resolution of the network segmentation. In order to get over this problem, we propose a novel
infrastructure modularity index that is not affected by the resolution limit of the classic one. The rationale
and good features of the proposed index are theoretically demonstrated and discussed using two real
hydraulic networks.

1. Introduction

In the last decade, studies about complex networks are significantly increased [e.g., Albert and Barabasi,
2002; Boccaletti et al., 2006; Barrat et al., 2008; Newman, 2010]. This fact is caused by the availability of a
huge amount of data coming from different kinds of networks, going from nature (e.g., foodweb and neural
connections) to economy (trade networks), from infrastructures (e.g., water, gas, transportation and electri-
cal networks) to social networks (e.g., World Wide Web). Moreover, the pervasive presence of networks is
continuously encouraging researchers to develop novel mathematical paradigms and tools in order to bet-
ter understand network behavior and features [e.g., Havlin et al., 2012].

In the astonishing variety of the natural and man-made networks, the infrastructure ones are a relevant sub-
set. They are continuously used by the people and are fundamental in the modern society. The infrastruc-
ture networks are becoming more and more complex and interconnected with the social development and
this fact raises a number of crucial issues to their analysis, planning and management. The distribution net-
works are a remarkable and widespread example of infrastructure networks which convey water, electricity,
gas, data, etc. In the last years, several works were motivated by the necessity of facing the increased com-
plexity of infrastructure networks. Some researchers investigated methods which were developed in the
complex network theory (CNT) and results were promising. We here report the studies on the topology of
transportation networks [e.g., Sienkiewicz and Holyst, 2005; Kurant and Thiran, 2006; von Ferber et al., 2009;
Lin and Ban, 2013], on the structure and resilience of water distribution networks [Yazdani and Jeffrey, 2011,
2012] and on the vulnerability of power grids [Albert et al., 2004; Arianos et al., 2009; Bompard et al., 2012].

The infrastructure networks can significantly benefit from approaches and tools of the CNT. Nevertheless,
CNT-based conceptual tools are not specifically intended for infrastructure networks and for this reason it is
necessary to pay attention to the correct technical transfer to different kind of networks. The infrastructure
networks are in fact characterized by specificities – strong spatial constrains (two-dimensionality, urban struc-
ture, demand locations, distance-based costs, etc.), material links between nodes (differently from the immate-
rial links which are typical of the social networks), occurrence of a wide set of possible devices installed on
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links (e.g., pumping stations, valves, metering devices, etc.) – which make them different from other categories
of networks. Barth�elemy [2011] recently discussed the need of avoiding the uncritical application of complex
network studies and tools for spatial networks. In fact, the specificity of infrastructure networks needs to be
considered in developing ad hoc methods stemming from the emerging ideas of CNT studies. Novel studies
are therefore necessary in order to adapt CNT methods, which are generally developed considering immate-
rial networks (e.g., social networks), to the specific nature of infrastructure networks.

We here focus on the segmentation of water distribution networks (WDNs), which is a relevant issue of the
modern water system analysis, planning and management. Segmentation of WDNs deals with the design or
analysis of system modules/segments [Giustolisi and Ridolfi, 2014]. The segmentation design can be per-
formed considering several network characteristics: e.g., topological (the connection degree), structural
(pipe features like diameter, length, material, age, etc.) or associated to the network fluxes (water flows, lea-
kages, etc.). The segmentation (also named districtualization or sectoralization) strategy was recently used
for several purposes: system analysis, model calibration, efficient metering planning, monitoring optimiza-
tion for early warning, management cost minimization, network resilience and reliability enhancement, etc.
[e.g., Deuerlein, 2008; Perelman and Ostfeld, 2011; Zecchin et al., 2012; Alvisi and Franchini, 2014; Ferrari et al.,
2014]. Even though the segmentation of WDNs is beneficial from many technical purposes, wide-ranging
methods are however not available.

In order to develop general methods for segmentation of WDNs, some preliminary works recently proposed
to refer to community detection methods developed in the analysis of complex social networks [Scibetta
et al., 2013; Diao et al., 2013]. The key idea was to interpret a module of WDNs as a community to be identi-
fied. Community detection methods aim at identifying separated or overlapped groups of nodes into the
network whose information exchanges are greater than with other groups [Fortunato, 2010]. In particular,
among the community detection methods, the approach based on the modularity concept [Newman and
Girvan, 2004] was used. The related modularity index is based on the comparison of the real networks with
a random network realization sharing some general topological characteristics, i.e., number of links and
mean degree of nodes. The index is maximized in order to identify the communities which are the network
modules. The modularity index is able to embed different network features and, moreover, efficient optimi-
zation (maximization) algorithms for very large size problems are available. This fact explains the successful
application to a wide range of cases [Fortunato, 2010].

In a previous work [Giustolisi and Ridolfi, 2014], we proposed a modularity-based index tailored for WDNs
and a multiobjective segmentation design for a general integrated planning. In order to correctly perform a
technical transfer of the CNT method to the specific infrastructure network, we focused on: (i) the tailoring
of the topology-based and the weight-based (embedding pipe properties) classic modularity index [New-
man and Girvan, 2004] by means of the topological incidence matrix, commonly used to describe the WDN,
(ii) the developing a cut position-sensitive modularity index in order to account for the actual position along
pipes (i.e., close to ending nodes) of devices generating segments/modules, and (iii) the framing the modu-
larity maximization into a multiobjective strategy, with the aim to develop a decision support tool for seg-
mentation suitable for an integrated, dynamical planning whose resolution increases over time.

Nevertheless, the WDN-oriented modularity index is affected by a resolution limit that increases with net-
work size. This limit stems from classic modularity index [Fortunato and Barth�elemy, 2007] and bounds the
detection of modules with respect to the size. Therefore, the design of modules which are smaller than a
threshold depending on the number of links of the network is not possible. This is a major drawback for
technical tasks requiring a detailed resolution of the network segmentation, as for example in the case of
the isolation valve system design.

The purpose of the present work is to overcome the resolution limit of classic modularity index by propos-
ing a novel infrastructure modularity index starting from WDN-oriented which was developed in Giustolisi
and Ridolfi [2014]. To this aim, we demonstrate that the classic modularity maximization is a special tradeoff
solution of the general two-objective optimization problem that involves the two components of the classic
modularity index. In this framework, we explain the origin of the resolution limit. Then, we propose the
novel infrastructure modularity index and theoretically demonstrate the overcoming of the resolution limit.
Finally, the new metric is discussed in the framework of the general two-objective optimization, in order to
show some special features with respect to the classic one.
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The work is organized as follows. In the next section, classic modularity index and its tailoring for WDNs are
briefly recalled. In the third section, the maximization of classic modularity index is interpreted in a general
two-objective optimization framework in order to discuss the origin of the resolution limit. The novel infra-
structure modularity index is presented in the fourth section, where the overcoming of the resolution limit
is demonstrated and features with respect to the classical index are described using the two-objective opti-
mization framework. The fifth section reports the segmentation of two real networks in order to show the
key characteristics of the novel infrastructure index versus the classic index and, finally, the last section
draws the conclusions.

2. Modularity Index Tailored for WDNs

The modularity, Q, is a measure of the strength of a network or graph division into communities/modules.
Hereinafter, we will use the word ‘‘module’’ being more usual for infrastructure networks. Modularity is
defined as [Newman and Girvan, 2004]
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where nl is the number of network links, Aij are the elements of the adjacency matrix, Pij is the expected fraction
of links between nodes i and j in the null/random network (i.e., the expected number of links in the network if
they were randomly distributed), Mi is the identifier of network modules, d is the function to apply the summa-
tion to the elements of the same module (i.e., d 5 1 if Mj 5 Mi and d5 0 otherwise), and summation runs on all
the possible node couples (i,j), with i6¼j. In equation (1), the expected fraction Pij is computed using node degree:
i.e., ki (kj) is the degree of the i-th (j-th) node, being degree the number of links incident in the node.

The formulation in equation (1) of the modularity index is not always appropriate for WDNs because the
adjacency matrix does not store the information on parallel links (i.e., pipes of hydraulic systems) which are
common in those networks [Giustolisi and Ridolfi, 2014]. For this reason, we adopt the equivalent formula-
tion of the modularity index
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where emm is the fraction of the pipes with both the end nodes belonging to the m-th module, nm is the
number of network modules, np (5 nl) is the number of network pipes (hereinafter ‘‘pipe’’ is used instead of
‘‘link’’), and am is the fraction of pipes having at least one end node in the module m, half counting the pipes
dividing modules. Therefore, am is half the summation, divided by np, of the number of incident pipes
(degree) in nodes falling in the module m. It is possible to write

Xnm

m51

emm512
nc

np
(3)

where nc is the number of pipes linking modules of the infrastructure, namely the number of ‘‘cuts’’ in the
network.

2.1. Topological Matrix Description of the Infrastructure Network
WDNs are usually described by the general topological incidence matrix �Apn, [see e.g., Giustolisi et al., 2008].
The matrix �Apn is composed by np rows, each corresponding to one pipe of the hydraulic system, having
two elements different from zero corresponding to the i-th and j-th ending nodes. The values of the two
nonnull elements in each row of �Apn are {1,–1} depending on the assumed positive flow direction in the
pipe. The number of columns of the matrix �Apn is nn, that is the number of nodes including the water sour-
ce(s), i.e., reservoirs.

Herein we will refer to the absolute value of the general topological incidence matrix, j�Apnj, and to the uni-
tary np-size vector up. By definition of topological incidence matrix, the summation by columns j�Apnj – i.e.,
j�ApnjTup (superscript T indicates the transpose) – is the vector of nodal degrees.
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The adjacency matrix, �Ann, of the
graph related to the network is the
Boolean version of the matrix product
�AT

pn3�Apn with null diagonal, being
node loops not allowed in the topo-
logical representation of WDNs.

The modularity index for WDNs can be
then written using the general topo-
logical matrix as
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where Mi indicates the module where
i-th pipe falls and symbol (�)i indicates
the i-th component of the vector
inside the round brackets. In equation
(4), the term

j�AT
pnjup

2
(5)

is half of the number of pipes incident in each node. Therefore, the squared term in equation (4) states that,
for each module, we consider the number of pipes with the two ending nodes belonging to that module
and half of the number of pipes separating it from the other (nm – 1) modules.

2.2. Actual Representation of the Pipe Cut in Infrastructure Networks
In any modularity-based index, virtual pipe cuts are implicitly assumed in the middle of pipes. However, this
assumption is misleading for WDNs being significant the position of devices which actually segment the
infrastructure networks. In fact, the virtual cuts become real devices installed into the networks being
divided into modules and those devices are usually installed close to the ending nodes of the pipes. The
installation of devices close to one of the two ending nodes of pipes corresponds to two different technical
solutions which should correspond to two different values of the modularity index, i.e., the metric should
be cut position-sensitive. Instead, the metrics based on the classic modularity (e.g., see equation (4)) neglect

the actual position of devices along
pipes; therefore, they are not cut
position-sensitive [Giustolisi and Ridolfi,
2014]. For example, Figure 1 shows a
simple WDN where three cuts are
located close to specific nodes of the
pipes. Computing the classic modular-
ity index, i.e., not considering the
actual position of the cuts, Q 5 0.1328
is obtained.

Giustolisi and Ridolfi [2014] introduced
a different modularity evaluation aim-
ing at embedding the information
about the position of devices, i.e., in
order to develop a cut position-
sensitive modularity. Figure 2 shows
the strategy of the cut position-
sensitive index. The cut pipes are
assigned to one of the adjacent mod-
ule, instead of half for each module as

Figure 1. Network with three actual cuts along pipes 1, 5, and 8 close to one end-
ing node. According to the classical modularity evaluation, the pipes are counted
half for each adjacent module and Q 5 0.1328.

Figure 2. Modules of the network in Figure 1 accounting for cut positions. The
pipes are assigned to module according to the position of the actual gap and
Q 5 0.125.
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in the case of the classic modularity index, based on the position of the device, i.e., pipes 1 and 5 are
entirely assigned to module M1 being cuts C1 and C2 (i.e., devices) close to nodes 2 and 5, respectively.
Consequently, the modified modularity index accounting for actual position of cuts becomes Q 5 0.125
instead of Q 5 0.1328. Moving the cut C1 close to the node 1, the value of modularity becomes Q 5 0.094.
Therefore, the modularity index becomes cut position-sensitive.

The mathematical formulation of the cut position-sensitive modularity index is [Giustolisi and Ridolfi,
2014]
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where the summation inside the square brackets is now related to pipes and d is the function to
sum the pipes of the same module (i.e., d 5 1 if Mm 5 Mk and d5 0 otherwise). It is therefore suf-
ficient to count pipes belonging to modules instead of using nodal degrees as in the classic
modularity.

It is here useful to note that the external summation in equation (6) generally decreases with the number of
components nm. In fact, the following property holds
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and, therefore, the summation of the square of nm numbers (occurring in the equation (6)) – whose summa-
tion is unitary – tends to be lower with increasing of nm. In particular, if a division generates identical mod-
ules, each term of the external sum in equation (7) would be equal to 1/nm and, consequently, modularity
index would be equal to
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The first of equations (8) states that the upper bound of the modularity index for a network composed of np

pipes, given the number of ‘‘cuts’’ nc and the number of modules nm. The second of equations (8) specifies
the upper bound of the modularity when nm modules can be obtained with a minimum number of cuts
(nc 5 nm – 1). The second of equations (8) will be useful in order to introduce the infrastructure modularity
index in the next sections.

3. Modularity Maximization as a Particular Case of a More General Optimization

The modularity index – both the equivalent formulations in equations (1), (2), or (4) and the modified formu-
lation in equation (6) which, differently, computes am in order to account for actual location of cuts on pipes
– is the sum of two components, Q 5 Q1 1 Q2, equal to
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The first component, Q1, strictly decreases with the number of cuts and penalizes the excess of cuts for a
given number of modules. On the contrary, Q2 generally is an increasing function of the number of modules
(and generally of nc) and it drives the search to the set of most similar modules to each other for a given
number of cuts.

Q1 and Q2 are conflicting function of nm, i.e., of nc, and the maximization of their sum, the modularity index
Q, can be interpreted as a single-objective strategy to balance those components.

However, the most general formulation of the mathematical problem is the following two-objective
optimization,
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where j�Apnj is the absolute value of the
general topological matrix and Ic is the
set of cuts in the network, i.e., the deci-
sion variable of the optimization prob-
lem. The topological representation of
the network with gaps (see Figure 2)
could be that reported as in Giustolisi
and Savic [2010]

Consequently, the identification of the
network modules by the maximization
of the modularity index Q is a special
case of a single-objective optimization,
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where Q1 and Q2 are summed by means of the weight a which is assumed unitary. Therefore, the maximiza-
tion of the classic modularity index identifies a specific single solution (i.e., a set of modules) for the network
segmentation corresponding to equal weights of Q1 and Q2 (a 5 1).

In order to better clarify the meaning of the classic modularity index with respect to the optimization stand-
point, Figure 3 shows the general two-objective optimization in (10) providing the so-called Pareto front of
solutions, which is the set of the best trade-offs of Q1 versus Q2. If nc 5 np, i.e., each pipe is cut, Q1 5 0 and,
being each module composed of one node only, in the case of cuts in the middle of pipes Q2 5 z (see Figure
3) is obtained. If the network is not segmented, nm 5 1, Q1 5 1, Q2 5 21, and Q 5 0. The Pareto front is
therefore bounded as follows

Q1 2 0; 1½ �

Q2 2 21; z52
Xnn

i51

ki

2np

� �2
" #

(12)

where ki stays for the degree of the i-th node. Figure 3 shows the pattern of the classic modularity index,
where ordinate axis represents Q 5 Q1 1 aQ2, characterized by a maximum value and two bound values
equal to Q 5 z and Q 5 0. Moreover, Figure 3 highlights that the maximization of the classic modularity
index is a particular case of a single-objective optimization, which is a pragmatic solution to a two-objective
optimization.

However, the pragmatic approach of the classic modularity is paid with the occurrence of a resolution limit
in the module detection. In fact, the maximum of the curve (Q1 1 Q2) is due to the reaching of Q1 domi-
nance with respect to Q2, namely the magnitude of Q1 is always larger than Q2. Such mathematical domi-
nance always occurs because the two components, Q1 and Q2, of the modularity index are conflicting, but it
generates a resolution limit of the modularity index which depends on the number of pipes np [Fortunato
and Barth�elemy, 2007]. In other words, for a given network division in nm modules, any identification of a
new module is subject to the need that Q2 is not absolutely dominated by Q1 in order to have the possibility
to increase their sum with a further optimal cut. Since in order to identify a new module is necessary at least
one new cut in the network, the following inequality holds

Figure 3. Two-objective optimization (Q1 versus Q2) and classic modularity index.
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where am and bm are the divisions in nm and nm 1 1 modules, respectively, and the first summation is
greater than the second because
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Equation (13) clarifies that the resolution is proportional to the inverse of the square root of np.

In the single objective perspective, the resolution can be increased by introducing the weight a> 1 in front
of Q2. In fact, as shown in Figure 3, the maximum value of Q1 1 aQ2 moves toward a lower Q1 (i.e., a greater
nc) indicating the identification of a greater number of modules nm. Accordingly, equation (13) becomes
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namely a> 1 makes lower the resolution limit constraint decreasing the weight of Q1 with respect to Q2.

Even though the introduction of the coefficient a can reduce the resolution limit, in infrastructure networks
this strategy is unpractical. In fact, the task is to support a decision on segmentation whose resolution
depends on the technical purpose. Consequently, it would be necessary to select a depending on the spe-
cific aim of the segmentation and this sounds artificial and arbitrary. Moreover, even by changing the
weight a, it would be impossible to identify all the possible module configurations if the trade-off curve
(e.g., similar to that shown in Figure 3) has concave parts. It is instead more appealing to provide a unique
decision support tool for segmentation as it will be described in the next section.

It is worth to note that one could solve the general problem in (10) and obtain the Pareto set of optimal sol-
utions involving conflicting objectives. Nevertheless this approach exhibits some drawbacks: (i) increasing
np, it provides a very large number of solutions – most of them useless – and causes an exponential growth
of the computational burden even for not very large network sizes; (ii) for WDNs, the decision support tool
for segmentation needs of a cost function which can be a nonlinear function of the number of cuts, see
Giustolisi and Ridolfi [2014] for further details.

4. Infrastructure Modularity Index

4.1. Topology-Based Index
In the previous section, the constraint of equation (13) indicates that classic modularity index has a resolu-
tion limit which is a drawback for its application to infrastructure networks, when a specific technical task
requires the identification of the small modules.

In order to remove such limit, we propose to modify the classic modularity index given by equation (8) by
adding the term (nm – 1)/np representing the minimum fraction of cuts to obtain nm modules as from equa-
tion (8). The proposed infrastructure-oriented modularity index is
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Without loss of generality with respect to equation (4), the modification is applied to equation (8) which is
better suited for WDNs.

The maximum value of the infrastructure modularity index IQ results (from equation (8))

IQmax 512
1

nm
(17)

and shows that it strictly depends on the number of modules. It is worth noting that the maximum value of
IQ is asymptotically upper bounded to unit (for an infinite number of modules) as well as in the case of Q,
while IQ 5 0 for an unsegmented network.
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Let us consider equations (9) and
assume IQ 5 IQ1 1 Q2, where

IQ1512
nc2 nm21ð Þ

np
(18)

and the term Q2 is the same of equa-
tion (8). Hence, the constraint in equa-
tion (13) becomes

Xnm
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a2
m2

Xnm11

m51

b2
m > 0 (19)

Equation (19) demonstrates that the
constraint with respect to the identifi-
cation of a module by a single cut does
not exist for IQ; in other words, IQ1

never dominates Q2. This fact signifi-
cantly increases the resolution of the
infrastructure modularity index with
respect to any based on classic one,
e.g., equation (8), without

completely eliminating the dependence of the index on the number of cuts, in IQ1, in order to obtain the
modules.

Let us consider Figure 4, which is similar to Figure 3 but reports also the pattern of IQ. For sake of
simplicity and without loss of generality, we assume that each solution (i.e., points) in Figure 4 corre-
sponds to a different number of modules nm, i.e., Q1 can be interpreted as a monotone (decreasing)
function of nm.

Figure 4 shows that IQ coincides with Q 5 0 for nm 5 1 (i.e., nc 5 0); in fact the additional term (nm – 1)/np

(see equation (16)) becomes null, therefore the difference between IQ and Q linearly increases with nm and
decreases with Q1. This fact shifts the maximum value of IQ toward lower values of Q1 and higher values of
the number of modules, i.e., the maximization of IQ finds more modules than that of Q. Moreover, the fact
that the difference between IQ and Q depends only on the number of modules (np is in fact fixed once a
specific network is chosen) guarantees that, fixed the number nm lower than the maximum allowed by Q,
the maximization of Q and IQ finds the same modules.

Finally, it is useful to note that the component IQ1 of IQ results less conflicting with Q2 because it increases
with nm similarly to Q2 (remind that this latter is negative). Therefore, the infrastructure modularity index
can be better used in the two-objective optimization max(IQ) versus min(segmentation cost) in order to sup-
port technical decisions for different purposes. This feature of IQ solves the drawbacks (points (i) and (ii))
reported at the end of the previous section, which are related to the optimization Q1 versus Q2, see problem
in (10). In fact, the Pareto set is upper bounded by the maximum of IQ, without the need of exploring the
whole domain of Q1, point (i). Furthermore, IQ is conflicting with any cost objective function monotonically
increasing with the number of cuts, because its dependence on nc is smoothed in IQ1 by the term (nm – 1)/
np. For this reason, the index IQ is much more appropriate than Q in order to build a decision support tool
for segmentation, i.e., to solve a two-objective optimization problem, because IQ is more conflicting with a
cost function based on the number of cuts with respect to Q which is linearly increasing with nc. Neverthe-
less, IQ maintains the most relevant key features of Q, point (ii). In fact, as discussed above, maximizations
of Q and IQ (once nm is fixed) find the same modules.

Moreover, the cost-benefit, min(cost) versus max(IQ), optimization can start from any existing seg-
mentation and can be a decision tool for any technical purpose of the network segmentation. In
fact, the infrastructure modularity index is not influenced by an initial nonoptimal preexisting seg-
mentation (biasing the problem) because IQ1 has an offset depending on nm. On the contrary, pre-
existing segmentations, especially nonoptimal, influence the actual resolution of the classic
modularity index.

Figure 4. Two-objective optimization (Q1 versus Q2): classic and infrastructure
modularity index.
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4.2. Pipe Weight-Based Index and Technical Constraints
In order to extend the formulation of the infrastructure modularity to the case of pipe weights, the equation
(4) (see Giustolisi and Ridolfi [2014] and equation (16)) is rewritten as follows

IQ wp
� �

512
nc2 nm21ð Þ

np
2
Xnm

m51

Xnn

i51

j�AT
pnjwp

	 

i
d Mm;Mið Þ

2W

2
4

3
5

2

(20)

where W is the sum of pipe weights wk (k51, . . ., np) stored in the vector wp. Accordingly, the cut position-
sensitive formulation of the equation (20) is

IQ wp
� �

512
nc2 nm21ð Þ

np
2
Xnm

m51

Xnp

k51

wp
� �

kd Mm;Mkð Þ
W

" #2

(21)

where the summation inside the square brackets considers pipe weights. The case wp 5 up corresponds to
the topology-based infrastructure modularity in equation (16).

Equation (19) holds for the infrastructure modularity index based on pipe weights because the term in the
right hand of the equation (13) becomes null also in the generalized form of IQ of equation (21) being the
added term (nm – 1)/np independent on pipe weights. It follows that the (cut position-insensitive or sensi-
tive) generalized forms of the infrastructure modularity index given in equations (20) and (21) are character-
ized by the same resolution features discussed in the previous section.

Finally, it is to remark that the term (nm – 1)/np of IQ contains the number of modules and, therefore, the
metric allows the separation of the most peripheral nodes of the branched parts of the networks without
the reduction of the index. In order to exclude the identification of such a modules composed by a single
node when IQ is used, it is possible to consider, inside the term IQ1, for nm the modules with at least one
pipe. This remark allows to further extend the formulation of IQ

IQ512
nc2 nm wm � wthð Þ21½ �

np
2
Xnm

m51

Xnp

k51

wp
� �

kd Mm;Mkð Þ
W

" #2

(22)

where nm(wm�wth) is the number of modules having the weights wm greater than the value wth that is a
threshold for the lowest technical size of a network segment.

5. Case Study

The infrastructure modularity index is here used to segment a real water distribution network as illustrative
case study. The network is C-TOWN [Ostfeld et al., 2012]; its layout is reported in Figure 5. The network is
composed of 444 pipes and 396 nodes. The system is already divided in five district metering areas (DMAs)
by proper flow devices placed downstream of the eleven pumps, labeled PM in Figure 5. Any segmentation
of the C-TOWN network is then biased by such existing DMAs. This fact represents a common situation for
infrastructure networks where segmentation has to match preexistent (nonoptimal) modules.

Furthermore, there are seven tanks and one reservoir, indicated in Figure 5 by the nodal rectangles and
label H0, respectively. Finally, there are also three pressure control valves, labeled PV in Figure 5. Assuming
for the 11 pumps, eight sources of water and three valves one flow measurements, the 22 existing devices
are observations acting as conceptual cuts already segmenting, in a nonoptimal way, the network in 9
modules.

We start using the network in Figure 5 without considering the 22 devices, in order to obtain the same type
of diagram shown in the Figure 4 but for a real infrastructure network. Accordingly, Figure 6 reports the dia-
grams which refer to the solution of the optimization problem Q1 versus Q2 of the real network in Figure 5,
as formulated in (10), solved using genetic algorithms [Goldberg, 1989; Giustolisi and Ridolfi, 2014]. Therefore,
Q1 spans the interval [0,1] corresponding to nc ranging in [np5444,0], while Q2 ranges from 21 to
z 5 23.27�1023.

Similarly to Figure 4, on the top of the Figure 6a, the patterns of Q and IQ are reported as a function of Q1.
The diagram of Q exhibits a maximum value equal to 0.867 at Q150.935 and corresponds to nc 5 nm 5 29.
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The diagram of IQ exhibits a maximum value equal to 0.959 at Q150.836 and corresponds to nc 5 73 and
nm 5 68. The similarity of the diagrams in Figures 4 and 6a confirms the theoretical discussion of the previ-
ous section and the fact that the infrastructure index has the maximum value corresponding to a greater
number of modules, 29 versus 68, i.e., its resolution limit is much lower considering the medium/small size
of the network.

However, as reported in Figure 6b zooming the diagrams close to maxima, it is evident the smooth behavior
of Q while IQ is characterized by small fluctuations although its pattern indicates the existence of a clear
maximum. The values of Q do not fluctuate because it is the sum of the two variables, Q1 and Q2, used for
the optimization. The fluctuations of IQ are instead caused by the fact that the number modules does not
correspond to an unique number of cuts (embedded in the abscissa Q1) as assumed in the Figure 4. In fact,
a given number of modules can be obtained by means of (little) different numbers of cuts and, being the
difference (IQ – Q) equal to (nm21)/np, this fact causes the small fluctuations in the pattern IQ 5 IQ(Q1).

Figure 7 shows the Pareto set of the best trade-off minimization of nc versus maximization of IQ, now start-
ing from the 22 cuts corresponding to the already existing flow devices in the network which generate nine
preexisting modules. Since the optimization of IQ is performed, the fluctuations do not occur: for a given nm

the best solution (i.e., minimum nc) is in fact obtained during the multiobjective optimization.

It is worth noting that the maximum of Q correspond to for nc 5 38 with nm 5 24, while the maximum of IQ
corresponds to nc 5 133 with nm 5 118.

Two facts need to be emphasized: (i) the maximum of IQ corresponds to a number of cuts that is much
smaller than np 5 444, especially considering that the network is not particularly looped and large sized; and
(ii) the IQ index is less dependent on nc than Q and this is confirmed by the flat pattern of the diagram increas-
ing the number of modules (see Figure 7). This fact is useful, as above reported, because IQ results much
more conflicting with any cost function monotonically increasing with nc and much more suitable for a multi-
objective segmentation strategy, e.g., involving the cost of newly installed devices [Giustolisi and Ridolfi, 2014].

Finally, we use another real infrastructure network of a medium size hydraulic system, named Exnet [Giusto-
lisi et al., 2008]. The Exnet network layout is reported in Figure 8.

The network is composed of 1894 nodes (reservoir comprised) and 2471 pipes. It is a powerful test in order
to prove the resolution of proposed infrastructure index, because it is larger than Town-C and much more
compact, i.e., more looped and generally requiring more than one cut to separate modules. Minimization of

Figure 5. Layout of TOWN-C network. (PM 5 pump; CV 5 tank controlled valve; CH 5 check valve; PV 5 pressure reduction valve).
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nc versus the maximization of IQ is obtained using genetic algorithms [Goldberg, 1989; Giustolisi and Ridolfi,
2014]. The infrastructure index is assumed topology-based while existing devices are not considered.

Figure 9 reports the Pareto set of the best trade-off nc versus IQ and the same diagram assuming Q instead
of IQ. It demonstrates that the infrastructure index IQ extends the resolution of the segmentation to
nm 5 465 with nc 5 517 which is much higher than nm 5 36 with nc 5 89 achievable with the classic cut
position-sensitive modularity index, Q.

6. Conclusions

Recently proposed mathematical tools of the complex network theory can play a relevant role in order to
face analysis, planning and management tasks of infrastructure networks. This work focuses on the problem
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Figure 6. (a) Two-objective optimization, Q1 versus Q2 and patterns of the classic (Q) and infrastructure modularity (IQ) index. (b) Zooming
of the Q and IQ patterns close to maxima.
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of the segmentation of water distribution networks. To this aim, the infrastructure modularity index has
been proposed; it is a modification of the classic modularity index in order to overcome the resolution limit.
This is a key point because several technical tasks require a decision support tool able to segment networks
with a resolution more detailed than the resolution limit typical of the classical modularity index.

Figure 8. Layout of Exnet network.
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Figure 7. Two-objective optimization nc (biases by existing devices) versus IQ (white points) and classic modularity index (gray points).
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The infrastructure modularity index maintains the nice features of the classic modularity index, but it is bet-
ter suited for water distribution networks because the resolution limit: (i) does not exist with respect to the
separation of a module using one cut; (ii) is not influenced by existing segmentations/devices biasing the
optimization problem; and (iii) is less dependent on the number of cuts, which makes the metric more con-
flicting with a cost function (monotonically increasing with the number of cuts, i.e., the installed devices in
the network) in the formulation of the optimization as multiobjective. Furthermore, constraints about the
minimum segment size with respect to selected pipe weights can be easily introduced in the infrastructure
modularity index. They can be implemented by means of a constrained counting of the number of mod-
ules/segments of the term (nm – 1)/np.

Finally, segmentation of two real infrastructure networks, reported as case studies, shows and confirms the
effectiveness of the proposed infrastructure modularity index.
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