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We prove existence of standing wave solutions for a nonlinear Schrédinger equa-
tion onR2 under the influence of an external magnetic fidldn particular we deal

with the physically meaningful case of a constant magnetic Bel¢0, 0,b) having
source in the potentialA(x)=(b/2)(-x,,X;,0) corresponding to the Lorentz
gauge. ©2005 American Institute of PhysiddDOI: 10.1063/1.1874333

I. INTRODUCTION

In quantum mechanics the introduction of an external magnetic Beldi®— R? involves
replacing the gradient operat®rwith V+iA(x) whereA is a vector(or magneti¢ potential and
satisfies curA(x) =B(x). The Schrddinger operator with a magnetic field having souréeand a
scalar(electrig potential\W has the following expression:

h 2 2h 7
Liw= (i— \Y —A) +W(X) = —#°A - i—A- V +|A2- i—divA+W(x), (1)

wherei?=-1 and# is the Planck constant. We notice that if we replace the magnetic poténtial
by A(X)=A(x)+ V ¢(x) for some real-value€? function ¢ then B(x)=curl A(x) =curl A(x) =B(X)
and

2

. 1 - 2 ) 1
e "P{(i— \Y —A(x)) +W(x)}e"": (i_ \Y —A(X)) +W(x),

so that the spectral properties Icf{yw and L%W are the same. The above properties is called the
gauge invarianceof the magnetic Schrb‘dinger operator and it is in accordance with the fact that
the physically relevant quantity is the magnetic fi@ldnd not its vector potentid (cf. Ref. 6.

Motivated by the theory of superconductivity, a lot of papers are devoted to the analysis of the
spectrum OLZW in a semiclassical regime, namely &s;> 0. We quote in particular the works by
Bernoff-Stenberd, Del Pino—Felmer—Stenbet§,Lu—Pan’?® devoted to the analysis, in a semi-
classical regime, of the lowest eigenvalue of the magnetic Schrédinger operator. Finally we men-
tion a recent paper by Helffer and Moraﬁ?e:oncerning the localization of the ground state in the
case of a constant magnetic field.
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In the present work we study, in a semiclassical regime, a nonlinear Schrodinger equation with
an additional cubic term, which arises in many fields of physics, in a particular condensed matter
physics and nonlinear opti¢see Ref. 38 More precisely, we are looking for stationary states to
the evolution equation

ihi—lf = LZ,WI//— |y in R* X R3, 2

asf— 0. Theansatzthat the solution/(x,t) to (2) is a standing wave of the form

(t,x) = e B ty(x),

with EER andu: R®—C, leads us to solve the semilinear elliptic equation

Lhwu=Eu+[u2u in RS (3)

In the work we consider an electric potenti&lx) which is bounded from below oR®, and we
chooseE such thatv(x)=W(x)—E is strictly positive. Hence Eq.3) becomes

Liwu=|uu inR3, (4)

whereV is a strictly positive potential.

While there is an extensive literature dealing wih in the caseA=0 (see Refs. 3, 4, 9, 10,

13, 15, 14, 19, 24, 27, and R9there are few papers concerning the nonlinear Schroédinger
equation with magnetic fields.

To our knowledge, the first paper, in which semilinear Schrédinger equjamith external
magnetic field is considered, is by Esteban and LiSrEhe authors proved the existence of
standing wave solutions t@), by a constrained minimization in the cagé)=1 onR® and#
>0 is fixed. Concentration and compactness arguments are applied to solve such minimization
problems for special classes of magnetic fields.

Afterward, in Ref. 21, Kurata has proved the existence of least energy solutiofisfto any
fixed #>0, under some assumptions linking the magnetic fielshd the electric potentil (see
also Ref. 32

A first multiplicity result for standing wave solutions {d), as#—0, has been proved by
Cingolani in Ref. 8, using topological arguments that allow to relate the number of standing wave
solutions to(4) to the topologyof the set of global minima of/. This result covers the case of
magnetic potentials having polynomial growths, having special physical interest, but the used
approach works only near global minima \6f

In a recent paper- the more general case, in which the electric poteiibhs a manifoldv
of stationary points, not necessarily global minima, has been considered. For bounded electric and
magnetic potentials, it has been proved a multiplicity result of semiclassical standing waxgs of
following the new perturbation approach contained in the papgrAmbrosetti, Malchiodi, and
Secchi(see also Refs. 2 and).3Precisely, by means of a finite dimensional reduction, the
complex-valued solutions t¢4) are found near least energy solutions of the complex-valued
limiting equation

2
(% —A(h§)> u+u+VEaHu=uu in R3 (5)

where# ¢ belongs to a neighborhood ofi. We remark that in Ref. 11 the boundedness of the
scalar and magnetic potentials % is a crucial assumption to guarantee that the variational
framework, in which problent4) is set up, becomesquivalentto the spaced(R3,C), which is
the variational setting of the limiting proble(®), independently of the vector potential

Concerning other papers on this topic, we mention a recentE\J\/bykSecchi and Squassina in
which the authors have established necessary conditions for a sequence of standing wave solutions
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to (4) to concentrate, in different senses, around a given point. Finally we quote the paper by Arioli
and Szulkifi where existence of infinitely many solutions &) is proved assuming that andB
are periodic and: fixed.

In the present work we are concerned with the study of standing wave solutigdsitoa
semiclassical regime, in the presence of a magnetic field, having source in a vector pétential
possibly unbounded oR®. This is a relevant case in physics, since constant magnetic Beteisd
to vector potentialsA, having polynomial growths oR3. For instance, ifB is the constant
magnetic field(0,0)p), then a suitable vector field is given Byx) =(b/2)(=x5,%;,0). In physical
literature the potential corresponds to the so-callédrentz gaugdsee Ref. 18

In Main Theorem, which is the main result, we prove that for each topologically nontrivial
critical pointx, of the scalar potentiaV/, there exists a standing wave solutigp of (2) whose
modulus concentrates & for 2 small. The magnetic field only influences the phase factor of the
standing wave a# is small.

The used approach is variational and is based on a penalization procedure, introduced by Del
Pino and Felmer in Ref. 13 for studying nonlinear Schrédinger equations Agkh=0 in the
semiclassical limit.

We point out that in the presence of a magnetic field new difficulties arise in order to carry out
a penalization procedure as in Ref. 13. First, the problem is complex vailnessA=0) and the
penalization acts only on the modulus of the functions. Moreover differently from Refs. 11 and 13,
if A is an unbounded function oR?3, there is no kind of relationship between the variational
settingHZ’V associated to problerf), and the limit spacé&i*(R3,C) as#— 0 (see Remark 3)1
Kato’s inequality for magnetic fields and delicate subsolution estimates will provide the tools to
extend the results in Ref. 13 for nonlinear Schrodinger equations in presence of an external
magnetic field.

We use the following notations:

(1) The complex conjugate of any numkee C will be denoted byz.

(2) The real part of a numbere C will be denoted by Re.

(3) The ordinary inner product between two vectard € k2 will be denoted bya-b.

(4 From time to time, when no confusion can arise, we omit the symbai thtegrals oveiR®.

(5) The letterC denotes a generic positive constant, which may vary inside a chain of inequali-
ties.

(6) We use the Landau symbols. For exampf®(s) is a generic function such that
lim sup,_o[O(g)/e] <o, ando(e) is a function such that lim,y[o(e)/e]=0.

Il. STATEMENT OF THE MAIN RESULT

In the work we consider, more generally, with the semilinear elliptic equation

2
(?V—A(x)) u+Vxu=f(u?u inR3, (6)

whereti is regarded as a small parameter dnd0, +o[ — R satisfies the following assumptions.
(f1) f is of classC! increasing,f(0)=0 and

f(s
lim % =0 and 0< 9F(s) < f(s)s
S*}OOS 2
for somep& (1,5 and9>2, whereF(s):%fgf(t)dt, for se R™.

(f2) For eacha> 0, the limiting functionall ,: HY(R3,R) — R, defined as
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=3 IvoPeachl- [ Fisp, )

possesses a unique critical point, whose critical value is denotdd. by

Throughout the paper we also make the following mild assumptions on the vector and scalar
potentials.

(A1) A: R®—R%is aClvector field such that, for some positive constaftand v,

|30 < Ce™, (8)

whereJa(x) denotes the Jacobian matrix Afat x.
(V1) V: R®—R is a positiveC! function such that inf 3 V(x)=V,>0 and for some positive
constantsC; and vy,

|V V(x)| < Ceni. (9)

(V2) There is an open, bounded s&tC R® with smooth boundary and there exist closed
subsetsB, By of A such thatB is connected an®@,CB. Let I' be the family of all continuous
functions ¢: B— A with the property thatp(x)=x whenevex€ B,. Define

¢ = inf maxV(¢(x)). (10
¢l XEB

Moreover we assume that S,Jé@OV(X) <c and for all¢p<T,

c=< inf V(¢(x)).
XEB

(V3) For all xe dA such thatV(x) =c, there holds?,V(x) # 0, whered, stands for the tangen-
tial derivative.

We notice that assumptiori¥2) and(V3) express a local linking fov in A (see for instance
Ref. 14 and guarantee the existence of a critical point\Wanside A at levelc. Particular cases
of local linking of V in A are local maxima, local minima or saddle points Yomside A.

We can state the main result of this work, which is going to be proved in the last section.

Main Theorem: Assumg(fl) and(f2), (Al), (V1)—(V3). Then there is a numbéiy>0 such
that for all 0<# <7, there exists a solution;uto Eq. (6) such that

J.

Furthermore y € C2%(R%), with «€ (0, 1).

We remark that assumptio(fil) is clearly satisfied if the nonlinear term {6) is homoge-
neous, namely(t)=|t|P~?'2, In this case, assumptidf®) is also satisfied by the uniqueness results
in Ref. 22. By Main Theorem, we deduce the following corollary.

Corollary 2.1: AssumgAl), (V1)—(V3). Then there is a numbeky>0 such that for all
0<h<hy, there exists a solution;uto Eq. (4) such that(11) holds. Furthermore pe cﬁ;g(u%%,
with € (0, 1).

We remark that in Main Theorem we deal with a nonlinear Schrédinger equatidhas this
is the main relevant case in qguantum mechanics. Actually, the result of Main Theorem also holds
for nonlinear Schrodinger equations Y, assuming the following.

(f2") The nonlinearityf is of classC?, increasing,f(0)=0 and

2
(?V—A(X))uﬁ dx+f V(X)|ug|? dx < +oe. (11
]R3
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lim % =0 and 0< IF(s) < f(g)s

578

for some p>1 if N=1, 2 and pe[l,(N+2)/(N—2)] if N=3 and 9>2, where F(s)
=2[3f(dt, for sER™.

IIl. MAGNETIC FIELDS: THE SPACE H,

In this section we recall some classical results on Schrodinger operators with magnetic field,
which are useful in the proof of Main Theorem.

We consider the spacéd (R3,C) consisting of all the functionueL?(R3,C) with
(9, +iApuE€LA(R3,C) for any j=1,2,3 endowed with the norm

luE = | 1(V+iAudx+ | |uf?dx.
A R3 ]

R3

Remark 3.1: We do not assume ti&m or Au are separately in 4R3,C). Therefore, in
general, there is no relationship between the spacegRE{C) and HY(R3,C), namely
Ha(R3,C) C HY(R3,C) or HY(R3,C) ¢ HA(R3,C) (see Ref. 18)

Theorem 3.2:Let A R®— RS be in L3 (R®) and let ue Hx(R2,C). Then|u| € HY(R®,R) and
the diamagnetic inequality

[V [u[()] < [(V +iA)u(x)| (12)

holds for almost every & R3.
By the diamagnetic inequality, the following result folloisee Ref. 18
Theorem 3.3: The space §(R3,C) is dense in H(R3,C).
Furthermore we recall the following Kato’s inequalitsee Ref. 30
Theorem 3.4:Let ue L _(R3,C) with Vue L (R3,C). Define

loc loc

u
(signuy =1 jupo] U FO (13
0 if ux)=0,

we have thasignue L*(R®) and (signu) Vu(x) is locally L' and hence a distribution. Moreover
we have
Alu| = Re(signu)Au].

We furthermore recall the application of Kato’s inequality to the Schrédinger operator with
magnetic field(see Ref. 3D

Theorem 3.5:Let A R®*—R3 be a C real vector valued function. Let D=(1/i)(du/x)
-Aw, for any k=1,2,3and Da=33_,D2. Then for any &L (R3,C) and DPue L3 (R3,C) we
have

Alu| = - R (signu)D3u].
Throughout the paper, we set e and denote by, andD? for eache >0 the(formal) differential
operators

D, = T— V-A®X), (14)
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D®= v._ A(eX). (15

As in Sec. II, we introduce the real Hilbert spadg,, as the completion oEg(R?,C) with respect
to the inner product

(uv)y: =Re| D,u-D,dx+Re| V(Xuv dx. (16)
AV R3 R3

As remarked above, this space has in general no relationshigd&R?, C). Anyway, by Theorem
3.2, we have the followingliamagnetic inequality

f332|V|u||2dsts|Dgu|2 dx, foreveryueH3,. (17)
R R

It is easy to check that, under our assumptions, the functional

1
]—"E(u):—f |D.ul? dx+f V(x)|ul? dx—f F(|ul?dx (18)
2) g3 B3 3
is of classC?, so that solutions t¢6) correspond to critical points oF..

IV. A PENALIZATION ACTING ON THE MODULUS

In this section we perform a penalization of the Euler functighalinspired by Refs. 13 and
14. To this order, we begin to assume, without loss of generality, that the infimifhmof is very
close toc. Let §>0 be a small but fixed number, we can assume Mvafx|V(x) >c—- 6} and

BC {XxEA|V(X) =c(e)}, By C{XEA|V(X)=c(e)},

where c-§<c(e)<c, lim,_yc(e)=c-§5 and dis(Bo,aA):v’;. In fact as in Ref. 14, we can
redefineA ;= A N{x|V(x) >c- &} and

B%® =B N {X|V(X) = c(e)}, (19

BY® =By N {XV(X) =c(e)}, (20)

where

c(e) = inf{gdist{x € A]V(X) = &,A,) = e}

without affecting condition(V3) in the definition of linking. We notice that the sBﬁg is not
empty asB is connected. Then i: B — A 5is a continuous map witk(x) =x for everyxe Bg's,
we can define its extensio& as the identity onB\B%¢. Thus Z{;: B—A and supEBV(ES)
=sup.epss V(d)=c.

We consider a modification of the nonlinear term (&), that will prevent concentration
outside A. We remark that differently from Ref. 13, as our problem is complex valued, the
penalization affects only the modulus of the functions.

Let 3 be the number defined iffl) and choosek>0 such thatk>3/(9-2). Sincef is
increasing, we can fix a numba>0 with f(a)=V,/k. Set

T = f(s) if s<a, 21
= vk ifs>a, @D

we defineg: R®XR*—R by
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9(x,9) = xa(XF(S) + (1 = x,(x)F(9), (22)

wherey, is the characteristic function of the sétand we consider the modified equation

2
<|§ \Y —A(x)) u+V(xu=g(x,|uu in R3. (23)

Weak solutions of Eq(23) correspond to critical points of th@! functional J,: Hav— R,

=1 f DU+ VU2 - j Glx JuP)ax, (24)
R3 R3

whereG(x,s)= %fgg(x,t)dt.

For the sake of convenience, we highlight some obvious propertigsudiich follow directly
from (f1) and (f2).

(g1 limg_ o+ g(x,5)=0, uniformly with respect txe RS,

(g2) There exist a bounded subsetof R3 and a numbe>2 such that

0 < 9G(x,9) < g(X,9)

for all xeK.
(g3) For alls=0, x¢ K,

1
0=<2G(x,5) < g(x,5) < EV(X)

with a constank> 9/(9-2).

We begin to show that the penalized functiodalsatisfies the Palais—Smale condition. This
may not be true for the functiondt,.

Lemma 4.1: For any >0 fixed, the penalized functiona) 3atisfies the Palais—Smale con-
dition at all positive levels.

Proof: Let £ >0 be fixed. Lef{u,} be a sequence iHl}, such thafJ,(u,)} is bounded and
J!(u,) — 0. First we prove thafu,} is bounded. By(g3), it follows that

1
EL g(x,

where ||-|| denotes the norm iy, induced by the scalar product ifi6). Thus the above
inequality and(g2) imply

1 1
unlz)lun|2+0(||un||)<-J IDaun|2+V|un|2<fG(xylun|2)+— V]up/* +0O(1),
2) g3 K 2k J g3

U U

(2-1) [ oz o= 2 [ viugollu + 000
RS 2k J g3

In particular, it follows thafu,} is bounded irHj,, . We choose a subsequence, still denoted by

{un} for simplicity, that converges weakly to soneein Hj . we claim thatu,— u strongly in

Hav - To this aim, it suffices to show that for any givér-0 there exist>0 such that

n—oe

lim supf (|D U + V(X)|ug|?)dx < 6.
[X>R

Without loss of generality, we can talkeso large thak C Bgj,. Fix a smooth cutoff functiomg
such thatpg=0 on Bg,, 7g=1 outsideBg,, 0<7gr<1 and|V 5g/<c/R for some constant
>0. Since{u,} is a bounded Palais—Smale sequence, we have
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‘]I (un)[ 77Run] = 0(1) ’
so that

f (|Dsun|2 + V| un|2) Rt Ref UnD,U, - D,mr= Ref g(x, un|2) 77R|un|2 +0(1)
R3 R3 R3

1
= Ef V|Un|277R+ o(1).
i

We conclude that

C
[ ol Vool = Sjuduaipuliz o,
[X>R
which clearly proves the claim. O

V. THE MINIMAX SCHEME
By assumptior(f2) the limiting functionall , defined in(7) has a unique critical value, which

we can characterize as

b*=inf  supl,(tv). (25)

veH(R3\o} >0

It can be shown that the map—b?, with a>0, is strictly increasing and continuous. Associated
to the critical valueb? there exists a radially symmetric solutias, € HY(R3,R) of the scalar
equation

Aw-aw+f(owP)o=0. (26)

Fix a small numbe®,> 0. For eachy € R® with dist(y,JdA) > &, we denote byw! the function in
Hav given by

_ - X
WY (x) = AVLOel (1 x — v/ ) wV(y)<y_> , (27)
&
where 7 is a smooth cutoff function that equals 1 @ 1) and 0 on(2, +»).
Define now the clas§', of all continuous map: B°— M, such that
#y) =t(e,y)w! forallye Bj, (28)

where

MS:{uEHz,V\{OH | oz vilue= [ oo luif
RS RS

is the Nehari manifold associated to the polarized functidpandt(e,y) is the unique positive
number such that(e,y)w’ € M,. We define a minimax value as follows:

Y. = inf supJ.(¢(y)). (29
SIS yeB®

By slightly deformingw? and recalling the definitions d@* andBj, one can show that

b®= lim supe 3y, = liminf ¢ 3y, = b°™?. (30)

&—0 e—0
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We show that the last inequality i(80) is strict. We begin to prove the following useful
lemma, which generalizes Lemma 2.3 in Ref.(4de also Ref. J7to the case of a complex valued
equation.

Lemma 5.1: Leb € HYR3,C) N C(R3) be a weak solution of the equation

Av = V(v + xp,<0r([0[D0 + X -0y (00 = 0, (3D

whereé€ R3. Then|v|< Va for any x>0 andv actually solves the equation

Av = V(&v + f(jv]Pv =0.
Proof: We test Eq(31) by dv/dx; and we derivgx’ stands for £&,x3)]

f o f IV o+ V(OlolTdeg + J [F(u0x)P) - F(ox)P)]dx =0.  (32)
r2 — OX1 R2

We notice thgtF(s)?lE(s) with inequality if s<a. Thus |v(0,x’)|$\'5. Finally we show that
[v(x,,x")|2< Va for any x, >0.
By Kato’s inequality we derive that

Alo] = V(&)lo| = X <o (P o] = X =0Tl P o). (33)

Now we can test33) by ¢:X{x1>0}(|v| —Va), eHYR3,R) and we derive

f Xog=0l V(0] = Va2 + 400 e, (o] = V@2 + VadWxpe-o(lo] ~ V). <0, (34
R

where

q(x) = V(&) = (o] xe, 01
Fors=a, ~f(s)=(;/0/k)<V(§), so thatq(x) >0 and all the terms ii34) are necessarily zero, and
$=Xpx,>0)(|v|— V&), =0. We conclude that

_
lv(x,x")|<Va Ox, >0, x' €R2

Lemma 5.2: There results

lim inf &3y, > b®°. (35)

e—0

Proof: We argue by contradiction, following arguments strictly related to Ref. 14, Lemma 1.1.
If (35) is not true, then there exists a sequenge-0 such that

£n>Ye, =< b°+0(1).

Fix someqbnel“Sn with the property that

e sup J, (dn(y) < b2 +0(1). (36)

yEB®n

For the reader’s convenience, we split the proof in several steps.
Step I: Setting A ,={x€ R3|dist(x,A) < Ve,}, we claim that
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|m1q3supf |pn()[2=0. (37
R3A,

n—o yEB®n

To prove this claim, we fixy, € B*r and simplify notation by introducing,=¢,(y,)-
SinceuneMsn, we have

J;, (Up) = Jg (tun)

for anyt>0. Let us set

£0=3 | IPLpl e Vool [ oo
An

An

and choose numbets>0 with the property that
E,(tau,) = maxE,(tu,).
t>0
Now, from the properties of the penalizatignit follows that

V¥
2

This and Eq.(36) imply that

-G(x,5)=y forallxe€ R3\ A ands> 0.

En(taln) + 75 J |up|? < e3(b° %+ 0(1))
RAA,

with an erroro(1) uniform with respect tqy,}. Furthermore, we claim that there exists>0 such
that

inf t,= o (39)

n=1

First we notice that from the relatioﬂlgn(un)SCsﬁ, the diamagnetic inequality and again the
properties ofg, the existence of a consta@f, independent ofy,}, such that

[ 1Bl = o 39
R

follows easily. Set nove,(x) =t,u,(eX) and/NXn:sglAn. The definition oft, implies

|| proievielon= | gtexlonPlod?ax= [ cuiteplo, @0
A

n An An

where p>0 can be fixed as small as we please. We can deduce from the Sobolev embedding
theorem as stated in Ref. 1, Lemma 5.10 that there exists a co@stebtindependent of,, such

that
_ (p+)/2 (p+1)12
I L e Y e
An A A

n

By combining(41) with Eq. (40), we see that
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fN |Un|p+l> o>0,
An

and in particularf |D°mw|*+|v,|*= o> 0 for a suitableo>0 independent ofi, and so

&f (o, ) = oed
An

This proves(38).
Observe now that, from the definition §f and from the diamagnetic inequality, we get

E, (tuy) = inf  supE,(tu) =b,.
ueH(A,) >0
If we prove that
lim &3, =0, (42)
n—oe

then Eq.(37) follows from our previous arguments.
Step II: We prove that identity42) holds.
We follow Ref. 15, with minor changes. By a deformation argument, it is easy to see that

b, < (b°%+0(1))e2. (43

We prove the opposite inequality. Since the functidgabatisfies P9, by standard Critical Point
Theory, the numbe, is a critical value foiE,,. Letw, € H(A,) be an associated critical point. As
such, it satisfies the equation

2
(? \Y —A) W, + VW, = g(X, |woADw,  in A,

oW,
v

=0 ondA,.
In particular, by Kato’s inequalitylw,| solves the differential inequality

2AWo| = VX Wo| + (X, Wi Wef? = 0 in A,

IW, 44
—2=0 on dA,. “49
v

By the maximum principle/w,| cannot attain a local maximum inside,\ A, thanks to the
Neumann boundary condition i@4). If x, is a maximum ofw,|, then necessarily,E A. More-
over, inf, maxAn|wn| > 0. Assume, without loss of generality, that—x" € A. Scalingw, to a map
on Q=& (A,—x,) defined byv,(X)=w,(x,+&.X), we have thav, satisfies the equation
2 2 &n .
-Av, - i—A(xn +e.X) - Voo + |AX, + eX)|vn = i—dIV A(X, + e X)vp,
+V(X, + eX)v, = (X, + &0, |Un|2)vn in Q, (45)

with Neumann boundary condition, and, again by Kato’s inequality,

A|Un| = V(X + 8nX)|Un| —g(X, + SnX1|Un|2)|Un| in Q.

From (43) we deduce that
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sup| [|D®w,|? dx + Vo ?ldx < + 0,
n=1 Qn

whereA,(x) =A(x,+e.X) andV,(X)=V(x,+&,X). Take an arbitrary open s€k, relatively compact

in R3. Since we may assume th@tC (), for all n sufficiently large, Eq(43) and the diamagnetic
inequality (12), entail that the sequendé,|} is bounded inH(Q,R) and, up to subsequences,
converges weakly it(Q,R) and strongly inL9(Q,R) with q<5 to somev” €HY(Q,R). More-
over{v,} is a bounded sequencektt(),C). Since() is arbitrary, the limity" can be extended to

a function defined ofik3. Thus by applying the subsolution estimatsse Theorems 13.1, 14.1 in
Ref. 23 we infer that the sequenge,} is bounded irL*({}). By Schauder estimates, the sequence
{v,} is bounded inC>%(K) for somea € (0,1) and thus, up to subsequencesgconverges t@ in
C2.(R®) and also weakly i 9(R3,R) with q<5. It follows that|v|=v" € HY(R3,R) andv #0 as
inf,|v,(0)]|=b>0. Therefore,

2 * *
—Av—i—A(X)-Vv+|A(X)

2+ V(X =g(x,Jv|9v  in R3, (46)

in the sense of distributions, Whe@(y,s):X(x)f(s)+(1—X(x))?(s) andy is the weak limit of the
sequencé (X, +&n) =1 i L*(R3). Since|v| € HY(R3,R) and by definition ofg, we deduce that
Jr30(x,|v[A)|v]? dx is finite and by(46) we havev € HY(R3,C) and thusy solves(46) in weak
sense. By performing a rotation, Lemma 5.1 can be applied to prove that the funéxpn
=g AX)XG(x) satisfies

Av - V(X +f(v|>)v =0.

We must have

lim inf &;°E (W) = lim inf Eq(vy) = lye) ().

n—oe n—oe

Indeed, aw,, converges tw in C2(R%), we derive that

Iimf crn:lf (X—A(X*))v
N—+% Br 2 B |

2 *
L Y0 |2 - f G(x,|v[?), (47)
2 Br B

R R

where

2

on(X) = %[ ‘ (Ti _An(X))Un + Vn(X)|Un|2:| _E(X-|Un|2)-

Sincev € HY(RN,C), we have that for each>0 there exist)> 0 so large that

lim f o= IV(X*)(U) -0.
B,

nN—+ox

R

To complete the proof, we need to show that

n—oe

lim ian o (X)dx= -6 (48)
e (Ayx)\BR

for R sufficiently large. Choose a smooth cutoff functignsuch thatn=0 on Bg_;, »=1 on
R3\Bg, and|V 77/<C whereC is a positive constant, independentandn. Now test the identity
J/(v,) =0 against the functiomp,€ H'%‘n'vn to obtain

Downloaded 29 Jun 2005 to 159.149.2.7. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



053503-13  Semiclassical states for NLS equations J. Math. Phys. 46, 053503 (2005)

OzJé(vn)[nv_n]=Hn+f (200 +9n)

e (Ay=X)\BR

with gn(X) =2G(X,+ 80X, Un|2)_g(xn+8nxa |Un|2)|vn|2 and

. 2 _
H,= ReJ an'v(”vn)+f |A(Xn+8nx)|277|vn|2_ Re- AlXn+enX) - Vopmu,
BRBR_1 B !

RBr-1 BR\Br-1
+ f
B

From the localC! convergence ofv,,} to v and the fact thab € HY(RN,C), we deduce that there
existsR>0 so large that lim_,..|H,| < 6. Recalling thag, <0 because of the properties @fone
easily gets(48). But V(x')=c~- 45 so thatly(v)=b°. We conclude thab,= (b*?+0(1))e>.
Equation(37) follows easily from(42) and (38).

Step I1l: We now introduce the well-known tool of tteenter of mas$or an L? function, and
apply it to our ¢,

Let ue L?(R®) be a given map. We define its center of m@és) € R® as

V(Xn+8nx)77|vn|2_f g(Xn+8nXa|Un|2)77|Un|2-

RBRr-1 Br\Br-1

_ JaXu()|? dx

A= oo ax

where A* is a fixed small neighborhood of. We may of course assume th&f< dist oA, A)
where &, is fixed in (27). We claim that

Blen(y) EATN {xe R3|V(x) <c- g} for all y € B®n. (49

Again, the proof of this fact is by contradiction.(49) is false, then, passing to some subsequence,
the existence oy, € B®n is assured, such that

B(da(yn) & AT N {x eER}|V(X) <c- g} (50)

for all nEN. If we setu,=@,(Y,) andv,(X)=uy(eX), we have
suple_s(tlvg)) < b2+ 0(1). (51)
t>0

This inequality is proved as follows: it is already known fr¢&6) and(17) that{|v,|} is bounded
in HY(R3,R). Moreover, it follows from

J (D% + Vel ik = f Al onDlon? < f (oD lon?
R3 R3 R3

that

inff lv|Pt=0>0.
RS

n

By virtue of Lions’ vanishing lemmdRef. 25, Lemma |.Lwe may find a sequend®,} of balls
of fixed radius(say 1 with
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infj lva2= o> 0.
n Bn

For eachn, select a numbet,> 0 such thal ._s(t,|v,|) =SUR=¢ lc-s(t|v,]). From the boundedness
of {jv,[} in HY(R3,R), we get

Ctzn - fR3 F(|tnvn|2) = Ic—&(tn|vn|) = b,

Recalling assumptiofH2), we have

trl?_zf |Un|ﬂ$ C
R3

with 2<9<5. Thus{t,} is bounded, and froni37) we have

Iimf twn2=0. (52
n—J R3\(s;A%)

Finally, from (36) we have

2
b®™% + o(1) = 8;3‘]9 (tauy) = Ic—&(tn|vn|) - t_nf (c-o+ 0(1))|Un|2,
" 2 J g3yt

and (51) follows from (52).

Set noww,=t,|v,|, with the same, as before. The functiow, belongs to the Nehari manifold
of 1._s and (51) implies thatw, is a minimizing sequence df._s constrained on the Nehari
manifold. A standard application of Ekeland’s variational principle yield89 sequencéw,} for
l.s Such thafw,|-Ww,— 0 in HY(R3,R). By concentration-compactness arguments, there exists a
sequencdz,} of points inR3 such thatw,(--z,) converges irH! to somew which solves

Aw- (c- S)w+ f(jlwP)w=0 inR3.

Denotey, =¢,z,. From(37), we can assume that, up to a subsequepge;y in A. Since

b™?= lim &%, (toy) = lim 1(tyun)) = lyg)(),
n—o n—o
we haveb®9=h"¥) so thatV(y)<c- 4. But B(u,) —YE A and(50) implies V() >c-&/2. This
contradiction prove$49).

Step IV:We are going to find a contradiction that prov&s), which will complete the proof.
Recall the validity of(49). Let ¢,(y)=7(B(¢,(y))) wheres: A*— A is a continuous mapping that
equals the identity om\ and A* is a fixed small neighborhood of fixed in Step Ill. Now,
bn(yY) :W‘Q’n for eachy € B{", andwg’n is radially symmetric with respect to the pontTherefored,
acts as the identity oBg". As such, mapp, is admissible in the class of functions that defines the
level c. Assumption(V2) implies now that< SUR.egs V(p,(y)) for alln=1. If nis large enough,
this contradictg49), and we have proved th&B5) is true. O

Proposition 5.3: For eaclz sufficiently small, the numbet, defined by (29) is a critical value
for the functional J. As a consequence, there exists a solutigee H5, to Eq. (23) such that
J,(u,)=7,. Furthermore y€ CZ%(R%), with «€(0, 2).

Proof: We already know from Lemma 4.1 thaf satisfies thgPS condition, provideck is
small enough. Moreover, the last lemma implies #idty, =b®°+0(1) for all £ small. If €T,
then ¢(y) =w! whenevery € B. This entails that
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sup e, (¢(y)) <b’+0(1).

yEB;
The proof is completed by a standard deformation argument. By standard regularity results,
u, € C24(R3). O

loc

VI. PROOF OF THE MAIN THEOREM

First we derive the following proposition in which the asymptotic behavior of jpax| is
described.
Proposition 6.1: Let

m, = maxu,(x)|,
XEJA
then

lim m,=0. (53

£g—0

Proof: We split again the proof. .
Step I:We begin to establish the following fact: &,— 0 andx,& A are such thatugn(xn)|
=b>0, then

lim supV(x,) <c.

n—o

By contradiction, we assume, up to a subsequence,nhaetx*ex and V(x')>c. Setuv,(x)
=u€n(xn+enx), we have thab,, satisfies the equation

2 .
-Av,— i—A(xn +e.X) - Vop+ AKX, + eX)|2v, - ?dlv AX, + eX)vy,

+ V(X + enX)v, = 9(X, + &pX, |vn|2)vn in RS (54)

By reasoning as in Step Il of Lemma &} converges inCﬁ)C R3 to somev. Let y be the
weak " limit in L"(R%) of the sequencéy,(x,+&,-)}, v € C2(R%) solves the equation in each

Compact set
2 * * 2 * p— 2 - 3
—Av—i—A(X)- Vo +|AX)|%v +VX)v =g(x|v[9v  in R3, (55)

Whereg(x,s):X(x)f(s)+(1—X(x))~1:(s) and 0< y<1. Sincev €HYR3,C), we inferv solves(46)

in weak sense. Settirig(x)=e A% )%y (x), we see thab weakly solves

-AT+V(X)T =g(x[0[)T in RS (56)
Let J: HYR,C)— R be the functional defined by

J(u) = 1f |V u]2+ V(X)
]R3

2 _ ~ 2
5 ul fRSG(x,IUI ),

WhereE(x,s):fgg(x,t)dt, we observe that is a critical point ofd. Following Step Il of Lemma
5.2, one can prove that

J@) <liminf J, (uy). (57)

n—oo

By (57) and taking into accour{B0) we deduce that®= J(@). Sinceh(s) zﬁ(s) for all swe derive
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bt = 3(5) = maxj(m) = male(x*)(tv) > bV(X*),
0

=0 =

where

l *
e =2 [ vV [ R
2)g3 RS
It follows that V(X") <c, which contradicts the fact that(x") > c.
Step Il: Now we pass to provés3). By contradiction, we assume, up to a subsequence, that
there exists a sequengge JA such thatx,—X& JA and

|ug ()| = y>0. (59)

It follows that V(X)<c. We claim thatV(X) >c- 4. By contradiction, we suppose th&tx)=c
- 0.

Arguing as before, we can consider the scaled sequepo®@=u, (X,+:X), and we can
deduce thab, solves(45) and it converges to some= HY(R3,C) in C,%C(R3), up to subsequences
andv # 0. Moreoverv weakly solves the equation

- Av- %A(x) Vo + AR+ VX =g o) in B2, (59

whereg(x,s) = x(0f(s) + (1-x()T(s).
Setting?(x) =eA®%y(x), we see thal weakly solves

-AT+VXv=g(x[o)v inR3 (60)

and thus is a critical point of the functional: H(R3,C) — R defined by

iw=2[ Ivurevmiu- [ G,
2)g3 B3

whereG(x,s) = [3g(x,t)dt.

Now for anyn€ N we consider the positive measyig(Q)=[q|V v [>+V(x,+eX)|v,]. We
have that the sequenég,(R%)}, is bounded and, up to subsequengestends to SOme.

Therefore there exists a subsequencéug},, (without relabelling for which one of the three
possibilities of Lions’ concentration-compactness lenm(see Ref. 2bholds. First we notice that
vanishing cannot occur, as(0)|>0.

If we have tightness, we derive that there exigtswith the following property: for anyy
>0 there existp >0 such that

[ 19 Vot el =2y
Bp(z)
If .z, tends to some point€ R3, then we derive thav,| tends to|v| strongly inH(R3,R) and

thus|v,| tends to|v| strongly inL9(R3,R) with q<5.
Testing Eq.(45) we get that

Ls <Ti - A”(X)>U”

and, sincefg(x, [vy?|vn®— [T, |[v[?)|v]? andv solves(60) we deduce

2

+ Vn(X)|Un|2 = f

- a(x, |Un|2)|Un|2
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Lo

2 2

+V(X)|v[? (61)

v
+ Vn(x)|vn|2 - j ‘ <_ - A()_()>U
Bl
and so
b® = lim &%, (u) =1(@).
n
After a rotation, by Lemma 5.%; solves

- AT + V(X7 = ([0
and since we have assum¥)=c- 5, we getTG):b°‘5. This is a contradiction t¢35).
Conversely, ifle,z,| — =, we can conclude that

b®=1im &,%J, (Uy) = b+ bV
n

which, by the continuity o&— b?, is not possible i is chosen sufficiently small. In a similar way
we can infer that dichotomy cannot occur.

ThereforeV(x) >c—- 8 and |v,| —|v| strongly inHY(R3,R) asn— +c.

Step IIl: Observe that we can assume tldawas fixed so thak lies in a region wher@A is
smooth and,V(x) # 0.

Arguing as in Ref. 14 we can assure0 and the domairh can be described as

A N B(0,2p) ={(x,x") € B(0,2p)|x" € R?, x5 < (X"},

where ¢ is a smooth function such that(0)=0 andV(0)=0. So we have that iB(0,p/e,)v,
satisfies

2
-Av, - i—A(Xn +eX) - Voo + A, + £X)| %0, — %div AX, +epX)v, + V(X + epX)vg

= X{23<e‘1://(sz')}f(|vn|2)vn + X{z3>s‘1¢(sz’)}f(|vn|Z)Un- (62)

Since|v,| converges tdv| strongly inHY(R3,IR), arguing as in Ref. 21 or in Ref. 31 we derive that
lvn(2)]<Ce P for some constant€, B independent oh. Recalling that eachy, is complex
valued, it is not so easy to prove a similar decaying behavior for the gradiept$oo. Hence we
need to modify the proof in Ref. 14. The main tool is a kind of variational identity inspired to the
celebrated Pucci—Serrin identity in Ref. @&e also Ref. )2Since all the details for deriving this
identity for complex-valued solutions to the Schrodinger equation with magnetic field can be
found in Ref. 31, we will be rather sketchy. Fix the ind&x 1, and choose a sequenag,},cnx of
functions fromCg(B(0,p/,)) such that their supports convergeB,p/e,) ash— +%. Now
multiply equation(62) by #,(dv,/ %) (k=1,2) and integrate by parts. By reasoning as in Ref. 31
and exploiting(8) and(9), we can show that it is possible to take first the limithas « and then

the limit n— oo, finally deducing that

IA 1 IA oV 2
f —(0) -A(0)|v|2dx—Re_—J Vuv-—(0) dx+—(0)f de
R3 an | R3 &Xk &Xk R3 2

=f [F(v -F(wP]z - Va—l/l(O)dz’.
Rz E?Xk

If we defineU, by v(x) =€A©*Uy(x), thenUy,€ HY(R3,C) satisfies the identity
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= AUg + V(0)Uo = Xgz,< g0} f (|Uo|)Uo + X{z3>¢(o>}~f(|Uo|2)Uo-

Hence by Lemma 5.1after a suitable rotatigrand an elementary calculation we conclude that

A — Vv |Ugl?
—(0) - Re(iUyV Up)dx+ —(0 ——dx=0.
<9Xk( ) Ls &iUg V Ug)dx axk( )Ls 5 X

But by the uniqueness of critical points for the functioha[see assumptioff2) and the argu-
ments in Ref. 3}, RgiUyVUy) =0 a.e. inR3. This immediately implies thatsV/adx,)(0)=0 for
k=1,2 and sa7,V(x)=0. This contradiction complete the proof. O

Finally we prove the main result. For the reader’s convenience, we repeat its statement below.

Main Theorem: Under assumption&fl) and (f2), (A1), (V1-V3), there is a numbegy,>0
such that for alle <&, there exists a solution & Hy, ,, of Eq. (6). Furthermore y& Ca(IR3) with
a€(0,1).

Proof: By Proposition 6.1, for ale small enough,

lu,| < Va forall xe€ JA.

The functionu, satisfies the equation
e 2
(i—V—A> u, + Vu, = g(x,|u,/>)u, in R3. (63
Therefore we can teg63) against(|us|—v’5)+, and recalling Kato’s inequality we find
f -V (Ju,| = V)2 + (| - Va)i + cx)allu, - Va). <0, (64)
R3AA

where

c(x) = V(x) - g(x,

u,(x)]?).

By definition of g, we havec>0 in R3\A. Hence all terms ir{64) are necessarily zero, and in

particular

lu,|<\Va forallxe R3\A.
This, of course, implies that, is a solution of(6). O
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