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We prove existence of standing wave solutions for a nonlinear Schrödinger equa-
tion onR3 under the influence of an external magnetic fieldB. In particular we deal
with the physically meaningful case of a constant magnetic fieldB=s0,0,bd having
source in the potentialAsxd=sb/2ds−x2,x1,0d corresponding to the Lorentz
gauge. ©2005 American Institute of Physics.fDOI: 10.1063/1.1874333g

I. INTRODUCTION

In quantum mechanics the introduction of an external magnetic fieldB : R3→R3 involves
replacing the gradient operator¹ with ¹+ iAsxd whereA is a vectorsor magneticd potential and
satisfies curlAsxd=Bsxd. The Schrödinger operator with a magnetic field having source inA and a
scalarselectricd potentialW has the following expression:

LA,W
" = S"

i
¹ − AD2

+ Wsxd = − "2D −
2"

i
A · ¹ + uAu2 −

"

i
div A + Wsxd, s1d

wherei2=−1 and" is the Planck constant. We notice that if we replace the magnetic potentialA

by Ãsxd=Asxd+ ¹wsxd for some real-valuedC2 function w then B̃sxd=curl Ãsxd=curl Asxd=Bsxd
and

e−iwFS1

i
¹ − ÃsxdD2

+ WsxdGeiw = S1

i
¹ − AsxdD2

+ Wsxd,

so that the spectral properties ofLA,W
" andL

Ã,W

"
are the same. The above properties is called the

gauge invarianceof the magnetic Schrödinger operator and it is in accordance with the fact that
the physically relevant quantity is the magnetic fieldB and not its vector potentialA scf. Ref. 6d.

Motivated by the theory of superconductivity, a lot of papers are devoted to the analysis of the
spectrum ofLA,W

" in a semiclassical regime, namely as,"→0. We quote in particular the works by
Bernoff-Stenberg,7 Del Pino–Felmer–Stenberg,16 Lu–Pan,7,26 devoted to the analysis, in a semi-
classical regime, of the lowest eigenvalue of the magnetic Schrödinger operator. Finally we men-
tion a recent paper by Helffer and Morame,20 concerning the localization of the ground state in the
case of a constant magnetic field.
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In the present work we study, in a semiclassical regime, a nonlinear Schrödinger equation with
an additional cubic term, which arises in many fields of physics, in a particular condensed matter
physics and nonlinear opticsssee Ref. 33d. More precisely, we are looking for stationary states to
the evolution equation

i"
]c

]t
= LA,W

" c − ucu2c in R+ 3 R3, s2d

as"→0. Theansatzthat the solutioncsx,td to s2d is a standing wave of the form

cst,xd = e−iE"−1tusxd,

with E[R andu: R3→C, leads us to solve the semilinear elliptic equation

LA,W
" u = Eu+ uuu2u in R3. s3d

In the work we consider an electric potentialWsxd which is bounded from below onR3, and we
chooseE such thatVsxd=Wsxd−E is strictly positive. Hence Eq.s3d becomes

LA,V
" u = uuu2u in R3, s4d

whereV is a strictly positive potential.
While there is an extensive literature dealing withs4d in the caseA=0 ssee Refs. 3, 4, 9, 10,

13, 15, 14, 19, 24, 27, and 29d, there are few papers concerning the nonlinear Schrödinger
equation with magnetic fields.

To our knowledge, the first paper, in which semilinear Schrödinger equations4d with external
magnetic field is considered, is by Esteban and Lions.18 The authors proved the existence of
standing wave solutions tos4d, by a constrained minimization in the caseVsxd=1 on R3 and "
.0 is fixed. Concentration and compactness arguments are applied to solve such minimization
problems for special classes of magnetic fields.

Afterward, in Ref. 21, Kurata has proved the existence of least energy solutions tos4d for any
fixed ".0, under some assumptions linking the magnetic fieldB and the electric potentialV ssee
also Ref. 32d.

A first multiplicity result for standing wave solutions tos4d, as "→0, has been proved by
Cingolani in Ref. 8, using topological arguments that allow to relate the number of standing wave
solutions tos4d to the topologyof the set of global minima ofV. This result covers the case of
magnetic potentials having polynomial growths, having special physical interest, but the used
approach works only near global minima ofV.

In a recent paper,11 the more general case, in which the electric potentialV has a manifoldM
of stationary points, not necessarily global minima, has been considered. For bounded electric and
magnetic potentials, it has been proved a multiplicity result of semiclassical standing waves ofs4d,
following the new perturbation approach contained in the paper4 by Ambrosetti, Malchiodi, and
Secchi ssee also Refs. 2 and 3d. Precisely, by means of a finite dimensional reduction, the
complex-valued solutions tos4d are found near least energy solutions of the complex-valued
limiting equation

S¹

i
− As"jdD2

u + u + Vs"jdu = uuu2u in R3, s5d

where"j belongs to a neighborhood ofM. We remark that in Ref. 11 the boundedness of the
scalar and magnetic potentials onR3 is a crucial assumption to guarantee that the variational
framework, in which problems4d is set up, becomesequivalentto the spaceH1sR3,Cd, which is
the variational setting of the limiting problems5d, independently of the vector potentialA.

Concerning other papers on this topic, we mention a recent work31 by Secchi and Squassina in
which the authors have established necessary conditions for a sequence of standing wave solutions
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to s4d to concentrate, in different senses, around a given point. Finally we quote the paper by Arioli
and Szulkin5 where existence of infinitely many solutions ofs5d is proved assuming thatV andB
are periodic and" fixed.

In the present work we are concerned with the study of standing wave solutions tos4d in a
semiclassical regime, in the presence of a magnetic field, having source in a vector potentialA
possibly unbounded onR3. This is a relevant case in physics, since constant magnetic fieldsB lead
to vector potentialsA, having polynomial growths onR3. For instance, ifB is the constant
magnetic fields0,0,bd, then a suitable vector field is given byAsxd=sb/2ds−x2,x1,0d. In physical
literature the potentialA corresponds to the so-calledLorentz gaugessee Ref. 18d.

In Main Theorem, which is the main result, we prove that for each topologically nontrivial
critical point x0 of the scalar potentialV, there exists a standing wave solutionc" of s2d whose
modulus concentrates atx0 for " small. The magnetic field only influences the phase factor of the
standing wave as" is small.

The used approach is variational and is based on a penalization procedure, introduced by Del
Pino and Felmer in Ref. 13 for studying nonlinear Schrödinger equations withAsxd=0 in the
semiclassical limit.

We point out that in the presence of a magnetic field new difficulties arise in order to carry out
a penalization procedure as in Ref. 13. First, the problem is complex valuedsunlessA;0d and the
penalization acts only on the modulus of the functions. Moreover differently from Refs. 11 and 13,
if A is an unbounded function onR3, there is no kind of relationship between the variational
settingHA,V

" associated to problems4d, and the limit spaceH1sR3,Cd as"→0 ssee Remark 3.1d.
Kato’s inequality for magnetic fields and delicate subsolution estimates will provide the tools to
extend the results in Ref. 13 for nonlinear Schrödinger equations in presence of an external
magnetic field.

We use the following notations:

s1d The complex conjugate of any numberz[C will be denoted byz.
s2d The real part of a numberz[C will be denoted by Rez.
s3d The ordinary inner product between two vectorsa,b[R3 will be denoted bya·b.
s4d From time to time, when no confusion can arise, we omit the symbol dx in integrals overR3.
s5d The letterC denotes a generic positive constant, which may vary inside a chain of inequali-

ties.
s6d We use the Landau symbols. For example,Os«d is a generic function such that

lim sup«→0fOs«d /«g,`, andos«d is a function such that lim«→0 fos«d /«g=0.

II. STATEMENT OF THE MAIN RESULT

In the work we consider, more generally, with the semilinear elliptic equation

S"

i
¹ − AsxdD2

u + Vsxdu = fsuuu2du in R3, s6d

where" is regarded as a small parameter andf : f0, +`f→R satisfies the following assumptions.
sf1d f is of classC1 increasing,fs0d=0 and

lim
s→`

fssd

s
p−1
2

= 0 and 0, qFssd ø fssds

for somep[ s1,5d andq.2, whereFssd= 1
2e0

sfstddt, for s[R+.
sf2d For eacha.0, the limiting functionalIa:H1sR3,Rd→R, defined as
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Iasvd =
1

2
E

R3
fu ¹ vu2 + auvu2g −E

R3
Fsuvu2d, s7d

possesses a unique critical point, whose critical value is denoted byba.
Throughout the paper we also make the following mild assumptions on the vector and scalar

potentials.
sA1d A: R3→R3 is a C1-vector field such that, for some positive constantsC andg,

uJAsxdu ø Ceguxu, s8d

whereJAsxd denotes the Jacobian matrix ofA at x.
sV1d V : R3→R is a positiveC1 function such that infx[R3 Vsxd=V0.0 and for some positive

constantsC1 andg1,

u ¹ Vsxdu ø C1e
g1uxu. s9d

sV2d There is an open, bounded setL,R3 with smooth boundary and there exist closed
subsetsB, B0 of L such thatB is connected andB0,B. Let G be the family of all continuous
functionsf: B→L with the property thatfsxd=x wheneverx[B0. Define

c = inf
f[G

max
x[B

Vsfsxdd. s10d

Moreover we assume that supx[B0
Vsxd,c and for allf[G,

c ø inf
x[B

Vsfsxdd.

sV3d For all x[]L such thatVsxd=c, there holds]tVsxdÞ0, where]t stands for the tangen-
tial derivative.

We notice that assumptionssV2d andsV3d express a local linking forV in L ssee for instance
Ref. 14d and guarantee the existence of a critical point forV insideL at levelc. Particular cases
of local linking of V in L are local maxima, local minima or saddle points forV insideL.

We can state the main result of this work, which is going to be proved in the last section.
Main Theorem: Assumesf1d andsf2d, sA1d, sV1d–sV3d. Then there is a number"0.0 such

that for all 0,","0, there exists a solution u" to Eq. s6d such that

E
R3
US"

i
¹ − AsxdDu"U2

dx +E
R3

Vsxduu"u2 dx , + `. s11d

Furthermore u"[Cloc
2,asR3d, with a[ s0,1d.

We remark that assumptionsf1d is clearly satisfied if the nonlinear term ins6d is homoge-
neous, namelyfstd= utusp−2d/2. In this case, assumptionsf2d is also satisfied by the uniqueness results
in Ref. 22. By Main Theorem, we deduce the following corollary.

Corollary 2.1: AssumesA1d, sV1d–sV3d. Then there is a number"0.0 such that for all
0,","0, there exists a solution u" to Eq. s4d such thats11d holds. Furthermore u"[Cloc

2,asR3d,
with a[ s0,1d.

We remark that in Main Theorem we deal with a nonlinear Schrödinger equation inR3 as this
is the main relevant case in quantum mechanics. Actually, the result of Main Theorem also holds
for nonlinear Schrödinger equations inRN, assuming the following.

sf28d The nonlinearityf is of classC1, increasing,fs0d=0 and
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lim
s→`

fssd

s
p−1
2

= 0 and 0, qFssd ø fssds

for some p.1 if N=1, 2 and p[f1, sN+2d/ sN−2dg if Nù3 and q.2, where Fssd
= 1

2e0
sfstddt, for s[R+.

III. MAGNETIC FIELDS: THE SPACE HA

In this section we recall some classical results on Schrödinger operators with magnetic field,
which are useful in the proof of Main Theorem.

We consider the spaceHAsR3,Cd consisting of all the functionu[L2sR3,Cd with
s] j + iAjdu[L2sR3,Cd for any j =1,2,3 endowed with the norm

iuiHA

2 =E
R3

us¹ + iAduu2 dx +E
R3

uuu2 dx.

Remark 3.1: We do not assume that¹u or Au are separately in L2sR3,Cd. Therefore, in
general, there is no relationship between the spaces HAsR3,Cd and H1sR3,Cd, namely
HAsR3,CdúH1sR3,Cd or H1sR3,CdúHA

"sR3,Cd (see Ref. 18).
Theorem 3.2:Let A: R3→R3 be in Lloc

2 sR3d and let u[HA
1sR3,Cd. Thenuuu[H1sR3,Rd and

the diamagnetic inequality

u¹ uuusxdu ø us¹ + iAdusxdu s12d

holds for almost every x[R3.
By the diamagnetic inequality, the following result followsssee Ref. 18d.
Theorem 3.3:The space C0

`sR3,Cd is dense in HA
1sR3,Cd.

Furthermore we recall the following Kato’s inequalityssee Ref. 30d.
Theorem 3.4:Let u[Lloc

1 sR3,Cd with ¹u[Lloc
1 sR3,Cd. Define

ssignudsxd = 5 usxd
uusxdu

if usxd Þ 0,

0 if usxd = 0,

s13d

we have thatsignu[L`sR3d and ssignud¹usxd is locally L1 and hence a distribution. Moreover
we have

Duuu ù RefssignudDug.

We furthermore recall the application of Kato’s inequality to the Schrödinger operator with
magnetic fieldssee Ref. 30d.

Theorem 3.5: Let A: R3→R3 be a C1 real vector valued function. Let Dku=s1/ids]u/]xkd
−Aku, for any k=1,2,3 and DA

2 =ok=1
3 Dk

2. Then for any u[Lloc
1 sR3,Cd and D2u[Lloc

2 sR3,Cd we
have

Duuu ù − RefssignudDA
2ug.

Throughout the paper, we set"=« and denote byD« andD« for each«.0 thesformald differential
operators

D« =
«

i
¹ − Asxd, s14d
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D« =
¹

i
− As«xd. s15d

As in Sec. II, we introduce the real Hilbert spaceHA,V
« as the completion ofC0

`sR3,Cd with respect
to the inner product

ku,vlHA,V
« = ReE

R3
D«u ·D«v dx + ReE

R3
Vsxduv dx. s16d

As remarked above, this space has in general no relationship withH1sR3,Cd. Anyway, by Theorem
3.2, we have the followingdiamagnetic inequality:

E
R3

«2u ¹ uuuu2 dx ø E
R3

uD«uu2 dx, for everyu [ HA,V
« . s17d

It is easy to check that, under our assumptions, the functional

F«sud =
1

2
E

R3
uD«uu2 dx +E

R3
Vsxduuu2 dx −E

R3
Fsuuu2ddx s18d

is of classC2, so that solutions tos6d correspond to critical points ofF«.

IV. A PENALIZATION ACTING ON THE MODULUS

In this section we perform a penalization of the Euler functionalF«, inspired by Refs. 13 and
14. To this order, we begin to assume, without loss of generality, that the infimum ofV in L is very
close toc. Let d.0 be a small but fixed number, we can assume thatL=hxuVsxd.c−dj and

B , hx[LuVsxd ù cs«dj, B0 , hx[LuVsxd = cs«dj,

where c−d,cs«d,c, lim«→0 cs«d=c−d and distsB0,]Ld=Î«. In fact as in Ref. 14, we can
redefineLd=Lù hxuVsxd.c−dj and

Bd,« = B ù hxuVsxd ù cs«dj, s19d

B0
d,« = B0 ù hxuVsxd = cs«dj, s20d

where

cs«d = infhjudistshx [ LuVsxd = jj,Ldd ù Î«j

without affecting conditionsV3d in the definition of linking. We notice that the setB0
d,« is not

empty asB is connected. Then iff: Bd,«→Ld is a continuous map withfsxd=x for everyx[B0
d,«,

we can define its extensionf̃ as the identity onB\Bd,«. Thus f̃: B→L and supx[B Vsf̃d
=supx[Bd,« Vsf̃dùc.

We consider a modification of the nonlinear term ins6d, that will prevent concentration
outside L. We remark that differently from Ref. 13, as our problem is complex valued, the
penalization affects only the modulus of the functions.

Let q be the number defined insf1d and choosek.0 such thatk.q / sq−2d. Since f is
increasing, we can fix a numbera.0 with fsad=V0/k. Set

f̃ssd = H fssd if sø a,

V0/k if s. a,
s21d

we defineg: R33R+→R by
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gsx,sd = xLsxdfssd + s1 − xLsxdd f̃ssd, s22d

wherexL is the characteristic function of the setL and we consider the modified equation

S«

i
¹ − AsxdD2

u + Vsxdu = gsx,uuu2du in R3. s23d

Weak solutions of Eq.s23d correspond to critical points of theC1 functionalJ«: HA,V
« →R,

J«sud =
1

2
E

R3
uD«uu2 + Vsxduuu2 −E

R3
Gsx,uuu2ddx, s24d

whereGsx,sd= 1
2e0

sgsx,tddt.
For the sake of convenience, we highlight some obvious properties ofg, which follow directly

from sf1d and sf2d.
sg1d lims→0+ gsx,sd=0, uniformly with respect tox[R3.
sg2d There exist a bounded subsetK of R3 and a numberq.2 such that

0 , qGsx,sd ø gsx,sd

for all x[K.
sg3d For all sù0, x¹K,

0 ø 2Gsx,sd ø gsx,sd ø
1

k
Vsxd

with a constantk.q / sq−2d.
We begin to show that the penalized functionalJ« satisfies the Palais–Smale condition. This

may not be true for the functionalF«.
Lemma 4.1: For any«.0 fixed, the penalized functional J« satisfies the Palais–Smale con-

dition at all positive levels.
Proof: Let «.0 be fixed. Lethunj be a sequence inHA,V

« such thathJ«sundj is bounded and
J«8sund→0. First we prove thathunj is bounded. Bysg3d, it follows that

1

2
E

K

gsx,uunu2duunu2 + osiunid ø
1

2
E

R3
uD«unu2 + Vuunu2 ø E

K

Gsx,uunu2d +
1

2k
E

R3\K
Vuunu2 + Os1d,

where i ·i denotes the norm inHA,V
« induced by the scalar product ins16d. Thus the above

inequality andsg2d imply

Sq

2
− 1DE

R3
uD«unu2 + Vuunu2 ø

q

2k
E

R3\K
Vuunu2 + osiunid + Os1d.

In particular, it follows thathunj is bounded inHA,V
« . We choose a subsequence, still denoted by

hunj for simplicity, that converges weakly to someu in HA,V
« . we claim thatun→u strongly in

HA,V
« . To this aim, it suffices to show that for any givend.0 there existsR.0 such that

lim sup
n→`

E
uxu.R

suD«unu2 + Vsxduunu2ddx , d.

Without loss of generality, we can takeR so large thatK,BR/2. Fix a smooth cutoff functionhR

such thathR=0 on BR/2, hR=1 outsideBR/2, 0øhRø1 and u¹hRuøc/R for some constantc
.0. Sincehunj is a bounded Palais–Smale sequence, we have
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J8sundfhRung = os1d,

so that

E
R3

suD«unu2 + Vuunu2dhR + ReE
R3

unD«un ·D«hR = ReE
R3

gsx,uunu2dhRuunu2 + os1d

ø
1

k
E

R3
Vuunu2hR + os1d.

We conclude that

E
uxu.R

uD«unu2 + Vsxduunu2 ø
C

R
iuniL2iD«uniL2 + os1d,

which clearly proves the claim. h

V. THE MINIMAX SCHEME

By assumptionsf2d the limiting functionalIa defined ins7d has a unique critical value, which
we can characterize as

ba = inf
v[H1sR3d\h0j

sup
t.0

Iastvd. s25d

It can be shown that the mapa°ba, with a.0, is strictly increasing and continuous. Associated
to the critical valueba there exists a radially symmetric solutionva[H1sR3,Rd of the scalar
equation

Dv − av + fsuvu2dv = 0. s26d

Fix a small numberd0.0. For eachy[R3 with distsy,]Ld.d0 we denote byw«
y the function in

HA,V
« given by

w«
ysxd = eiAsydfsy−xd/«ghsux − yu/d0dvVsydSy − x

«
D , s27d

whereh is a smooth cutoff function that equals 1 ons0, 1d and 0 ons2, +`d.
Define now the classG« of all continuous mapsf: B«→M« such that

fsyd = ts«,ydw«
y for all y [ B0

«, s28d

where

M« =Hu [ HA,V
« \ h0juE

R3
uD«uu2 + Vsxduuu2 =E

R3
gsx,uuu2duuu2j

is the Nehari manifold associated to the polarized functionalJ« and ts« ,yd is the unique positive
number such thatts« ,ydw«

y[M«. We define a minimax value as follows:

g« = inf
f[G«

sup
y[B«

J«sfsydd. s29d

By slightly deformingw«
y and recalling the definitions ofB« andB0

«, one can show that

bc ù lim sup
«→0

«−3g« ù lim inf
«→0

«−3g« ù bc−d. s30d
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We show that the last inequality ins30d is strict. We begin to prove the following useful
lemma, which generalizes Lemma 2.3 in Ref. 14ssee also Ref. 17d to the case of a complex valued
equation.

Lemma 5.1: Letv[H1sR3,CdùCsR3d be a weak solution of the equation

Dv − Vsjdv + xhx1,0jfsuvu2dv + xhx1.0j f̃suvu2dv = 0, s31d

wherej[R3. ThenuvuøÎa for any x1.0 and v actually solves the equation

Dv − Vsjdv + fsuvu2dv = 0.

Proof: We test Eq.s31d by ]v /]x1 and we derivefx8 stands for =sx2,x3dg

E
R2

dx8E
−`

` ]

]x1
fu ¹ vu2 + Vsjduvu2gdx1 +E

R2
fFsuvs0,x8du2d − F̃suvs0,x8du2dgdx8 = 0. s32d

We notice thatFssdù F̃ssd with inequality if søa. Thus uvs0,x8duøÎa. Finally we show that
uvsx1,x8du2øÎa for any x1.0.

By Kato’s inequality we derive that

Duvu ù Vsjduvu − xhx1,0jfsuvu2duvu − xhx1.0j f̃suvu2duvu. s33d

Now we can tests33d by f=xhx1.0jsuvu−Îad+[H1sR3,Rd and we derive

E
R3

xhx1.0ju¹suvu − Îad+u2 + qsxdxhx1.0jsuvu − Îad+
2 + Îaqsxdxhx1.0jsuvu − Îad+ ø 0, s34d

where

qsxd = Vsjd − f̃suvu2dxhx1.0j.

For sùa, f̃ssd=sV0/kd,Vsjd, so thatqsxd.0 and all the terms ins34d are necessarily zero, and
f=xhx1.0jsuvu−Îad+=0. We conclude that

uvsx1,x8du ø Îa ∀ x1 . 0, x8 [ R2.

h

Lemma 5.2: There results

lim inf
«→0

«−3g« . bc−d. s35d

Proof: We argue by contradiction, following arguments strictly related to Ref. 14, Lemma 1.1.
If s35d is not true, then there exists a sequence«n→0 such that

«n
−3g«n

ø bc−d + os1d.

Fix somefn[G«n
with the property that

«n
−3 sup

y[B«n

J«n
sfnsydd ø bc−d + os1d. s36d

For the reader’s convenience, we split the proof in several steps.
Step I:SettingLn=hx[R3udistsx,Ld,Î«nj, we claim that
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lim
n→`

«n
−3 sup

y[B«n

E
R3\Ln

ufnsxdu2 = 0. s37d

To prove this claim, we fixyn[B«n and simplify notation by introducingun=fnsynd.
Sinceun[M«n

, we have

J«n
sund ù J«n

stund

for any t.0. Let us set

Ensvd =
1

2
E

Ln

uD«n
vu2 + Vsxduvu2 −E

Ln

Gsx,uvu2ddx,

and choose numberstn.0 with the property that

Enstnund = max
t.0

Enstund.

Now, from the properties of the penalizationg, it follows that

Vsxd
2

− Gsx,sd ù g for all x [ R3 \ L ands. 0.

This and Eq.s36d imply that

Enstnund + gtn
2E

R3\Ln

uunu2 ø «n
3sbc−d + os1dd

with an erroros1d uniform with respect tohynj. Furthermore, we claim that there existss.0 such
that

inf
nù1

tn ù s. s38d

First we notice that from the relationJ«n
sundøC«n

3, the diamagnetic inequality and again the
properties ofg, the existence of a constantC0, independent ofhynj, such that

E
R3

uD«n
unu2 + uunu2 ø C0«n

3 s39d

follows easily. Set nowvnsxd= tnuns«nxd and L̃n=«n
−1Ln. The definition oftn implies

E
L̃n

uD«nvnu2 + Vs«nxduvnu2 =E
Ln
˜

gs«nx,uvnu2duvnu2 dx ø E
Ln
˜

C0uvnup+1 + ruvnu2, s40d

where r.0 can be fixed as small as we please. We can deduce from the Sobolev embedding
theorem as stated in Ref. 1, Lemma 5.10 that there exists a constantC.0, independent ofn, such
that

E
L̃n

uvnup+1 ø CSE
L̃n

u ¹ uvnuu2 + uvnu2Dsp+1d/2

ø CSE
L̃n

uD«nvnu2 + uvnu2Dsp+1d/2

. s41d

By combinings41d with Eq. s40d, we see that
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E
L̃n

uvnup+1 ù s . 0,

and in particulareL̃n
uD«nvnu2+ uvnu2ùs.0 for a suitables.0 independent ofn, and so

tn
2E

Ln

suD«n
unu2 + uunu2d ù s«n

3.

This provess38d.
Observe now that, from the definition oftn and from the diamagnetic inequality, we get

Enstnund ù inf
u[H1sLnd

sup
t.0

Enstud ; bn.

If we prove that

lim
n→`

«n
−3bn = bc−d, s42d

then Eq.s37d follows from our previous arguments.
Step II: We prove that identitys42d holds.
We follow Ref. 15, with minor changes. By a deformation argument, it is easy to see that

bn ø sbc−d + os1dd«n
3. s43d

We prove the opposite inequality. Since the functionalEn satisfiessPSd, by standard Critical Point
Theory, the numberbn is a critical value forEn. Let wn[H1sLnd be an associated critical point. As
such, it satisfies the equation

5S
«n

i
¹ − AD2

wn + Vwn = gsx,uwnu2dwn in Ln,

]wn

]n
= 0 on ] Ln.

In particular, by Kato’s inequality,uwnu solves the differential inequality

5«n
2Duwnu − Vsxduwnu + gsx,uwnu2duwnu2 ù 0 in Ln,

]wn

]n
= 0 on ] Ln.

s44d

By the maximum principle,uwnu cannot attain a local maximum insideLn\L, thanks to the
Neumann boundary condition ins44d. If xn is a maximum ofuwnu, then necessarilyxn[L. More-
over, infn maxLn

uwnu.0. Assume, without loss of generality, thatxn→x* [L. Scalingwn to a map
on Vn;«n

−1sLn−xnd defined byvnsxd=wnsxn+«nxd, we have thatvn satisfies the equation

− Dvn −
2

i
Asxn + «nxd · ¹ vn + uAsxn + «nxdu2vn −

«n

i
div Asxn + «nxdvn

+ Vsxn + «nxdvn = gsxn + «nx,uvnu2dvn in Vn s45d

with Neumann boundary condition, and, again by Kato’s inequality,

Duvnu ù Vsxn + «nxduvnu − gsxn + «nx,uvnu2duvnu in Vn.

From s43d we deduce that
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sup
nù1
E

Vn

fuD«nvnu2 dx + Vnuvnu2gdx , + `,

whereAnsxd=Asxn+«nxd andVnsxd=Vsxn+«nxd. Take an arbitrary open setV, relatively compact
in R3. Since we may assume thatV,Vn for all n sufficiently large, Eq.s43d and the diamagnetic
inequality s12d, entail that the sequencehuvnuj is bounded inH1sV ,Rd and, up to subsequences,
converges weakly inH1sV ,Rd and strongly inLqsV ,Rd with q,5 to somev* [H1sV ,Rd. More-
over hvnj is a bounded sequence inH1sV ,Cd. SinceV is arbitrary, the limitv* can be extended to
a function defined onR3. Thus by applying the subsolution estimatesssee Theorems 13.1, 14.1 in
Ref. 23d we infer that the sequencehvnj is bounded inL`sVd. By Schauder estimates, the sequence
hvnj is bounded inC2,asKd for somea[ s0,1d and thus, up to subsequences,vn converges tov in
Cloc

2 sR3d and also weakly inLqsR3,Rd with q,5. It follows thatuvu=v* [H1sR3,Rd andvÞ0 as
infnuvns0duùb.0. Therefore,

− Dv −
2

i
Asx*d · ¹ v + uAsx*du2v + Vsx*dv = gsx,uvu2dv in R3, s46d

in the sense of distributions, wheregsx,sd=xsxdfssd+s1−xsxdd f̃ssd andx is the weak* limit of the
sequencehxLsxn+«ndjnù1 in L`sR3d. Sinceuvu[H1sR3,Rd and by definition ofg, we deduce that
eR3gsx, uvu2duvu2 dx is finite and bys46d we havev[H1sR3,Cd and thusv solvess46d in weak
sense. By performing a rotation, Lemma 5.1 can be applied to prove that the functionvsxd
=e−iAsx* d·xṽsxd satisfies

Dv − Vsx*dv + fsuvu2dv = 0.

We must have

lim inf
n→`

«n
−3Enswnd = lim inf

n→`
Ensvnd ù IVsx* dsvd.

Indeed, asvn converges tov in Cloc
2 sR3d, we derive that

lim
n→+`

E
BR

sn =
1

2
E

BR

US¹

i
− Asx*dDvU2

+
Vsx*d

2
E

BR

uvu2 −E
BR

Gsx,uvu2d, s47d

where

snsxd =
1

2
FUS¹

i
− AnsxdDvnU2

+ Vnsxduvnu2G − Gsx,uvnu2d.

Sincev[H1sRN,Cd, we have that for eachd.0 there existsR.0 so large that

lim
n→+`

E
BR

sn ù IVsx* dsvd − d.

To complete the proof, we need to show that

lim inf
n→`

E
«n

−1sLn−xnd\BR

snsxddx ù − d s48d

for R sufficiently large. Choose a smooth cutoff functionh such thath=0 on BR−1, h=1 on
R3\BR, andu¹huøC whereC is a positive constant, independent ofR andn. Now test the identity
Jn8svnd=0 against the functionhvn[HAn,Vn

1 to obtain
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0 = Jn8svndfhvng = Hn +E
«n

−1sLn−xnd\BR

s2sn + gnd

with gnsxd=2Gsxn+«nx, uvnu2d−gsxn+«nx, uvnu2duvnu2 and

Hn = ReE
BR\BR−1

¹ vn ·¹shvnd +E
BR\BR−1

uAsxn + «nxdu2huvnu2 − Re
2

i
E

BR\BR−1

Asxn + «nxd · ¹ vnhvn

+E
BR\BR−1

Vsxn + «nxdhuvnu2 −E
BR\BR−1

gsxn + «nx,uvnu2dhuvnu2.

From the localC1 convergence ofhvnj to v and the fact thatv[H1sRN,Cd, we deduce that there
existsR.0 so large that limn→`uHnuød. Recalling thatgnø0 because of the properties ofg, one
easily getss48d. But Vsx*dùc−d so that IVsx* dsvdùbc−d. We conclude thatbnù sbc−d+os1dd«3.
Equations37d follows easily froms42d and s38d.

Step III: We now introduce the well-known tool of thecenter of massfor anL2 function, and
apply it to ourfn.

Let u[L2sR3d be a given map. We define its center of massbsud[R3 as

bsud =
eL+xuusxdu2 dx

eR2uusxdu2 dx
,

whereL+ is a fixed small neighborhood ofL. We may of course assume thatd0,dists]L+,Ld
whered0 is fixed in s27d. We claim that

bsfnsydd [ L+ ù Hx [ R3UVsxd ø c −
d

2
J for all y [ B«n. s49d

Again, the proof of this fact is by contradiction. Ifs49d is false, then, passing to some subsequence,
the existence ofyn[B«n is assured, such that

bsfnsyndd ¹ L+ ù Hx [ R3UVsxd ø c −
d

2
J s50d

for all n[N. If we setun=fnsynd andvnsxd=uns«nxd, we have

sup
t.0

Ic−dstuvnud ø bc−d + os1d. s51d

This inequality is proved as follows: it is already known froms36d ands17d that huvnuj is bounded
in H1sR3,Rd. Moreover, it follows from

E
R3

suD«nvnu2 + Vs«nxduvnu2ddx =E
R3

gs«nx,uvnu2duvnu2 ø E
R3

fsuvnu2duvnu2

that

inf
n
E

R3
uvnup+1 = s . 0.

By virtue of Lions’ vanishing lemmasRef. 25, Lemma I.1d we may find a sequencehBnj of balls
of fixed radiusssay 1d with
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inf
n
E

Bn

uvnu2 ù s . 0.

For eachn, select a numbertn.0 such thatIc−dstnuvnud=supt.0 Ic−dstuvnud. From the boundedness
of huvnuj in H1sR3,Rd, we get

Ctn
2 −E

R3
Fsutnvnu2d ù Ic−dstnuvnud ù bc−d.

Recalling assumptionsH2d, we have

tn
q−2E

R3
uvnuq ø C

with 2,q,5. Thushtnj is bounded, and froms37d we have

lim
n→`

E
R3\s«n

−1
L+d

utnvnu2 = 0. s52d

Finally, from s36d we have

bc−d + os1d ù «n
−3J«n

stnund ù Ic−dstnuvnud −
tn
2

2
E

R3\s«n
−1

L+d
sc − d + os1dduvnu2,

and s51d follows from s52d.
Set nowwn= tnuvnu, with the sametn as before. The functionwn belongs to the Nehari manifold

of Ic−d and s51d implies thatwn is a minimizing sequence ofIc−d constrained on the Nehari
manifold. A standard application of Ekeland’s variational principle yields asPSd sequencehw̃nj for
Ic−d such thatuwnu−w̃n→0 in H1sR3,Rd. By concentration-compactness arguments, there exists a
sequencehznj of points inR3 such thatwns·−znd converges inH1 to somew which solves

Dw − sc − ddw + fsuwu2dw = 0 in R3.

Denoteyn=«nzn. From s37d, we can assume that, up to a subsequence,yn→y in L. Since

bc−d ù lim
n→`

«n
−3J«n

stnund ù lim
n→`

Istnuvnud = IVsydsvd,

we havebc−dùbVsyd, so thatVsydøc−d. But bsund→y[L ands50d implies Vsyd.c−d /2. This
contradiction provess49d.

Step IV:We are going to find a contradiction that provess35d, which will complete the proof.
Recall the validity ofs49d. Let wnsyd=psbsfnsyddd wherep: L+→L is a continuous mapping that
equals the identity onL and L+ is a fixed small neighborhood ofL fixed in Step III. Now,
fnsyd=w«n

w for eachy[B0
«n, andw«n

y is radially symmetric with respect to the pointy. Thereforefn

acts as the identity onB0
«n. As such, mapfn is admissible in the class of functions that defines the

level c. AssumptionsV2d implies now thatcøsupy[B
0
en Vswnsydd for all nù1. If n is large enough,

this contradictss49d, and we have proved thats35d is true. h

Proposition 5.3: For each« sufficiently small, the numberg« defined by (29) is a critical value
for the functional J«. As a consequence, there exists a solution u«[HA,V

« to Eq. (23) such that
J«su«d=g«. Furthermore u«[Cloc

2,asR3d, with a[ s0,1d.
Proof: We already know from Lemma 4.1 thatJ« satisfies thesPSd condition, provided« is

small enough. Moreover, the last lemma implies that«−3g«ùbc−d+os1d for all « small. If f[G«,
thenfsyd=w«

y whenevery[B0
«. This entails that
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sup
y[B0

«
«−3J«sfsydd ø bc−d + os1d.

The proof is completed by a standard deformation argument. By standard regularity results,
u«[Cloc

2,asR3d. h

VI. PROOF OF THE MAIN THEOREM

First we derive the following proposition in which the asymptotic behavior of max]L uu«u is
described.

Proposition 6.1: Let

m« = max
x[]L

uu«sxdu,

then

lim
«→0

m« = 0. s53d

Proof: We split again the proof.
Step I:We begin to establish the following fact: if«n→0 andxn[L are such thatuu«n

sxndu
ùb.0, then

lim sup
n→`

Vsxnd ø c.

By contradiction, we assume, up to a subsequence, thatxn→x* [L and Vsx*d.c. Set vnsxd
=uen

sxn+enxd, we have thatvn satisfies the equation

− Dvn −
2

i
Asxn + «nxd · ¹ vn + uAsxn + enxdu2vn −

«n

i
div Asxn + «nxdvn

+ Vsxn + «nxdvn = gsxn + «nx,uvnu2dvn in R3 s54d

By reasoning as in Step II of Lemma 2,hvnj converges inCloc
2 sR3d to somev. Let x be the

weak * limit in L`sR3d of the sequencehxLsxn+«n·dj, v[Cloc
2 sR3d solves the equation in each

compact set

− Dv −
2

i
Asx*d · ¹ v + uAsx*du2v + Vsx*dv = gsx,uvu2dv in R3, s55d

wheregsx,sd=xsxdfssd+s1−xsxdd f̃ssd and 0øxø1. Sincev[H1sR3,Cd, we infer v solvess46d
in weak sense. Settingṽsxd=e−iAsx* d·xvsxd, we see thatṽ weakly solves

− Dṽ + Vsx*dṽ = gsx,uṽu2dṽ in R3 s56d

Let J: H1sR ,Cd→R be the functional defined by

Jsud =
1

2
E

R3
u ¹ uu2 + Vsx*duuu2 −E

R3
Gsx,uuu2d,

whereGsx,sd=e0
sgsx,tddt, we observe thatṽ is a critical point ofJ. Following Step II of Lemma

5.2, one can prove that

Jsṽd ø lim inf
n→`

J«n
svnd. s57d

By s57d and taking into accounts30d we deduce thatbcùJsṽd. Sincehssdù h̃ssd for all s we derive
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bc ù Jsṽd = max
tù0

Jstvd ù max
tù0

IVsx* dstvd ù bVsx* d,

where

IVsx* dsud =
1

2
E

R3
u ¹ uu2 + Vsx*duuu2 −E

R3
Fsuuu2d.

It follows that Vsx*døc, which contradicts the fact thatVsx*d.c.
Step II: Now we pass to proves53d. By contradiction, we assume, up to a subsequence, that

there exists a sequencexn[]L such thatxn→x[]L and

uu«n
sxndu ù g . 0. s58d

It follows that Vsxdøc. We claim thatVsxd.c−d. By contradiction, we suppose thatVsxd=c
−d.

Arguing as before, we can consider the scaled sequencevnsxd=u«n
sxn+«nxd, and we can

deduce thatvn solvess45d and it converges to somev[H1sR3,Cd in Cloc
2 sR3d, up to subsequences

andvÞ0. Moreoverv weakly solves the equation

− Dv −
2

i
Asxd · ¹ v + uAsxdu2v + Vsxdv = gsx,uvu2dv in R3, s59d

wheregsx,sd=xsxdfssd+s1−xsxdd f̃ssd.
Settingṽsxd=e−iAsxd·xvsxd, we see thatṽ weakly solves

− Dṽ + Vsxdṽ = gsx,uṽu2dṽ in R3 s60d

and thusṽ is a critical point of the functionalI: H1sR3,Cd→R defined by

Isud =
1

2
E

R3
u ¹ uu2 + Vsxduuu2 −E

R3
Gsx,uuu2d,

whereGsx,sd=e0
sgsx,tddt.

Now for anyn[N we consider the positive measuremnsVd=eVu¹ uvnuu2+Vsxn+«nxduvnu. We
have that the sequencehmnsR3djn is bounded and, up to subsequences,mn tends to somec̃.

Therefore there exists a subsequence ofhmnjn swithout relabellingd for which one of the three
possibilities of Lions’ concentration-compactness lemmassee Ref. 25d holds. First we notice that
vanishing cannot occur, asuvs0du.0.

If we have tightness, we derive that there existszn with the following property: for anyg
.0 there existsr.0 such that

E
Brsznd

u ¹ uvnuu2 + Vsxn + «nxduvnu ù c̃ − g.

If «nzn tends to some pointy[R3, then we derive thatuvnu tends touvu strongly inH1sR3,Rd and
thus uvnu tends touvu strongly inLqsR3,Rd with q,5.

Testing Eq.s45d we get that

E
R3
US¹

i
− AnsxdDvnU2

+ Vnsxduvnu2 =E
R3

gsx,uvnu2duvnu2

and, sinceegsx, uvnu2duvnu2→egsx, uvu2duvu2 andv solvess60d we deduce
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E
R3
US¹

i
− AnsxdDvnU2

+ Vnsxduvnu2 → E
R3
US¹

i
− AsxdDvU2

+ Vsxduvu2 s61d

and so

bc ù lim
n

«n
−3J«n

sund = Isṽd.

After a rotation, by Lemma 5.1,ṽ solves

− Dṽ + Vsxdṽ = fsuṽu2dṽ

and since we have assumedVsxd=c−d, we getIsṽd=bc−d. This is a contradiction tos35d.
Conversely, ifu«nznu→`, we can conclude that

bc ù lim
n

«n
−3J«n

sund = bc−d + bV0

which, by the continuity ofa°ba, is not possible ifd is chosen sufficiently small. In a similar way
we can infer that dichotomy cannot occur.

ThereforeVsxd.c−d and uvnu→ uvu strongly inH1sR3,Rd asn→ +`.
Step III: Observe that we can assume thatd was fixed so thatx lies in a region where]L is

smooth and]tVsxdÞ0.
Arguing as in Ref. 14 we can assumex=0 and the domainL can be described as

L ù Bs0,2rd = hsx,x8d [ Bs0,2rdux8 [ R2, x3 , csx8dj,

wherec is a smooth function such thatcs0d=0 and¹cs0d=0. So we have that inBs0,r /«ndvn

satisfies

− Dvn −
2

i
Asxn + «nxd · ¹ vn + uAsxn + «nxdu2vn −

«n

i
div Asxn + «nxdvn + Vsxn + «nxdvn

= xhz3,«−1cs«z8djfsuvnu2dvn + xhz3.«−1cs«z8dj f̃suvnu2dvn. s62d

Sinceuvnu converges touvu strongly inH1sR3,Rd, arguing as in Ref. 21 or in Ref. 31 we derive that
uvnszduøCe−buzu for some constantsC, b independent ofn. Recalling that eachvn is complex
valued, it is not so easy to prove a similar decaying behavior for the gradients¹vn, too. Hence we
need to modify the proof in Ref. 14. The main tool is a kind of variational identity inspired to the
celebrated Pucci–Serrin identity in Ref. 28ssee also Ref. 12d. Since all the details for deriving this
identity for complex-valued solutions to the Schrödinger equation with magnetic field can be
found in Ref. 31, we will be rather sketchy. Fix the indexnù1, and choose a sequencehchjh[N of
functions fromC0

`sBs0,r /«ndd such that their supports converge toBs0,r /«nd as h→ +`. Now
multiply equations62d by chs]vn/]xkd sk=1,2d and integrate by parts. By reasoning as in Ref. 31
and exploitings8d ands9d, we can show that it is possible to take first the limit ash→` and then
the limit n→`, finally deducing that

E
R3

]A

]xk
s0d ·As0duvu2 dx − Re

1

i
E

R3
¹ v ·

]A

]xk
s0dv dx +

]V

]xk
s0dE

R3

uvu2

2
dx

=E
R2

fFsuvu2d − F̃suvu2dgz8 · ¹
]c

]xk
s0ddz8.

If we defineU0 by vsxd=eiAs0d·xU0sxd, thenU0[H1sR3,Cd satisfies the identity
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− DU0 + Vs0dU0 = xhz3,cs0djfsuU0u2dU0 + xhz3.cs0dj f̃suU0u2dU0.

Hence by Lemma 5.1safter a suitable rotationd and an elementary calculation we conclude that

]A

]xk
s0d ·E

R3
ResiU0 ¹ U0ddx +

]V

]xk
s0dE

R3

uU0u2

2
dx = 0.

But by the uniqueness of critical points for the functionalIa fsee assumptionsf2d and the argu-
ments in Ref. 31g, ResiU0¹U0d=0 a.e. inR3. This immediately implies thats]V/]xkds0d=0 for
k=1,2 and so]tVsxd=0. This contradiction complete the proof. h

Finally we prove the main result. For the reader’s convenience, we repeat its statement below.
Main Theorem: Under assumptionssf1d and sf2d, sA1d, sV1–V3d, there is a number«0.0

such that for all«,«0, there exists a solution u«[HA,V
« of Eq. s6d. Furthermore u«[Cloc

2,asR3d with
a[ s0,1d.

Proof: By Proposition 6.1, for all« small enough,

uu«sxdu , Îa for all x [ ]L.

The functionu« satisfies the equation

S«

i
¹ − AD2

u« + Vu« = gsx,uu«u2du« in R3. s63d

Therefore we can tests63d againstsuu«u−Îad+, and recalling Kato’s inequality we find

E
R3\L

«2u ¹ suu«u − Îad+u2 + csxdsuu«u − Îad+
2 + csxdÎasuu«u − Îad+ ø 0, s64d

where

csxd = Vsxd − gsx,uu«sxdu2d.

By definition of g, we havec.0 in R3\L. Hence all terms ins64d are necessarily zero, and in
particular

uu«sxdu ø Îa for all x [ R3 \ L.

This, of course, implies thatu« is a solution ofs6d. h
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