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Iterative Hyperspectral Image Classification Using
Spectral–Spatial Relational Features

Pietro Guccione, Luigi Mascolo, and Annalisa Appice

Abstract—This paper describes the principles and implemen-
tation of an algorithm for the classification of hyperspectral re-
mote sensing images. The proposed approach is novel and can
be included within the category of the spectral–spatial classifi-
cation algorithms. The elements of novelty of the algorithm are
as follows: 1) the implementation of two classifiers that work
iteratively, each one exploiting the decision of the other to improve
the training phase, and 2) the use of relational features based
on the current labeling and on the spatial structure of the image.
The two classifiers are fed with the spectral features and with the
spatial features, respectively. The spatial features are built using
the relative abundance of each class in a neighborhood of the pixel
(homogeneity index), where the neighborhood is properly defined.
An important contribution to the success of the method is the
adoption of a multiclass classifier, the multinomial logistic regres-
sion, and a proper use of the posterior probabilities to infer the
class labeling and build the relational data. The results of the two
classifiers are eventually combined by means of an ensemble deci-
sion. The algorithm has been successfully tested on three standard
hyperspectral images taken from the Airborne Visible–Infrared
Imaging Spectrometer and ROSIS airborne sensors and compared
with classification algorithms recently proposed in the literature.

Index Terms—Hyperspectral image classification, iterative
classification, Markov random field (MRF), multinomial logistic
regression (MLR), spectral–spatial analysis.

I. INTRODUCTION

R EMOTE sensing hyperspectral imaging sensors are
spaceborne or airborne instruments able to collect hun-

dreds of images at the same time and for the same area of
the Earth, each one corresponding to a different wavelength
channel [1]. The concept was first introduced by the NASA Jet
Propulsion Laboratory with a system called Airborne Imaging
Spectrometer and successively continued using the Airborne
Visible–Infrared Imaging Spectrometer (AVIRIS), which is
able to collect more than 200 spectral bands in the visible and
near infrared wavelengths [2].

A hyperspectral image is a cube of images where each
pixel is a vector of values representing the spectral signal that
characterizes the underlying object. The number of applications
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of such systems is large and increasing [3]. One of the promi-
nent applications is classification, i.e., the ability to generate a
thematic map where each pixel is assigned to a specific class of
land cover [4], [5]. The classification of hyperspectral images is
a challenging problem for several reasons: 1) The spectral sig-
nature given by an area (like bare soil, vegetation, and cropping)
is just a theoretical reference since the footprint of a resolution
cell is actually a function of many factors due to illumination
(acquisition geometry) and weather conditions (period of the
year and meteorological status); 2) each resolution cell imaged
by the sensor usually includes more than a single land cover
(called endmember in [6]); and 3) the spectral characteristics of
an endmember are subjected to time and spatial changes.

The problem of hyperspectral image classification has been
faced using different approaches. In principle, good classifi-
cation performance can be achieved using standard classifica-
tion algorithms if a large number of training pixels (properly
distributed among the classes) is available and the test set is
generated using pixels taken from the same image. However, it
is difficult to define a proper training set for the learning of the
classification algorithm [7]. The effort needed to collect such
pixels that often requires a human-supervised work, as well as
the need to extend the algorithm to other images with the same
(or similar) class distribution, makes the problem still open and
challenging.

Often, in practical applications, the number of labeled pixels
is not sufficient to perform a reliable estimate of the classi-
fier parameters in the learning phase of the algorithm. If the
number of training samples is relatively small compared to the
number of features (and to the parameters to be estimated), we
have the well-known Hughes phenomenon [8]. Another critical
aspect is the quality of the training samples, affected by the
nonstationary nature of the spectral signatures of the classes in
the spatial domain and by the correlation existing among them
[9]. The nonstationarity of the features in the spatial domain is
due to physical factors such as the characteristics of the imaged
area and the atmospheric conditions at the time of acquisition.
In principle, a training set should be able to catch the whole
statistics behavior of the scene, but this is unfeasible, as it
only implies the prior knowledge of the statistical properties
of the scene. On the other hand, the correlation between pixels
violates the assumption of independence between samples, thus
reducing the amount of information conveyed to the classifica-
tion algorithm.

To overcome the problem of limited quantity and quality of
training samples, some basic approaches have been proposed in
the literature. Among the best performing supervised learning
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methods, support vector machines (SVMs) have been largely
applied with success in hyperspectral image classification [10],
[11]. SVMs are also known as maximum margin classifiers, as
they define a separating hyperplane that maximizes the distance
between the nearest data points on both sides. In SVMs, only a
subset of the training samples (the support vectors) contributes
to the classification rule. Furthermore, in order to face the
problem of nonlinearly separable classes, the kernel trick can
be exploited. It allows us to solve the problem of defining a
nonlinear separating hyperplane in a higher-dimensional fea-
ture space by performing a nonlinear mapping of the data,
where the separating hyperplane is linear. As a consequence,
the kernels allow us to train a linear machine in a nonlinear
space, potentially circumventing the high-dimensional feature
problem inherent in the hyperspectral image classification. In
several works, SVMs have proved to perform better compared
to other classification algorithms, including artificial neural
networks [12]. SVMs are eventually less sensible to the Hughes
phenomenon; on the other hand, they are intrinsically binary
classifiers, and the tricks adopted to circumvent this impair-
ment, such as the one versus all, one versus one, or hierarchical
approach, do not definitively solve the problem as a multiclass
classifier does.

Other attractive approaches to classification are those based
on transductive learning (TL) [9], [13], [14] and active learning
(AL) [7], [15]. In the TL, an iterative algorithm is imple-
mented, and both labeled and unlabeled samples are used in
the classification process. At each iteration, a number of unla-
beled samples are optimally chosen to condition the hyperplane
position and shape and to provide a better classification of
the remaining samples in the next iteration. TL is especially
effective in cases where the collection of a reliable training set
(in terms of spatial and statistical distribution and of size) can be
very demanding. In AL, classification is achieved in an iterative
process, where, at each step, few unlabeled samples are added
to the training set (as for the transductive). These samples are
chosen in an optimal way, but supervision is needed to assign
them to a class [7], [15]. The process is iterated, producing a
clear improvement of the classification accuracy but requiring,
at the same time, a large effort from an external supervisor.

Another set of strategies followed in hyperspectral image
classification concerns the exploitation of the spatial informa-
tion, as near pixels are supposed to be correlated to one another.
The success of such techniques arises from the fact that images
cannot be treated as an unordered listing of spectral measure-
ments without spatial arrangement [16]–[18], so labeled sam-
ples can support the classification of their neighbors. One of the
approaches used to integrate spatial and spectral information
consists in modeling the image with a Markov random field
(MRF). The spatial-contextual information is included in the
classification process by adopting a maximum likelihood prior
to modeling the image of class labels [18], [19]. This prior
model encourages piecewise segmentations, fostering solutions
in which close pixels are likely to belong to the same class.
This approach can be considered a generalization of the Ising
model (with Gibbs distribution) [20] successfully adopted in
many image segmentation problems [18] to find the optimal
solution as the one with the minimum inner energy.

In this paper, we use the central strategy of both the ap-
proaches, i.e., the iterative process and the spatial information.
The central idea that we take from the iterative approach (as
in TL and AL) is that it is possible to start with a small set of
training samples. This set is enlarged using information coming
from an increasing number of unlabeled samples considered
reliable enough to contribute to the estimation of the classifier
parameters for a new learning session. In principle, the reliabil-
ity of the classification is expected to increase at each iteration.
On the other hand, the contextual information that can be ex-
tracted from a label field (derived from a previous classification
process) allows us to increase the accuracy since already clas-
sified samples can be used to infer a new decision on unreliable
pixels. This idea is not too far from the loopy belief propagation
approach [21]–[23], where marginals of class distribution are
computed by iteratively passing a message between samples,
becoming more and more reliable at each passage.

The two strategies are combined using two different classi-
fiers: one learned from the spectral features and the other from
the relational features. The two classifiers improve each other
using the output of the previous iteration. A native multiclass
classifier, the multinomial logistic regression (MLR), is used for
both classifiers, and both the soft (i.e., the posterior probability
of each class) and hard (i.e., the labeling) decisions for each
unlabeled sample are exploited in the process. The posterior
probabilities of the two classifiers are eventually combined
using an ensemble decision [24] to achieve the joint class
prediction and decide the exit strategy from the iterative loop.
The relational features are built using labeled samples to get the
homogeneity index [25], i.e., the relative abundance of a class
in a neighborhood of a pixel. The definition of the neighbor
may be function of spatial and spectral characteristics of the
image, and possibly may include nonlinear transformations of
the image through morphological operators [26].

This paper is organized as follows. In Section II, the prob-
lem is approached, and the key concepts of the algorithm
are outlined. In Section III, the elements of the problem are
given, and in Section IV, the algorithm is described. Section V
reports the experimental results and the relative discussion.
Finally, Section VI draws the conclusions and discusses future
developments.

II. PROBLEM APPROACH

A. CC Approach

Collective classification (CC) refers to the combined classifi-
cation of a set of interlinked objects using information coming
from the relation existing between features, between labels and
features, or between labels and labels of neighbor objects [27].
CC increases the classification accuracy when the class labels of
inter-related objects are correlated [24], [28], [29]. An effective
way to exploit interlinked relations among pixels in a hyper-
spectral image is to use the information coming from the given
features (the pixel spectral signature, called intrinsic) and from
a new set of features, the relational features, that summarize
the labeling achieved from the neighborhood. Usually, spatial
neighborhood is the most common way to exploit the relation
among pixels in an image, as pixels that are spatially close
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Fig. 1. High-level scheme of turbocode encoder and decoder. (a) First decoder (APP decod 1) exploits the intrinsic information and the first parity passed through
the channel. (b) Second decoder (APP decod 2) uses the intrinsic information, the second parity (passed through the channel), and the output of the first APP
decoder. From the second iteration on, the first decoder exploits also the extrinsic information given as output of the second decoder. The process then iterates.
For a complete explanation of turbocodes working, refer, for example, to [35].

between them are most likely to spectrally behave in the same
way, and this should be reflected in the relational features. On
the other hand, the construction of relational features based on
labeled samples is another way to build an MRF model of the
image.

In the classical works on CC, labeling is performed using the
joint information retrieved from intrinsic and relational features
[29]. CC methods explicitly use the data relationship to build
additional features exploited to learn a more predictive classi-
fier. One of the known problems in CC is that, usually, most
of the labels are unknown. A way to overcome this problem
is to refine classification through iteration using algorithms as
belief propagation, Gibbs sampling, or iterative classification
algorithm (ICA) [22], [27].

In ICA, as an example, the iterations are initialized by
labeling the samples of the test set. To this aim, a classifier
learned on the training set only (bootstrap classifier [24]) is
used. Next, the relational features are built using both the
known and the predicted labels; then, the classifier re-predicts
labels for the test set using both intrinsic and relational features.
The process is iterated until convergence or a stop criterion
is reached. The ICA algorithm is known to suffer from some
issues. First, relational features are computed by aggregating
classes collected in a neighborhood with a specific fixed size,
while real networks are frequently characterized by a class
distribution which may vary in shape and density across the
network. Second, the number of examples in the training set is
never extended through the iterative process. Finally, the class
labels are predicted by a single classifier, while the ensemble of
classifiers is frequently more accurate [30].

For this reason, a number of algorithms belonging to the class
of semisupervised learning algorithms (SSLs) have recently

appeared in the literature [31]–[34]. They perform a further
external iterative loop in which the learning is repeated every-
time the relational features are updated at the end of an ICA
process. These algorithms are distinguished for the way they
use the relational features to update the classifier (taking the
ones computed on all the samples or just on the training set).

B. From Collective Classification to a “Turbo” Classifier

The central strategy proposed in this paper starts from the
SSL algorithms presented in [24] but introduces a fundamental
difference: Here, we use two classifiers, one learned from the
intrinsic features and the other from the relational features. The
second classifier can be learned only once the first classifier has
labeled all the pixels since the relational features require the
labeling of all the pixels to be defined. Once the two classifiers
have been learned the first time, their output can be used to
increase the training set of the other (cross-iterative process),
exploiting the most reliable predicted samples. At each iter-
ation, the two classifiers calculate the posterior probabilities
of each class. These posteriors are used to both extend the
training set and to learn the other classifier at the successive
iteration. The reliability of the samples is given by the posterior
probability distribution among the classes: the more uniform
such distribution is, the less reliable a sample is.

Even if not strictly necessary to the understanding of the
concept, we consider useful to show the analogy between the
algorithm approach and the iterative decoding used in the tur-
bocodes [35]. The turbocodes are a class of high-performance
forward error correction codes, where the encoded binary mes-
sage is composed by three concatenated parts [see Fig. 1(a)]:
The information bits sent in clear (m) and two different parities
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(x1 and x2), achieved as output of two convolutional encoders.
Decoding is performed using an a posteriori probability (APP)
algorithm, the Bahl, Cocke, Jelinek, and Raviv algoritm [36],
applied on the intrinsic information (r0, i.e., the clear part of
the message passed through the channel) and on the extrinsic
information, which is r1 (i.e., the first parity passed through
the channel), and the output of the second APP decoder, when
available [from the successive iterations; see red arrows in
Fig. 1(a)]. The output of the first APP decoder, together with the
parity of the second encoder (passed through the channel r2),
represents the extrinsic information of the second APP decoder
[see Fig. 1(b)]. The output of each decoder is iteratively used to
improve the decoding of the other until a convergence criterion
is reached and the estimation m̂ of the message is given.
The turbocodes are powerful error correcting codes, reaching
stability in few iterations and being able to correct large bursts
of errors. The success of turbocodes in decoding a binary
message is based on the thin distance spectrum principle [37].
Shortly, in turbocode encoding, it is very unlikely to have binary
words with low Hamming weight from both the convolutional
encoders (a high weight is necessary for the success in error
detection and correction); in the same way, if we supposed a
good degree of independence between the spatial distribution
of land cover and land cover spectral properties, the use of
both properties would unlikely make both classifiers produce
so different (and wrong) responses. An initial soft classifi-
cation, i.e., a posterior probability, even slightly favorable to
the correct class will be improved by iterations. Classification
errors may occur only when a wrong class is assigned initially
to both the classifiers; in that case, the iterations can amplify
the effect.

The analogy of the proposed algorithm with turbocode de-
coding structure can be appreciated comparing Figs. 1 and 4.

III. ALGORITHM DESCRIPTION

A. Problem Definition

Let us suppose having a hyperspectral image composed of
N pixels, V = {v1, . . . , vN} (whose location in the image is
known), characterized by a M -dimensional vector of features
X = {x1, . . . ,xN}, with xT

n = [xn1, . . . , xnM ]. The features
are the measurements (taken from a resolution cell) in the
spectral bands acquired by the sensor, possibly after the re-
moval of the most noisy bands (for example, the bands of water
vapor absorption). We further suppose that the set of pixels
can be partitioned into K unordered classes, or subpopulations,
denoted by C = {Π1, . . . ,ΠK}. Each pixel in V is supposed to
be classified into one and only one of such classes.

The purpose of the hyperspectral image classification prob-
lem is to infer the class label of a set of unclassified pixels when
it is known: 1) the value of the features for all the pixels, i.e.,
the random vector X, ∀vn ∈ V , and 2) a limited set of known
labels, i.e., for a small number of pixels (the so-called training
set), V(a) = {v1, . . . , vL} ⊂ V [(a) stands for assigned], the
classes are known. Typically, L � N .

Usually, the remaining samples, i.e., V(u) = V \ V(a), are
considered the test set, for which the label must be assigned.

B. MLR

In the MLR model, the posterior probability of the classes
satisfies the following relation [38]:

p(vn ∈ Πi|X = x) =
fi(x)πi∑K

k=1 fk(x)πk

(1)

with πk being the prior probability for the class Πk, πk =
p(Πk), and

fk(x) = p(X = x|vn ∈ Πk) (2)

being the likelihood. Equation (1) can be rewritten by setting
the following log-odd functions [39]:

ui(x) = log (fi(x)πi) (3)

with which the posterior probabilities can be written as follows:

p(vn ∈ Πi|x) =
eui(x)∑K

k=1 e
uk(x)

, i = 1, . . . ,K. (4)

The idea behind the MLR model is to construct a predictor that
sets up a score function starting from a set of weights linearly
combined with the explanatory variables (i.e., the features) of
a given observation. The usual assumption for the conditional
probabilities of the features is that they are distributed as a
multivariate Gaussian, i.e.,

fk(x) ∼ N (μk,Σk) (5)

so that the log-odd ratios

Li(x) = ui(x)− uK(x) = w0,i +wT
i · x (6)

are linear combinations of the features. In the MLR model, the
log-odd ratios are linear combinations of the features, but the
Gaussian assumption is removed. This way, the weights are no
longer explained through mean and covariance; rather, they are
estimated straightly through X.

In this paper, the posterior probability that a sample belongs
to a given class is modeled using the MLR, i.e.,

p(vn ∈ Πi|x) =
eLi(x)

1 +
∑K−1

k=1 eLk(x)
, i = 1, . . . ,K − 1

p(vn ∈ ΠK |x) = 1

1 +
∑K−1

k=1 eLk(x)
(7)

with Li(x) defined in (6). The model can be directly extended
to the kernel version of MLR, in which the weights are com-
bined with a set of functions of the input features [40], [41].

Usually, in an MLR classifier, the class assigned to a sample
is the one for which the probability is the largest among the
classes, i.e.,

ŷnk =

{
1 k = argmax

k
{p(vn ∈ Πk|xn)}

0 elsewhere.
(8)

To fit the model (i.e., to learn the classifier), the set of (M +
1) · (K − 1) weights needs to be estimated (see Appendix A).
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Fig. 2. In the example, the SDHI is computed for the central pixel (in red) to
which class 3 is currently assigned. The pixels in green belong to the window
used to compute the SDHI according to (9).

C. Relational Features

In the following, we suppose that the image has been already
labeled, i.e., the matrix of the target variables Y = [ynk],
∀n, k = 1, . . . ,K, is someway given. There are a number of
possibilities to construct the relational features from the labels
using spatial or combining spatial and spectral properties of the
image. However, we have considered a too dispersive listing
of all the possibilities, as a sensitive analysis of the parameters
related to the method would follow in the experimental results.
Instead, we here describe just one method, called the spatial-
dependent homogeneity index (SDHI).

For a given pixel vn, let us define ∂vn as the set of pixel
neighbors of vn, including vn (the neighborhood is properly
defined hereinafter). The SDHI is defined as

αnk =
|∂vn|vj∈Πk

|∂vn|
, k = 1, . . . ,K (9)

i.e., the relative number of pixels that belong to a given class Πk

in the neighbor set (|∂vn| is the cardinality of the neighborhood
∂vn that must not be a null set). If we define a collection of
neighbor sets as follows:

{
∂v(s)n

}
, s = 1, . . . , S (10)

we have S ·K relational features defined as in (9). The shape
of the neighbor set can have the shape of either a square or a
circle with radius W or can have other shapes (for example, we
can consider the shapes adopted as structuring elements in the
morphological operations [42]); in alternative, particular shapes
can be used if prior information is available.

To simplify, let us suppose having the (partial) label map
illustrated in Fig. 2 as the starting condition to compute the
SDHI of the central pixel (in red) where only three classes
are present (enumerated by 1, 2, and 3). If we choose a square
neighborhood of size W = 7 (in green), the SDHIs for the three
classes are α1 = 14/49, α2 = 16/49, and α3 = 19/49. Please
note that α1 + α2 + α3 = 1.

Fig. 3. IRMC algorithm for hyperspectral image classification.

IV. ALGORITHM IMPLEMENTATION

The Iterative Relational Multinomial Classifier (IRMC) al-
gorithm is illustrated in Fig. 4 and formally described in Fig. 3.

A. Algorithm Steps

The inputs of the algorithm are the spectral features X , the
labels of the training set Y(a), the number of classes K, the
pixel locations V (used to define the neighbor sets), and a few
real-valued parameters detailed in the following. The algorithm
steps are described in the following.

1) The algorithm is initialized by using the feature vectors
in the training set X(1) = X(a) and their corresponding
labels Y(1) = Y(a) (line 2 of the algorithm). This training
set shall be gradually extended during iterations.

2) In the conditional loop (line 3), the first classifier is
trained (the function train) using the spectral features
and the associated labels (line 4). For an MLR classifier,
learning means to calculate the set of weights, Wx, as
described in Appendix A.

3) The first classifier is then used to find the posterior
probabilities for the test set using (7), which corresponds
to the function findP (see line 5).

4) The posterior probabilities p(1) are used to label the
image (i.e., the samples of the test set, as the training set
is already labeled), Y(1), as in (8) (function classify;
see line 6). The labels for the pixels of the training set are
left unchanged (line 8).

5) The posterior probabilities p(1), and if necessary the
spectral features, are used to build the relational features
XR as in (9) (line 9).



6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 4. Classification algorithm block diagram. Please note the analogy in the structure with the turbocode decoding scheme proposed in Fig. 1. The role of
the intrinsic information is here played by the spatial coordinates of pixels, while the extrinsic information (r2 in Fig. 1) are generated using the output of the
first classifier (red dotted line), so it is not a totally independent source coming from the channel, as for turbocodes. This is the main difference between the two
algorithms.

6) The second classifier is learned (line 12) using the en-
larged training set and their corresponding relational fea-
tures XR(2). The pixels of this set are defined as the ones
for which the maximum probability among the classes is
higher than a threshold

V(2)=

{
vn|ynk=

{
max
k∈C

{
p(1),nk

}
>β · e−η1i)

}}
(11)

with β > 0.9 (line 10). The threshold is progressively re-
laxed to increase the set size during the iterations i and to
account for the supposed progressive convergence of the
algorithm towards a stable solution. As in point 4), the
labels of the training set are left unchanged (line 11).
The output of the learning stage is the set of weights Wr.

7) The second classifier is then used to find the posterior
probabilities p(2) for all the pixels [(7), line 13].

8) From the posterior probabilities p(2), the image is labeled
again, Y(2) [(8), line 14].

9) To close the loop, the new training set processed by
the first classifier is built using a relation similar to
(11), where, again, the threshold is progressively relaxed
(line 16)

V(1)=

{
vn|ynk=

{
max
k∈C

{
p(2),nk

}
>β · e−η2i

}}
. (12)

The parameters η1 ad η2 are chosen experimentally (with
η = 0, meaning that no relaxation is given at all). Again,
the label for the pixels of the training set is left unchanged
(line 17).

10) In the literature [38], the negative logarithm of the like-
lihood is usually defined as the error function. The error
function, computed at the end of the classification process
for the first and the second classifiers (lines 7 and 15,
respectively, and function negllh), is used to evaluate
the degree of convergence of the cycle

G = −
∑
n

∑
k

ynk log pnk, n = 1, . . . , N. (13)

Since we have two error functions (G1 and G2), their
geometric mean is taken, and its difference with respect
to the previous iteration (ΔG) is used to condition the
loop (lines 18, 19, and 3).

B. Final Class Labeling

At the end of the iterative process, the outcome of the algo-
rithm is a set of labels describing the whole image and obtained
as the output of the first and second classifiers Y(1) and Y(2).
Initially, the two sets of labels are mostly different since each
of them has been obtained exploiting different properties of
the image: the spectral similarity in one case and the spatial
correlation of labels in the other. It is for this reason that the
combined use of the two classifiers is expected to give the
highest information in the first few iterations, when the diversity
between the two labels is the largest. Successively and until
convergence, it is expected that the labels will provide progres-
sively similar information, i.e., the solution tends to stabilize
with the increase of iterations. This reasoning is supported by
the experimental results in Section V-C.

To get the joint probability, instead of Y(1) and Y(2), we use
the posterior probabilities achieved at the end of the conditional
loop, p(1) and p(2). The two conditional probabilities are the
(soft) outcome of the two classifiers, given the intrinsic and the
relational features, respectively

p(1) = p(V(1)|X)

=
{
p(vn ∈ Πk|X = xn), vn ∈ V(1)

}
p(2) = p(V(2)|XR)

=
{
p
(
vn ∈ Πk|XR = xR,n, vn ∈ V(2)

)}
. (14)

Assuming X and XR as two conditionally independent events,
given the class Y , the combined prediction (see line 21 and
[24]) is

p(Y|X,XR) =
p(X|Y)p(XR|Y)p(Y)

p(X,XR)
(15)

and after a few passages

p(Y|X,XR) =
p(Y|X)p(Y|XR)

p(Y)
· p(X)p(XR)

p(X,XR)
. (16)

In the previous equation, p(Y|X) and p(Y|XR) are p(1) and
p(2), respectively, while p(Y), i.e., the prior probability of
the class distribution, can be estimated using the training set
(the supervised classification of the training set is supposed
to be performed on pixels picked up in a random way), or
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exploiting some prior information concerning the class abun-
dance. The second fraction does not need to be estimated since
p(Y|X,XR) can be estimated using a normalization indepen-
dent of Y . The posterior probability is hence used for the final
classification (line 22) as in (8).

V. EXPERIMENTAL RESULTS

The accuracy of the IRMC has been evaluated using three
real hyperspectral data sets. The remainder of the section
includes the following: a description of the data sets used to
achieve the performances (Section V-A), a description of the
experiments carried out (Section V-B), a discussion on the se-
lection of the parameters and algorithm analysis (Section V-C),
the presentation of the results (Section V-D), the sensitivity
analysis (Section V-E), and the comparison with the previous
literature and a discussion about the advantages and limit of the
algorithm (Section V-F).

A. Data Set

The data sets used for the evaluation of the algorithm per-
formances are Indian Pines, University of Pavia, and Salinas.
These data sets are well known and widely used benchmarks
for hyperspectral image classification and can be easily found
on the Web.

1) AVIRIS Indian Pines: The scene was gathered by the
AVIRIS sensor [2] over the Indian Pines test site in North-
western Indiana and consists of 145 × 145 pixels and 224
spectral reflectance bands in the wavelength range 0.4–2.5 μm.
The scene is a subset of a larger one and includes two-
thirds agriculture and one-third forest or other natural perennial
vegetation. There are other topographic elements such as two
highways, a rail line and low-density dwelling, and smaller
roads. Since the scene has been taken in June, some of the crops
present are in their early stages of growth. The ground truth
available has been organized into 16 classes not all mutually
exclusive. The number of bands is usually reduced to 200 by
removing bands covering the region of water absorption.

2) ROSIS Pavia University: The scene was gathered by the
ROSIS sensor during a flight campaign over Pavia, northern
Italy. The number of spectral bands is 103. The scene consists
of 610 × 340 pixels, but some of the samples contain no
information and have been discarded before the analysis. The
geometric resolution is 1.3 m. The image ground truth has been
differentiated into nine classes.

3) AVIRIS Salinas: This scene was collected by the AVIRIS
sensor over Salinas Valley, California, and is characterized by
high spatial resolution (3.7-m pixels). The area is composed by
512 × 217 pixels. As for the Indian Pines scene, the 20 water
absorption bands have been discarded. The scene includes
vegetables, bare soils, and vineyard fields. The ground truth has
been organized into 16 classes.

B. Experimental Setting

The experiments have been executed using four different
classifiers: the proposed IRMC and three basic classifiers taken

TABLE I
EXPERIMENT SETTINGS FOR MLR, IRMC, lSVM, AND kSVM

for comparison, i.e., the MLR and the SVM with both linear
(lSVM) and radial basis function kernel (kSVM). For SVM,
the one-against-all strategy has been adopted for the choice of
the final class.

The logistic regression algorithm (in MLR and IRMC) re-
quires to iteratively solve a nonlinear system of equations
to obtain the weights (see Appendix A for the solution and
Appendix B for the regularization). Since some of the features
are highly dependent on each other (i.e., they do not constitute
a mutually exclusive minimal set of descriptors), the inversion
of the matrix in (24) can be difficult, thereby making the
problem ill-conditioned. The ill-conditioning problem in MLR
is known and has been already faced in the literature, with
code implementations publicly available on the Web [18], [43].
However, the computational complexity of such algorithms is
high and makes them not suitable in the iterative scheme of
IRMC. It is for this reason that we decided to reduce the set
of both spectral and relational features by using the principal
component analysis (retaining 99% of variance) [44].

The data set has been initially divided into two parts, a train
set T and a test set S , with each class population equally
distributed between the two sets. Successively, smaller subsets
T (p) of data have been randomly drawn from T , according
to the experiment needs and preserving the relative class pop-
ulations. Experiments have been carried out using different
percentages of training sets (up to 10% of the total number of
pixels in the data set, which corresponds to 20% of pixels in
T ). Then, the subsets T (p) have been used to train a classifier,
and performance has been measured on S . Each experiment has
been repeated five times, and the average and standard deviation
of the accuracy were reported.

No kernel rule has been applied to the logistic regression
algorithms (even though it may be applied), and this is the rea-
son to include, for a fair comparison, the linear SVM classifier.
Comparison with previous studies, however, suggested to in-
clude also the kernel SVM in the analysis. For SVM algorithms,
the parameters have been optimized according to a grid-search
method. The relational features have been generated according
to Section III-C and using a set of neighbors of square shape
and increasing size.

The main experimental settings are summarized in Table I.

C. Optimization of Parameters

IRMC requires the choice of a number of parameters (see
Fig. 3): {Nit, ε, β, η1, η2}.
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Fig. 5. Selection of the parameters that control the conditional loops. (a) Error
function G [see (13)]. (b) Finite difference of the error function (ΔG in line
18) and the value chosen for ε (the horizontal red line). The figures refer to the
AVIRIS Indian Pines data set with 10% of training set and five folds.

The two parameters that control the conditional loops (the
loop described in Fig. 3 and the internal loop described in
Appendix A) are ε and Nit, respectively. The choice of suitable
values for ε and Nit has been made basing on the trend of error
function G. In an iterative process, it is expected that the error
function decreases monotonically. In the case of IRMC, instead,
the posterior probability out of a classifier conditions the input
of the other classifier, and this explains the oscillatory trend
of the error function during iterations. As already discussed in
Section IV-B, by going on with iterations, it is expected that
the posterior probabilities provided by the two classifiers be-
come more similar, i.e., the corresponding labels progressively
provide similar information. This reasoning is supported by the
general trend of the error function of (13), which is displayed
in Fig. 5(a) and which has been found similar for the other
data sets.

We arbitrarily selected ε equal to the average, in the last five
iterations, of the finite difference of the error function ΔG and
Nit sufficiently high to be sure that ΔG has reached a steady
state around the selected ε.

The parameters {β, η1, η2} control the amount of transduc-
tive pixels [9] to be included at each iteration in the converging
process. In detail, the exponential decaying laws in (11) and
(12) control the amount of samples that are believed reliable
enough to update the set of samples with which classifiers can
be trained. While convergence is assured, a way to automat-
ically derive such parameters (as in many other optimization
algorithms, for example, the stochastic gradient descent) is
hard to define since parameters are too much dependent on the
experimental conditions.

Intuitively, a very low value of β (i.e., a very low starting
threshold) yields a high number of pixels to be included too
early in V(1) and V(2), when the differences among spectral
and spatial classification are expected to be high. This decision
can generate instability in the process and a lower accuracy in
output. On the other hand, a too low value for η1 or η2 may lock
the threshold to high values, avoiding the training set to enlarge
and making the convergence slow.

In order to give an example, we carried out different ex-
periments using Indian Pines with 10% of the training set, in
a fivefold cross-validation. In the first set of experiments, we
changed the value of β within a suitable set. Results in Table II
suggest that a high value of β is desirable to achieve high
accuracy, with an optimal value reached for β = 0.97. Higher

TABLE II
SENSITIVITY ANALYSIS OF IRMC TO PARAMETERS {β, η1, η2} AND

CORRESPONDING OA. INDIAN PINES DATA SETS,
10% OF TRAINING SET, AND FIVE FOLDS

USED FOR EACH EXPERIMENT

values, perhaps, could make the convergence of the system
too slow and drive the performance to decrease. Similarly, the
values of η1 and η2 have been changed (letting β = 0.97), and
the accuracy was measured. Final results in Table II suggest
that the optimality is reached with different values among η1
and η2, which is reasonable, since each parameter controls
the degree of convergence (during the iterations) of the labels
coming from two different classifiers (spectral and spatial).
The final combination of parameters used for the three data
sets and for the subsequent experiments has been {β, η1, η2} =
{0.97, 0.0, 0.1}.

D. Experimental Results

In Table III, the classifiers are compared on the three data sets
in terms of overall accuracy (OA), average accuracy (AA), and
κ-statistics. The results have been generated for different sizes
of the training set. Linear SVM performs better than MLR in
Indian Pines but not for Pavia University and Salinas, while
kernel SVM performs better than linear SVM and MLR in
Indian Pines and Pavia University but not in Salinas. Finally,
IRMC is superior to all the classifiers and for all the percentages
of the training set, even if the gain is superior for Indian Pines,
more contained for Pavia University, and close to zero for the
Salinas data set.

The classification maps obtained for the Indian Pines data set
by IRMC and kSVM are compared in Fig. 6. A visual inspec-
tion reveals that the notable difference between the two maps
is that, in SVM, the errors are uniformly distributed (the salt-
and-pepper effect in the homogeneous regions) while, in IRMC,
the errors are more concentrated in highly heterogeneous areas,
where spatial separability among classes is more difficult. As an
example, in the upper right part of the image [see Fig. 6(a)], the
algorithm has confused the class Soybean-mintill with classes
Corn-notill and Soybean-notill; in the upper left part of the
picture, the class Corn-notill has been confused with Soybean-
notill. This result is in agreement with the class accuracy in
Table VII, where, for Indian Pines, we found that Corn-notill,
Soybean-notill, and Soybean-mintill have a precision and a
recall that are lower than the average over the classes. This is
expected for Soybean-notill and Soybean-mintill as they repre-
sent different degrees of plowing or harvest of the same crops.
Instead, the algorithm does not perform well for Corn-notill
probably because one of the plots of land belonging to this
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TABLE III
OA, AA, AND κ-STATISTICS FOR INDIAN PINES, PAVIA UNIVERSITY, AND SALINAS DATA SETS AND DIFFERENT PERCENTAGES OF

TRAINING SET. LINEAR SVM, RBF KERNEL SVM, MLR, AND IRMC HAVE BEEN COMPARED

Fig. 6. Indian Pines data set classification maps for (a) IRMC (OA = 93.27%) and (b) SVM (OA = 81.84%). The ground truth and the legend are shown in
(c) and (d), respectively.

class is surrounded by large areas of paths belonging to the
Soybean-notill class. Even in this case, the misclassification
may be due to the criterion used for the evaluation of the spatial
features (shape/size of the windows).

E. Sensitivity Analysis

The key elements of IRMC are as follows: 1) the iterative
procedure; 2) the use of the MLR; and 3) the supplemental
information provided by the spatial features. All the three
elements actively contribute to the good performances of the
algorithm. To show this, we carried out further experiments in
which the MLR classifier and the spatial features are removed.
The experiments have been executed using the Indian Pines data
set, with a training set of 10% and five folds.

In the first experiment, we replaced the classifier within
the algorithm, using the naive Bayes classifier [39], since it
provides also the posterior probabilities. The achieved OA was
73.29%, i.e., higher than that in the pure MLR case, but not
as high as that in the IRMC case. In our version of the Bayes
classifier, we adopted the multivariate normal distribution for
both the spectral and spatial features, conditioned to the class.
In [39], it is suggested that the logistic regression is more
robust to data nonnormality than the Bayes classifier, and
consequently, the performances are expected to be better. On
the other hand, the logistic regression is asymptotically less
efficient than Bayes and requires a higher sample set to be
trained to get the same (asymptotic) performance.

TABLE IV
OA FOR DIFFERENT VERSIONS OF THE ALGORITHM

In the second experiment, we removed the use of the spatial
information, leaving a single MLR classifier that iteratively
increases its training set at each iteration. While this algorithm
resembles the transductive classification, a comparison with the
transductive SVM proposed in [9] cannot be given since the
tSVM was tested on a data set different from those used in this
study. The achieved OA has been 69.79%, which is not very
different from that of the pure MLR. Results of the different
tests, collected in Table IV, confirm that all the three elements
are peculiar to the success of the IRMC algorithm.

We finally report the classification performance as a function
of the following: 1) the size of the training set and 2) the size of
the window used for the computation of the spatial features.
Both such analyses have been carried on the Indian Pines
data set.

In the first experiment, we tested the sensitivity of the algo-
rithm to the size of the training set. The experimental conditions
are the ones described in Section V-B. In Table V, the OA, its
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TABLE V
OA, STANDARD DEVIATION OF OA, AA, AND κ-STATISTICS

FOR INDIAN PINES DATA SET AS A FUNCTION

OF THE TRAINING SET SIZE

TABLE VI
OA, STANDARD DEVIATION OF OA, AA, AND κ-STATISTICS FOR INDIAN

PINES DATA SET AS A FUNCTION OF THE WINDOW SIZE

standard deviation over five folds, the mean accuracy, and the
κ-statistic are reported. As expected, the accuracy increases with
the number of samples while the standard deviation decreases.

In the second experiment, we tested the sensitivity of the
algorithm to the spatial feature extraction. The spatial features,
estimated according to (9), are a function of the number of
considered neighborhood windows [the value S in (10)] and
of their shape and size. In order to simplify the analysis,
we used a set of square windows, setting a single parameter
to decide the size and number of the square windows. With
reference to Table VI, for each experiment, we computed the
SDHI for a set S of square windows of size W = 2l + 7, with
l = 0, . . . , S − 1. Therefore, for example, with S = 6, we com-
puted the SDHI for windows of size W = [7, 9, 11, 13, 15, 17].
The results in Table VI show that the increase of accuracy is
good up to a certain value of S; it may be supposed that the
performance increases until the size of neighbor windows is less
or comparable with the average size of the homogeneous areas
in the data set (this quantity may be someway related with the
spatial correlation length). In Table V, we used the best result
of Table VI, i.e., W = 13.

F. Comparison With Previous Studies

The result for Indian Pines is comparable with that achieved
in Table II (last column) of [22], where an OA of 94.76% is
reported with a training set of 10% of the ground-truth data. In
Table VII, the class-by-class precision and recall (i.e., accuracy
on class) have been reported. The accuracy metrics have been
collected by running our algorithm with the same percentage of
the training set used in [22], for a fairer comparison. The same
analysis has been repeated for Pavia University, where, how-
ever, we selected a balanced training set (i.e., proportional to the
class population) of 10%, while the training samples per class in
Table III of [22] are variable. Anyway, for the Pavia University
data set, we achieved an OA higher than that in [22] (85.78%)
even with a training set of 3%. Looking through the class-
by-class results of the Indian Pines data set, IRMC performs

better than the algorithm proposed in [22] just for a few classes,
such as Corn-mintill, Grass-pasture, or Woods, where we got
96.07%, 97.98%, and 97.56% of recall, respectively, compared
to 90.68%, 96.66%, and 94.48% in Table II of [22]. These
classes are sometimes located in areas far enough from areas
belonging to other classes with which they can be confused (see
in Fig. 6(c) the Woods class for example). A similar behavior
has been found for the Pavia University data set, for example,
comparing the Bare Soil and Metal Sheet classes, where we
got 83.91% and 99.25% of recall, respectively, compared to
73.27% and 97.97% achieved in Table III of [22] (the ground-
truth map of the Pavia data set is in [22]).

Similar considerations hold if we compare IRMC perfor-
mances with the ones in Table II (last column) of [45] (for
Indian Pines, 5% of the training set) and Table III (last column)
of [45] (for Pavia University, the training set is chosen in a
variable way, as in [22]). The IRMC class-by-class results for
the case of 5% of Indian Pines are not reported; however, we
found that IRMC performs worse just for the classes identified
in the comparison performed above with [22]. On the other
hand, the method in [45] performs better for all the classes
in the Pavia University data set (in [45], the OA for the Pavia
data set is 98.09%) since that algorithm has more flexibility in
constructing the spatial information through an extensive use
of the morphological profiles. Finally, similar considerations
hold also in the comparison with the results in [30], where OA
for Pavia University is higher compared with our case, while
for Indian Pines, the experiment is different (in [30], a fixed
number of samples per class is taken), so no conclusions can
be drawn.

A general consideration on the limit of IRMC is that the
proposed algorithm certainly takes advantage of the spatial
information, but it has little sensitivity at the borders of homo-
geneous areas. IRMC has hence difficulty in the classification
of pixels belonging to classes located in crowded (i.e., highly
heterogeneous) areas, performing worse than other spatial-
spectral methods. This may be due to the size of the win-
dow used to get the homogeneity index. The need to have
a fixed value of such window that is large enough to cap-
ture the spatial information from neighbors is then a limit
of the proposed algorithm. On the other hand, IRMC has
high capability in classifying pixels in homogeneous areas
once an optimized set of the spatial windows is provided (see
Section V-E).

Another weakness of the algorithm, as already marked in the
Introduction, is that classification errors especially occur when
both classifiers assign a wrong class during the first iterations
since, in that case, subsequent iterations tend to confirm the de-
cision. A more robust version of the algorithm, in future, could
take advantage of an ensemble of classifiers (for the spectral
and the spatial decisions) to limit the number of these cases.

A final impairment of the algorithm is the required computa-
tional time, which substantially increases compared to simpler
solutions. In order to have a comparison, a single fold of SVM
on Indian Pines (experimental conditions as in Section V-D,
with a training set of 5%) takes about 3.5 s (apart from the
grid search, which is very time consuming), while IRMC takes
about 485 s.
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TABLE VII
NUMBER OF TRAINING SAMPLES, IRMC CLASS-BY-CLASS PRECISION, AND RECALL (TRAINING SET: 10% OF TOTAL DATA SET)

VI. DISCUSSION AND CONCLUSION

In this paper, we have proposed a new algorithm for
spectral–spatial hyperspectral image classification using rela-
tional features and iteration between two classifiers. According
to our knowledge, this represents an innovative contribution
in the related field because of the introduction of two main
elements of novelty: 1) an iterative structure between two
classifiers and 2) the construction of a set of relational features
that are based on the spatial structure of the image and on the
labels determined at the current iterative step.

The algorithm shows higher performance compared to basic
classifiers (MLR and SVM), while it is comparable (in some
case better) to the spectral–spatial algorithms proposed in the
literature. In detail, we found that IRMC outperforms SVM
on the Indian Pines data set, while the accuracy gain for the
Pavia University and Salinas data sets is less marked but still
present. Results have been further illustrated on the classifi-
cation maps, to describe the behavior of the algorithm and its
spatial-dependent capability to achieve correct classification.

IRMC has shown to take advantage of the spatial informa-
tion, but probably, the use of the windows to collect the spatial
features is not optimal since the lowest accuracy has been found
just in high heterogeneous areas. Concerning this aspect, it can
be interesting to investigate, in future, on other methods to
generate the spatial features. As an example, the homogeneity
index may be computed on spatial neighbors identified by
windows whose shape adaptively changes with the local texture
of the area, to better account for the heterogeneity; another
possibility is to use a set of windows of different shape or
orientation as structuring elements to construct morphological
operations (as openings or closings). The SDHI could be com-
puted after the application of the sequence of such operators
applied on the labeled maps. Such operators, in fact, have been
successfully used in [46].

The several ways to build relational features are related to an-
other problem: the hyperdimensionality of the samples. In our
algorithm, the number of relational features is proportional to
the number of classes and of windows used (see Section III-C).

With different ways to get the spatial features, a number as
high as 1000 could be easily reached. In this case, methods
to reduce the features by using dimensionality reduction tech-
niques (PCA for example) become mandatory to avoid the
Hughes phenomenon since the labeled set is supposed to be
limited. Another possibility, again, may be to use an ensemble
of classifiers to deal with the lower ratio between the initial
number of training sets and the number of features.

All such possibilities and challenges will be the matter of
future investigations.

APPENDIX

A. Determination of Weights for MLR

The MLR model assigns the posterior probabilities p(vn ∈
Πi|x) by means of (1). To achieve the posterior probabilities
for all the samples, it is necessary to fit the observations to the
model, i.e., to estimate the weights w0i,wi. Let us redefine the
weights as follows:

wi = [w0i,w
T
i ]

T (17)

with i = 1, . . . ,K − 1. Each new array has size M + 1 so that
the total number of weights to estimate is (M + 1)(K − 1).
The conditional likelihood can now be written as

L(w1, . . . ,wK−1|X) =

N∏
n=1

K∏
k=1

pynk

nk (18)

with pnk defined in (7) and ynk being the target variables,
defined in (8). The negative conditional log-likelihood is then

	(w1, . . . ,wK−1|X) = −
N∑

n=1

K∑
k=1

ynk log pnk (19)

which is also known as the cross-entropy error function [see
(13)] for the multiclass classification problem.

In the logistic regression, the maximum likelihood has no
closed-form solution due to the nonlinearity of the logistic
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sigmoid function. Anyway, the departure from a quadratic
dependence of the log likelihood function on the parameter
vector is not substantial. To be precise, the error function is
concave; hence, it has a unique minimum.

This minimum can be found by an efficient algorithm based
on the Newton–Raphson iterative optimization scheme [38],
[47], which uses a local quadratic approximation to the log-
likelihood function. Making use of simple algebraic relations,
we get

∇wj
	 =

∂	

∂wj
=

N∑
n=1

xn(ynj − pnj) (20)

where the array of explanatory variables has been redefined
as x = [1 xT ]T . Equation (20) is a column array of M + 1
elements and is defined for j = 1, . . . ,K − 1. The second
derivative is

∇wk
∇wj

	 =
∂2	

∂wk∂wj
= −

N∑
n=1

xnx
T
n (Ikj − pnj)pnk (21)

with Ikj being the kjth element of the identity matrix of
rank K − 1. The previous equation can be formulated in a
matrix-vector product. Let us define P(kj) as an [N ×N ]
diagonal matrix whose elements are P(kj) = [(Ikj − pnj)pnk],
for n = 1, . . . , N . Let us further define Φ as the matrix X =
[x1, . . . ,xN ] of size (M + 1)×N . For any couple (k, j), the
product in (21) can be rewritten as

∇wk
∇wj

	 = −ΦP(kj)ΦT . (22)

Now, we concatenate either the columns of wk in a single array
w and of ∇wk

	 in ∇	(w) to get two column vectors of size
(M + 1)(K − 1), and we define the Hessian matrix

H =
[
∇wk

∇wj
	
]

(23)

as the (M + 1)(K − 1)× (M + 1)(K − 1) block matrix hav-
ing in position (j, k) the matrix ∇wk

∇wj
	 achieved in (21) or

(22). The Newton–Raphson update, for minimizing the negative
conditional log-likelihood 	(w), takes the form

w(l+1) = w(l) −H−1∇	(w) (24)

and converges to a solution, provided that a stop criterion has
been defined.

B. Regularization

Searching for the global minimum of the nonlinear function
defined in (19) could get it stuck in local optima. It is for
this reason that the solution is often modified to account for
a regularization term (in order to control the overfitting) so that
the total error function to be minimized takes the form

	′(w) = 	(w) + γΘ(w) (25)

where γ is the regularization coefficient that controls the rel-
ative importance of the data-dependent error 	(w) and of the
regularization term Θ(w). One of the most used forms of

regularization is given by the sum of squares of the weight
vector elements

Θ(w) =
1

2
wTw (26)

as this has the advantage that the error function remains a
quadratic form of w. Using the regularization term, (20) and
(21) are modified as follows:

∇wj
	′ =∇wj

	− γw (27)

∇wk
∇wj

	′ =∇wk
∇wj

	− γ (28)

while (24) remains unchanged.
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Iterative Hyperspectral Image Classification Using
Spectral–Spatial Relational Features

Pietro Guccione, Luigi Mascolo, and Annalisa Appice

Abstract—This paper describes the principles and implemen-
tation of an algorithm for the classification of hyperspectral re-
mote sensing images. The proposed approach is novel and can
be included within the category of the spectral–spatial classifi-
cation algorithms. The elements of novelty of the algorithm are
as follows: 1) the implementation of two classifiers that work
iteratively, each one exploiting the decision of the other to improve
the training phase, and 2) the use of relational features based
on the current labeling and on the spatial structure of the image.
The two classifiers are fed with the spectral features and with the
spatial features, respectively. The spatial features are built using
the relative abundance of each class in a neighborhood of the pixel
(homogeneity index), where the neighborhood is properly defined.
An important contribution to the success of the method is the
adoption of a multiclass classifier, the multinomial logistic regres-
sion, and a proper use of the posterior probabilities to infer the
class labeling and build the relational data. The results of the two
classifiers are eventually combined by means of an ensemble deci-
sion. The algorithm has been successfully tested on three standard
hyperspectral images taken from the Airborne Visible–Infrared
Imaging Spectrometer and ROSIS airborne sensors and compared
with classification algorithms recently proposed in the literature.

Index Terms—Hyperspectral image classification, iterative
classification, Markov random field (MRF), multinomial logistic
regression (MLR), spectral–spatial analysis.

I. INTRODUCTION

R EMOTE sensing hyperspectral imaging sensors are
spaceborne or airborne instruments able to collect hun-

dreds of images at the same time and for the same area of
the Earth, each one corresponding to a different wavelength
channel [1]. The concept was first introduced by the NASA Jet
Propulsion Laboratory with a system called Airborne Imaging
Spectrometer and successively continued using the Airborne
Visible–Infrared Imaging Spectrometer (AVIRIS), which is
able to collect more than 200 spectral bands in the visible and
near infrared wavelengths [2].

A hyperspectral image is a cube of images where each
pixel is a vector of values representing the spectral signal that
characterizes the underlying object. The number of applications
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of such systems is large and increasing [3]. One of the promi-
nent applications is classification, i.e., the ability to generate a
thematic map where each pixel is assigned to a specific class of
land cover [4], [5]. The classification of hyperspectral images is
a challenging problem for several reasons: 1) The spectral sig-
nature given by an area (like bare soil, vegetation, and cropping)
is just a theoretical reference since the footprint of a resolution
cell is actually a function of many factors due to illumination
(acquisition geometry) and weather conditions (period of the
year and meteorological status); 2) each resolution cell imaged
by the sensor usually includes more than a single land cover
(called endmember in [6]); and 3) the spectral characteristics of
an endmember are subjected to time and spatial changes.

The problem of hyperspectral image classification has been
faced using different approaches. In principle, good classifi-
cation performance can be achieved using standard classifica-
tion algorithms if a large number of training pixels (properly
distributed among the classes) is available and the test set is
generated using pixels taken from the same image. However, it
is difficult to define a proper training set for the learning of the
classification algorithm [7]. The effort needed to collect such
pixels that often requires a human-supervised work, as well as
the need to extend the algorithm to other images with the same
(or similar) class distribution, makes the problem still open and
challenging.

Often, in practical applications, the number of labeled pixels
is not sufficient to perform a reliable estimate of the classi-
fier parameters in the learning phase of the algorithm. If the
number of training samples is relatively small compared to the
number of features (and to the parameters to be estimated), we
have the well-known Hughes phenomenon [8]. Another critical
aspect is the quality of the training samples, affected by the
nonstationary nature of the spectral signatures of the classes in
the spatial domain and by the correlation existing among them
[9]. The nonstationarity of the features in the spatial domain is
due to physical factors such as the characteristics of the imaged
area and the atmospheric conditions at the time of acquisition.
In principle, a training set should be able to catch the whole
statistics behavior of the scene, but this is unfeasible, as it
only implies the prior knowledge of the statistical properties
of the scene. On the other hand, the correlation between pixels
violates the assumption of independence between samples, thus
reducing the amount of information conveyed to the classifica-
tion algorithm.

To overcome the problem of limited quantity and quality of
training samples, some basic approaches have been proposed in
the literature. Among the best performing supervised learning
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methods, support vector machines (SVMs) have been largely
applied with success in hyperspectral image classification [10],
[11]. SVMs are also known as maximum margin classifiers, as
they define a separating hyperplane that maximizes the distance
between the nearest data points on both sides. In SVMs, only a
subset of the training samples (the support vectors) contributes
to the classification rule. Furthermore, in order to face the
problem of nonlinearly separable classes, the kernel trick can
be exploited. It allows us to solve the problem of defining a
nonlinear separating hyperplane in a higher-dimensional fea-
ture space by performing a nonlinear mapping of the data,
where the separating hyperplane is linear. As a consequence,
the kernels allow us to train a linear machine in a nonlinear
space, potentially circumventing the high-dimensional feature
problem inherent in the hyperspectral image classification. In
several works, SVMs have proved to perform better compared
to other classification algorithms, including artificial neural
networks [12]. SVMs are eventually less sensible to the Hughes
phenomenon; on the other hand, they are intrinsically binary
classifiers, and the tricks adopted to circumvent this impair-
ment, such as the one versus all, one versus one, or hierarchical
approach, do not definitively solve the problem as a multiclass
classifier does.

Other attractive approaches to classification are those based
on transductive learning (TL) [9], [13], [14] and active learning
(AL) [7], [15]. In the TL, an iterative algorithm is imple-
mented, and both labeled and unlabeled samples are used in
the classification process. At each iteration, a number of unla-
beled samples are optimally chosen to condition the hyperplane
position and shape and to provide a better classification of
the remaining samples in the next iteration. TL is especially
effective in cases where the collection of a reliable training set
(in terms of spatial and statistical distribution and of size) can be
very demanding. In AL, classification is achieved in an iterative
process, where, at each step, few unlabeled samples are added
to the training set (as for the transductive). These samples are
chosen in an optimal way, but supervision is needed to assign
them to a class [7], [15]. The process is iterated, producing a
clear improvement of the classification accuracy but requiring,
at the same time, a large effort from an external supervisor.

Another set of strategies followed in hyperspectral image
classification concerns the exploitation of the spatial informa-
tion, as near pixels are supposed to be correlated to one another.
The success of such techniques arises from the fact that images
cannot be treated as an unordered listing of spectral measure-
ments without spatial arrangement [16]–[18], so labeled sam-
ples can support the classification of their neighbors. One of the
approaches used to integrate spatial and spectral information
consists in modeling the image with a Markov random field
(MRF). The spatial-contextual information is included in the
classification process by adopting a maximum likelihood prior
to modeling the image of class labels [18], [19]. This prior
model encourages piecewise segmentations, fostering solutions
in which close pixels are likely to belong to the same class.
This approach can be considered a generalization of the Ising
model (with Gibbs distribution) [20] successfully adopted in
many image segmentation problems [18] to find the optimal
solution as the one with the minimum inner energy.

In this paper, we use the central strategy of both the ap-
proaches, i.e., the iterative process and the spatial information.
The central idea that we take from the iterative approach (as
in TL and AL) is that it is possible to start with a small set of
training samples. This set is enlarged using information coming
from an increasing number of unlabeled samples considered
reliable enough to contribute to the estimation of the classifier
parameters for a new learning session. In principle, the reliabil-
ity of the classification is expected to increase at each iteration.
On the other hand, the contextual information that can be ex-
tracted from a label field (derived from a previous classification
process) allows us to increase the accuracy since already clas-
sified samples can be used to infer a new decision on unreliable
pixels. This idea is not too far from the loopy belief propagation
approach [21]–[23], where marginals of class distribution are
computed by iteratively passing a message between samples,
becoming more and more reliable at each passage.

The two strategies are combined using two different classi-
fiers: one learned from the spectral features and the other from
the relational features. The two classifiers improve each other
using the output of the previous iteration. A native multiclass
classifier, the multinomial logistic regression (MLR), is used for
both classifiers, and both the soft (i.e., the posterior probability
of each class) and hard (i.e., the labeling) decisions for each
unlabeled sample are exploited in the process. The posterior
probabilities of the two classifiers are eventually combined
using an ensemble decision [24] to achieve the joint class
prediction and decide the exit strategy from the iterative loop.
The relational features are built using labeled samples to get the
homogeneity index [25], i.e., the relative abundance of a class
in a neighborhood of a pixel. The definition of the neighbor
may be function of spatial and spectral characteristics of the
image, and possibly may include nonlinear transformations of
the image through morphological operators [26].

This paper is organized as follows. In Section II, the prob-
lem is approached, and the key concepts of the algorithm
are outlined. In Section III, the elements of the problem are
given, and in Section IV, the algorithm is described. Section V
reports the experimental results and the relative discussion.
Finally, Section VI draws the conclusions and discusses future
developments.

II. PROBLEM APPROACH

A. CC Approach

Collective classification (CC) refers to the combined classifi-
cation of a set of interlinked objects using information coming
from the relation existing between features, between labels and
features, or between labels and labels of neighbor objects [27].
CC increases the classification accuracy when the class labels of
inter-related objects are correlated [24], [28], [29]. An effective
way to exploit interlinked relations among pixels in a hyper-
spectral image is to use the information coming from the given
features (the pixel spectral signature, called intrinsic) and from
a new set of features, the relational features, that summarize
the labeling achieved from the neighborhood. Usually, spatial
neighborhood is the most common way to exploit the relation
among pixels in an image, as pixels that are spatially close
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Fig. 1. High-level scheme of turbocode encoder and decoder. (a) First decoder (APP decod 1) exploits the intrinsic information and the first parity passed through
the channel. (b) Second decoder (APP decod 2) uses the intrinsic information, the second parity (passed through the channel), and the output of the first APP
decoder. From the second iteration on, the first decoder exploits also the extrinsic information given as output of the second decoder. The process then iterates.
For a complete explanation of turbocodes working, refer, for example, to [35].

between them are most likely to spectrally behave in the same
way, and this should be reflected in the relational features. On
the other hand, the construction of relational features based on
labeled samples is another way to build an MRF model of the
image.

In the classical works on CC, labeling is performed using the
joint information retrieved from intrinsic and relational features
[29]. CC methods explicitly use the data relationship to build
additional features exploited to learn a more predictive classi-
fier. One of the known problems in CC is that, usually, most
of the labels are unknown. A way to overcome this problem
is to refine classification through iteration using algorithms as
belief propagation, Gibbs sampling, or iterative classification
algorithm (ICA) [22], [27].

In ICA, as an example, the iterations are initialized by
labeling the samples of the test set. To this aim, a classifier
learned on the training set only (bootstrap classifier [24]) is
used. Next, the relational features are built using both the
known and the predicted labels; then, the classifier re-predicts
labels for the test set using both intrinsic and relational features.
The process is iterated until convergence or a stop criterion
is reached. The ICA algorithm is known to suffer from some
issues. First, relational features are computed by aggregating
classes collected in a neighborhood with a specific fixed size,
while real networks are frequently characterized by a class
distribution which may vary in shape and density across the
network. Second, the number of examples in the training set is
never extended through the iterative process. Finally, the class
labels are predicted by a single classifier, while the ensemble of
classifiers is frequently more accurate [30].

For this reason, a number of algorithms belonging to the class
of semisupervised learning algorithms (SSLs) have recently

appeared in the literature [31]–[34]. They perform a further
external iterative loop in which the learning is repeated every-
time the relational features are updated at the end of an ICA
process. These algorithms are distinguished for the way they
use the relational features to update the classifier (taking the
ones computed on all the samples or just on the training set).

B. From Collective Classification to a “Turbo” Classifier

The central strategy proposed in this paper starts from the
SSL algorithms presented in [24] but introduces a fundamental
difference: Here, we use two classifiers, one learned from the
intrinsic features and the other from the relational features. The
second classifier can be learned only once the first classifier has
labeled all the pixels since the relational features require the
labeling of all the pixels to be defined. Once the two classifiers
have been learned the first time, their output can be used to
increase the training set of the other (cross-iterative process),
exploiting the most reliable predicted samples. At each iter-
ation, the two classifiers calculate the posterior probabilities
of each class. These posteriors are used to both extend the
training set and to learn the other classifier at the successive
iteration. The reliability of the samples is given by the posterior
probability distribution among the classes: the more uniform
such distribution is, the less reliable a sample is.

Even if not strictly necessary to the understanding of the
concept, we consider useful to show the analogy between the
algorithm approach and the iterative decoding used in the tur-
bocodes [35]. The turbocodes are a class of high-performance
forward error correction codes, where the encoded binary mes-
sage is composed by three concatenated parts [see Fig. 1(a)]:
The information bits sent in clear (m) and two different parities
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(x1 and x2), achieved as output of two convolutional encoders.
Decoding is performed using an a posteriori probability (APP)
algorithm, the Bahl, Cocke, Jelinek, and Raviv algoritm [36],
applied on the intrinsic information (r0, i.e., the clear part of
the message passed through the channel) and on the extrinsic
information, which is r1 (i.e., the first parity passed through
the channel), and the output of the second APP decoder, when
available [from the successive iterations; see red arrows in
Fig. 1(a)]. The output of the first APP decoder, together with the
parity of the second encoder (passed through the channel r2),
represents the extrinsic information of the second APP decoder
[see Fig. 1(b)]. The output of each decoder is iteratively used to
improve the decoding of the other until a convergence criterion
is reached and the estimation m̂ of the message is given.
The turbocodes are powerful error correcting codes, reaching
stability in few iterations and being able to correct large bursts
of errors. The success of turbocodes in decoding a binary
message is based on the thin distance spectrum principle [37].
Shortly, in turbocode encoding, it is very unlikely to have binary
words with low Hamming weight from both the convolutional
encoders (a high weight is necessary for the success in error
detection and correction); in the same way, if we supposed a
good degree of independence between the spatial distribution
of land cover and land cover spectral properties, the use of
both properties would unlikely make both classifiers produce
so different (and wrong) responses. An initial soft classifi-
cation, i.e., a posterior probability, even slightly favorable to
the correct class will be improved by iterations. Classification
errors may occur only when a wrong class is assigned initially
to both the classifiers; in that case, the iterations can amplify
the effect.

The analogy of the proposed algorithm with turbocode de-
coding structure can be appreciated comparing Figs. 1 and 4.

III. ALGORITHM DESCRIPTION

A. Problem Definition

Let us suppose having a hyperspectral image composed of
N pixels, V = {v1, . . . , vN} (whose location in the image is
known), characterized by a M -dimensional vector of features
X = {x1, . . . ,xN}, with xT

n = [xn1, . . . , xnM ]. The features
are the measurements (taken from a resolution cell) in the
spectral bands acquired by the sensor, possibly after the re-
moval of the most noisy bands (for example, the bands of water
vapor absorption). We further suppose that the set of pixels
can be partitioned into K unordered classes, or subpopulations,
denoted by C = {Π1, . . . ,ΠK}. Each pixel in V is supposed to
be classified into one and only one of such classes.

The purpose of the hyperspectral image classification prob-
lem is to infer the class label of a set of unclassified pixels when
it is known: 1) the value of the features for all the pixels, i.e.,
the random vector X, ∀vn ∈ V , and 2) a limited set of known
labels, i.e., for a small number of pixels (the so-called training
set), V(a) = {v1, . . . , vL} ⊂ V [(a) stands for assigned], the
classes are known. Typically, L � N .

Usually, the remaining samples, i.e., V(u) = V \ V(a), are
considered the test set, for which the label must be assigned.

B. MLR

In the MLR model, the posterior probability of the classes
satisfies the following relation [38]:

p(vn ∈ Πi|X = x) =
fi(x)πi∑K

k=1 fk(x)πk

(1)

with πk being the prior probability for the class Πk, πk =
p(Πk), and

fk(x) = p(X = x|vn ∈ Πk) (2)

being the likelihood. Equation (1) can be rewritten by setting
the following log-odd functions [39]:

ui(x) = log (fi(x)πi) (3)

with which the posterior probabilities can be written as follows:

p(vn ∈ Πi|x) =
eui(x)∑K

k=1 e
uk(x)

, i = 1, . . . ,K. (4)

The idea behind the MLR model is to construct a predictor that
sets up a score function starting from a set of weights linearly
combined with the explanatory variables (i.e., the features) of
a given observation. The usual assumption for the conditional
probabilities of the features is that they are distributed as a
multivariate Gaussian, i.e.,

fk(x) ∼ N (μk,Σk) (5)

so that the log-odd ratios

Li(x) = ui(x)− uK(x) = w0,i +wT
i · x (6)

are linear combinations of the features. In the MLR model, the
log-odd ratios are linear combinations of the features, but the
Gaussian assumption is removed. This way, the weights are no
longer explained through mean and covariance; rather, they are
estimated straightly through X.

In this paper, the posterior probability that a sample belongs
to a given class is modeled using the MLR, i.e.,

p(vn ∈ Πi|x) =
eLi(x)

1 +
∑K−1

k=1 eLk(x)
, i = 1, . . . ,K − 1

p(vn ∈ ΠK |x) = 1

1 +
∑K−1

k=1 eLk(x)
(7)

with Li(x) defined in (6). The model can be directly extended
to the kernel version of MLR, in which the weights are com-
bined with a set of functions of the input features [40], [41].

Usually, in an MLR classifier, the class assigned to a sample
is the one for which the probability is the largest among the
classes, i.e.,

ŷnk =

{
1 k = argmax

k
{p(vn ∈ Πk|xn)}

0 elsewhere.
(8)

To fit the model (i.e., to learn the classifier), the set of (M +
1) · (K − 1) weights needs to be estimated (see Appendix A).
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Fig. 2. In the example, the SDHI is computed for the central pixel (in red) to
which class 3 is currently assigned. The pixels in green belong to the window
used to compute the SDHI according to (9).

C. Relational Features

In the following, we suppose that the image has been already
labeled, i.e., the matrix of the target variables Y = [ynk],
∀n, k = 1, . . . ,K, is someway given. There are a number of
possibilities to construct the relational features from the labels
using spatial or combining spatial and spectral properties of the
image. However, we have considered a too dispersive listing
of all the possibilities, as a sensitive analysis of the parameters
related to the method would follow in the experimental results.
Instead, we here describe just one method, called the spatial-
dependent homogeneity index (SDHI).

For a given pixel vn, let us define ∂vn as the set of pixel
neighbors of vn, including vn (the neighborhood is properly
defined hereinafter). The SDHI is defined as

αnk =
|∂vn|vj∈Πk

|∂vn|
, k = 1, . . . ,K (9)

i.e., the relative number of pixels that belong to a given class Πk

in the neighbor set (|∂vn| is the cardinality of the neighborhood
∂vn that must not be a null set). If we define a collection of
neighbor sets as follows:

{
∂v(s)n

}
, s = 1, . . . , S (10)

we have S ·K relational features defined as in (9). The shape
of the neighbor set can have the shape of either a square or a
circle with radius W or can have other shapes (for example, we
can consider the shapes adopted as structuring elements in the
morphological operations [42]); in alternative, particular shapes
can be used if prior information is available.

To simplify, let us suppose having the (partial) label map
illustrated in Fig. 2 as the starting condition to compute the
SDHI of the central pixel (in red) where only three classes
are present (enumerated by 1, 2, and 3). If we choose a square
neighborhood of size W = 7 (in green), the SDHIs for the three
classes are α1 = 14/49, α2 = 16/49, and α3 = 19/49. Please
note that α1 + α2 + α3 = 1.

Fig. 3. IRMC algorithm for hyperspectral image classification.

IV. ALGORITHM IMPLEMENTATION

The Iterative Relational Multinomial Classifier (IRMC) al-
gorithm is illustrated in Fig. 4 and formally described in Fig. 3.

A. Algorithm Steps

The inputs of the algorithm are the spectral features X , the
labels of the training set Y(a), the number of classes K, the
pixel locations V (used to define the neighbor sets), and a few
real-valued parameters detailed in the following. The algorithm
steps are described in the following.

1) The algorithm is initialized by using the feature vectors
in the training set X(1) = X(a) and their corresponding
labels Y(1) = Y(a) (line 2 of the algorithm). This training
set shall be gradually extended during iterations.

2) In the conditional loop (line 3), the first classifier is
trained (the function train) using the spectral features
and the associated labels (line 4). For an MLR classifier,
learning means to calculate the set of weights, Wx, as
described in Appendix A.

3) The first classifier is then used to find the posterior
probabilities for the test set using (7), which corresponds
to the function findP (see line 5).

4) The posterior probabilities p(1) are used to label the
image (i.e., the samples of the test set, as the training set
is already labeled), Y(1), as in (8) (function classify;
see line 6). The labels for the pixels of the training set are
left unchanged (line 8).

5) The posterior probabilities p(1), and if necessary the
spectral features, are used to build the relational features
XR as in (9) (line 9).
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Fig. 4. Classification algorithm block diagram. Please note the analogy in the structure with the turbocode decoding scheme proposed in Fig. 1. The role of
the intrinsic information is here played by the spatial coordinates of pixels, while the extrinsic information (r2 in Fig. 1) are generated using the output of the
first classifier (red dotted line), so it is not a totally independent source coming from the channel, as for turbocodes. This is the main difference between the two
algorithms.

6) The second classifier is learned (line 12) using the en-
larged training set and their corresponding relational fea-
tures XR(2). The pixels of this set are defined as the ones
for which the maximum probability among the classes is
higher than a threshold

V(2)=

{
vn|ynk=

{
max
k∈C

{
p(1),nk

}
>β · e−η1i)

}}
(11)

with β > 0.9 (line 10). The threshold is progressively re-
laxed to increase the set size during the iterations i and to
account for the supposed progressive convergence of the
algorithm towards a stable solution. As in point 4), the
labels of the training set are left unchanged (line 11).
The output of the learning stage is the set of weights Wr.

7) The second classifier is then used to find the posterior
probabilities p(2) for all the pixels [(7), line 13].

8) From the posterior probabilities p(2), the image is labeled
again, Y(2) [(8), line 14].

9) To close the loop, the new training set processed by
the first classifier is built using a relation similar to
(11), where, again, the threshold is progressively relaxed
(line 16)

V(1)=

{
vn|ynk=

{
max
k∈C

{
p(2),nk

}
>β · e−η2i

}}
. (12)

The parameters η1 ad η2 are chosen experimentally (with
η = 0, meaning that no relaxation is given at all). Again,
the label for the pixels of the training set is left unchanged
(line 17).

10) In the literature [38], the negative logarithm of the like-
lihood is usually defined as the error function. The error
function, computed at the end of the classification process
for the first and the second classifiers (lines 7 and 15,
respectively, and function negllh), is used to evaluate
the degree of convergence of the cycle

G = −
∑
n

∑
k

ynk log pnk, n = 1, . . . , N. (13)

Since we have two error functions (G1 and G2), their
geometric mean is taken, and its difference with respect
to the previous iteration (ΔG) is used to condition the
loop (lines 18, 19, and 3).

B. Final Class Labeling

At the end of the iterative process, the outcome of the algo-
rithm is a set of labels describing the whole image and obtained
as the output of the first and second classifiers Y(1) and Y(2).
Initially, the two sets of labels are mostly different since each
of them has been obtained exploiting different properties of
the image: the spectral similarity in one case and the spatial
correlation of labels in the other. It is for this reason that the
combined use of the two classifiers is expected to give the
highest information in the first few iterations, when the diversity
between the two labels is the largest. Successively and until
convergence, it is expected that the labels will provide progres-
sively similar information, i.e., the solution tends to stabilize
with the increase of iterations. This reasoning is supported by
the experimental results in Section V-C.

To get the joint probability, instead of Y(1) and Y(2), we use
the posterior probabilities achieved at the end of the conditional
loop, p(1) and p(2). The two conditional probabilities are the
(soft) outcome of the two classifiers, given the intrinsic and the
relational features, respectively

p(1) = p(V(1)|X)

=
{
p(vn ∈ Πk|X = xn), vn ∈ V(1)

}
p(2) = p(V(2)|XR)

=
{
p
(
vn ∈ Πk|XR = xR,n, vn ∈ V(2)

)}
. (14)

Assuming X and XR as two conditionally independent events,
given the class Y , the combined prediction (see line 21 and
[24]) is

p(Y|X,XR) =
p(X|Y)p(XR|Y)p(Y)

p(X,XR)
(15)

and after a few passages

p(Y|X,XR) =
p(Y|X)p(Y|XR)

p(Y)
· p(X)p(XR)

p(X,XR)
. (16)

In the previous equation, p(Y|X) and p(Y|XR) are p(1) and
p(2), respectively, while p(Y), i.e., the prior probability of
the class distribution, can be estimated using the training set
(the supervised classification of the training set is supposed
to be performed on pixels picked up in a random way), or
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exploiting some prior information concerning the class abun-
dance. The second fraction does not need to be estimated since
p(Y|X,XR) can be estimated using a normalization indepen-
dent of Y . The posterior probability is hence used for the final
classification (line 22) as in (8).

V. EXPERIMENTAL RESULTS

The accuracy of the IRMC has been evaluated using three
real hyperspectral data sets. The remainder of the section
includes the following: a description of the data sets used to
achieve the performances (Section V-A), a description of the
experiments carried out (Section V-B), a discussion on the se-
lection of the parameters and algorithm analysis (Section V-C),
the presentation of the results (Section V-D), the sensitivity
analysis (Section V-E), and the comparison with the previous
literature and a discussion about the advantages and limit of the
algorithm (Section V-F).

A. Data Set

The data sets used for the evaluation of the algorithm per-
formances are Indian Pines, University of Pavia, and Salinas.
These data sets are well known and widely used benchmarks
for hyperspectral image classification and can be easily found
on the Web.

1) AVIRIS Indian Pines: The scene was gathered by the
AVIRIS sensor [2] over the Indian Pines test site in North-
western Indiana and consists of 145 × 145 pixels and 224
spectral reflectance bands in the wavelength range 0.4–2.5 μm.
The scene is a subset of a larger one and includes two-
thirds agriculture and one-third forest or other natural perennial
vegetation. There are other topographic elements such as two
highways, a rail line and low-density dwelling, and smaller
roads. Since the scene has been taken in June, some of the crops
present are in their early stages of growth. The ground truth
available has been organized into 16 classes not all mutually
exclusive. The number of bands is usually reduced to 200 by
removing bands covering the region of water absorption.

2) ROSIS Pavia University: The scene was gathered by the
ROSIS sensor during a flight campaign over Pavia, northern
Italy. The number of spectral bands is 103. The scene consists
of 610 × 340 pixels, but some of the samples contain no
information and have been discarded before the analysis. The
geometric resolution is 1.3 m. The image ground truth has been
differentiated into nine classes.

3) AVIRIS Salinas: This scene was collected by the AVIRIS
sensor over Salinas Valley, California, and is characterized by
high spatial resolution (3.7-m pixels). The area is composed by
512 × 217 pixels. As for the Indian Pines scene, the 20 water
absorption bands have been discarded. The scene includes
vegetables, bare soils, and vineyard fields. The ground truth has
been organized into 16 classes.

B. Experimental Setting

The experiments have been executed using four different
classifiers: the proposed IRMC and three basic classifiers taken

TABLE I
EXPERIMENT SETTINGS FOR MLR, IRMC, lSVM, AND kSVM

for comparison, i.e., the MLR and the SVM with both linear
(lSVM) and radial basis function kernel (kSVM). For SVM,
the one-against-all strategy has been adopted for the choice of
the final class.

The logistic regression algorithm (in MLR and IRMC) re-
quires to iteratively solve a nonlinear system of equations
to obtain the weights (see Appendix A for the solution and
Appendix B for the regularization). Since some of the features
are highly dependent on each other (i.e., they do not constitute
a mutually exclusive minimal set of descriptors), the inversion
of the matrix in (24) can be difficult, thereby making the
problem ill-conditioned. The ill-conditioning problem in MLR
is known and has been already faced in the literature, with
code implementations publicly available on the Web [18], [43].
However, the computational complexity of such algorithms is
high and makes them not suitable in the iterative scheme of
IRMC. It is for this reason that we decided to reduce the set
of both spectral and relational features by using the principal
component analysis (retaining 99% of variance) [44].

The data set has been initially divided into two parts, a train
set T and a test set S , with each class population equally
distributed between the two sets. Successively, smaller subsets
T (p) of data have been randomly drawn from T , according
to the experiment needs and preserving the relative class pop-
ulations. Experiments have been carried out using different
percentages of training sets (up to 10% of the total number of
pixels in the data set, which corresponds to 20% of pixels in
T ). Then, the subsets T (p) have been used to train a classifier,
and performance has been measured on S . Each experiment has
been repeated five times, and the average and standard deviation
of the accuracy were reported.

No kernel rule has been applied to the logistic regression
algorithms (even though it may be applied), and this is the rea-
son to include, for a fair comparison, the linear SVM classifier.
Comparison with previous studies, however, suggested to in-
clude also the kernel SVM in the analysis. For SVM algorithms,
the parameters have been optimized according to a grid-search
method. The relational features have been generated according
to Section III-C and using a set of neighbors of square shape
and increasing size.

The main experimental settings are summarized in Table I.

C. Optimization of Parameters

IRMC requires the choice of a number of parameters (see
Fig. 3): {Nit, ε, β, η1, η2}.
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Fig. 5. Selection of the parameters that control the conditional loops. (a) Error
function G [see (13)]. (b) Finite difference of the error function (ΔG in line
18) and the value chosen for ε (the horizontal red line). The figures refer to the
AVIRIS Indian Pines data set with 10% of training set and five folds.

The two parameters that control the conditional loops (the
loop described in Fig. 3 and the internal loop described in
Appendix A) are ε and Nit, respectively. The choice of suitable
values for ε and Nit has been made basing on the trend of error
function G. In an iterative process, it is expected that the error
function decreases monotonically. In the case of IRMC, instead,
the posterior probability out of a classifier conditions the input
of the other classifier, and this explains the oscillatory trend
of the error function during iterations. As already discussed in
Section IV-B, by going on with iterations, it is expected that
the posterior probabilities provided by the two classifiers be-
come more similar, i.e., the corresponding labels progressively
provide similar information. This reasoning is supported by the
general trend of the error function of (13), which is displayed
in Fig. 5(a) and which has been found similar for the other
data sets.

We arbitrarily selected ε equal to the average, in the last five
iterations, of the finite difference of the error function ΔG and
Nit sufficiently high to be sure that ΔG has reached a steady
state around the selected ε.

The parameters {β, η1, η2} control the amount of transduc-
tive pixels [9] to be included at each iteration in the converging
process. In detail, the exponential decaying laws in (11) and
(12) control the amount of samples that are believed reliable
enough to update the set of samples with which classifiers can
be trained. While convergence is assured, a way to automat-
ically derive such parameters (as in many other optimization
algorithms, for example, the stochastic gradient descent) is
hard to define since parameters are too much dependent on the
experimental conditions.

Intuitively, a very low value of β (i.e., a very low starting
threshold) yields a high number of pixels to be included too
early in V(1) and V(2), when the differences among spectral
and spatial classification are expected to be high. This decision
can generate instability in the process and a lower accuracy in
output. On the other hand, a too low value for η1 or η2 may lock
the threshold to high values, avoiding the training set to enlarge
and making the convergence slow.

In order to give an example, we carried out different ex-
periments using Indian Pines with 10% of the training set, in
a fivefold cross-validation. In the first set of experiments, we
changed the value of β within a suitable set. Results in Table II
suggest that a high value of β is desirable to achieve high
accuracy, with an optimal value reached for β = 0.97. Higher

TABLE II
SENSITIVITY ANALYSIS OF IRMC TO PARAMETERS {β, η1, η2} AND

CORRESPONDING OA. INDIAN PINES DATA SETS,
10% OF TRAINING SET, AND FIVE FOLDS

USED FOR EACH EXPERIMENT

values, perhaps, could make the convergence of the system
too slow and drive the performance to decrease. Similarly, the
values of η1 and η2 have been changed (letting β = 0.97), and
the accuracy was measured. Final results in Table II suggest
that the optimality is reached with different values among η1
and η2, which is reasonable, since each parameter controls
the degree of convergence (during the iterations) of the labels
coming from two different classifiers (spectral and spatial).
The final combination of parameters used for the three data
sets and for the subsequent experiments has been {β, η1, η2} =
{0.97, 0.0, 0.1}.

D. Experimental Results

In Table III, the classifiers are compared on the three data sets
in terms of overall accuracy (OA), average accuracy (AA), and
κ-statistics. The results have been generated for different sizes
of the training set. Linear SVM performs better than MLR in
Indian Pines but not for Pavia University and Salinas, while
kernel SVM performs better than linear SVM and MLR in
Indian Pines and Pavia University but not in Salinas. Finally,
IRMC is superior to all the classifiers and for all the percentages
of the training set, even if the gain is superior for Indian Pines,
more contained for Pavia University, and close to zero for the
Salinas data set.

The classification maps obtained for the Indian Pines data set
by IRMC and kSVM are compared in Fig. 6. A visual inspec-
tion reveals that the notable difference between the two maps
is that, in SVM, the errors are uniformly distributed (the salt-
and-pepper effect in the homogeneous regions) while, in IRMC,
the errors are more concentrated in highly heterogeneous areas,
where spatial separability among classes is more difficult. As an
example, in the upper right part of the image [see Fig. 6(a)], the
algorithm has confused the class Soybean-mintill with classes
Corn-notill and Soybean-notill; in the upper left part of the
picture, the class Corn-notill has been confused with Soybean-
notill. This result is in agreement with the class accuracy in
Table VII, where, for Indian Pines, we found that Corn-notill,
Soybean-notill, and Soybean-mintill have a precision and a
recall that are lower than the average over the classes. This is
expected for Soybean-notill and Soybean-mintill as they repre-
sent different degrees of plowing or harvest of the same crops.
Instead, the algorithm does not perform well for Corn-notill
probably because one of the plots of land belonging to this
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TABLE III
OA, AA, AND κ-STATISTICS FOR INDIAN PINES, PAVIA UNIVERSITY, AND SALINAS DATA SETS AND DIFFERENT PERCENTAGES OF

TRAINING SET. LINEAR SVM, RBF KERNEL SVM, MLR, AND IRMC HAVE BEEN COMPARED

Fig. 6. Indian Pines data set classification maps for (a) IRMC (OA = 93.27%) and (b) SVM (OA = 81.84%). The ground truth and the legend are shown in
(c) and (d), respectively.

class is surrounded by large areas of paths belonging to the
Soybean-notill class. Even in this case, the misclassification
may be due to the criterion used for the evaluation of the spatial
features (shape/size of the windows).

E. Sensitivity Analysis

The key elements of IRMC are as follows: 1) the iterative
procedure; 2) the use of the MLR; and 3) the supplemental
information provided by the spatial features. All the three
elements actively contribute to the good performances of the
algorithm. To show this, we carried out further experiments in
which the MLR classifier and the spatial features are removed.
The experiments have been executed using the Indian Pines data
set, with a training set of 10% and five folds.

In the first experiment, we replaced the classifier within
the algorithm, using the naive Bayes classifier [39], since it
provides also the posterior probabilities. The achieved OA was
73.29%, i.e., higher than that in the pure MLR case, but not
as high as that in the IRMC case. In our version of the Bayes
classifier, we adopted the multivariate normal distribution for
both the spectral and spatial features, conditioned to the class.
In [39], it is suggested that the logistic regression is more
robust to data nonnormality than the Bayes classifier, and
consequently, the performances are expected to be better. On
the other hand, the logistic regression is asymptotically less
efficient than Bayes and requires a higher sample set to be
trained to get the same (asymptotic) performance.

TABLE IV
OA FOR DIFFERENT VERSIONS OF THE ALGORITHM

In the second experiment, we removed the use of the spatial
information, leaving a single MLR classifier that iteratively
increases its training set at each iteration. While this algorithm
resembles the transductive classification, a comparison with the
transductive SVM proposed in [9] cannot be given since the
tSVM was tested on a data set different from those used in this
study. The achieved OA has been 69.79%, which is not very
different from that of the pure MLR. Results of the different
tests, collected in Table IV, confirm that all the three elements
are peculiar to the success of the IRMC algorithm.

We finally report the classification performance as a function
of the following: 1) the size of the training set and 2) the size of
the window used for the computation of the spatial features.
Both such analyses have been carried on the Indian Pines
data set.

In the first experiment, we tested the sensitivity of the algo-
rithm to the size of the training set. The experimental conditions
are the ones described in Section V-B. In Table V, the OA, its
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TABLE V
OA, STANDARD DEVIATION OF OA, AA, AND κ-STATISTICS

FOR INDIAN PINES DATA SET AS A FUNCTION

OF THE TRAINING SET SIZE

TABLE VI
OA, STANDARD DEVIATION OF OA, AA, AND κ-STATISTICS FOR INDIAN

PINES DATA SET AS A FUNCTION OF THE WINDOW SIZE

standard deviation over five folds, the mean accuracy, and the
κ-statistic are reported. As expected, the accuracy increases with
the number of samples while the standard deviation decreases.

In the second experiment, we tested the sensitivity of the
algorithm to the spatial feature extraction. The spatial features,
estimated according to (9), are a function of the number of
considered neighborhood windows [the value S in (10)] and
of their shape and size. In order to simplify the analysis,
we used a set of square windows, setting a single parameter
to decide the size and number of the square windows. With
reference to Table VI, for each experiment, we computed the
SDHI for a set S of square windows of size W = 2l + 7, with
l = 0, . . . , S − 1. Therefore, for example, with S = 6, we com-
puted the SDHI for windows of size W = [7, 9, 11, 13, 15, 17].
The results in Table VI show that the increase of accuracy is
good up to a certain value of S; it may be supposed that the
performance increases until the size of neighbor windows is less
or comparable with the average size of the homogeneous areas
in the data set (this quantity may be someway related with the
spatial correlation length). In Table V, we used the best result
of Table VI, i.e., W = 13.

F. Comparison With Previous Studies

The result for Indian Pines is comparable with that achieved
in Table II (last column) of [22], where an OA of 94.76% is
reported with a training set of 10% of the ground-truth data. In
Table VII, the class-by-class precision and recall (i.e., accuracy
on class) have been reported. The accuracy metrics have been
collected by running our algorithm with the same percentage of
the training set used in [22], for a fairer comparison. The same
analysis has been repeated for Pavia University, where, how-
ever, we selected a balanced training set (i.e., proportional to the
class population) of 10%, while the training samples per class in
Table III of [22] are variable. Anyway, for the Pavia University
data set, we achieved an OA higher than that in [22] (85.78%)
even with a training set of 3%. Looking through the class-
by-class results of the Indian Pines data set, IRMC performs

better than the algorithm proposed in [22] just for a few classes,
such as Corn-mintill, Grass-pasture, or Woods, where we got
96.07%, 97.98%, and 97.56% of recall, respectively, compared
to 90.68%, 96.66%, and 94.48% in Table II of [22]. These
classes are sometimes located in areas far enough from areas
belonging to other classes with which they can be confused (see
in Fig. 6(c) the Woods class for example). A similar behavior
has been found for the Pavia University data set, for example,
comparing the Bare Soil and Metal Sheet classes, where we
got 83.91% and 99.25% of recall, respectively, compared to
73.27% and 97.97% achieved in Table III of [22] (the ground-
truth map of the Pavia data set is in [22]).

Similar considerations hold if we compare IRMC perfor-
mances with the ones in Table II (last column) of [45] (for
Indian Pines, 5% of the training set) and Table III (last column)
of [45] (for Pavia University, the training set is chosen in a
variable way, as in [22]). The IRMC class-by-class results for
the case of 5% of Indian Pines are not reported; however, we
found that IRMC performs worse just for the classes identified
in the comparison performed above with [22]. On the other
hand, the method in [45] performs better for all the classes
in the Pavia University data set (in [45], the OA for the Pavia
data set is 98.09%) since that algorithm has more flexibility in
constructing the spatial information through an extensive use
of the morphological profiles. Finally, similar considerations
hold also in the comparison with the results in [30], where OA
for Pavia University is higher compared with our case, while
for Indian Pines, the experiment is different (in [30], a fixed
number of samples per class is taken), so no conclusions can
be drawn.

A general consideration on the limit of IRMC is that the
proposed algorithm certainly takes advantage of the spatial
information, but it has little sensitivity at the borders of homo-
geneous areas. IRMC has hence difficulty in the classification
of pixels belonging to classes located in crowded (i.e., highly
heterogeneous) areas, performing worse than other spatial-
spectral methods. This may be due to the size of the win-
dow used to get the homogeneity index. The need to have
a fixed value of such window that is large enough to cap-
ture the spatial information from neighbors is then a limit
of the proposed algorithm. On the other hand, IRMC has
high capability in classifying pixels in homogeneous areas
once an optimized set of the spatial windows is provided (see
Section V-E).

Another weakness of the algorithm, as already marked in the
Introduction, is that classification errors especially occur when
both classifiers assign a wrong class during the first iterations
since, in that case, subsequent iterations tend to confirm the de-
cision. A more robust version of the algorithm, in future, could
take advantage of an ensemble of classifiers (for the spectral
and the spatial decisions) to limit the number of these cases.

A final impairment of the algorithm is the required computa-
tional time, which substantially increases compared to simpler
solutions. In order to have a comparison, a single fold of SVM
on Indian Pines (experimental conditions as in Section V-D,
with a training set of 5%) takes about 3.5 s (apart from the
grid search, which is very time consuming), while IRMC takes
about 485 s.
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TABLE VII
NUMBER OF TRAINING SAMPLES, IRMC CLASS-BY-CLASS PRECISION, AND RECALL (TRAINING SET: 10% OF TOTAL DATA SET)

VI. DISCUSSION AND CONCLUSION

In this paper, we have proposed a new algorithm for
spectral–spatial hyperspectral image classification using rela-
tional features and iteration between two classifiers. According
to our knowledge, this represents an innovative contribution
in the related field because of the introduction of two main
elements of novelty: 1) an iterative structure between two
classifiers and 2) the construction of a set of relational features
that are based on the spatial structure of the image and on the
labels determined at the current iterative step.

The algorithm shows higher performance compared to basic
classifiers (MLR and SVM), while it is comparable (in some
case better) to the spectral–spatial algorithms proposed in the
literature. In detail, we found that IRMC outperforms SVM
on the Indian Pines data set, while the accuracy gain for the
Pavia University and Salinas data sets is less marked but still
present. Results have been further illustrated on the classifi-
cation maps, to describe the behavior of the algorithm and its
spatial-dependent capability to achieve correct classification.

IRMC has shown to take advantage of the spatial informa-
tion, but probably, the use of the windows to collect the spatial
features is not optimal since the lowest accuracy has been found
just in high heterogeneous areas. Concerning this aspect, it can
be interesting to investigate, in future, on other methods to
generate the spatial features. As an example, the homogeneity
index may be computed on spatial neighbors identified by
windows whose shape adaptively changes with the local texture
of the area, to better account for the heterogeneity; another
possibility is to use a set of windows of different shape or
orientation as structuring elements to construct morphological
operations (as openings or closings). The SDHI could be com-
puted after the application of the sequence of such operators
applied on the labeled maps. Such operators, in fact, have been
successfully used in [46].

The several ways to build relational features are related to an-
other problem: the hyperdimensionality of the samples. In our
algorithm, the number of relational features is proportional to
the number of classes and of windows used (see Section III-C).

With different ways to get the spatial features, a number as
high as 1000 could be easily reached. In this case, methods
to reduce the features by using dimensionality reduction tech-
niques (PCA for example) become mandatory to avoid the
Hughes phenomenon since the labeled set is supposed to be
limited. Another possibility, again, may be to use an ensemble
of classifiers to deal with the lower ratio between the initial
number of training sets and the number of features.

All such possibilities and challenges will be the matter of
future investigations.

APPENDIX

A. Determination of Weights for MLR

The MLR model assigns the posterior probabilities p(vn ∈
Πi|x) by means of (1). To achieve the posterior probabilities
for all the samples, it is necessary to fit the observations to the
model, i.e., to estimate the weights w0i,wi. Let us redefine the
weights as follows:

wi = [w0i,w
T
i ]

T (17)

with i = 1, . . . ,K − 1. Each new array has size M + 1 so that
the total number of weights to estimate is (M + 1)(K − 1).
The conditional likelihood can now be written as

L(w1, . . . ,wK−1|X) =

N∏
n=1

K∏
k=1

pynk

nk (18)

with pnk defined in (7) and ynk being the target variables,
defined in (8). The negative conditional log-likelihood is then

	(w1, . . . ,wK−1|X) = −
N∑

n=1

K∑
k=1

ynk log pnk (19)

which is also known as the cross-entropy error function [see
(13)] for the multiclass classification problem.

In the logistic regression, the maximum likelihood has no
closed-form solution due to the nonlinearity of the logistic
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sigmoid function. Anyway, the departure from a quadratic
dependence of the log likelihood function on the parameter
vector is not substantial. To be precise, the error function is
concave; hence, it has a unique minimum.

This minimum can be found by an efficient algorithm based
on the Newton–Raphson iterative optimization scheme [38],
[47], which uses a local quadratic approximation to the log-
likelihood function. Making use of simple algebraic relations,
we get

∇wj
	 =

∂	

∂wj
=

N∑
n=1

xn(ynj − pnj) (20)

where the array of explanatory variables has been redefined
as x = [1 xT ]T . Equation (20) is a column array of M + 1
elements and is defined for j = 1, . . . ,K − 1. The second
derivative is

∇wk
∇wj

	 =
∂2	

∂wk∂wj
= −

N∑
n=1

xnx
T
n (Ikj − pnj)pnk (21)

with Ikj being the kjth element of the identity matrix of
rank K − 1. The previous equation can be formulated in a
matrix-vector product. Let us define P(kj) as an [N ×N ]
diagonal matrix whose elements are P(kj) = [(Ikj − pnj)pnk],
for n = 1, . . . , N . Let us further define Φ as the matrix X =
[x1, . . . ,xN ] of size (M + 1)×N . For any couple (k, j), the
product in (21) can be rewritten as

∇wk
∇wj

	 = −ΦP(kj)ΦT . (22)

Now, we concatenate either the columns of wk in a single array
w and of ∇wk

	 in ∇	(w) to get two column vectors of size
(M + 1)(K − 1), and we define the Hessian matrix

H =
[
∇wk

∇wj
	
]

(23)

as the (M + 1)(K − 1)× (M + 1)(K − 1) block matrix hav-
ing in position (j, k) the matrix ∇wk

∇wj
	 achieved in (21) or

(22). The Newton–Raphson update, for minimizing the negative
conditional log-likelihood 	(w), takes the form

w(l+1) = w(l) −H−1∇	(w) (24)

and converges to a solution, provided that a stop criterion has
been defined.

B. Regularization

Searching for the global minimum of the nonlinear function
defined in (19) could get it stuck in local optima. It is for
this reason that the solution is often modified to account for
a regularization term (in order to control the overfitting) so that
the total error function to be minimized takes the form

	′(w) = 	(w) + γΘ(w) (25)

where γ is the regularization coefficient that controls the rel-
ative importance of the data-dependent error 	(w) and of the
regularization term Θ(w). One of the most used forms of

regularization is given by the sum of squares of the weight
vector elements

Θ(w) =
1

2
wTw (26)

as this has the advantage that the error function remains a
quadratic form of w. Using the regularization term, (20) and
(21) are modified as follows:

∇wj
	′ =∇wj

	− γw (27)

∇wk
∇wj

	′ =∇wk
∇wj

	− γ (28)

while (24) remains unchanged.
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