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BASED ON A PERTURBATION OF CARTER’S SOLUTION

LUCIANO AFFERRANTE AND MICHELE CIAVARELLA

Corrugation in railways, and especially short pitch corrugation (30–80 mm), is still considered something
of an enigma, despite extensive research. Models based on repeated impacts or differential wear, such as
Grassie and Johnson’s (1985) and Bhaskar et al.’s (1997), seem not to be conclusive, or not to suggest
the correct wavelength.

Further models have been suggested, either linear (Frederick, Valdivia, Hempelmann, Vassilly and
Vincent) or nonlinear (Mueller), but most suggest a constant frequency mechanism invariably connected
to vertical resonances of the system either in the low frequency range (50–100 Hz, the resonance of the
vehicle’s unsprung mass on the track stiffness referred to here as the “P2 resonance”, close to the Hertz
contact resonance), or at about 1000 Hz (pinned-pinned resonance, in which the rail vibrates almost as
if it were a beam pinned at sleepers), or even higher frequencies still (1700–1800 Hz). The experimental
data available, by contrast, do not fit these frequency ranges. The discrepancy is tentatively explained
with “contact filtering” and varied traffic ideas, but do not convince completely.

In this paper, we stress the importance of wheel inertia in coupling the oscillations of normal load,
with the variations of tangential load and longitudinal creepage. A simple zeroth order perturbation
of the classical rolling contact solutions is suggested, which obtains good qualitative agreement with
experimental evidence. The model also leads to the recognition that vertical resonances are not crucial
in explaining corrugation, as believed in previous models, since we use an extremely simple model
of an Euler beam with no elastic support, having no resonances. Important factors for the growth of
corrugation are the friction coefficient and the tractive ratio. High longitudinal creepage is needed to
promote rapid development, and this can arise from curving, hunting motion or misaligned axles, and
is probably exacerbated by high contact conformity, since this increases the fluctuating component of
longitudinal creepage due to the movement of the contact point. With discrete supports, we expect a
modulation of corrugation wavelength and amplitude, but this requires a separate investigation, not just
the inclusion of pinned-pinned resonance.

1. Introduction

Corrugations have been observed and studied for more than a century, and many tentative explanations
have been put forward, but none seems convincing for short-pitch rail corrugation (“roaring rails” ) in
the range of 20–80 mm wavelength [Grassie and Kalousek 1993]. This is because a nonproportional
increase in corrugation wavelength with increasing trains speed is observed, as in Figure 1 of [Bhaskar
et al. 1997a], which displays data from a 1911 BR report, David Harrison’s thesis data (1979), and the
Vancouver SkyTrain metro system data.
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This makes simple vertical resonance models unsuccessful, and calls for nonlinear effects, or a thresh-
old. For example, a simple mass vertically suspended on a spring-and-damper system — a model used
to attempt to explain corrugation of roads, a process known in North America as washboarding (see
[Both et al. 2001] and references therein, the more recent [Hoffmann and Misol 2007], and also http://
en.wikipedia.org/wiki/Washboarding and its external links) predict that instability occurs for all wave-
lengths larger than a critical value linearly dependent on speed, which depends on the properties of the
vehicles and the road surface. However, the wavelength observed in roads seems typically to correspond
to frequencies one or two orders of magnitude higher than the lowest vertical resonance of the system.

Similar troubles emerge when attempting to use such simple models for railway corrugation, since the
Hertz spring contact resonance model suggested by Carson and Johnson [1971], and observed in twin-
disk machines in [Johnson and Gray 1975], suggests a frequency which is highly damped, and hence
the normal impact mechanism inducing plastic deformations is observed only at higher wavelengths.
Frederick [1987], from BR research, reports that plastic deformation occurs on the peaks where at the
short-pitch corrugation frequency corresponds indeed the peak of the normal force, but not on the troughs.
There is a need to an alternative explanation for short pitch corrugation, perhaps competing with the
plastic deformation mechanism. Indeed, Frederick also reports that high plastic deformation resistant
material show corrugation quickly, although the increase of wear resistance slows the rate of formation.
Other general observations were given in the well known paper [Grassie and Kalousek 1993], namely
that short pitch corrugation is (i) primarily observed on high-speed track, at 100–250 km/h; (ii) mainly on
tangent track and on large radius curves with relatively low axle loads; and (iii) with wheel-rail excitation
in the frequency range 350–2800 Hz. The first two observations clearly point at a phenomenon which
requires sufficient energy to develop and probably sufficient creepage.

A model based on differential wear was then proposed by Grassie and Johnson [1985]. They cal-
culated the frictional energy dissipation in the slip zone of the contact patch as a wheel rolls over a
sinusoidally corrugated rail. However, since they assumed a constant longitudinal creepage (perhaps
under the assumption that the large mass of the vehicle would stop the rotational speed of the wheel
to change?), the phase of wear remained very close to the peak of normal force (close to the crests),
promoting a mechanism for reduction of corrugation in the frequency range of interest. There was no
maximum in the energy dissipation at a particular fixed wavelength independent of vehicle speed, and at
typical speeds, the predicted phase did not correspond to a wear maximum in the troughs of an existing
corrugation.

This attempt certainly became well known in railways industries and other academic contexts where
corrugation was heavily studied, mainly BR, Berlin University, and later Chalmers in Sweden. Assuming
that Grassie and Johnson showed longitudinal creepage removed corrugation, the possibility of traction
or braking was not included in some later models, and a fortiori the inertia of the wheel and the rotational
dynamics of the system were neglected. We can gather this impression from Frederick, head of research at
BR, who in a discussion to the paper [Hempelmann and Knothe 1996] asks why not including longitudinal
creepage, since it is known to be generally larger than lateral creepage, “although likely to suppress
corrugation”.

Frederick [1987] first suggested a perturbation analysis of the nonlinear relationships between normal
and tangential forces, creepage and wear, and using complex functions transfer functions, valid for both
longitudinal as well as lateral creepage, for defining conditions for which the phase of dissipation would
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be such that the component out-of-phase with the initial wave could progress. Unfortunately, many
details of the models are very crudely represented. The corrugation is found to be enhanced if there is in
the initial rail energy in the frequency range 800–900 Hz which correspond to surface profile positioned
near or over a sleeper, attributed to a high vertical impedance and low lateral impedance of the rail.
Frederick suggests that it may be possible that extending the analysis to lower frequencies, another high
impedance may be found when the sleepers vibrate in antiphase to the rail. The results are however
probably affected by the many assumptions in the model.

To explain the discrepancies, Frederick [1987] and Valdivia [1988b; 1988a] have introduced the idea
of a “contact filter” , so that in fact the dynamic contact force is mostly amplified in a narrow band of
frequency. In particular, for lower speed traffic, the filter makes the pin-pin frequency band “inactive”
because it would produce corrugation at less than 1.5 times the contact patch length (i.e. about 20 mm).
The 300–400 Hz band is then active (P2 resonance), but that, again, roughly produces corrugations of
the observed wavelength. Mixed traffic can reinforce waves of roughly the same pitch. However, this
idea of “contact filter” was never really validated.

Significant progress was made by the group of Prof. Knothe in Berlin, and at the Charmec research
centre of Chalmers University in Sweden. Groß-Thebing [1993] looked at the transient dynamics effect
devising a numerical method using the program CONTACT by Kalker defining generalized complex
Carter coefficients to define the tangential load harmonic oscillations due to perturbation of the steady
state for harmonic creepage. This code was used in [Hempelmann and Knothe 1996; Hempelmann
1994] but unfortunately, concentrating on lateral creepage alone. Hempelmann also attempts to take into
account the discrete nature of support of the rail, although with a spurious Fourier analysis not allowing
for parametric resonance; in [Hempelmann and Knothe 1996], the authors attributes the corrugation
wavelength to pinned-pinned resonance at about 1000 Hz. This resonant frequency (or more precisely,
the slightly higher antiresonance) may indeed have some effect in corrugation, but Hempelmann’s results
do not seem to show this, whereas Müller [1998] in his more sophisticated nonlinear version, seems to
conclude corrugation to correspond to the low vertical receptance at approximately 1000 Hz, although
he also shows that other structural dynamics effects can also dominate the profile development, e.g. the
high lateral rail receptance between 1600 and 1800 Hz and the low vertical rail receptance near 300 Hz.

Bhaskar et al. [1997a; 1997b] looked at the Vancouver SkyTrain tramway system where no traction
or braking is done at the wheels, yet longitudinal creepage “can arise from curving, hunting motion or
misaligned axles”, and indeed their reference case has three comparable components of steady creepage.
However, the fluctuating parts of creepage are only caused by conformity (“principal cause of fluctuating
longitudinal creepage was found to be the fluctuation in rolling radius due to the movement of the contact
point [see equation (27) in [Bhaskar et al. 1997a], which is almost in phase with the angular ripple at most
frequencies”), whereas rotational inertia of the wheelset is not included in the model, nor its complete
receptance. Incidentally, these authors also attempted to simplify the results of the Groß-Thebing method
fitting some results with a spring and dashpot in series at the contact: in particular, the stiffness of the
spring is estimated by from a static Mindlin problem, and the dashpot from the zero-th order perturbation
of the Carter-like steady state rolling contact solution. However, all this is based on a single fitting of
Groß-Thebing’s results with oscillating longitudinal creepage and constant normal load, so while it is
likely that the method has sufficient validation for pure oscillation of tangential load alone, the authors do
not indicate how to estimate energy dissipation in the general case, and indeed only use the damping term
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(no transient effects) in most later calculations — as it will be done in the present paper, which therefore
is the equivalent of their paper with no account of conformity of the contact, but with the addition of
inertia of the wheel and its dynamics.

It is surprising that the corrugation literature is vast and spans more than a century (Sato et al. [2002]
estimate about 1500 papers), yet true comparisons between models and a careful consideration of the
critical ingredients have not been attempted in the literature, leaving the impression that only extremely
sophisticated models (and accordingly, accurate measurements for many parameters) could reproduce
the phenomenon. We shall return to this later, when our simple model will indeed be developed in this
paper.

Towards a simple model. A recent paper [Grassie and Edwards 2008] attracted our attention and moti-
vated the present study. The first author is clearly one of the leading authorities in the field of corrugation,
being one of the authors of the influential paper [Grassie and Johnson 1985] two decades ago, which
however was unsuccessful in that the corrugation phase could not correspond to the trough of the profile.
Hence, it was natural to compare the approaches of the two papers to see what was wrong in the early
paper. [Grassie and Edwards 2008] distinguishes between corrugation initiated (i) as a result of a varying
normal load with essentially constant tangential load — applied traction and braking, steering forces or
a combination of the two — (ii) from a varying tangential traction with essentially constant normal load,
and (iii) occasionally as a result of a combination of the two. Case (i) is said to be associated to either
the resonance of the vehicle’s unsprung mass on the track stiffness referred to here as the “P2 resonance”
(typically in the range 50–100 Hz) or the “pinned-pinned resonance” of the rail (typically at much higher
frequencies, around 1000 Hz), in which this vibrates almost as if it were a beam pinned at sleepers. This
second resonance is called the “dominant wavelength-fixing mechanism for main-line corrugation”. This
association did not appear very rigorous, but one immediate reaction on this classification was that the
normal load would vary as a result of corrugation or roughness on the railway, and hence its oscillation
would indeed be in the range of high frequency. Therefore, it would be difficult to assume that tangential
load could be constant also in this frequency unless the inertia of the wheel were very low, giving the first
ingredient added in the present paper. However, the extremely simple analytical estimate of differential
wear from the energy dissipation in the steady state fluctuating only as a result of the fluctuations of
creepage from varying normal load, seem to qualitatively fit some experimental data. This results into a
brutally simple equation, but no check is made on the phase of the differential energy dissipation, which
had been the trouble in the earlier [Grassie and Johnson 1985]. Trusting Grassie’s intuition had pointed
in the correct direction, we were therefore motivated to investigate more.

We shall try to consider if it is possible to include only just enough ingredient to explain corrugation,
more precisely checking the issues raised by Grassie and Edward within a simple, analytical, perturbation
of a Carter solution, in the form including 3D effects in Bhaskar et al. Removing the hopes to include
transient effects with the spring+dashpot model, because we believe that the transient effects would
anyway require separate and sophisticated treatments, we permit nevertheless both tangential load and
creepage to oscillate. Then, we shall consider the phase of the differential energy dissipation, to see if
the negative conclusions of Grassie and Johnson apply also to this more general case.
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Figure 1. The model under investigation.

2. The model

We shall consider a 2D model with vertical and rotational degrees of freedom (Figure 1). The rail is
corrugated in the simple form

1 exp (ιωt) ,

where ω = 2πV/λ; here V is the velocity of the train and λ the corrugation wavelength. Finally, 1 is the
amplitude of corrugation, which is up to about 100µm when full unloading occurs and a linear model is
no longer possible, although the noise would become so large that this is prevented in most maintenance
strategies. We suppose the normal problem is independent of the tangential problem and results in a
normal force

P = P0+ P1 exp (ιωt) . (1)

We linearize about a given steady state, given by the mean value normal force P0 , tangential force Q0,
and creep ratio ξ0. We will linearize the contact stiffness in the vertical and tangential direction, and
make a perturbation of the steady state solution, to estimate the tangential velocities in the contact area.

The steady state creep ratio ξ0 is defined as the relative velocity of the rail with respect to the wheel

ξ0 = 1−
�0 R

V
=
∂u0

∂x
, (2)

where we are assuming braking conditions, so �0 R < V and ξ0 > 0.
In the transient conditions, the local sliding velocity is a function of both x and t . We can define the

transient creepage as the instantaneous rigid body velocity of the rail (V ) and that of the wheel (�(t)R)
— i.e. the rigid body creepage

ξ (t)= 1−
�(t)R

V
, (3)

The perturbative approach will work well if things don’t change too fast relative to the motion of the
contact region. In a solution with only longitudinal creepage, perturb (3) about �0, ξ0, to have

ξ − ξ0 =−
(�−�0) R

V
(4)
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We introduce a 3D solution equivalent to Carter’s; it is also described in [Bhaskar et al. 1997a, (5a)],
as the longitudinal creep ratio (we assume no lateral creep)

ξ = ξmax

[
1−

(
1−

Q
µP

)1/3
]
, (5)

where Q is the resulting tangential force which is only in the x-direction, and ξmax is given by1

ξmax =
3µ
C00

[
16P

9 (1− ν)2 R2
e G

]1/3

, (6)

with the Kalker’s creep coefficient expressed approximately as a function of a/b

C00 = 2.84+ 1.2
a
b
≈ 2.84+ 1.2

(
R1

R2

)2/3

, (7)

so that (5) can be rewritten as

Q = µP

(
1−

(ξmax− ξ)
3

ξ 3
max

)
.

It then follows that the dissipation in the steady state is

W0 = V ξ0 Q0 = µP0V
(

1−
�0 R

V

)(
1−

(ξmax− 1+�R/V )3

ξ 3
max

)
, (8)

where we have substitute for ξ the expression ξ = 1−�R/V and ξmax is a function of P , according to
(6). Hence, by differentiation, we obtain the zero-th order perturbation as

Q P =
∂Q
∂P

∣∣∣∣
P0,�0

=
2µξ0

ξmax

(
1−

ξ0

2ξmax

)
; (9)

Q� =
∂Q
∂�

∣∣∣∣
P0,�0

=−
3µR P0

V ξmax

(
1−

ξ0

ξmax

)2

; (10)

WP =
∂W
∂P

∣∣∣∣
P0,�0

=
2µV ξ 2

0

ξmax

(
1−

ξ0

2ξmax

)
= V ξ0 Q P; (11)

W� =
∂W
∂�

∣∣∣∣
P0,�0

=−
6µP0 Rξ0

ξmax

[
1−

3ξ0

2ξmax

(
1−

4ξ0

9ξmax

)]
. (12)

The fluctuating parts of tangential load and dissipation can therefore be written in the form

Q1 = Q P P1+ Q��1 (13)

W1 =WP P1+W��1 . (14)

1We are defining the Kalker coefficients as positive, for simplicity, and hence change the sign of the creep-load relationships
as more commonly found in the literature.
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Coupling with the dynamics. The dynamic equilibrium of the wheelset, which we simplify now with
no stiffness or damping, gives

Iw
d�
dt
= (Q− Q0) R (15)

where Iw is the inertia of the wheel. Moving to the oscillatory parts therefore, (15) reduces to

ιωIw�1 = Q1 R (16)

Substituting �1 from (16) into (13), we have

Q1 = Q P P1+ Q�
Q1 R
ιωIw

, (17)

and collecting Q1, we can write the tangential load oscillatory term in the perturbation as a function of
the oscillatory term in normal load only,

Q1 =
Q P

1− Q�R/(ιωIw)
P1. (18)

For dissipation, substituting �1 from (16) into (14), we have

W1 =W1 =WP P1+W�
R

ιωIw
Q1 = Q P

(
V ξ0+

W�

ιωIw/R− Q�

)
P1 (19)

In dimensionless form we can define the dissipated power Ŵ1 =W1/ (µP0V ξ0) as

Ŵ1 =
2ξ0

ξmax

(
1−

ξ0

2ξmax

)1−
6
ξmax
·

1− 3ξ0
2ξmax

(
1− 4ξ0

9ξmax

)
ι Îwζ +

3
ξmax

(
1− ξ0

ξmax

)2

 P1

P0
(20)

where we have introduced the following dimensionless terms

Îw =
IwV 2

2µP0a0 R2 ; ζ =
2ωa0

V
=

4πa0

λ
. (21)

where a0 is the semiwidth of contact in longitudinal direction

a0 =

(
3 (1− ν) R Re P0

4G Rr

)1/3

(22)

and Re =
√

R Rr with R the rolling radius of the wheel and Rr the other relative radius of curvature
between the wheel and the rail.

Because microslip and dissipation for a small imposed creep occur towards the rear of the contact,
whereas the present calculation associates dissipation with the position of the wheel, the lag of dissipation
at a point on the rail is overestimated by about 2πa0/λ= ζ/2. For this reason the phase of W1 is corrected
by introducing a phase lag of −2πa0/λ. However when the tractive ratio is large, near to full sliding
conditions, dissipation occur nearer the centre of the contact area. In this case the lag of dissipation at a
point on the rail is overestimated by about πa0/λ= ζ/4. In between full stick, and full slip, we assume
a linear variation of this correction.
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Vertical dynamic model. When the frequency of interest for corrugation is greater than about 500 Hz,
the dynamics is dominated by that of the rail described with a simple Euler beam model, not even
requiring the inclusion of the elastic supports usually described with Winkler foundations: an infinite
beam subjected to a stationary force and whose magnitude oscillates in time at frequency f = ω/2π .
The mathematical description of the beam model is obtained from the case of load moving with speed V
given in the Appendix, although it has certainly been obtained elsewhere previously. For validation and
comparison, we shall use the more sophisticated model of Bhaskar et al. [1997a; 1997b], where the rail is
continuously supported by uniformly distributed rail pads, sleeper mass and ballast. The effect of discrete
sleepers in that work was neglected, because the SkyTrain system has mostly a continuous support.

3. The model

Figure 2 shows the variation with the frequency of the amplitude and phase of the vertical receptance.
With solid line we plot the receptance of an infinite beam subjected to a force that moves at speed V ,
with dashed line the receptance of the model of rail presented in [Bhaskar et al. 1997a]. The comparison
is done for mrail = 56 kg/m, V = 27.8 m/s and Irail = 2.35× 10−5 m4 as typical values.

For their model, a sharp resonance peak is found at about 100 Hz, corresponding to a vibration mode in
which the loaded track vibrates as a whole on the flexibility of the ballast. However, this mode of vibration
has been associated with the long wavelength corrugations (greater than 200 mm), which display severe
plastic deformation in their troughs. Short pitch corrugation is associated with much higher frequencies
(corresponding to wavelength in the range of 20–80 mm), and for high frequencies we note the similarity
between the Bhaskar model and the present beam model in terms of the asymptotic value of vertical
receptance, for which we get (see Appendix)

Hrail =
exp (−ι3π/4)

2
√

2
(
m3

rail E Irail
)1/4

ω3/2
. (23)
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Figure 2. Vertical direct receptance (E = 207 GPa; mrail = 56 kg/m; mw = 350 kg;
V = 27.8 m/s; Irail = 2.35× 10−5 m4).
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Figure 3. Normal load P1/P0 (1 = 3.15× 10−5 m; E = 207 GPa; mrail = 56 kg/m;
mw = 350 kg; V = 27.8 m/s; Irail = 2.35× 10−5 m4).

Figure 3 shows the amplitude and phase of normal load P1. The normal load is evaluated as

P1 =
1

Hrail+ Hw + 1/kH
, (24)

where Hrail, Hw, 1/kH are receptance of rail and wheel, respectively, and the inverse of Hertz stiffness.
For Hw, we are simplifying the receptance with that of the concentrated mass,

Hw =−
1

mwω2 (25)

and for the Hertz stiffness we use the expression

kH =

[
6G2 P0 Re(

1− ν2
) ]1/3

. (26)

To distinguish the various contributions, Figure 3 plots each term of the equation above 1/Hrail,
1/Hwheel, and kH1 separately, together with the resulting sum normalized with respect the mean normal
load P0 (the value of 1= 3.15× 10−2 mm was taken such that the maximum value of P1/P0 is 1). The
dominant effect at low f is the wheel, then the rail at intermediate frequencies. The phase moves from
about 135◦ corresponding to the rail alone (somewhere near 300 Hz) down to 0◦ for the contact spring
alone at very high frequencies.

4. Differential energy dissipation

We start with nominal conditions (normal load P0 = 50 k N , creepage −0.4%, BR rail geometry and
wheels, mass of the wheel or wheelset 350 K g, but inertia reduced using the formula 0.75mwR2/2).
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Figure 4 shows contour plots of the real part of dissipation W1 (ten equally spaced contours from 0 to
the smallest value in the figure, which obviously is for the highest speed) with respect to the values
of wavelength λ and speed V for tractive ratio τ = Q0/µP0 = 0.1 and τ = 0.95 (left and right panes,
respectively) and for the simplified present model of the rail. Solid circles indicate the highest predicted
growth for a given speed. In the plots the lines at constant frequency which gives the best fit of the
minimum of real part of W1 and experimental data points are also shown for reference. Notice for
typical values of speed for which short pitch corrugation is observed (λ= 20–80 mm) the model gives
the highest predicted growth at almost constant frequency, but a large area where growth is possible, and
in good agreement with experimental data, except perhaps at the smallest speeds, where there seems to
be some additional “filtering”.

Figure 5 shows the same contour plots with the model of the rail in [Bhaskar et al. 1997a]. Similar
results to Figure 4 are observed, especially at low tractive ratio (Figure 5, left). However, at low speeds,
we have a new possible one or two other lines of possible growth at very low frequencies (about 180 Hz).
This regime becomes more important at high tractive ratio (Figure 5, right), showing that the additional
“filtering” is due to the low frequency receptance, deviating from the simpler Euler beam behaviour, i.e.,
due to the supports.

In Figure 6, left, we plot curves of the minima of dissipation (now in the dimensionless form Ŵ1 =

W1/W0 which removes the linear dependence on speed) for different tractive ratio τ . The minima are
evaluated by considering a window of variation for λ equal to 20–80 mm. It is clear that a constant value
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Figure 4. Contour plot of the real part of dissipation with respect to the initial undulation
of the corrugation in term of λ and V , for calculations made using the present model
(Euler beam for the rail): left, τ = 0.1; right, τ = 0.95. Solid circles indicate the highest
predicted growth for a given speed. Data points from Figure 1 of [Bhaskar et al. 1997a]
have been superimposed, as follows: open circles, BR survey (1911); triangles, Harrison
(1979); crosses, Vancouver Skytrain (1992).
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Figure 6. Left: Variation with the speed V of the maximum growth of dissipation,
min(Ŵ1) for different tractive ratios. Right: Relation between the wavelength λ of corru-
gation and the speed V for which we have the maximum dissipation, for different values
of inertia of the wheelset (τ = 0.1). For both parts, 1= 3.15× 10−5 m; E = 207 GPa;
ν = 0.3; mrail = 56 kg/m; mw = 350 kg; Irail = 2.35× 10−5 m4; µ = 0.4; P0 = 50 kN;
R = 0.46 m; Rr = 0.23 m.
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10−5 m; E = 207 GPa; ν = 0.3; mrail = 56 kg/m; mw = 350 kg; Irail = 2.35× 10−5 m4;
µ= 0.4; τ = 0.1; P0 = 50 kN; R = 0.46 m; Rr = 0.23 m.)

indicates here a linear increase with speed, and the deviations occurring mostly at high tractive ratio, are
due to the switching from one frequency line to the other.

Figure 6, right, shows the relation between the wavelength λ of corrugation and speed V for which we
have the maximum growth of dissipation for different inertia of the wheelset. In particular, the limit cases
of constant tangential force (Iw→ 0) and constant creepage (Iw→∞) are plotted and compared with
a typical case of inertia (Iw = 27.77 kg m2). The limit cases can be considered as bounds for the values
of (λ, V ) which give growth of corrugation, and also explain why the assumptions of constant tangential
load or constant creepage are significantly in error, particularly when considering also Figure 7 with the
value of the dimensionless minima of Ŵ1 for the same cases of inertia considered in Figure 6. Again we
can notice that constant tangential force and creepage bound the maximum growth of corrugation.

In Figure 8, for fixed speed (V = 30 m/s), we plot the variation of the minimum of Ŵ1 with the tractive
ratio and inertia of wheelset, respectively. In the first case we have a monotonic decrease of the minimum
of Ŵ1 (i.e. an increase of predicted exponential growth of corrugation) with τ . In the latter, an increase
of the inertia Iw corresponds to a decrease of dissipation.

5. Discussion

Grassie and Johnson [1982a; 1982b; 1982c; 1982d] improved and extended beam models also to excita-
tion on vertical, longitudinal and lateral excitation, using also careful experiments to compare the results.
However, the wheelset dynamics has so many narrow resonances that its role is neglected. In the few
cases where it is included, its role however seems crucial, perhaps even larger than what it really is, when
considering other effects.
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maximum growth of dissipation, min(Ŵ1), for fixed speed V = 30 m/s (1 = 3.15×
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µ= 0.4; P0 = 50 kN; R = 0.46 m; Rr = 0.23 m; for the panel on the right, τ = 0.1.)

For example:

(a) Tassilly and Vincents [1991a; 1991b] introduce the wheelset behaviour in full curve via its frequency
response function, showing predominantly transversal wear on the leading wheelset corresponding
to its first bending mode, and longitudinal wear on the rear one, related to the first torsional mode
of the wheelset.

(b) Diana et al. [1998] suggest that the model of Tassilly and Vincents does not justify the case of
changing corrugation with a simple change of the pad stiffness, as observed in the Milano subway
they analyze. They notice corrugation wavelength is not driven by vertical resonances — neither
the P2 frequency nor the pinned-pinned frequency (first bending mode) could correspond to the
frequency of corrugation, and all the other higher resonant frequencies of the wheelset on the track
do not change with the change from the stiff to the soft superstructure. Therefore they proposed a
mechanism based on the discrete nature of the support and its periodic change of stiffness.

(c) Elkins et al. [1998], in a study of North American transit railways suggest the second torsional
resonance of wheelset also at about 300 Hz as the fixing mechanism.

The closest to our model is in [Diana et al. 1998], the first part of which proposes a simple wheel with
concentrated inertia and mass, rolling over a corrugated rail, in turn supported by a structure with periodic
change of stiffness. The contact mechanics is simplified with a relationship similar to a Carter solution,
although linear in normal load. However, their model is purely integrated in time, and results only for one
specific case are illustrated, whereas here we explore fully the behaviour of the system by a perturbation
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analysis, permitting to explore the growth of corrugation as a function of all the crucial various parameters.
The model shows significant enhancement of corrugation growth with the periodic change of stiffness,
which we shall include in later studies. This could be interpreted as inducing parametric resonance on
the system, as studied by some authors more in the context of noise than corrugation (see, for example,
[Wu and Thompson 2006; Sheng et al. 2006; Wu and Thompson 2004]). However, from these same
studies, we expect that corrugation is enhanced in its growth and also modulated in amplitude, but not
necessarily will change significantly its wavelength.

Hence, it seems surprising that the corrugation wavelengths may have been frequently associated to
the pinned-pinned resonance at about 1000 Hz [Hempelmann and Knothe 1996; Müller 1999; 2000;
1998; Grassie 2005].2. Surprisingly, Hempelmann’s thesis [1994], in Figure 7.15, has a full comparison
of wavelength-speed like our Figure 1, two regimes are predicted around a 400 Hz line and around a
1450 Hz one, the first value not too far from one of our predictions. In [Hempelmann and Knothe 1996],
reference to the 1450 Hz regime disappears, and instead there is a suggestion to the highest growth at the
pinned-pinned resonance at 1060 Hz. Mueller, in his sophisticated nonlinear model [1999; 1998], seems
to confirm Hempelmann’s results, adding that other structural dynamics effects can also dominate the
profile development, e.g. the high lateral rail receptance between 1600 and 1800 Hz and the low vertical
rail receptance near 300 Hz. A detailed comparison is not possible but clearly would be interesting.

6. Conclusions

This note suggests a very simple model permitting a closed form treatment and full exploration of the
phenomenon of corrugation with its possibly most crucial factors. The rotational dynamics of the wheel,
which surprisingly is missing in many models, couples with the rotational dynamics with the vertical
dynamics via the contact mechanics at the interface, leading to a strong effect of the train speed on the
possible phase between normal load and local wear.

The results explain why Grassie and Johnson [1985] could not suggest an adequate mechanism, as
the predicted phase corresponds to very large vehicle speeds, whereas our model shows that the phase
between normal load and differential wear varies largely with speed, and hence should be included to
justify the phenomenon.

The corrugation growth is found strongly increasing with the tractive ratio, and hence in stopping
or departing conditions, the corrugation growth should be very high. This may explain the second
observation of Grassie and Kalousek [1993], since a low normal load may increase the tractive ratio,
and this may dominating over the decrease due to the fact that wear is also proportional to the dynamic
normal load in turn proportional to the steady state mean value. A large inertia of the wheel may lower
the speed for corrugation growth.

Appendix: Dynamic response of the rail

We consider the problem of an infinite beam subjected to a force that moves at speed V and whose
magnitude oscillates in time at frequency f = ω/2π (where ω is the pulsation of the oscillation). In the

2Grassie reports that the pinned-pinned resonance is more precisely given as “about 800 Hz in the UK, for a sleeper spacing
of 0.75 m and 56 kg/m rail, whereas in much of continental Europe it is more commonly about 1200 Hz because of the closer
sleeper spacing (0.6 m) and heavier rail section (60 kg/m).”
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steady state the vertical displacement of the beam will be of the form

u =U (x − V t) exp (ιωt) (27)

The equation on the motion for the beam, except under the load, is

dT
dx
=−mü,

where T is the shear force and m is the mass of the beam per unit length. From the linear elastic theory
of the beam we also have

E I
du2

dx2 = M,
d M
dx
= T,

where E I is the flexural rigidity of the beam and M is the bending moment. It follows that

E I
d4u
dx4 +m

d2u
dt2 = 0.

Now we introduce the damping in the above equation by adding the term Cu̇, giving

E I
d4u
dx4 +m

d2u
dt2 +C

du
dt
= 0, (28)

where C is a damping coefficient.
By using (27) in (28) and cancelling the common factor exp (ιωt), we obtain

E IU I V
+m

(
V 2U ′′− 2ιVωU ′−ω2U

)
+C

(
−V U ′+ ιωU

)
= 0.

If we introduce the following dimensionless variable ξ defined as

V ξ
ω
= x − V t,

in which case
U ′ (x − V t)=

ω

V
U ′ (ξ)

etc., we obtain

KU I V (ξ)+U ′′ (ξ)− 2ιU ′ (ξ)−U (ξ)+ Ĉ
(
−U ′ (ξ)+ ιU (ξ)

)
= 0,

where

K =
E Iω2

mV 4 =
4π2 E I
mV 2λ2 (29)

is a dimensionless flexural rigidity and

Ĉ =
C

mω
� 1.

Noting that the parameter λ= 2πV/ω is the wavelength of the implied corrugation.
The problem is therefore governed by the dimensionless parameters K and Ĉ and the phase shift

between the excitation force and implied corrugation will be a function only of these parameters.
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Solution. Equation (28) has the solution

U (ξ)= A exp (sξ) ,

where A is an arbitrary complex constant and s satisfies the fourth degree polynomial equation

K s4
+ s2
− 2ιs− 1+ Ĉ (−s+ ι)= 0

To avoid the complex coefficient in this equation, we can write

s = ισ,

giving
Kσ 4
− σ 2
+ 2σ − 1+ Ĉ (−ισ + ι)= 0. (30)

For Ĉ = 0 the solutions of (30) are

σ1,2 =
1±
√

1− 4k
2k

; σ3,4 =
−1±

√
1+ 4k

2k
,

where k2
= K .

We notice that all the roots are real if k < 1/4 and hence K < 1/16. For K > 1/16, σ1,2 are complex
and σ3,4 are real. This in turn implies that roots for s are either all pure imaginary, or else two are
complex and two are imaginary. The imaginary roots correspond to waves of constant amplitude, so it
is difficult to know what to do about conditions at infinity. Physically, this corresponds to the fact that
the undamped beam can support free vibrations and if the wavelength of these are suitably chosen, they
can be combined to give a travelling wave of any given speed. We can get around it by imposing a small
amount of damping.

Our concern is with the two real roots σ3,4 and we anticipate that for small Ĉ we can modify them in
the form

σ3 =
−1+

√
1+ 4k

2k
+ Ĉg3 (k) ; σ4 =

−1−
√

1+ 4k
2k

+ Ĉg4 (k) .

Differentiating (30) with respect to Ĉ , we have(
4Kσ 3

− 2σ + 2− Ĉι
) dσ

dĈ
− ι (σ − 1)= 0,

and hence
dσ

dĈ
=

ι (σ − 1)

4Kσ 3− 2σ + 2− Ĉι
.

Substituting σ = σ3 and Ĉ = 0, we obtain:

g3 (k)=
dσ

dĈ
=−

ι

2
√

1+ 4k
.

which shows that ιg3 (k) is always positive, hence the real part of the modified root s3 is positive.
Next substitute σ = σ4 so that

g4 (k)=
dσ

dĈ
=

ι

2
√

1+ 4k
.
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Apart from the ι factor, this is positive for all k and hence ιg4 (k) < 0 and the real part of the modified
root s4 is negative.

Boundary conditions. We construct a solution for the region ξ > 0 using the roots with negative real
part,so

U (ξ)= A1 exp (s1ξ)+ A4 exp (s4ξ) .

For ξ < 0, we use the roots with positive real part giving

U (ξ)= A2 exp (s2ξ)+ A3 exp (s3ξ) .

We require continuity in u and its first two derivatives (the second derivatives to achieve continuity of
bending moment M), giving

A1+ A4 = A2+ A3, A1s1+ A4s4 = A2s2+ A3s3, A1s2
1 + A4s2

4 = A2s2
2 + A3s2

3 . (31)

The final equation comes from the requirement that the shear force has a discontinuity of magnitude
F0 exp (ιωt) at the origin. In other words

T
(
0+
)
− T

(
0−
)
= F0 exp (ιωt) ,

which implies
E Iω3

V 3

(
U ′′′

(
0+
)
−U ′′′

(
0−
))
= F0. (32)

We therefore have

A1s3
1 + A4s3

4 − A2s3
2 − A3s3

3 =
F0V 3

E Iω3 .

The receptance will be determined by the complex ratio between F0 and the displacement under the load
which is

u0 = A1+ A4. (33)

It will be a function of K (and hence of the frequency f ). Notice that this is physically meaningful only
above the value of K that makes g3 (K ) > 0. Further the result will be only slightly affected by g3 and
g4 as long as these are small, and hence we can simplify the problem by setting these to zero.

Large K limit. Consider the case where K � 1, which is equivalent to V → 0 in view of (29). In other
words, in this limit, we should recover the solution for an oscillating load that is stationary at the origin.
The roots then tend to the values

s1 =−
1
√

k
; s2 =

1
√

k
; s3 =

ι
√

k
; s4 =−

ι
√

k
,

and from the boundary conditions (31), (32) and (33), we then get

u0 =−
F0 (1+ ι)

4
(
m3 E I

)1/4
ω3/2

.

Thus,

u (0)= u0 exp (ιωt)=−
F0 (1+ ι)

4
(
m3 E I

)1/4
ω3/2

exp (ιωt) ,
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which we can rewrite as

u (0)=
F0

2
√

2
(
m3 E I

)1/4
ω3/2

exp (ι (ωt − 3π/4)) .

Thus, the displacement lags from the force by 3π/4= 135◦.
The vertical receptance can hence be written as

Hrail =
u (0)

F0
=

exp (−ι3π/4)

2
√

2
(
m3 E I

)1/4
ω3/2

.
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