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The concept of a profile decomposition formalizes concentration compactness arguments19

on the functional-analytic level, providing a powerful refinement of the Banach–Alaoglu20

weak-star compactness theorem. We prove existence of profile decompositions for general21

bounded sequences in uniformly convex Banach spaces equipped with a group of bijective22

isometries, thus generalizing analogous results previously obtained for Sobolev spaces23

and for Hilbert spaces. Profile decompositions in uniformly convex Banach spaces are24

based on the notion of Δ-convergence by Lim [Remarks on some fixed point theorems,25

Proc. Amer. Math. Soc. 60 (1976) 179–182] instead of weak convergence, and the two26

modes coincide if and only if the norm satisfies the well-known Opial condition, in27

particular, in Hilbert spaces and �p-spaces, but not in Lp(RN ), p �= 2. Δ-convergence28

appears naturally in the context of fixed point theory for non-expansive maps. The paper29

also studies connection of Δ-convergence with Brezis–Lieb lemma and gives a version of30

the latter without an assumption of convergence a.e.31

Keywords: Weak topology; Δ-convergence; Banach spaces; concentration compactness;32

cocompact imbeddings; profile decompositions; Brezis–Lieb lemma.33
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1. Introduction36

Finding solutions of equations in functional spaces, in particular of differential equa-

tions, typically involves the question of convergence of functional sequences, which

in turn often relies on compactness properties of the problem. At the same time,
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infinite-dimensional Banach spaces have no local compactness. Lack of compact-

ness in a sequence can be qualified in a variety of ways. For example, one can

look for coarser topologies in which sequences of particular type, bounded in norm,

become relatively compact. Banach–Alaoglu theorem assures that a closed ball in

any Banach space is compact in the weak∗ topology. Concentration compactness

principle (put in the terms of Willem and Chabrowski — see the presentation in [7])

addresses the situation when the norm in a functional space is expressed by means

of integration of some measure-valued map, which we may call a Lagrangian, and

when the Lagrangian, evaluated on a given sequence, has a weak measure limit,

its singular support is called a concentration set. For specific sequences it is then

possible to show that the singular part of the limit measure is zero, which typi-

cally yields convergence of the sequence in norm. As an illustration we sketch an

argument for existence of minimizers (see [22, 31]) in the Sobolev inequality:

0 < SN,p = inf
u∈Ẇ 1,p(RN ):�u�p∗=1

�

|∇u|pdx, N > p ≥ 1, p∗ =
pN

N − p
.

The Sobolev imbedding Ẇ 1,p(RN ) �→ Lp
∗

(RN ) is not compact. It is invariant,1

however, with respect to transformations g[j, y](x) = 2j
N−p

p u(2j(x−y)), j ∈ Z, y ∈2

R
N , and furthermore, if for any sequence (jk, yk) ⊂ Z×R

N one has g[jk, yk]uk � 0,3

then uk → 0 in Lp
∗

(see [21]). Therefore, if �uk�
p

Ẇ 1,p
→ SN,p while �uk�p∗ = 1, then,4

necessarily, there exist (jk, yk)k∈N ⊂ Z × R
N such that a renamed subsequence of5

g[jk, yk]uk, which we denote vk (and which, by invariance, is a minimizing sequence6

as well) converges weakly to some w �= 0. A further reasoning that involves convexity7

may be then employed to show that lim sup �uk�
p

Ẇ 1,p
< SN,p unless �w�p∗ = 1, and8

thus w is a minimizer.9

Concentration arguments in application to variational analysis of PDE were10

developed and applied in the 1980s in works of Uhlenbeck, Brezis, Coron, Niren-11

berg, Aubin, Lieb, Struwe, and Lions, with perhaps the most notable application12

being the Yamabe problem of prescribed mean curvature [4, 37, 28]. This classical13

concentration compactness stimulated development of a more detailed analysis of14

loss of compactness in terms of profile decompositions, starting with the notions of15

global compactness (for bounded domains and critical nonlinearities) of Struwe [30]16

and of translational compactness in R
N (for subcritical nonlinearities) of Lions17

(1986). We do not aim here to provide a survey of concentration compactness and18

its applications over the decades, and refer the reader instead to the monographs19

of Chabrowski [7] and Tintarev and Fieseler [35].20

A systematic concentration analysis extends the concentration compactness21

approach, from particular types of sequences in functional spaces to general22

sequences in functional spaces, and, further, to general sequences in Banach spaces,23

studied in relation to general concentration mechanisms modeled as actions of24

non-compact operator groups. Concentration analysis can thus avail itself to the25

methods of wavelet analysis: when the group, responsible for the concentration26

mechanism, generates a wavelet basis, concentration may be described in terms of27
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sequence spaces of the wavelet coefficients. The counterpart of Fourier expansion1

in the concentration analysis is profile decomposition. A profile decomposition rep-2

resents a given bounded sequence as a sum of its weak limit, decoupled elementary3

concentrations, and a remainder convergent to zero in a way appropriate for some4

significant application. An elementary concentration is a sequence gkw � 0, where5

gk is a sequence of transformations (dislocations) involved in the loss of compact-6

ness and the function w is called a concentration profile. The 1995 paper of Soli-7

mini [29] has shown that in case of Sobolev spaces any bounded sequence admits8

a profile decomposition, with the only difference from the Palais–Smale sequences9

for semilinear elliptic functionals (for which such profile decompositions were pre-10

viously known) being that it might contain countably many, rather than finitely11

many, decoupled elementary concentrations. The work of Solimini was indepen-12

dently reproduced in 1998–1999 by Gérard [12] and Jaffard [14], who, on the one13

hand, provided profile decompositions for fractional Sobolev spaces as well, but,14

on the other hand, gave a weaker form of remainder. It was subsequently realized15

by Schindler and Tintarev [27], that the notion of a profile decomposition can be16

given a functional-analytic formulation, in the setting of a general Hilbert space and17

a general group of isometries (see the alternative proof by Tao via non-standard18

analysis in [33, p. 168 ff.]) This, in turn stimulated the search for new concentration19

mechanisms, which included inhomogeneous dilations j−1/2u(zj), j ∈ N, with zj20

denoting an integer power of a complex number, for problems in the Sobolev space21

H1,2
0 (B) of the unit disk, related to the Trudinger–Moser functionals [2]; and the22

action of the Galilean invariance, together with shifts and rescalings, involved in the23

loss of compactness in Strichartz imbeddings for the nonlinear Schrdinger equation24

(see [32, 15]). The existence of profile decompositions involving the usual rescalings25

and shifts was established by Kyriasis [17] Koch [16], Bahouri, Cohen and Koch [5]26

for imbeddings involving Besov, Triebel–Lizorkin and BMO spaces, although, like27

all similar work based on the use of wavelet bases, it provided only a weak form of28

remainder. Related results involving Morrey spaces were obtained recently in [26],29

using, like here, more classical decompositions of spaces instead of wavelets. We30

refer the reader for details to the recent survey of profile decompositions, [34].31

What is obviously missing in all the prior literatures are results about the exis-32

tence of profile decompositions in the general setting of abstract Banach spaces.33

This paper introduces a general theory of concentration analysis in Banach space,34

as a sequel to an earlier Hilbert space version [27] and similar results for Sobolev35

spaces [29, 2] as well as their wavelet-based counterparts for Besov and Triebel–36

Lizorkin spaces [5]. The difference between the Hilbert space and the Banach space37

case is essential and is rooted in the hitherto absence, in a general Banach space,38

of a simple energy inequality that controls the total bulk of profiles. Our approach39

to convergence in this paper is based in finding clusters of concentrations with40

prescribed energy bounds, as there is no transparent relation between the total41

concentration energy and energies of elementary concentrations. Energy estimates42

that we obtain are not optimal and are based on the modulus of convexity.43
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In order to obtain such inequality we have had to abandon weak convergence1

in favor of Δ-convergence introduced by Lim [19], see Definition 3.1 below. The2

definition applies to metric spaces as well, and are considered in this more general3

setting in [9]. The notion of Δ-limit is connected to the notion of asymptotic center4

of a sequence (see [10, Appendix B]), namely, a sequence is Δ-convergent to x if x is5

an asymptotic center for each of its subsequences. In Hilbert spaces, Δ-convergence6

and weak convergence coincide (this can be observed following the calculations7

in a related statement of Opial, [25, Lemma 1]). More generally, the classical8

Opial’s condition (Condition 2 of [25], see Definition 3.17) that has been in use for9

decades in the fixed point theory, is equivalent, for uniformly convex and uniformly10

smooth spaces, to the condition that Δ-convergence and weak convergence coincide.11

Opial’s condition, however, does not hold in Lp(RN )-spaces unless p �= 2, as shown12

in [25].13

Similarly to the Banach–Alaoglu theorem, every bounded sequence in the uni-14

formly convex Banach space has a Δ-convergent subsequence, which follows from15

the Δ-compactness theorem of Lim (see [19, Theorem 3]).16

Role of Δ-convergence in profile decompositions. It is shown in [27] that

any bounded sequence in a Hilbert space H , equipped with an appropriate group

D of isometries (called dislocations or gauges), has a subsequence consisting of a

sum of asymptotically orthogonal elementary concentrations and a remainder

that converges to zero D-weakly. These two terms mean the following. An ele-

mentary concentration (sometimes called a bubble or a blow-up) is an expression of

the form gkw, k ∈ N, where w ∈ H (called concentration profile) and (gk) ⊂ D is

a sequence weakly convergent to zero in the operator sense, such that g−1
k uk � w.

A sequence (uk) ⊂ H is convergent D-weakly to zero if for any sequence (g) ⊂ D,

gkuk converges to zero weakly. D-weak convergence is generally stronger than weak

convergence, and, in important applications, it implies convergence in the norm of

some space X for which the imbedding H �→ X is not compact. Profile decompo-

sitions with a remainder vanishing despite the non-compactness of an imbedding

express defect of compactness for a sequence, in form of a rigidly structured sum

of elementary blow-ups. Of course, vanishing of the remainder in a useful norm

depends on an appropriate choice of group D. It is easy to check that if D consists

of all unitary operators, D-weak convergence becomes norm convergence, and if D

is compact, D-weak convergence coincides with weak convergence. A useful group

D lies somewhere between these extremes. A continuous imbedding H �→ X is

called cocompact relative to the group D if any D-weakly convergent sequence in H

is convergent in the norm of X . The notion of cocompactness extends naturally to

Banach spaces, but the proof for the profile decomposition in Hilbert spaces cannot

be generalized to the case of Banach spaces, as the summary bulk of concentration

profiles of a sequence uk is controlled by the inequality

�

n∈N

�w(n)�2 ≤ lim inf �uk�
2.

1550038-4
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This inequality is, in turn, a consequence of the elementary relation

uk � u ⇒ �uk�
2 = �uk − u�

2 + �u�2 + o(1). (1.1)

(For convenience of presentation, in equalities and inequalities between terms of

real-valued sequences, we use, as long as it does not cause ambiguity, a Bachmann–

Landau notation o(1) to denote a sequence of real numbers convergent to zero. In

other words, ak = bk + o(1) stays for limk→∞(ak − bk) = 0, and ak ≤ bk + o(1),

ak, bk ∈ R, k ∈ N, stays for lim supk→∞(ak − bk) ≤ 0.) A plausible conjecture

for the general uniformly convex Banach space (see Appendix A for definitions,

in particular of the modulus of convexity, denoted as δ) would be, assuming for

simplicity that lim inf �uk� ≤ 1, that
�

n∈N

δ(�w(n)�) ≤ lim inf �uk�, (1.2)

where δ is the modulus of convexity for X . We have however, as the closest Banach

space version of (1.1), the inequality

uk � u ⇒ �uk� ≥ �u�+ δ(�uk − u�) + o(1), (1.3)

proving which is an easy exercise using the definition of uniform convexity and weak

lower semicontinuity of the norm that we leave to the reader. On the other hand,

a desired inequality that leads to (1.2) is rather

�uk� ≥ �uk − u�+ δ(�u�) + o(1), (1.4)

and it is generally false when uk � u. It is true, however, if u is a Δ-limit, rather1

than a weak limit of uk (see Lemma 3.7 below). In other words, concentration2

profiles for sequences in Banach spaces emerge not as weak limits of “deflation”3

sequences g−1
k uk, but as their Δ-limits.4

We restrict consideration of Banach spaces to the class of uniformly convex5

spaces, as the natural next step after having studied matters of weak convergence6

and profile decomposition in Hilbert spaces. Uniformly convex spaces have many7

common properties with Hilbert spaces, in particular, reflexivity, Kadec property8

(uk � u, �uk� → �u� ⇒ �uk − u� → 0), uniqueness of Δ-limits and sequential9

Δ-compactness of balls, that general Banach spaces do not necessarily possess.10

It appears that sharper than (1.3) or (1.4) lower bounds for the norms of

sequences in Banach spaces require the use of both the weak limit and the Δ-

limit. Among these cases there is the important Brezis–Lieb lemma (see [6]), which

states that if (Ω, µ) is a general measure space and uk � u in Lp(Ω, µ), 1 ≤ p <∞,

and uk → u µ-a.e. in Ω, then

�uk�
p
Lp = �uk − u�

p
Lp + �u�pLp + o(1). (1.5)

Remarkably, no a.e. convergence is required for (1.5) to hold when µ is a counting

measure or when p = 2 (when it follows from (1.1)). If, however, one does not

assume convergence a.e., one has the following analog of Brezis–Lieb lemma, proved

1550038-5
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in Sec. 5 for p ≥ 3, namely an expression for a lower bound for the norm of the

sequence

�uk�
p
Lp ≥ �uk − u�

p
Lp + �u�pLp + o(1), (1.6)

where u is assumed to be both the weak limit and the Δ-limit of the sequence (but1

no a.e. convergence is assumed). It is shown in [3] that condition p ≥ 3 is necessary,2

in particular, when (Ω, µ) is an interval with the Lebesgue measure.3

The paper is organized as follows. In Sec. 2 we give the precise definitions4

of the concepts arising in concentration analysis and formulate our main results.5

Section 3 studies basic properties of Δ-convergence in uniformly convex Banach6

spaces. In Sec. 4 we prove the inequality (1.6). In Sec. 5 we prove the existence7

of an abstract profile decomposition in terms of Δ-convergence, for every bounded8

sequence in a uniformly convex and uniformly smooth Banach space, whenever the9

relevant collection of bijective isometries on X satisfies appropriate hypotheses.10

It is important to note that the argument for existence of profile decomposition11

in Banach spaces is different both from the Sobolev space case (see [29]), where12

the norms show a natural asymptotic decoupling behavior with regard to distinct13

rescalings and from the general Hilbert spaces case (see [27]), where decoupling14

of distinct concentrations is expressed by their asymptotic orthogonality. In Sec. 615

we give a general discussion of cocompactness and related properties. In Sec. 716

we prove Theorem 2.6, discuss the remainder of the profile decomposition in the17

context of cocompact imbeddings, and give examples of the latter. In Appendix A18

we list definitions and elementary properties of uniformly convex and uniformly19

smooth Banach spaces, and in Appendix B we present the notion of asymptotic20

center and its connection to Δ-convergence. Appendix C discusses an equivalent21

form of the main condition for the groups involved in profile decompositions.22

The main results of the paper are:23

• Profile decompositions: Theorem 5.5, its simplified version Theorem 2.6, and24

profile decomposition in the dual space: Proposition 6.10 and Theorem 2.10;25

• Equivalence of the classical Opial’s condition in uniformly convex and uniformly26

smooth spaces to the property that weak convergence and Δ-convergence coin-27

cide, Theorem 3.19;28

• An analog of the Brezis–Lieb lemma, where the assumption of pointwise conver-29

gence replaced by the assumption of equal weak and Δ-limits, Theorem 4.2.30

2. Basic Notions of Concentration Analysis and Statement31

of Results32

The key element required for obtaining a cocompact imbedding of a Banach space33

X into a Banach space Y is a collection D of operators which act isometrically34

and surjectively (and thus bijectively) on X and which are chosen in such a way35

that any bounded sequence of elements in X which convergence weakly to zero36

under action of any sequence from D (see Definition 2.1 below) must converge37

1550038-6
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to zero in the norm of Y . The operators of D are often referred to as “blow-up”1

or “rescaling” isometries since a frequently occurring example of D is the set of2

typical concentration actions u �→ tru(t ·), t > 0. It seems better, however, to use3

some more general terminology, such as gauges, or dislocations, to refer to these4

operators, since D can be quite different in other important cases. For example, it5

may consist of actions of anisotropic or inhomogeneous dilations, of isometries on6

Riemannian manifolds, or of shifts in the Fourier variable. An elementary example7

is provided by a set of index shifts u �→ u·+j on a sequence space.8

Let D be a set of bijective isometries on a Banach space Z. We will use the9

following notation: D−1 = {h−1}h∈D.10

Definition 2.1 (Gauged weak convergence). Let Z be a Banach space, and11

let D � I be a bounded set of bijective isometries on Z such that D−1 is also a12

bounded set. One says that a sequence (uk)k∈N of elements in Z converges to zero13

D-weakly if g−1
k uk � 0 for every choice of the sequence (gk)k∈N ⊂ D. We use the14

notation uk
D
� 0 to denote D-weak convergence and the notation uk

D
� u to mean15

that uk − u
D
� 0.16

We remark that in analogues of this definition appearing in earlier papers on17

this subject, the roles of D and D−1 are interchanged. This makes no difference18

when D is a group.19

The definition below will be adapted to the different mode of convergence intro-20

duced in the course of argument, but remains relevant for the class of norms satis-21

fying the Opial’s condition which arise in most known applications.22

Definition 2.2 (Cocompact subsets). Let Z be a Banach space, and let D � I23

be a set of bijective isometries on Z. A set B ⊂ Z is called D-cocompact if every24

D-weakly convergent sequence in B converges in norm in Z.25

Clearly the limit in norm of such a sequence must be the same element as its D-26

weak limit. It is also clear that every precompact subset of X is also D-cocompact.27

Definition 2.3 (Cocompact imbeddings). Let X be a Banach space continu-28

ously embedded into a Banach space Y . Let D � I be a set of bijective isometries29

on X . Suppose that every sequence (uk)k∈N satisfying uk
D
� 0 in X also satisfies30

�uk�Y → 0. Then we say that the imbedding X �→ Y is cocompact relative to the31

set D, and we denote this by writing X
D
�→ Y .32

It is easy to see that the following definition, under the additional assumptions33

it makes, is equivalent to Definition 2.3.34

Definition 2.4. Let X be a Banach space continuously and embedded into a35

Banach space Y and assume that X is dense in Y and Y ∗ is dense in X∗. Let36

D � I be a set of bijective isometries on Y , and assume that the set DX of restric-37

tions of operators in D to X defines a set of bijective isometries on X . One says that38

1550038-7



Page Proof

March 31, 2015 15:36 WSPC/S0219-1997 152-CCM 1550038

S. Solimini & C. Tintarev

the imbedding X �→ Y is cocompact relative to the set D, if all bounded subsets1

of X are D-cocompact in Y .2

In what follows, weak convergence of a sequence of operators (Ak)k∈N on a3

Banach space X to an operator A, i.e. Akx � Ax for each x ∈ X , will be denoted4

by Ak � A. The following question arises immediately when one knows which set5

of bijective isometries D is responsible for concentration, or, in other words, when6

an imbedding X �→ Y is cocompact relative to a given set D: Is it possible, for7

any bounded sequence in X , to produce a subsequence which is norm convergent8

in Y by subtraction of elementary concentrations? We recall that by an elementary9

concentration for a sequence (uk)k∈N ⊂ X we mean a sequence of the special form10

(gkw)k∈N, where (gk)k∈N ⊂ D, gk � 0, and g−1
k uk � w �= 0 in X on some renamed11

subsequence. The use of word concentration originates in the case when the set D12

consists of dilation operators on a functional space, so that, as k tends to ∞, the13

graphs of the functions gkw become taller and narrower peaks clustering around14

some point of the underlying set. Such concentrations occur in scale-invariant PDE,15

such as semilinear elliptic equations with critical nonlinearities.16

Definition 2.5. One says that a bounded sequence (uk)k∈N in a Banach space X

admits a profile decomposition with respect to the set of bijective linear isometries

D � I, if there exists a sequence rk
D
� 0 and, for each n ∈ N, there exists an element

w(n) ∈ X and a sequence (g
(n)
k )k∈N ⊂ D such that g

(1)
k = I and

(g
(n)
k )−1g

(m)
k � 0 whenever m �= n (asymptotic decoupling of gauges), (2.1)

and such that a renamed subsequence of (uk)k∈N can be represented in the form

uk =

∞
�

n=1

g
(n)
k w(n) + rk for each k, (2.2)

where the series
�∞

n=1 g
(n)
k w(n) is convergent in X unconditionally and uniformly17

in k. (It follows immediately then that (g
(n)
k )−1uk � w(n), n ∈ N.)18

Note that in general, any subset of profiles w(n) may consist of zero elements.19

In particular, the sum in (2.2) may be finite.20

In the Banach space setting (restricted in the present study to uniformly convex21

spaces) we will establish the existence of a variant of this profile decomposition,22

based on Δ-convergence, studied in the next section. Δ-convergence, as we show23

in Theorem 3.19 below, coincides with weak convergence if and only if the Opial’s24

condition (see, e.g., Definition 3.17) holds.25

Our main result follows below. It uses a technical condition (2.3) that extends26

to the Banach space case the condition of dislocation group used in [27] for Hilbert27

space case, and it is verified in a great number of applications. We refer the reader28

for details to the book [35] and to the recent survey [34]. Our principle example of29

the class of spaces that satisfy conditions of two theorems below is Besov spaces30

Ḃs,p,q(RN ) and Triebel–Lizorkin spaces Ḟ s,p,q(RN ) with s ∈ R and p, q ∈ (1,∞)31

1550038-8



Page Proof

March 31, 2015 15:36 WSPC/S0219-1997 152-CCM 1550038

Concentration analysis

when supplied with equivalent norms, based on Littlewood–Paley decomposition1

(see, e.g., [36, 1]).2

Theorem 2.6. Let X be a uniformly convex and uniformly smooth Banach space

that satisfies the Opial ’s condition. Let D0 be a group of linear isometries satisfying

the property

(gk) ⊂ D0, gk �� 0 ⇒ ∃ (kj) ⊂ N : (g−1
kj

), (gkj
) converge strongly (i.e. pointwise)

(2.3)

and let D � I be a subset of D0. Then every bounded sequence (uk) ⊂ X admits a

profile decomposition with respect to D. Moreover, if �uk� ≤ 1 for all k, and δ is

the modulus of convexity of X, then

lim sup �rk�+
�

n

δ(�w(n)�) ≤ 1, (2.4)

where rk and w
(n) are the elements arising in the profile decomposition as defined3

in (2.2).4

Remark 2.7. The restriction �uk� ≤ 1 is inessential. Unless (xk) has a subsequence5

convergent to zero in X (in which case Theorem 5.5 holds with w(n) = 0 for all n),6

one can apply Theorem 5.5 to a subsequence of xk/�xk� with �xk� → ν > 0. Then7

the assertion of Theorem 2.6 (and analogous statements further in this paper) will8

hold with the only modification being δ replaced by νδ( ·ν ).9

Remark 2.8. The assumption of uniform convexity cannot be removed, as we can10

see from the example of X = L∞(R) with D being a group of integer shifts. Let11

xk be a characteristic function of a disjoint union of all intervals of the length12

j/2k, j = 1, . . . , 2k, translated in such a manner that the distance between any two13

intervals exceeds k. Then the distinct profiles of xk will be characteristic functions14

of all intervals (0, t), t ∈ (0, 1], and thus form an uncountable set.15

Corollary 2.9. If, in addition to the assumptions of Theorem 2.6, the space X16

is D-cocompactly imbedded into another Banach space Y, then the remainder rk17

converges to zero in the norm of Y .18

In the main body of the paper we first prove a more general statement, The-19

orem 5.5, similar to Theorem 2.6, that does not assume the Opial’s condition,20

and then derive Theorem 2.6 from it as an elementary corollary. In absence of the21

Opial’s condition, the argument is based on Δ- and D-Δ-convergence instead of,22

respectively, weak and D-weak convergence.23

We also prove a conjecture by Cwikel (personal communication) that when

X
D
�→ Y , the existence of profile decompositions in X implies the existence of “dual”

profile decompositions in Y ∗
D#

�→ X∗, where

D# = {g∗−1, g ∈ D}.
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Theorem 2.10. Let Y be a uniformly convex and uniformly smooth Banach space1

that satisfies the Opial ’s condition. Let I ∈ D ⊂ D0 where D0 is a group of linear2

isometries in X and Y satisfying (2.3). If X
D
�→ Y and X is dense in Y, then3

Y ∗ D
#

�→ X∗ and any bounded sequence in Y ∗ has a profile decomposition relative to4

D# with the remainder sequence (rk)k∈N converging in norm to 0 in X∗.5

3. Δ-Convergence in Uniformly Convex Spaces6

3.1. Definition and basic properties7

Definition 3.1. Let (xk)k∈N be a sequence in a Banach space X . One says that x

is a Δ-limit of (xk) if

∀ y ∈ X �xk − x� ≤ �xk − y�+ o(1). (3.1)

We will use the notation xk � x as well as x =
�

limxk to denote Δ-convergence.8

Obviously if xk converges to x in norm, then x is a unique Δ-limit of (xk).9

Proposition 3.2. Suppose that (xk)k∈N is a bounded sequence in a uniformly con-

vex Banach space X and let x ∈ X. If xk � x, then for each element z ∈ X with

z �= x there exist a positive constant k0 and a positive constant c depending on

�x− z� and supk∈N
�xk� continuously in (0,∞)× [0,∞], such that

�xk − x� ≤ �xk − z� − c for all k ≥ k0. (3.2)

Proof. Given an element z �= x we first observe that lim infk→∞ �xk − z� must be10

strictly positive, since otherwise there would be a subsequence of {xk} converging11

in norm to z.12

Without loss of generality we may assume that �xk − x� < 1 and note that

it suffices to prove (3.2) for �x − z� < 2. By uniform convexity, and taking into

account (3.1), we have

�xk − x� ≤

�

�

�

�

xk +
1

2
(x+ z)

�

�

�

�

+ o(1)

=

�

�

�

�

1

2
[(xk − x) + (xk − z)]

�

�

�

�

+ o(1) ≤ �xk − z� − δ(�x− z�) + o(1),

from which (3.2) is immediate.13

Corollary 3.3. The Δ-limit in a uniformly convex Banach space is unique.14

It is shown in [10] that uniformly convex Banach spaces are asymptotically com-15

plete (a metric space is called asymptotically complete if every bounded sequence in16

it has an asymptotic center, see Appendix B). Since every bounded sequence in an17

asymptotically complete metric space has a Δ-convergent subsequence by [19, The-18

orem 3], we have the following analog of Banach–Alaoglu theorem.19
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Theorem 3.4. Let X be a uniformly convex Banach space and let (xk) ⊂ X be a1

bounded sequence. Then (xk) has a Δ-convergent subsequence.2

3.2. Uniform boundedness theorem3

It is well known that for every x ∈ X\{0} there exists an element x∗ ∈ X , called a4

conjugate of x, such that �x∗� = 1 and �x∗, x� = �x�.5

If X∗ is strictly convex, namely, if

ξ, η ∈ X∗, ξ �= η, �ξ� = �η� = 1,⇒ �tξ + (1 − t)η� < 1 for all t ∈ (0, 1)

(in particular, when X∗ is uniformly convex or, equivalently, when X is uniformly6

smooth, see Appendix A), then the element x∗, as one can immediately verify by7

contradiction, is unique.8

Theorem 3.5. Let X be a uniformly smooth and uniformly convex Banach space,9

and let (xk) ⊂ X be a Δ-convergent sequence. Then the sequence (xk) is bounded.10

Proof. It suffices to prove the theorem for the case xk � 0, since, once we prove

that, from xk � x follows xk − x � 0 and thus xk − x is bounded. Assume that

�xk� → ∞. Since X is uniformly smooth, there exists a function η : [0, 1] → [0,∞),

limt→0η(t)/t = 0, such that (see [20, p. 61])

|�x+ y� − �x� − �x∗, y�| ≤ η(�y�), whenever �x� = 1 and �y� ≤ 1.

Then, using the notation ω(x, y) = �x+ y� − �x� − �x∗, y�, we have

�x+ y�2 − �x�2 = (�x+ y� − �x�)(�x+ y� − �x�+ 2�x�)

= (ω(x, y) + �x∗, y�)2 + 2(ω(x, y) + �x∗, y�).

Substitute now x = xk

�xk�
and y = z

�xk�
with an arbitrary vector z. Then, by

Proposition 3.2, we have

0 ≤ �xk + z�2 − �xk�
2 = α2

k + 2�xk�αk

for all k sufficiently large, where

αk = �xk�ω

�

xk
�xk�

,
z

�xk�

�

+ �x∗k, z�.

Consequently, either αk ≥ 0 or αk ≤ −2�xk� → −∞. The latter case can be

easily ruled out, since �x∗k� = 1, �x∗k, z� is bounded, �xk�|ω( xk

�xk�
, z
�xk�

)| → 0 as

�xk� → ∞, and so αk is bounded. Therefore we have necessarily, for large k,

�xk�ω

�

xk
�xk�

,
z

�xk�

�

+ �x∗k, z� ≥ 0,

and, thus,

�x∗k, z� ≥ −η(tk)/tk,

where tk = 1/�xk�. In other words, we have |�ψ(�xk�)x
∗
k, z�| ≤ 1, for k sufficiently11

large, where ψ(t) = t−1

η(t−1) satisfies ψ(t) → ∞ when t → ∞. By the uniform12
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boundedness principle the sequence ψ(�xk�) is bounded, but this contradicts to1

the assumption �xk� → ∞, which proves the theorem.2

Note that without the condition of uniform smoothness, Δ-convergent sequences3

are not necessarily bounded (see [9, Example 3.1]).4

3.3. Characterization of Δ-convergence in terms of duality map5

Lemma 3.6. Let X be a Banach space. If (xk)k∈N is a bounded sequence, xk � x6

and yk → y, then xk + yk � x+ y.7

Proof. It suffices to prove the assertion for x = y = 0. Let z ∈ X . Then

�xk + yk� = �xk�+ o(1) ≤ �xk − z�+ o(1) = �xk + yk − z�+ o(1),

which proves the lemma.8

Lemma 3.7. Let X be a uniformly convex Banach space with the modulus of con-

vexity δ. If uk � u in X and �uk� ≤ 1 for all k ∈ N, then �u� < 2 and, for all

sufficiently large k,

�uk� ≥ �uk − u�+ δ(�u�). (3.3)

Proof. We can suppose that u �= 0 since the result is a triviality for u = 0.

Note that for k sufficiently large, �uk − u� < �uk�. This inequality implies that

�u� < 2�uk� ≤ 2 and it also implies that uk �= 0 for these values of k. Thus we may

apply (A.3) with C1 = �uk� and C2 = 1 to the elements uk and uk − u to obtain

that
�

�

�

�

uk −
1

2
u

�

�

�

�

=

�

�

�

�

uk + (uk − u)

2

�

�

�

�

≤ �uk� − δ(�u�).

Finally, since uk � u, one also has �uk − u� ≤ �uk −
1
2u� for sufficiently large9

k and (3.3) follows.10

We have the following characterization of Δ-convergence by means of the duality11

map x �→ x∗.12

Theorem 3.8. Let X be a uniformly convex and uniformly smooth Banach space.13

Let x ∈ X and let (xk)k∈N ⊂ X be a bounded sequence such that lim inf �xk−x� > 0.14

Then xk � x if and only if (xk − x)
∗ � 0.15

Proof. Without loss of generality we need only to consider the case x = 0.16

Sufficiency. Suppose that x∗k � 0. Then for any y ∈ X , �x∗k, y� → 0 and so

�xk� = �x∗k, xk� = |�x∗k, xk − y�+ �x∗k, y�| ≤ �xk − y�+ o(1),

i.e. xk � 0.17
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Necessity. Suppose that xk � 0. By Proposition 3.2, for any y ∈ X , there

exists an integer k(y) such that �xk� ≤ �xk − y� for all k ≥ k(y). Then

�xk� ≤ �xk − y� = �(xk − y)
∗, xk − y� = �(xk − y)

∗, xk� − �(xk − y)
∗, y�

≤ �xk� − �(xk − y)
∗, y�.

Consequently we have

�(xk − y)
∗, y� ≤ 0 for all k ≥ k(y).

Since lim inf �xk� > 0, we may assume that k(y) is large enough so that �xk� ≥ 2λ

for some positive constant λ whenever k ≥ k(y). So, if we consider only those y

which satisfy �y� ≤ λ and those xk for which k ≥ k(y), we can assert that xk
and xk − y are both contained in the set E = {x ∈ X : �x� ≥ λ} and therefore

deduce from Lemma A.2, for each � ∈ (0, 1/4), that �(xk − y)
∗ − x∗k� ≤ � whenever

0 < �y� ≤ min{ 3λ
2 δ(�),

λ
2 }. For such choices of y we will therefore have
�

x∗k,
y

�y�

�

≤ � for all k ≥ k(y).

Applying the same reasoning to the element −y, we obtain that |�x∗k,
y
�y� �| ≤ 2�1

whenever 0 < �y� ≤ min{ 3λ
2 δ(�),

λ
2 } and k ≥ k0 = max{k(y), k(−y)}. In other2

words, given any w ∈ X with �w� = 1, we know that |�x∗k, w�| ≤ 2� for all k ≥3

k0(w, �) for some sufficiently large k0(w, �). Consequently, x∗k � 0.4

Corollary 3.9. Let X be either a Hilbert space or the p-space with 1 < p < ∞,5

and let (xn) be a sequence in X. Then xn � x if and only if xn � x.6

Proof. We may assume that lim inf �xn − x� > 0, since for subsequences that7

converge to x in norm the result is trivial.8

Let X be a Hilbert space and recall that we are using the definition of conjugate

dual with the unit norm. If xn � x, then for any y ∈ X ,

|(xn − x)
∗, y)| =

	

	

	

	

�

xn − x

�xn − x�
, y

�	

	

	

	

≤
1

lim inf �xn − x�
lim sup |(xn − x, y)|+ o(1) → 0.

Conversely, if xn � x, then for any y ∈ X , taking into account that (xn) is bounded

by Theorem 3.5, we have

|(xn − x, y)| = �xn − x�|((xn − x)
∗, y)| ≤ (sup �xn�+ �x�)|((xn − x)

∗, y)| → 0.

Let now X = p. If xn � x, then the sequence (xn) is bounded and converges9

to x by components. Then (xn−x)
∗ � 0 in p

�

, and by Theorem 3.8 it follows that10

xn � x.11

Conversely, if xn � x, then by Theorem 3.8 (xn − x)
∗ � 0 in p

�

, and then xn12

converges to x by components. Since by Theorem 3.5 Δ-convergent sequences are13

bounded, this implies that xn � x.14
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Remark 3.10. Another proof that weak and Δ-convergence in Hilbert space coin-

cide can be inferred from the definition of Δ-convergence, Proposition 3.2 and the

elementary identity

�xn − x+ y�2 = �xn − x�
2 + �y�2 + 2(xn − x, y).

Remark 3.11. From Theorem 3.8 it follows that Δ-limit is not additive, that1

is, the relation
�

lim (xn + yn) =
�

lim xn+
�

lim yn is generally false. Consider, for2

example, L4((0, 9)). Set x0(t) = 2 for t ∈ (0, 1] and x0(t) = −1 for t ∈ (1, 9]. Define3

xn(t) = x0(nt) when 0 < t ≤ 9
n and extend it periodically to (0, 9). Set y0(t) = −14

for t ∈ (0, 9
2 ] and y0(t) = 1 for t ∈ ( 9

2 , 9] and define yn similarly to xn. Observe that5

x3
n � 0, y3

n � 0, but (xn + yn)
3 � 1

2 .6

Remark 3.12. Using Theorem 3.8 one can also show that norms are not necessar-

ily lower semicontinuous with respect to Δ-convergence. Let (vk) be a normalized

sequence in L4([0, 1]), such that vk � 0 and vk � a where a is a positive constant

(one constructs such sequence by fixing a step function v0 such that



v3
0 = 0 and




v0 > 0, rescaling it by the factor k and extending it periodically). By Theorem 3.8,

v3
k � 0 in L4/3. Let uk = u− tvk, t > 0 with some positive function u. Then

�

u4 −

�

u4
k = 4t3

�

uv3
k − 6t2

�

u2v2
k + 4t

�

u3vk − t
4

�

v4
k

≥ −6t2
�

u2v2
k + 4ta

�

u3 − t4 + to(1).

Taking into account that



u2v2
k is bounded as k →∞, we have that for t sufficiently7

small the right-hand side is bounded away from zero for all k sufficiently large.8

3.4. Δ-convergence versus weak convergence9

As we have shown above, Δ-limits and weak limits coincide in Hilbert spaces in10

p-spaces, 1 < p <∞ (Corollary 3.9). In general it can happen that the weak limit11

and the Δ-limit of a sequence both exist but are different.12

Example 3.13. An example of Opial [25, Sec. 5] allows an immediate interpre-13

tation in terms of Δ-limit and then says that in the space Lp((0, 2π)), p �= 2,14

1 < p <∞, there exist sequences whose Δ-limit and weak limit are different func-15

tions. (Cwikel has brought the authors’ attention to the fact that the number 3/416

which appears twice in the definition of function φ on p. 596 of [25] is a misprint17

and is to be read in both places as 4/3.)18

Remark 3.14. Furthermore, if Ψn is the primitive function of ψn of Opial’s coun-19

terexample, normalized in W 1,p((0, 2π)), the sequence {Ψn} in W 1,p((0, 2π)) also20

has a Δ-limit and a weak limit with different values (note that because of the nor-21

malization coefficient the non-gradient portion of the Sobolev norm for this sequence22

is vanishing).23
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Remark 3.15. It is not clear at this point when Δ-convergence can be associated1

with a topology, except when Δ-convergence coincides with weak convergence. See2

a preliminary discussion in [9].3

Remark 3.16. In general, weakly lower semicontinuous functionals are not lower4

semicontinuous with respect to Δ-convergence. From Example 3.13 it follows that5

this is the case already for continuous linear functionals acting on Lp, p �= 2.6

3.5. The Opial ’s condition in uniformly convex spaces7

In this subsection we show that the Opial’s condition (Condition (2) in [25]),8

which plays significant role in the fixed point theory, has, for uniformly convex9

and uniformly Banach spaces, two equivalent formulations. One is that weak and10

Δ-convergence coincide and the other is that the Frecht derivative of the norm is11

weak-to-weak continuous away from zero. The latter is similar to [25, Lemma 3]12

(which makes a weaker assertion under weaker conditions).13

Definition 3.17. Let X be a Banach space. One says that a sequence (xn)n∈N ⊂

X , which is weakly convergent to a point x0 ∈ X , satisfies the Opial ’s condition if

lim inf �xn − x0� ≤ lim inf �xn − x� for every x ∈ X. (3.4)

One says that a Banach space X satisfies the Opial’s condition if any weakly con-14

vergent sequence (xk)k∈N in X satisfies the Opial’s condition.15

Remark 3.18. It is immediate from respective definitions that if a sequence in16

a Banach space satisfies the Opial’s condition and is both weakly convergent and17

Δ-convergent, then its Δ-limit equals its weak limit.18

Theorem 3.19. Let X be a uniformly convex and uniformly smooth Banach space.

Then X satisfies the Opial ’s condition if and only if for any sequence (xn)n∈N ⊂ X,

xn � x⇔ xn � x, (3.5)

or, equivalently, if for any bounded sequence which does not have a strongly conver-

gent subsequence,

xn � x in X ⇔ (xn − x)
∗ � 0 in X∗. (3.6)

Proof. The Opial’s condition follows immediately from (3.5) and the definition of19

Δ-convergence. Assume now that Opial’s condition holds. By the Banach–Alaoglu20

theorem and Theorem 3.4 (once we take into account Theorem 3.5), it suffices to21

consider sequences that have both a weak and a Δ-limit. Then by (3.4) the weak22

limit of such sequence satisfies the definition of Δ-limit. The last assertion of the23

theorem follows from Theorem 3.8.24

Remark 3.20. It should also be noted that Δ-convergence, unlike weak conver-25

gence, depends on the choice of an equivalent norm. Theorem 1 of van Dulst [38],26
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proves that in a separable Banach space one can always find an equivalent norm1

(that one may call a van Dulst norm) such that every weakly convergent sequence2

in the space satisfies Opial’s condition (3.4), i.e. that Δ-convergence associated3

with a van Dulst norm is associated with the weak topology. In practice, how-4

ever, renorming the space may change conditions of a problem where the Opial’s5

condition is needed. In particular, since van Dulst’s construction uses a basis in a6

Banach space Y which containsX isometrically, it is not clear if one can preserve the7

invariance of the equivalent norm with respect to a given group of operators with-8

out existence of a wavelet basis associated with this group. Theorem 2.6 requires9

that the new norm will remain uniformly convex and invariant with respect to a10

fixed group of isometries, which is not assured by the van Dulst’s construction.11

For the purpose of applications to functional spaces, uniformly convex norms, sat-12

isfying strong Opial’s condition and invariant with respect to Euclidean shifts and13

dyadic dilations, are known (see [8]) for Besov and Triebel–Lizorkin spaces Ḃs,p,q14

and Ḟ s,p,q with p, q ∈ (1,∞), s ∈ R (which includes Sobolev spaces Ḣs,p for all15

s ∈ R, p ∈ (1,∞))) for all Besov and Triebel–Lizorkin spaces Ḃs,p,q and Ḟ s,p,q16

with p, q ∈ (1,∞), s ∈ R (which includes Sobolev spaces Ḣs,p(RN ) for all s ∈ R17

and p ∈ (1,∞)). Motivation for the choice of norm, based on the Littlewood–Paley18

decomposition, can be found by the proof of cocompactness of Sobolev imbeddings19

in [15, Chap. 4] (note that the authors call the property of cocompactness inverse20

imbedding). The argument of Cwikel is based on verifying (3.6) using the definition21

of the equivalent norm for Besov and Triebel–Lizorkin spaces from [36, Defini-22

tion 2, p. 238], based on the Littlewood–Paley decomposition, and it reduces both23

weak and polar convergence, by straightforward calculations, to obvious pointwise24

convergence of the sequence (2nsF−1ϕ0(2
−n·)F (uk − u))k∈N, where F denotes the25

Fourier transform, ϕ0 is a smooth function supported in an annulus, n ∈ Z and26

s ∈ R.27

4. A Discussion Concerning the Brezis–Lieb Lemma28

It is interesting to note that while weak convergence of (xk)k∈N to an element x in

a Banach space implies that �xk� ≥ �x� + o(1) (weak lower semicontinuity of the

norm), Δ-convergence of such a sequence to x implies that �xk� ≥ �xk−x�+ o(1),

while in the case of sequences in a Hilbert space, both of these inequalities can also

be deduced from the stronger condition

�xk�
2 = �xk − x�

2 + �x�2 + o(1) (4.1)

When the space X is uniformly convex, Lemma 3.7 gives a lower bound for the29

norm of the Δ-convergent sequence in the form �uk� ≥ �uk − u� + δ(�u�) + o(1).30

Another relation that allows to estimate the norm of the sequence (uk) by the31

norms of its weak limit u and of the remainder sequence uk − u when X = Lp,32

1 ≤ p <∞, is the important Brezis–Lieb lemma [6]. Remarkably, in the case p = 233

Brezis–Lieb lemma follows from (4.1), while for p �= 2 it requires, in addition to the34
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assumption of weak convergence, also convergence almost everywhere. One may,1

however, interpret convergence a.e. as a sufficient condition for Δ-convergence of2

the sequence to its weak limit, as one can see from the Brezis–Lieb lemma itself,3

or, alternatively, from the following argument.4

Lemma 4.1. Let (Ω, µ) be a measure space and let uk be a bounded sequence in5

Lp(Ω, µ), p ∈ (1,∞). If uk � u and uk → u a.e. then uk � u.6

Proof. Without loss of generality we may assume that u = 0. Let u∗k � w on a7

renamed subsequence. Then w = 0 on every set where a.e. convergence becomes8

uniform, and therefore, by Egoroff theorem, w = 0 outside of a set of arbitrarily9

small measure, and thus a.e. Thus u∗k has no subsequence with a non-zero Δ-limit,10

i.e. uk � 0.11

It is natural to pose the question, what may remain of the assertion of the12

Brezis–Lieb lemma if we replace its conditions with a weaker requirement that13

both Δ-limit and weak limit exist and are equal.14

Theorem 4.2. Let (Ω, µ) be a measure space. Assume that uk � u and uk � u in

Lp(Ω, µ). If p ≥ 3 then
�

Ω

|uk|
pdµ ≥

�

Ω

|u|pdµ+

�

Ω

|uk − u|
pdµ+ o(1). (4.2)

Proof. In order to prove the assertion it suffices to verify the elementary inequality

(1 + t)p ≥ 1 + |t|p + p|t|p−2t+ pt, (4.3)

since it implies |uk|
p ≥ |uk − u|

p + |u|p + p|u|p−2u(uk − u) + p|uk − u|
p−2(uk − u)u,

with the integrals of the last two terms vanishing by assumption. The elementary

inequality is equivalent to the inequalities

f+(t) = (1 + t)p − 1− tp − ptp−1 − pt ≥ 0, t ≥ 0

and, assuming without any restriction (in view of the symmetry of the formula)

that |t| ≤ 1

f−(t) = (1− t)p − 1− tp + ptp−1 + pt ≥ 0, t ∈ [0, 1].

To prove them, note that both functions vanish at zero, so it suffices to show that

their derivatives are non-negative. We have

1

p
f �+(t) = (1 + t)p−1 − tp−1 − 1− (p− 1)tp−2,

which is also a function vanishing at zero, so it suffices to show that its derivative

is non-negative, i.e.

1

p(p− 1)
f ��+(t) = (1 + t)p−2 − tp−2 − (p− 2)tp−3 ≥ 0.

1550038-17

Remarkably, Brezis-Lieb lemma in the case p=2 follows from (4.1) unded assumption
of weak convergence, but when p = 2 a stronger assumption of a.e. convergence is required.



Page Proof

March 31, 2015 15:36 WSPC/S0219-1997 152-CCM 1550038

S. Solimini & C. Tintarev

Let s = t−1 and q = p− 2. Then

sq

p(p− 1)
f ��+(s−1) = (1 + s)q − 1− qs ≥ 0, s ≥ 1,

which is true by convexity of the first term, since q ≥ 1 (i.e. p ≥ 3).1

Consider now the derivative of f−:

1

p
f �−(t) = −(1− t)p−1 − tp−1 + 1 + (p− 1)tp−2.

It remains to notice that (1− t)p−1 + tp−1 ≤ 1.2

Remark 4.3. Easy calculations show that inequality (4.3) used in the proof of3

Theorem 4.2 does not hold unless p ≥ 3, and the argument of homogenization type4

is used in [3] to show that condition p ≥ 3 is indeed necessary for (4.2), unless5

p = 2. For p = 2, as we already mentioned, inequality (4.2) holds, and, moreover,6

becomes an equality, which can be easily verified.7

Remark 4.4. The inequality in (4.2) can be strict. Indeed, one can easily calculate

by binomial expansion for p = 4 that if uk � u and uk � u (i.e. (uk − u)
3 � 0 in

L4/3), then
�

Ω

|uk|
4dµ =

�

Ω

|u|4dµ+

�

Ω

|uk − u|
4dµ+ 6

�

u2(uk − u)
2dµ+ o(1).

Let Ω = (0, 3) equipped with Lebesgue measure and consider three sequences8

of disjoint sets A1;k, . . . , A3;k , k ∈ N, such that (m−1
k , mk ) ⊂ Arem(m,3);k where9

rem(m, 3) is the remainder of division of m by 3 and m = 1, . . . , 3k. Set uk =10
�3

i=1 aiχAi;k
where a1 = 1, a2 = 2 and a3 = 0. Then uk � 1 and (uk − u)3 �11

1
3

�

i(ai − 1)3 = 0, while



u2(uk − u)
2dµ→ 2 > 0.12

Remark 4.5. Δ-convergence is necessary for the assertion of Brezis–Lieb lemma,

and even a weaker statement (4.2), to hold. More accurately, if a sequence (uk) ⊂

Lp(Ω, µ), p ∈ [1,∞), and a function u ∈ Lp(Ω, µ) are such that for any v ∈

Lp(Ω, µ),
�

Ω

|uk − v|
pdµ ≥

�

Ω

|u− v|pdµ+

�

Ω

|uk − u|
pdµ+ o(1), (4.4)

then uk � u by the definition of Δ-limit.13

5. Profile Decomposition in Terms of Δ-Convergence14

Throughout this section we assume that X is a uniformly convex and uniformly15

smooth Banach space. We also assume that D is a subset, containing the identity16

operator, of a group D0 of isometries on X . In this section we prove that every17

bounded sequence in X has a subsequence with a profile decomposition based on18
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Δ-convergence. The reason that motivates us to define concentration profiles as Δ-1

limits, rather than weak limits, is that Δ-convergence yields estimates of the energy2

type (3.3) which are not readily available when usual weak convergence is used.3

We need to modify some of the definitions of previous sections, which are4

based on weak convergence, by changing the mode of convergence involved to5

Δ-convergence.6

Definition 5.1. One says that a sequence (uk) ⊂ X has a D-Δ-limit u (to be7

denoted uk
D
� u), if for every sequence (gk) ⊂ D, g−1

k (uk − u) � 0.8

Equivalently, if we take into account the supremum of the norms of the Δ-profiles

of a given sequence by setting

p((uk)k∈N) = sup{�w� : ∃ subsequences (unk
) ⊂ (uk) and (gk) ⊂ D,

such that g−1
k (unk

) � w},

we can say that uk
D
� u if and only if p((uk − u)k∈N) = 0.9

Definition 5.2. One says that a bounded sequence (uk) in a Banach space X

admits a Δ-profile decomposition relative to the set of isometries D ⊂ D0, if there

exist sequences (g
(n)
k )k ⊂ D with g

(1)
k = Id, elements w(n) ∈ X , n ∈ N, and a

sequence rk
D
� 0 such that

(g
(n)
k )−1g

(m)
k � 0 whenever m �= n (asymptotic decoupling of gauges), (5.1)

and a renamed subsequence of uk can be represented in the form

uk =

∞
�

j=1

g
(j)
k w(j) + rk, (5.2)

where the series
�∞

j=1 g
(j)
k w(j) is convergent in X absolutely and uniformly with

respect to k. In this case we also have

(g
(n)
k )−1uk � w(n), n ∈ N.

Definition 5.3. We shall say that the group D0 of isometries on a Banach space

X is a dislocation group (to be denoted D0 ∈ IX) if it satisfies

(gk) ⊂ D0, gk �� 0

⇒ ∃ (kj) ⊂ N : (g−1
kj

) and (gkj
) converge operator-strongly (i.e. pointwise)

(5.3)

and

uk � 0, w ∈ X, (gk) ⊂ D0, gk � 0 ⇒ uk + gkw � 0. (5.4)

Remark 5.4. Note also that condition (5.4) is trivially satisfied if Opial’s condi-10

tion holds, and in particular, in a Hilbert space, so this definition agrees with the11

1550038-19
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definition of the dislocation group used previously in [35]. It is easy to prove that1

when D0 is a dislocation group, the profiles w(n) in Definition 5.2 are unique, up2

to the choice of subsequence and up to multiplication by an operator g ∈ D0. The3

argument is repetitive of that in [35, Proposition 3.4], which considers the case of4

Hilbert space.5

Theorem 5.5. Let X be a uniformly convex and uniformly smooth Banach space

and let D � Id be subset of a dislocation group D0. Then every bounded sequence

(xk) ⊂ X admits a Δ-profile decomposition relative to D. Moreover, if �xk� ≤ 1,

and δ is the modulus of convexity of X, then �w(n)� ≤ 2 for all n ∈ N and

lim sup �rk�+
�

n

δ(�w(n)�) ≤ 1. (5.5)

We prove the theorem via a sequence of lemmas.6

Lemma 5.6. Let (gk) ⊂ D0. If gk � 0 then g−1
k � 0.7

Proof. Assume that g−1
k �� 0. Then by (5.3) the sequence (gk) has a strongly8

convergent subsequence, whose limit is an isometry, and thus it cannot be9

zero.10

Lemma 5.7. Let (gk) ⊂ D be such that g−1
k is operator-strongly convergent. If11

xk � 0, then gkxk � 0.12

Proof. It is immediate from the assumption that there is a linear isometry h, such13

that g−1
k y → hy for every y ∈ X . Then14

�(gkxk)
∗, y� = �x∗k, g

−1
k y� = �x∗k, hy�+ o(1) → 0.15

Our next lemma assures that dislocation sequences (gk) that provide distinct16

profiles are asymptotically decoupled.17

Lemma 5.8. Let (uk) ⊂ X be a bounded sequence. Assume that there exist18

two sequences (g
(1)
k )k ⊂ D and (g

(2)
k )k ⊂ D, such that (g

(1)
k )−1uk � w(1) and19

(g
(2)
k )−1(uk − g

(1)
k w(1)) � w(2) �= 0. Then (g

(1)
k )−1(g

(2)
k ) � 0.20

Proof. Assume that (g
(1)
k )−1(g

(2)
k ) does not converge weakly to zero. Then by (5.3),

on a renamed subsequence, (g
(1)
k )−1(g

(2)
k ) converges operator-strongly to some isom-

etry h. Then by Lemma 5.7,

(g
(1)
k )−1(g

(2)
k )[(g

(2)
k )−1(uk − g

(1)
k w(1))− w(2)] � 0,

which implies, taking into account (5.4),

(g
(1)
k )−1uk − w

(1) − hw(2) � 0.

However, this contradicts the definition of w(1) and the assumption that21

w(2) �= 0.22
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The next statement assures that one can find decoupled elementary concentra-1

tions by iteration.2

Lemma 5.9. Let uk be a bounded sequence in X and let (g
(n)
k )k ⊂ D,w(n) ∈3

X,n = 1, . . . ,M, be such that g
(1)
k = I, (g

(n)
k )−1uk � w(n), n = 1, . . .M, and4

(g
(n)
k )−1(g

(m)
k ) � 0 whenever n < m. Assume that there exists a sequence

5

(g
(M+1)
k ) ⊂ D such that, on a renumbered subsequence, (g

(M+1)
k )−1(uk − w(1) −

6

g
(2)
k w(2) − · · · − g

(M)
k w(M)) � w(M+1) �= 0. Then (g

(n)
k )−1(g

(M+1)
k ) � 0 for7

n = 1, . . . ,M .8

Proof. We can replace uk by uk−
�

m �=n g
(m)
k w(m) and then, thanks to (5.4), apply9

Lemma 5.8 with 1 replaced by n and 2 by M + 1.10

We may now start the construction needed for the proof of Theorem 5.5. As we11

have remarked before, we may without loss of generality assume that �xk� ≤ 1.12

Let us introduce a partial strict order relation between sequences in X , to be13

denoted as >. First, given two sequences (xk) ⊂ X and (yk) ⊂ X , we shall say14

that (xk) � (yk) if there exists a sequence (gk) ⊂ D, an element w ∈ X\{0}, and a15

renumeration (nk) such that g−1
nk
xnk

� w and yk = xnk
− gnk

w. From Lemma 3.716

it follows that if (xk) � (yk) and �xk� ≤ 1, then �yk� ≤ 1 for k sufficiently large,17

and therefore it follows from sequential Δ-compactness of bounded sequences that18

for every sequence (xk) ⊂ X , �xk� ≤ 1, which is not D-Δ- convergent to 0, there19

is a sequence (yk) ⊂ X , such that �yk� ≤ 1 and (xk) � (yk).20

Then we shall say that (xk) > (yk) in one step, if (xk) � (yk) and in m steps,21

m ≥ 2, if there exist sequences (x1
k) � (x2

k) � . . . � (xmk ), such that (x1
k) = (xk)22

and (xmk ) = (yk). Note that, for every sequence (xk) ⊂ X , �xk� ≤ 1, either there23

exists a finite number of steps m0 ∈ N such that (xk) > (yk) in m0 steps for some24

(yk) ⊂ X , �yk� ≤ 1, and p((yk)) = 0, or for every m ∈ N there exists a sequence25

(yk) ⊂ X , �yk� ≤ 1, such that (xk) > (yk) in m steps. We will say that (xk) ≥ (yk)26

if either (xk) > (yk) or (xk) = (yk).27

Define now

σ((xk)) = inf
(yk)≥(xk)

sup
k
�yk�

and observe that if (xk) ≥ (zk), then σ((xk)) ≤ σ((zk)), since the set of sequences28

(yk) dominating (zk) is a subset of sequences dominating (xk).29

Lemma 5.10. Let (xk) > (yk) in m steps, �xk� ≤ 1 and η > 0. Then there exist

elements w(1), . . . , w(m), and sequences (g
(1)
k ), . . . , (g

(m)
k ) in D, and a renumeration

(nk) such that

yk = xnk
−

m
�

n=1

g(n)
nk
w(n),
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(g
(p)
nk

)−1g
(q)
nk

� 0 for p �= q, and for any set J ⊂ Jm = (1, . . . ,m),

δ

�

�

n∈J

g(n)
nk
w(n)

�

≤ sup �xnk
� − σ((xnk

)) + η, for all k sufficiently large.

(5.6)

Proof. The first assertion follows from Lemma 5.9. Let

αk = xnk
−

�

n∈Jm\J

g
(n)
k w(n),

βk = xnk
−

�

n∈Jm\J

g
(n)
k w(n) −

1

2

�

n∈J

g
(n)
k w(n) =

1

2
(αk + yk).

By Lemma 3.7, �yk� ≤ �αk� ≤ �xk� ≤ 1 and βk ≤ 1 for all k large. Note that, as in

the construction above, we can take k large enough so that sup �βk� ≤ inf �βk�+η.

By uniform convexity, for large k we have

�βk� ≤ �αk� − δ(αk − yk).

Therefore1

δ

��

�

�

�

�

�

n∈J

g
(n)
k w(n)

�

�

�

�

�

�

≤ �αk� − �βk� ≤ sup �xk� − σ((xk)) + η.2

Proof of Theorem 5.5. For every j ∈ N define �j = δ( 1
2j ). Let (x

(1)
k ) ⊂ X

be such that (xk) > (x
(1)
k ) and sup�x

(1)
k � < σ((xk)) + �1. Consider the follow-

ing iterations. Given (x
(j)
k )k, either p((x

(j)
k )k) = 0, in which case there is a profile

decomposition with rk = x
(j)
k , or there exists a sequence (x

(j+1)
k )k < (x

(j)
k )k, such

that supk�x
(j+1)
k � < σ((x

(j)
k )k)+

�j
2 , j ∈ N. Let us denote as njk the cumulative enu-

meration of the original sequence that arises at the jth iterative step, and denote

as mj+1 the number of elementary concentrations that are subtracted at the transi-

tion from (x
(j)
k )k to (x

(j+1)
k )k (using the convention x

(0)
k := xk). Set Mj =

�j
i=1mi,

M0 = 0. Then the sequence (x
(j)
k )k admits the following representation:

x
(j)
k = xnj

k

−

Mj
�

n=1

g
(n)

nj

k

w(n), k ∈ N.

By Lemma 5.10, under an appropriate renumeration such that (5.6) holds for all k,

δ





�

�

�

�

�

�

Mj
�

n=Mj−1+1

g
(n)

nj

k

w(n)

�

�

�

�

�

�



 ≤ sup �x
(j+1)
k � − σ((x

(j)
k )) +

�j
2
< �j , k ∈ N,

and thus
�

�

�

�

�

�

Mj
�

n=Mj−1+1

g
(n)

nj

k

w(n)

�

�

�

�

�

�

≤ 2−j , j ∈ N.
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Let us now diagonalize the double sequence x
(j)
k by considering

x
(k)
k = xnk

k
−

Mk
�

n=1

g
(n)

nk
k

w(n).

Let us show that x
(k)
k

D
� 0. Indeed, by definition of functional p and Lemma 5.10,

δ(p(xk) ≤ sup �x k� − σ(xk), and therefore, for any j ∈ N and all k ≥ j,

p(x
(k)
k ) ≤ p(x

(j)
k ) ≤ sup �x

(j)
k � − σ(x

(j)
k ) ≤ �j.

Since j is arbitrary, this implies p(x
(k)
k ) = 0. Furthermore, denoting as Jj an arbi-

trary subset, of {Mj + 1, . . . ,Mj+1}, j ∈ N, we have

�

�

�

�

�

∞
�

n=Mk+1

g
(n)

nk
k

w(n)

�

�

�

�

�

≤

∞
�

j=k

�

�

�

�

�

�

�

n∈Jj

g
(n)

nk
k

w(n)

�

�

�

�

�

�

≤
1

2k−1
.

We have therefore

xnk
k
−

∞
�

n=1

g
(n)

nk
k

w(n) D
� 0,

where the series is understood as the sum Sk + S�k, where Sk =
�Mk

n=1 g
(n)

nk
k

w(n)
1

is a finite, not a priori bounded, sum, and a series S�k =
�∞

n=Mk+1 g
(n)

nk
k

w(n) that2

converges unconditionally and uniformly in k.3

Note, however, that Sk is a sum of a bounded sequence xnk
k
, a D-Δ-vanishing4

(and thus bounded) sequence, and the convergent series S�k bounded with respect5

to k. Therefore the sum S�k is bounded with respect to k and, consequently, the6

series Sk+S�k is convergent in norm, unconditionally and uniformly in k. Note that7

the construction can be carried out without further modifications if one prescribes8

in the beginning g
(1)
k = Id whenever w(1) =

�

lim xnk
�= 0, while in the case xk � 09

one can add the zero term g
(1)
k w(1) to the sum.10

6. General Properties of Cocompactness and Profile11

Decompositions12

In this section we discuss some general functional-analytic properties of sequences13

related to cocompactness, following the discussion for Sobolev spaces in [29]. The14

reader whose interest is focused on profile decompositions may skip to the next15

section after reading the definition below. We will assume throughout this section16

that X is a strictly convex Banach space, unless specifically stated otherwise, and17

that the set D will be a non-empty subset of a group D0 of linear isometries on X .18

Definition 6.1. A continuous imbedding of two Banach spaces X �→ Y , given a19

set D of bijective linear isometries of both X and Y , is called D,X-cocompact (to be20

denoted X
D,X
�→ Y ), if any D-Δ-convergent sequence in X is convergent in the norm21
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of Y . It will be called D,Y -cocompact (to be denoted X
D,Y
�→ Y ), if any sequence1

bounded in X and D-Δ-convergent in Y , is convergent in the norm of Y .2

Note that when for weak and Δ-convergence in X (respectively, Y ) coincide,3

D,X-(respectively, D,Y -) cocompacntess coincides with D-cocompactness.4

Analogously to the notion of D-cocompact set in Definition 2.2, we say that a5

set B ⊂ X , is D,X-cocompact, if every D-Δ-convergent sequence in X is strongly6

convergent.7

Definition 6.2. A subset B of a Banach spaceX is calledD-Δ-bounded if for every8

sequence (gk) ⊂ D, gk � 0, and any sequence B, xk � x, one has g−1
k (xk − x) �9

0. It is called D-bounded if it possesses analogous property with Δ-convergence10

replaced by weak convergence.11

Definition 6.3. A Banach space X is called locally D-Δ-cocompact if every12

bounded subset of X is D-Δ-cocompact. It is called locally D-cocompact if it pos-13

sesses analogous property with Δ-convergence replaced by weak convergence.14

We have two examples of locally cocompact spaces.15

Example 6.4. (cf. [14, Remarks, p. 395]) The imbedding p(Z) �→ ∞(Z), 1 ≤16

p ≤ ∞, is D-cocompact with D = {u �→ u(· + y)}y∈Z. In particular, ∞ is locally17

cocompact. To see that observe that uk
D
� 0 implies uk(yk) → 0 for any yk, in18

particular when yk is a point such that |uk(yk)| ≥
1
2�uk�∞. As an immediate19

consequence we also have p
D
�→ q whenever q > p.20

Example 6.5. Another example of a locally cocompact space is L∞(R), equipped21

with D = {u �→ u(2j ·+y)}j∈Z,y∈R. Indeed, assume, without loss of generality, that22

A ≥ ess sup uk(x) = �uk�∞ ≥ η > 0. Then for every k there exists a Lebesgue23

point xk of the set Xk = {x : uk(xk) ≥ η/2}. Therefore, for every k and for every24

α ∈ (0, 1) there exists δα,k > 0 such that |Xk ∩ [xk − δα,k, xk + δα,k]| ≥ 2αδα,k.25

Let ũk(x) = uk(δ
−1
αk

(x + xk)). Consider the set X̃k = {x : ũk(xk) ≥ η/2} and

note that |X̃k ∩ [−1, 1]| ≥ 2α. Therefore, choosing any α ∈ ( 2A
2A+η , 1), we get

�

[−1,1]

ũk ≥ αη −A(2− 2α) = (η + 2A)α− 2A > 0.

Consequently, ũk �� 0. It is easy to show that if j(α, k) ∈ N is such that 2−j(α,k) ≤26

δα,k ≤ 21−j(α,k), then uk(2
j(α,k)(x + xk)) �� 0 as well and D-cocompactness of27

bounded sets in L∞(R) follows.28

We have the following immediate criterion of local cocompactness.29

Proposition 6.6. A Banach space X is locally D-Δ-cocompact (respectively, D-30

cocompact) if and only if its every D-Δ-bounded (respectively, D-bounded) set is31

compact.32
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Definition 6.7. A set B in a Banach space X is called profile-compact relative to1

a set D of bijective isometries on X if any sequence in B admits a strong profile2

decomposition, i.e. a profile decomposition whose remainder term vanishes in the3

norm of X .4

Proposition 6.8. Let B be a profile-compact subset of a Banach space X and let5

D be a non-empty subset of a dislocation group D0. Then the profiles w
(n) for a6

sequence (uk) ⊂ B are given by w(n) =
�

lim (g
(n)
k )−1uk =

�

lim (g
(n)
k )−1uk.7

Proof. Without loss of generality we may consider profile decompositions with8

finitely many terms. Then from (5.4) by an elementary induction argument, we see9

that the weak and the Δ-limits of (g
(n)
k )−1uk coincide.10

Remark 6.9. Consider for simplicity a uniformly convex and uniformly smooth11

Banach spaceX with the Opial’s condition. Conclusion of Theorem 5.5 is analogous12

to the conclusion of the Banach–Alaoglu theorem, in the sense that every bounded13

sequence is “profile-weakly-compact” (that is, has a subsequence that admits a14

profile decomposition). Similarly to compactness of imbeddings, an imbeddingX �→15

Y is cocompact relative to a set of bijective isometries D ⊂ D0 ∈ IX , which extend16

to bijective isometries D ⊂ D0 ∈ IY , if and only if a “profile-weakly-compact”17

sequence in X becomes profile-compact (i.e. “profile-strongly-compact”) in Y , that18

is, if it gets a strongly vanishing remainder.19

Our next question is if a dual imbedding Y ∗ �→ X∗ of a cocompact imbedding20

X �→ Y is cocompact. The answer is positive, but it involves the two different21

modes of cocompactness (or requires the Opial condition).22

Proposition 6.10. Let X be a reflexive Banach space equipped with a set D of23

linear bijective isometries on X and Y . Assume that X
D,X
�→ Y, and that every24

bounded sequence in X admits a Δ-profile decomposition. Then the dual imbedding25

Y ∗ �→ X∗ is D#-cocompact, where26

D# = {(g∗)−1, g ∈ D}.27

Proof. Consider (vk), vk
D#

� 0 in Y ∗, as a sequence in X∗, and let v∗k ∈ X be a

dual conjugate of vk. Consider a Δ-profile decomposition for v∗k in X . Then

�vk�X∗ =
�

n

�vk, g
(n)
k w(n)�X + �vk, rk�X ≤

�

n

�g
(n)∗
k vk, w

(n)�X + �vk�Y ∗�rk�Y .

It remains to observe that the sum in the right-hand side is uniformly convergent28

relative to k, and each term vanishes by the assumption on vk. The last term in29

the right-hand side vanishes, since vk is bounded in Y ∗ and the remainder of profile30

decomposition vanishes in Y .31
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We can now prove Theorem 2.10.1

Proof of Theorem 2.10. Note first that condition (2.3) holds for D#
0 in Y ∗.2

Indeed, if (g∗k)
−1 �� 0, then �v, g−1

k u� �→ 0 for some u, v ∈ Y , and thus g−1
k �� 03

in Y , and, by density, g−1
k �� 0 in X . Then, by (2.3), on a renamed subsequence,4

g−1
k → g−1 in the strong operator sense in X and, by imbedding, in Y . In particular,5

g−1 is an isometry and so also, by a simple duality argument, is (g∗)−1. Then, for6

any v ∈ Y ∗, (g∗k)
−1v � (g∗)−1v, and �(g∗k)

−1v�Y ∗ = �(g∗)−1v�Y ∗ = �v�Y ∗ . Since7

by assumption Y ∗ is uniformly convex, we have (g∗k)
−1 → (g∗)−1 in the strong8

sense.9

It remains now to combine Proposition 6.10 with Theorem 5.5, taking into10

account that weak and Δ-convergence of bounded sequences coincide by the Opial’s11

condition.12

7. Profile Decompositions: Convergence of Remainder13

We start this section with the proof of Theorem 2.6.14

Proof of Theorem 2.6. By the Opial’s condition, Δ-convergence in the uniformly15

convex and uniformly smooth space X is equivalent to the weak convergence in16

X . Consequently, D ∈ IX . Moreover, D-Δ-convergence for bounded sequences17

coincides with D-weak convergence. Consequently, since every bounded sequence18

in X has a Δ-profile decomposition by Theorem 5.5, it has a profile decomposition19

in the sense of Definition 2.5.20

The rest of this section deals with general terms for interpretation of D,X-weak21

of D-weak convergence as convergence in some norm. In most cases this cannot22

be the norm of X , and verifying convergence in a suitable weaker norm typically23

involves some hard analytic proof. We give one example below where the group D is24

sufficiently robust to achieve convergence of D-weakly convergent sequences in the25

norm of X . Our main concern, however, is cocompactness of imbeddings of spaces26

of Sobolev type, which are discussed at the end of this section.27

Theorem 7.1. Let X be a uniformly convex and uniformly smooth Banach space28

and let D be a non-empty subset of a dislocation group D0 on X. Then every29

bounded sequence (uk) ⊂ X admits a Δ-profile decomposition and (5.5) holds.30

Furthermore, if X is X,D -cocompactly imbedded into a Banach space Y, or if31

X satisfies the Opial ’s condition and X is D-cocompactly imbedded into Y, then32

the remainder rk converges to zero in the norm of Y .33

We also have a partial analog of this theorem that imposes some of the assump-34

tions on Y instead of X .35

Theorem 7.2. Let X be a Banach space densely imbedded into a uniformly convex36

and uniformly smooth Banach space Y, and let D be a non-empty subset of a dislo-37

cation group D0 on Y such that with D0|X is a dislocation group on X. Then every38
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bounded sequence (uk) ⊂ X admits a Δ-profile decomposition in Y and (5.5) holds1

(in Y ). Furthermore, if there are only finitely many profiles w(n) �= 0, Y satisfies2

the Opial ’s condition, and X is D-cocompactly imbedded into Y, then the remainder3

rk converges to zero in the norm of Y .4

Proof. Apply Theorem 5.5 in Y . Since Y satisfies the Opial’s condition, all profiles5

are defined as weak limits in Y , and, since (xk) is bounded in X , they are elements6

of X . Since there are only finitely many profiles, the remainder rk is bounded in7

X . Since rk is bounded in X and rk
D
� 0 in Y , we have also rk

D
� 0 in X , and8

therefore, by D-cocompactness of the imbedding, rk → 0 in Y .9

We now consider Besov and Triebel–Lizorkin spaces equipped with the group10

of rescalings Dr, r ∈ R, defined as the product group of Euclidean shifts and,11

for some and dyadic dilations gjru(x) �→ 2rju(2jx), j ∈ Z. We refer to the defi-12

nition in the book of Triebel [36, (Definition 2, p. 238] (see also a similar expo-13

sition in [1]), based on the Littlewood–Paley decomposition, of equivalent norm14

for Besov spaces Ḃs,p,q(RN ) and Triebel–Lizorkin spaces Ḟ s,p,q(RN ). It is shown15

by Cwikel [8] that for all s ∈ R, and p, q ∈ 10,∞ (i.e. when the corresponding16

spaces are uniformly convex and uniformly smooth), the equivalent norm, which17

remains scale-invariant, satisfies the Opial’s condition. The latter work also gives18

direct proofs of cocompactness of some of the imbeddings of Besov and Triebel–19

Lizorkin spaces, which were implicitly proved, via wavelet argument, in [5]. We20

refer the reader to the survey [34] for explanations why Assumption 1, verified21

in [5] for Besov and Triebel–Lizorkin spaces, implies cocompactness. We summa-22

rize the imbeddings whose cocompactness is proved in [5] (another proof, based23

on Littlewood–Paley decomposition rather than on wavelet decomposition will be24

given in a forthcoming paper [8]).25

Theorem 7.3. The following imbeddings are cocompact relative to rescalings group26

DN/p−s:27

(i) Ḃs,p,q �→ Ḟ t,q,b, 1
p −

1
q = s−t

N > 0.
28

(ii) Ḃs,p,a �→ Ḃt,q,b, 1
p −

1
q = s−t

N ≥ 0, a < b.
29

(iii) Ḃs,p,p �→ BMO, s = N
p > 0.

30

(iv) Ḃs,p,a �→ Lq,b, 1
p −

1
q = s

N > 0, a < b.
31

(v) Ḟ s,p,a �→ Ḟ t,q,b, 1
p −

1
q = s−t

N > 0, a, b > 1.
32

(vi) Ḟ s,p,a �→ Ḃt,q,p, 1
p −

1
q = s−t

N > 0.33

Acknowledgments34

The authors thank Michael Cwikel for bringing their attention to the connection35

between Δ-convergence and the works of Van Dulst, Edelstein and Opial, for discus-36

sions, careful reading of an advanced draft of this manuscript, and helpful editorial37

1550038-27

(1, 



Page Proof

March 31, 2015 15:36 WSPC/S0219-1997 152-CCM 1550038

S. Solimini & C. Tintarev

remarks. This author thanks the Mathematics Department of Politecnico di Bari,1

as well as of Bari University, for their warm hospitality.2

Appendix A. Uniformly Convex and Uniformly Smooth3

Banach Spaces4

Definition A.1. We recall that a normed vector spaceX is called uniformly convex

if the following function on [0, 2], called the modulus of convexity of X, is strictly

positive for all � > 0:

δ(�) = inf
x,y∈X,�x�=�y�=1,�x−y�=�

1−

�

�

�

�

x+ y

2

�

�

�

�

.

As shown by Figiel [11, Proposition 3, p. 122] the function � �→ δ(�)/� is non-

decreasing on (0, 2], and thus � �→ δ(�) is strictly increasing if δ(�) > 0. Uniform

convexity can be equivalently defined by the property

x, y ∈ X, �x� ≤ 1, �y� ≤ 1 ⇒

�

�

�

�

x+ y

2

�

�

�

�

≤ 1− δ(�x− y�) (A.1)

(see [11, Lemma 4, p. 124]).5

It is an obvious consequence of (A.1) that
�

�

�

�

u+ v

2

�

�

�

�

≤ �v�

�

1− δ

�

�u− v�

�v�

��

(A.2)

for any two elements u, v ∈ X which satisfy �u� ≤ �v� and v �= 0. This in turn

implies that every two elements u, v ∈ X which are not both zero satisfy
�

�

�

�

u+ v

2

�

�

�

�

≤ C1 − C2δ

�

�u− v�

C2

�

for all C1 and C2 in [max{�u�, �v�},∞).

(A.3)

If C1 = C2 = max{�u�, �v�} then (A.3) is exactly (A.2), possibly with u and v6

interchanged. To extend this to larger values of C1 and C2 we simply use the fact7

that t �→ tδ(�u−v�t ) is a non-increasing function.8

A Banach spaceX is called uniformly smooth if for every � > 0 there exists δ > 09

such that if x, y ∈ X with �x� = 1 and �y� ≤ δ then �x+y�+�x−y� ≤ 2+��y�. It10

is known that X∗ is uniformly convex if and only if X is uniformly smooth (see [20,11

Proposition 1.e.2]) and that if X is uniformly convex, then the norm of X , as a12

function φ(x) = �x�, considered on the unit sphere S1 = {x ∈ X, �x� = 1}, is13

uniformly Gateau differentiable, which immediately implies that φ� is a uniformly14

continuous function S1 → S∗1 (see [20, p. 61]). Considering φ as a function on the15

whole X , one has by homogeneity φ�(x) = φ�(x/�x�) ∈ S∗1 for all x �= 0, and an16

elementary argument shows that φ�(x) coincides with the uniquely defined x∗. We17

summarize this characterization of the duality conjugate as the following statement.18

Lemma A.2. Let X be a uniformly convex and uniformly smooth Banach space.19

Then the map x �→ x∗ is a continuous map X\{0} → X∗ with respect to the norm20
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topologies on X and X∗ and is in fact uniformly continuous on all closed subsets1

of X\{0}.2

Appendix B. Asymptotic Centers and Δ-Convergence3

We follow the presentation of the Chebyshev and asymptotic centers from Edel-4

stein [10], in restriction to a particular case: the objects in [10] are defined there5

relative to a subset C of a Banach space X , and here we consider only the case6

C = X . We follow the presentation of Δ-convergence from Lim [19].7

A bounded set A in a Banach space X can be assigned a positive number

RA = inf
y∈X

sup
x∈A

�x− y�,

called the Chebyshev radius of A. The Chebyshev radius is attained (and is there-8

fore a minimum) by weak lower semicontinuity of the norm and the corresponding9

minimizer is called the Chebyshev center of A. When X is uniformly convex, the10

value RA cannot be attained at two different points y� �= y��, since from uniform11

convexity one immediately has supx∈A �x−
y�+y��

2 � < RA. Consequently, the Cheby-12

shev center of any set in a uniformly convex space is unique. Theorem 1 in [10] gives13

the following.14

Theorem B.1. Let X be a uniformly convex Banach space and let (xn) be a15

bounded sequence in X. Then the sequence of Chebyshev centers (yN ) of the sets16

AN = (x)k≥N converges in norm.17

By definition of the Chebyshev center of AN , N ∈ N, we have supk≥N �xk −

yN� ≤ supk≥N �xk−y� for all y ∈ X , and the asymptotic center y0 of the sequence

(xn) satisfies

lim sup �xn − y0� ≤ lim sup �xn − y�. (B.1)

From uniform convexity it follows immediately that

s lim sup �xn − y0� < lim sup �xn − y�, y �= y0, (B.2)

so the asymptotic center in a uniformly convex space is unique. An equivalent18

definition of Δ-limit in [19, (2)] says that y0 is a Δ-limit of (xn) if relation (B.1)19

holds for every subsequence of (xn). In particular, if a sequence is Δ-convergent,20

its Δ-limit is also its asymptotic center. On the other hand, an asymptotic center21

is not necessarily the Δ-limit. If, for example, (xn) is an alternating sequence of22

two points a and b, its asymptotic center is a+b
2 , which is not a Δ-limit limit of the23

sequence.24

The property of a space that every bounded sequence has an asymptotic center is25

called in [19] Δ-completeness, so by [10], uniformly convex spaces are Δ-complete.26

Sequential Δ-compactness follows from existence of a regular subsequence, i.e. a27

subsequence whose any further subsequence has the same asymptotic radius. This28

is the content of [13, Lemma 15.2], whose proof we reproduce below. Note that,29

unlike the proof of Δ-compactness in [19], no use is made of the Axiom of Choice.30
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Proof of Theorem A.1. Let (xk)k∈N ⊂ X be a bounded sequence. We use the

notation (vn) ≺ (un) to indicate that (vn) is a subsequence of (un) and denote

asymptotic radius of a sequence (vn) by radn→∞(vn). Set

r0 = inf{radn→∞(vn) : (vn) ≺ (xn)}.

Select (v1
n) ≺ (xn) such that

radn→∞(v1
n) < r0 + 1

and let

r1 = inf{radn→∞(vn) : (vn) ≺ (v1
n)}.

Continuing by induction, and having defined (vin) ≺ (vi−1
n ) set

ri = inf{radn→∞(vn) : (vn) ≺ (vin)}

and select (vi+1
n ) ≺ (vin) so that

radn→∞(vi+1
n ) < ri + 1/2i+1. (B.3)

Note that r0 ≤ r1 ≤ · · · so that limi→∞ radn→∞(vin) = r := lim ri.1

Consider a diagonal sequence (vkk ). Since (vkk) ≺ (vi+1
k ), we have radk→∞(vkk) ≥2

r, while from (B.3) it follows that radk→∞(vkk) ≤ r. Then radk→∞(vkk) = r, and3

since the same argument applies to every subsequence of (vkk), the sequence (vkk) is4

regular.5

Appendix C. An Equivalent Condition to (2.3)6

Condition (2.3), while it is verified in a great number of applications, has a quite7

technical appearance. While we cannot remedy this, we would like in this appendix8

to give it an equivalent formulation. We will use the notation
s
→ for the strong9

operator convergence.10

Proposition C.1. Let X be a uniformly convex separable Banach space and let D0

be a group of isometries on X. Then condition (2.3) is equivalent to the following

condition:

(gk) ⊂ D0, gk �� 0, uk � 0 ⇒ gkuk � 0 on a subsequence. (C.1)

Lemma C.2. If (gk) ⊂ D0, gk � g �= 0, is such that

uk � 0 ⇒ gkuk � 0

then g∗k
s
→ g∗.11

Proof. Let v ∈ X∗. We will verify that g∗k
s
→ g∗ once we show that for every

bounded sequence (uk),

�g∗kv − g
∗v, uk� → 0.
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Without loss of generality assume that uk � u. Then

�g∗kv − g
∗v, uk� = �g∗kv − g

∗v, u�+ �v, gk(uk − u)�+ �g∗v, (uk − u)� → 0,

with the middle term vanishing by assumption and the remaining two vanishing by1

the weak convergence.2

Lemma C.3. If (gk) ⊂ D0, gk � g �= 0, is such that

uk � 0 in X ⇒ gkuk � 0 on a subsequence,

then

vk � 0 in X∗ ⇒ g∗kvk � 0 on a subsequence.

Proof. By Lemma C.2 we have g∗k
s
� g∗ and g∗ is necessarily a bijective isometry.3

This implies g∗k � g∗ and therefore gk � g, since �v, (gk − g)u� = �(g∗k − g∗)v, u�.4

At the same time, �gku� = �u� = �gu�, and thus, due to the uniform convexity,5

gku→ gu, i.e. gk
s
→g.6

Combining Lemma C.2 and Lemma C.3, we have the following statement.7

Lemma C.4. If (gk) ⊂ D0, gk � g �= 0, is such that

uk � 0 ⇒ gkuk � 0 on a subsequence,

then gk
s
→ g.8

We can now prove the proposition.9

Proof. Necessity. Relation (C.1) follows from (2.3) immediately.10

Sufficiency. Let (en) be a normalized unconditional basis inX . Since �gken� =11

1 for every k and n, (gken)k has a weakly convergent subsequence. By diagonal-12

ization, we easily conclude that (gk) has a weakly convergent subsequence. By13

assumption the weak limit is non-zero. The sufficiency in the proposition follows14

now from Lemma C.4.15
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Control Optim. Calc. Var. 3 (1998) 213–233.12

[13] K. Goedel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies13

in Advanced Mathematics (Cambridge University Press, 1990).14

[14] S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings,15

J. Funct. Anal. 161 (1999) 384–396.16

[15] R. Killip and M. Visan, Nonlinear Schrödinger Equations at Critical Regularity, Clay17

Mathematics Proceedings, Vol. 17 (2013).18

[16] G. S. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings,19

preprint (2010); arXiv:1006.3064.20

[17] G. Kyriasis, Nonlinear approximation and interpolation spaces, J. Approx. Theory21

113 (2001) 110–126.22

[18] E. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains,23

Invent. Math. 74 (1983) 441–448.24

[19] T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976)25

179–182.26

[20] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Ergeb-27

nisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related28

Areas], Vol. 97 (Springer, Berlin, 1979).29

[21] P.-L. Lions, The concentration-compactness principle in the calculus of variations.30

The limit case, Part 1, Rev. Mat. Iberoamericana 1(1) (1985) 145–201.31

[22] V. Maz’ya, Classes of domains and embedding theorems for functional spaces (in Rus-32

sian) Dokl. Acad. Nauk SSSR 133 (1960) 527–530 (in Russian). English translation33

Soviet Math. Dokl. 1 (1961) 882–885.34

[23] D. R. Moreira and E. V. Teixeira, Weak convergence under nonlinearities, An. Acad.35
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