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REGULAR OBLIQUE DERIVATIVE PROBLEM IN MORREY

SPACES

DIAN K. PALAGACHEV, MARIA ALESSANDRA RAGUSA, & LUBOMIRA G. SOFTOVA

Abstract. This article presents a study of the regular oblique derivative prob-
lem

n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
= f(x)

∂u

∂`(x)
+ σ(x)u = ϕ(x) .

Assuming that the coefficients aij belong to the Sarason’s class of functions
with vanishing mean oscillation, we show existence and global regularity of
strong solutions in Morrey spaces.

1. Introduction

The goal of the present paper is to study the global regularity in Morrey spaces
for strong solutions to the non-degenerate oblique derivative problem

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
= f(x) for almost all x ∈ Ω,

∂u

∂`(x)
+ σ(x)u = ϕ(x) in the trace sense on ∂Ω .

(1.1)

Here the coefficients of the uniformly elliptic operator may be discontinuous and
the first order boundary operator, prescribed in terms of directional derivative with
respect to a unit vector field `(x), may be nowhere tangential to the boundary of Ω.
More precisely, we assume that aij ’s belong to the Sarason class, VMO, of functions
with vanishing mean oscillation [22].
The interests in the study of boundary-value problems for elliptic operators with

principal coefficients in VMO increased significantly in the last ten years. This
is mainly due to the fact that VMO contains as a proper subspace C0(Ω) that
ensures the extension of the Lp-theory of operators with continuous coefficients to
discontinuous coefficients [13, Chapter 9], [15]. On the other hand, the Sobolev
spacesW 1,n(Ω) and W θ,θ/n(Ω), 0 < θ < 1, are also contained in VMO, whence the
discontinuities of aij ’s expressed in terms of belonging to VMO become more general
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than those studied before (cf.[18], [6]). We refer the reader to the survey [5], where
an excellent presentation of the state-of-the-art and relations with another similar
results can be found concerning the regularizing properties of these operators in
the framework of Sobolev spaces. The Dirichlet problem for such kind of equations
has been well studied both in the linear ([6], [7]) and in the quasilinear ([20])
cases. Concerning the regular oblique derivative problems for elliptic operators
with VMO principal coefficients, we should mention the articles [8] in the linear
and [9] in the quasilinear case, respectively. The results of [8] have been extended
also to elliptic operators with lower order terms and general boundary operators
([16]). Recently, theW 2,p-theory developed in [16] has been applied in the study of
degenerate oblique derivative problem in Sobolev spaces (see [17]). The degeneracy
means that the field ` can be tangential to the boundary of Ω at the points of some
non-empty subset.
In the present paper we derive global regularizing property in Morrey spaces of

elliptic operators with VMO coefficients. Precisely, it is proved that any strong
solution (u ∈ W 2,p(Ω)) of (1.1) with f ∈ Lp,λ(Ω) and ϕ ∈ W (p,λ)(∂Ω), 1 < p <
+∞, 0 < λ < n, admits second derivatives lying in the Morrey space Lp,λ(Ω)
(Theorem 2.1). As consequence of that regularizing property we derive also strong
solvability in W 2,p,λ(Ω) of (1.1) (Theorem 2.2) for any f ∈ Lp,λ(Ω) and ϕ ∈
W (p,λ)(∂Ω). (See the next Section for the definition of the spaces used.) Finally,
the known relations between the Morrey and the Hölder spaces permit us to obtain
finer Hölder continuity of the gradient Du of the strong solutions to (1.1) for
suitable values of p and λ.
The crucial point of our investigations is the local boundary Morrey regularity

of the strong solutions to (1.1) (Lemma 4.1). The approach is based on an explicit
representation of solution’s second derivatives (near the boundary) in terms of
singular integral operators with Calderón–Zygmund kernels and their commutators
and operators with positive kernels. This method has been already used in the
study of Dirichlet problem ([7], see also [8]). Since the representation formula
derived in [8] concerns constant coefficients elliptic and boundary operators, we
apply here, in contrast to [8], a new approach in order to deal with non-homogeneous
boundary conditions described by variable oblique derivative operator. This is
reached by introducing a special auxiliary function which, roughly speaking, absorbs
the right-hand side of the boundary condition. Thus, a new representation formula
for the second derivatives occurs, which involves densities depending on the same
second derivatives, but also on the strong solution and its gradient. To estimate
effectively the Morrey norms of the second derivatives, we make use of a special
non-dimensional norms. Indeed, that approach seems to be more natural when one
studies the oblique derivative problem and this is due to the first order operator
defined on the boundary ∂Ω.
The rest of the paper is organized as follows. In Section 2 we state the problem,

the assumptions on the data and the main results. Section 3 is devoted to some
auxiliary results. Special emphasize is given on a construction and properties of the
auxiliary function (Lemma 3.1) mentioned above, by the aid of which we are able
to represent (locally near the boundary) the solution of (1.1). In Section 4 the local
boundary Morrey regularity of the strong solutions to (1.1) is derived. Finally, a
combination of that result with the interior regularity enables us to prove the main
results of the paper (Section 5).
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Results similar to the present here were derived for Dirichlet problem in [10] and
[11].

2. The Problem and Assumptions

Let Ω ⊂ Rn, n ≥ 3, be a bounded domain with sufficiently smooth boundary
∂Ω. Consider the unit vector field `(x) = (`1(x), . . . , `n(x)) prescribed on ∂Ω and
the first-order boundary operator

B ≡
∂

∂`(x)
+ σ(x) x ∈ ∂Ω.

In Ω we will consider the second order uniformly elliptic operator

L ≡ aij(x)Dij

where the usual summation convention on repeated indices is accepted and Dij ≡
∂2

∂xi∂xj
.

Our goal will be to study global regularity and strong solvability in the framework
of Morrey spaces of the next oblique derivative problem

Lu = f(x) for almost all x ∈ Ω,

Bu = ϕ(x) in the trace sense on ∂Ω .
(2.1)

Before giving the list of assumptions concerning the data of (2.1), let us recall
some definitions and state useful notations. As usual, the classical Sobolev space
of functions having weak derivatives up to order k which belong to Lp(Ω) will be
denoted by W k,p(Ω).
Let p ∈ (1,+∞) and λ ∈ (0, n). The function f ∈ L1loc(Ω) is said to belong to

the Morrey space Lp,λ(Ω) if

‖f‖Lp,λ(Ω) ≡

(
sup
ρ>0
x∈Ω

ρ−λ
∫

Bρ(x)∩Ω

|f(y)|pdy

)1/p
< +∞ ,

where, hereafter Bρ(x) denotes an n-dimensional ball of radius ρ and centered at
the point x.
We will consider also subspaces of W k,p(Ω) formed by functions having their k-

th order derivatives in Lp,λ(Ω). The symbol W k,p,λ(Ω) stands for these subspaces.
Precisely,

W k,p,λ(Ω) =
{
u ∈W k,p(Ω): Dαu ∈ Lp,λ(Ω), |α| = k

}
.

The norm in that space is naturally defined by

‖u‖Wk,p,λ(Ω) = ‖u‖Lp,λ(Ω) + ‖D
ku‖Lp,λ(Ω).

By means of the interpolation inequality, it is clear that also the lower-order deriva-
tivesDαu ∈ Lp,λ(Ω) for 0 < |α| < k. We shall make use also of the non-dimensional
norms

‖u‖∗Wk,p,λ(Ω) = ‖u‖Lp,λ(Ω) + d
k/2‖Dku‖Lp,λ(Ω), d = diamΩ.

To interpret the boundary condition in (2.1) in the trace sense on ∂Ω, we will
use the space of functions defined on ∂Ω which are traces of functions lying in
W 1,p,λ(Ω). That functional class is well studied by Campanato (cf. [3]). Thus,
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define W (p,λ)(∂Ω) to be the Banach space formed by functions ϕ defined on ∂Ω
and having the finite norm

‖ϕ‖W (p,λ)(∂Ω) =

(
sup
ρ>0
z′∈∂Ω

ρ−λ̄
∫

Bρ(z′)∩∂Ω

|ϕ(x′)|pdσx′

)1/p

+

(
sup
ρ>0

z′, z̄′∈∂Ω

ρ−λ
∫

Bρ(z′)∩∂Ω

∫
Bρ(z̄′)∩∂Ω

|ϕ(x′)− ϕ(x̄′)|p

|x′ − x̄′|p+n−2
dσx′dσx̄′

)1/p
,

with λ̄ = max{λ− 1, 0}.
In order to formulate the regularity assumptions on the coefficients of the op-

erator L, we need also to recall the definitions of the John–Nirenberg space ([14])
of functions with bounded mean oscillation (BMO) and the Sarason class VMO of
the functions with vanishing mean oscillation ([22]). A locally integrable function
f(x) is said to belong to BMO if

‖f‖∗ ≡ sup
B⊂Rn

1

|B|

∫
B

|f(x) − fB|dx < +∞

with fB being the integral average
1
|B|

∫
B
f(x)dx of the function f(x) over the set

B, and B ranges in the class of balls of Rn. If f(x) ∈ BMO denote

γ(r) = sup
ρ≤r, x∈Rn

1

|Bρ|

∫
Bρ

|f(x)− fBρ |dx.

Then, f(x) ∈ VMO if γ(r) = o(1) as r → 0+ and refer to γ(r) as the VMO-modulus
of f(x).
It should be noted that replacing the ball B above by the intersection B ∩ Ω,

one obtains the definitions of BMO(Ω) and VMO(Ω). Later on, having a function
defined on Ω that belongs to BMO(Ω) (V MO(Ω)) it is possible to extend it to all
R
n preserving its BMO (VMO) character (see [2, Proposition 1.3]).
We are in a position now to list our assumptions. Concerning the operator L,

we suppose that it is uniformly elliptic one with VMO coefficients. That is,

∃ κ > 0 : κ−1|ξ|2 ≤ aij(x)ξiξj ≤ κ|ξ|
2 ∀ξ ∈ Rn, a.a. x ∈ Ω,

aij(x) ∈ VMO(Ω), aij(x) = aji(x).
(2.2)

We set also γij(r) for the VMO-modulus of the function a
ij(x) and let γ(r) =(∑n

i,j=1 γ
2
ij(r)

)1/2
. An immediate consequence of (2.2) is the essential boundedness

of aij ’s.
As it concerns the boundary operator B, we assume

`i(x), σ(x) ∈ C
0,1(∂Ω), ∂Ω ∈ C1,1,

`(x) · ν(x) = `i(x)νi(x) > 0, σ(x) < 0 for each x ∈ ∂Ω,
(2.3)

with ν(x) = (ν1(x), . . . , νn(x)) being the unit inward normal to ∂Ω. The simple
geometric meaning of (2.3) is that the field `(x) is nowhere tangential to ∂Ω, that
is, (2.1) is a regular oblique derivative problem (see [21]).
The main results of the paper are contained in the following theorems.
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Theorem 2.1. Let (2.2) and (2.3) be true, p ∈ (1,+∞) and λ ∈ (0, n). Assume
further that u ∈ W 2,p(Ω) solves the problem (2.1) with f ∈ Lp,λ(Ω) and ϕ ∈
W (p,λ)(∂Ω).
Then Diju ∈ Lp,λ(Ω) and there is a constant C = C(n, p, λ, κ, γ, `, σ, ∂Ω) such

that

‖u‖W 2,p,λ(Ω) ≤ C
(
‖u‖Lp,λ(Ω) + ‖f‖Lp,λ(Ω) + ‖ϕ‖W (p,λ)(∂Ω)

)
. (2.4)

The regularizing property of the couple (L,B) implies well-posedness of the
oblique derivative problem (2.1) in the Morrey space W 2,p,λ(Ω).

Theorem 2.2. Let (2.2) and (2.3) be satisfied, p ∈ (1,+∞) and λ ∈ (0, n).
Then, for every f ∈ Lp,λ(Ω) and ϕ ∈ W (p,λ)(∂Ω) there exists a unique solution

of the oblique derivative problem (2.1). Moreover,

‖u‖W 2,p,λ(Ω) ≤ C
(
‖f‖Lp,λ(Ω) + ‖ϕ‖W (p,λ)(∂Ω)

)
(2.5)

with a constant C = C(n, p, λ, κ, γ, `, σ, ∂Ω).

An immediate consequence of Theorem 2.1 and the imbedding properties of the
Morrey spaces for suitable values of p and λ (cf. [4]) is the next global Hölder
regularity result for the gradient Du of the strong solutions to (2.1).

Corollary 2.3. Let u ∈ W 2,p(Ω) be a strong solution to (2.1) with f ∈ Lp,λ(Ω)
and ϕ ∈ W (p,λ)(∂Ω).
Then, if n− p < λ < n, the gradient Du is a Hölder continuous function on Ω

with exponent α = 1− (n− λ)/p and

‖Du‖C0,α(Ω) = sup
x,y∈Ω

|Du(x)−Du(y)|

|x− y|α
≤ C

(
‖f‖Lp,λ(Ω) + ‖ϕ‖W (p,λ)(∂Ω)

)
.

Let us point out that the solely assumptions f ∈ Lp(Ω) and ϕ ∈ W 1−1/p,p(∂Ω)
imply u ∈ W 2,p(Ω) (see [8]). Thus, if p > n the Sobolev imbedding theorem
yields Du ∈ Cβ(Ω) with β = 1 − n/p. On the other hand, Corollary 2.3 ensures
Hölder continuity of the gradient also for p ∈ (1, n], assuming finer regularity of
the data expressed in terms of their belonging to the Morrey space Lp,λ(Ω) with
λ ∈ (n− p, n).

Remark 2.4. The results presented here can be applied in studying Morrey regu-
larity of the strong solutions to (2.1) for general elliptic operators

L ≡ aij(x)Dij + b
i(x)Di + c(x)

with aij ∈ VMO(Ω) and the lower order coefficients bi(x) and c(x) owning suitable
Lebesgue integrability. We refer the reader to [16] for details concerning the case
of Sobolev spaces.

3. Auxiliary Results

Let Γ̃ be a portion of the hyperplane {xn = 0}, x = (x1, . . . , xn−1, xn) ≡ (x′, xn),
and let ϕ̃(x′) be a function defined on Γ̃ which belongs to W (p,λ)(Γ̃). The Banach
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space W (p,λ)(Γ̃) is equipped now with the non-dimensional norm

‖ϕ̃‖∗
W (p,λ)(Γ̃)

=

(
sup
ρ∈(0,d]
z′∈Γ̃

ρ−λ̄
∫

B′ρ(z
′)∩Γ̃

|ϕ̃(x′)|pdx′
)1/p

+ d1/2
(
sup
ρ∈(0,d]
z′, z̄′∈Γ̃

ρ−λ
∫

B′ρ(z
′)∩Γ̃

∫
B′ρ(z̄

′)∩Γ̃

|ϕ̃(x′)− ϕ̃(x̄′)|p

|x′ − x̄′|p+n−2
dx′dx̄′

)1/p
,

and B′ρ(z
′) is an (n−1)-dimensional ball of radius ρ and centered at z′ ∈ {xn = 0},

λ̄ = max{λ− 1, 0}, d = diam Γ̃.
Now, following [13] (see the proof of Theorem 6.26 therein), we take a function

η(y′) ∈ C20 (R
n−1) such that

∫
Rn−1

η(y′)dy′ = 1. Fixing arbitrary x0 = (x
′
0, 0)

and R > 0, and denoting B+R = BR(x0) ∩ {xn > 0}, ΓR = BR(x0) ∩ {xn = 0},
without loss of generality we may take ΓR instead of Γ̃ at the above definition of
the norm ‖ϕ̃‖∗

W (p,λ)(Γ̃)
and set d = R. Later, having ϕ̃ ∈ W (p,λ)(ΓR) we suppose

that ϕ̃ is extended to all Rn−1 as a function with a compact support, preserving
its W (p,λ)-norm.
Supposing that the boundary ∂Ω is locally flatten near the point x0 such that Ω ⊂

{xn > 0}, we recall that the regular obliqueness condition (2.3) ensures `n(x0) 6= 0.
Consider now the function

φ(x) = φ(x′, xn) =
xn

`n(x0)

∫
Rn−1

ϕ̃(x′ − xny
′)η(y′)dy′. (3.1)

Essential step in our further considerations is ensured by the next

Lemma 3.1. The function φ(x) belongs to W 2,p,λ(B+R ) and satisfies

φ(x′, 0) = 0,
∂φ

∂xn
(x′, 0) =

ϕ̃(x′)

`n(x0)
for x′ ∈ ΓR. (3.2)

Moreover,

‖φ‖∗
W 2,p,λ(B+R)

= ‖φ‖Lp,λ(B+R)
+R‖D2φ‖Lp,λ(B+R)

≤ CR1/2‖ϕ̃‖∗W (p,λ)(ΓR)
(3.3)

with C = C(n, p, λ, `, η).

Proof. We will prove Lemma 3.1 in two steps.
Step 1: A bound of ‖φ‖

Lp;�(B
+
R
)
. Let ρ ∈ (0, R], x̄ ∈ B+R and B

+
ρ (x̄) =

Bρ(x̄) ∩ {xn > 0}. Then, making use of the Jensen integral inequality as well as of
Fubini’s theorem, we obtain

ρ−λ
∫

B+ρ (x̄)∩B
+
R

|φ(x)|pdx =
1

[`n(x0)]p
ρ−λ

∫
B+ρ (x̄)∩B

+
R

∣∣xn
∫
Rn−1

ϕ̃(x′ − xny
′)η(y′)dy′

∣∣pdx

≤ C(n, p, `, supp η)ρ−λ
∫

supp η

|η(y′)|p
( ∫
B+ρ (x̄)∩B

+
R

xpn|ϕ̃(x
′ − xny

′)|pdx
)
dy′.

Now, setting IB+ρ (x̄)∩B+R
(y′) = ρ−λ

∫
B+ρ (x̄)∩B

+
R
xpn|ϕ̃(x

′−xny′)|pdx and Qρ(x̄) for the

cube
{
x ∈ Rn : |xi − x̄i| ≤ ρ for i ≤ n − 1; max{0,−ρ+ x̄n} ≤ xn ≤ ρ + x̄n

}
, we
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have

IB+ρ (x̄)∩B+R
(y′) ≤ IQρ(x̄)(y

′) = ρ−λ
∫

Qρ(x̄)

xpn|ϕ̃(x
′ − xny

′)|pdx′dxn

≤ ρ−λ
ρ+x̄n∫

max{0,−ρ+x̄n}

xpn

∫
Q′ρ(x̄)

|ϕ̃(z′)|pdz′dxn

with Q′ρ(x̄) =
{
z′ ∈ Rn−1 : −ρ+ x̄i − xnyi ≤ zi ≤ ρ+ x̄i − xnyi, i ≤ n− 1

}
.

Since,
∫
Q′ρ(x̄)

|ϕ̃(z′)|pdz′ ≤ ρλ̄
(
‖ϕ̃‖∗

W (p,λ)(ΓR)

)p
, λ̄ = max{λ − 1, 0}, using x̄n ≤

R, ρ ≤ R, one has

IB+ρ (x̄)∩B+R
(y′) ≤ ρλ̄−λ

(
‖ϕ̃‖∗W (p,λ)(ΓR)

)p ρ+x̄n∫
max{0,−ρ+x̄n}

xpndxn

≤ C(n, p, `)Rp+max{1−λ,0}
(
‖ϕ̃‖∗W (p,λ)(ΓR)

)p
.

The last bound and the fact that y′ ∈ supp η show that

‖φ‖Lp,λ(B+R)
≤ C(n, p, `, supp η)R1+max{1−λ,0}/p‖ϕ̃‖∗W (p,λ)(ΓR)

. (3.4)

Step 2: An estimate for ‖D2φ‖
Lp;�(B

+
R
)
. We will calculate now the first

and second derivatives of the function φ given by (3.1). For, after the change
z′ = x′ − xny′ of the variables in (3.1), one has

φ(x′, xn) =
x2−nn
`n(x0)

∫
Rn−1

ϕ̃(z′)η

(
x′ − z′

xn

)
dz′,

whence

∂φ

∂xi
(x′, xn) =

x1−nn
`n(x0)

∫
Rn−1

ϕ̃(z′)
∂η

∂xi

(
x′ − z′

xn

)
dz′ for i < n,

∂φ

∂xn
(x′, xn) =

(2 − n)x1−nn
`n(x0)

∫
Rn−1

ϕ̃(z′)η

(
x′ − z′

xn

)
dz′

−
x−nn
`n(x0)

∫
Rn−1

ϕ̃(z′)D′η

(
x′ − z′

xn

)
· (x′ − z′)dz′

with D′ = (∂/∂y1, . . . , ∂/∂yn−1), x
′ · y′ =

∑n−1
j=1 xjyj .

Returning to the original variables, we obtain

∂φ

∂xi
(x′, xn) =

1

`n(x0)

∫
Rn−1

ϕ̃(x′ − xny
′)Diη(y

′)dy′ for i < n, (3.5)

∂φ

∂xn
(x′, xn) =

2− n

`n(x0)

∫
Rn−1

ϕ̃(x′ − xny
′)η(y′)dy′

−
1

`n(x0)

∫
Rn−1

ϕ̃(x′ − xny
′)D′η(y′) · y′dy′. (3.6)
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Now, remembering η ∈ C20 (R
n−1) and

∫
Rn−1

η(y′)dy′ = 1, the divergence theorem
implies∫
Rn−1

Diη(y
′)dy′ =

∫
Rn−1

Dijη(y
′)dy′ =

∫
Rn−1

D′(Diη)(y
′) · y′dy′ = 0 ∀i, j ≤ n− 1;

(3.7)∫
Rn−1

η(y′)dy′ = 1,

∫
Rn−1

D′η(y′) · y′dy′ = 1− n,

∫
Rn−1

D′(D′η · y′) · y′dy′ = (1− n)2.

Therefore, (3.2) follows from (3.1) and (3.6) putting xn = 0 therein.
Since η ∈ C20 (R

n−1), we can differentiate (3.5) and (3.6) once again. Thus,
straightforward calculations yield

Dijφ(x
′, xn) =

1

`n(x0)

1

xn

∫
Rn−1

ϕ̃(x′ − xny
′)Dijη(y

′)dy′ i, j ≤ n− 1,

Dinφ(x
′, xn) =

1− n

`n(x0)

1

xn

∫
Rn−1

ϕ̃(x′ − xny
′)Diη(y

′)dy′

−
1

`n(x0)

1

xn

∫
Rn−1

ϕ̃(x′ − xny
′)D′(Diη)(y

′) · y′dy′ i ≤ n− 1,

Dnnφ(x
′, xn) =

(2 − n)(1− n)

`n(x0)

1

xn

∫
Rn−1

ϕ̃(x′ − xny
′)η(y′)dy′

+
2n− 3

`n(x0)

1

xn

∫
Rn−1

ϕ̃(x′ − xny
′)D′η(y′) · y′dy′

+
1

`n(x0)

1

xn

∫
Rn−1

ϕ̃(x′ − xny
′)D′(D′η · y′) · y′dy′.

These formulae and (3.7) lead to

Dijφ(x
′, xn) =

1

`n(x0)

1

xn

∫
Rn−1

[ϕ̃(x′ − xny
′)− ϕ̃(x′)]Dijη(y

′)dy′, i, j ≤ n− 1,

Dinφ(x
′, xn) =

1− n

`n(x0)

1

xn

∫
Rn−1

[ϕ̃(x′ − xny
′)− ϕ̃(x′)]Diη(y

′)dy′

−
1

`n(x0)

1

xn

∫
Rn−1

[ϕ̃(x′−xny
′)−ϕ̃(x′)]D′(Diη)(y

′)·y′dy′, i≤n−1,

(3.8)
Dnnφ(x

′, xn) =
(2− n)(1 − n)

`n(x0)

1

xn

∫
Rn−1

[ϕ̃(x′ − xny
′)− ϕ̃(x′)]η(y′)dy′

+
2n− 3

`n(x0)

1

xn

∫
Rn−1

[ϕ̃(x′ − xny
′)− ϕ̃(x′)]D′η(y′) · y′dy′

+
1

`n(x0)

1

xn

∫
Rn−1

[ϕ̃(x′ − xny
′)− ϕ̃(x′)]D′(D′η · y′) · y′dy′.
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Now, getting a look on the formulae (3.8), it is clear that the integrals appearing
there are all of the type (modulo a constant multiplier)

ψ(x) = ψ(x′, xn) =
1

xn

∫
Rn−1

[ϕ̃(x′ − xny
′)− ϕ̃(x′)]µ(y′)dy′

with µ(y′) being η(y′), Diη(y
′), y′ ·D′η(y′), Dijη(y′) or D′(D′η · y′) · y′.

Proceeding as in Step 1 with x̄ ∈ B+R , ρ ∈ (0, R], we obtain

ρ−λ
∫

B+ρ (x̄)∩B
+
R

|ψ(x)|pdx ≤ C(n, p, `, suppµ)

∫
suppµ

|µ(y′)|pJ(y′)dy′

with

J(y′) = ρ−λ
∫

B+ρ (x̄)∩B
+
R

1

xpn
|ϕ̃(x′ − xny

′)− ϕ̃(x′)|pdx′dxn.

Since

J(y′) ≤ C
n−1∑
j=1

ρ−λ
∫

B+ρ (x̄)∩B
+
R

1

xpn
|ϕ̃(x1, . . . , xj−1, xj−xnyj , xj+1, . . . , xn−1)−ϕ̃(x

′)|pdx,

replacing the balls at the last integrals by sets of the type Tj = {x ∈ Rn : −ρ+ x̄i ≤
xi ≤ ρ+ x̄i (i 6= j), −ρ+ x̄j ≤ xj ≤ x̄j − xn}, it is easily seen that

ρ−λ
∫
Tj

1

xpn
|ϕ̃(x1, . . . , xj−1, xj − xnyj , xj+1, . . . , xn−1)− ϕ̃(x

′)|pdx

≤ C sup
ρ>0

z′, z̄′∈ΓR

ρ−λ
∫

Bρ(z′)∩ΓR

∫
Bρ(z̄′)∩ΓR

|ϕ̃(x′)− ϕ̃(x̄′)|p

|x′ − x̄′|p+n−2
dσx′dσx̄′

(see [1], [3], [19] for details). This implies

‖D2φ‖Lp,λ(B+R)
≤ C‖ψ‖Lp,λ(B+R)

≤ C‖ϕ̃‖W (p,λ)(ΓR). (3.9)

The estimates (3.4) and (3.9) yield (3.3). ♦

In our further considerations we will need some precise results on the bounded-
ness in Morrey spaces of suitable integral operators. We refer the readers to the
corresponding theorems and proofs given in [11] and [12].

Proposition 3.2. [12, Theorem 2.3] Let U be an open subset of Rn, f ∈ Lp,λ(U),
p ∈ (1,+∞), λ ∈ (0, n), a ∈ VMO ∩ L∞(Rn). Let k(x, z) be a Calderón–Zygmund
kernel (see [7]) in the z variable for almost all x ∈ U such that

max
|α|≤2n

∥∥∥∥ ∂α∂zαk(x, z)
∥∥∥∥
L∞(D×Σ)

=M < +∞,
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with Σ = {x ∈ Rn : |x| = 1}. For an arbitrary ε > 0 set

Kεf(x) =

∫
|x−y|>ε
x∈U

k(x, x− y)f(y)dy,

Cε(a, f)(x) =

∫
|x−y|>ε
x∈U

k(x, x− y)(a(x) − a(y))f(y)dy.

There exist Kf , C(a, f) ∈ Lp,λ(U) such that

lim
ε→0
‖Kεf −Kf‖Lp,λ(U) = lim

ε→0
‖Cε(a, f)− C(a, f)‖Lp,λ(U) = 0.

Moreover,

‖Kf‖Lp,λ(U) ≤ C‖f‖Lp,λ(U), ‖C(a, f)‖Lp,λ(U) ≤ C‖a‖∗‖f‖Lp,λ(U)

for some positive constant C = C(n, p, λ,M).

Proposition 3.3. [11, Theorem 2.5] Let x ∈ Rn+ and define

K̃f(x) =

∫
R
n
+

f(y)

|x̃− y|n
dy, x̃ ≡ (x1, . . . , xn−1,−xn).

There exists a constant C independent of f(x), such that

‖K̃f‖Lp,λ(Rn+) ≤ C‖f‖Lp,λ(Rn+).

Proposition 3.4. [11, Theorem 2.6] Let f ∈ Lp,λ(Rn+), p ∈ (1,+∞), λ ∈ (0, n),
a ∈ VMO ∩ L∞(Rn+). Then, for any x ∈ R

n
+ the commutator

C̃(a, f)(x) =

∫
R
n
+

|a(x)− a(y)|

|x̃− y|n
f(y)dy

is bounded from Lp,λ(Rn+) into itself. There exists a constant C independent of a(x)
and f(x) such that

‖C̃(a, f)‖Lp,λ(Rn+) ≤ C‖a‖∗‖f‖Lp,λ(Rn+).

4. Boundary Morrey Regularity

As in the previous section, we suppose that the boundary ∂Ω is locally flatten
near an arbitrary point x0 ∈ ∂Ω such that Ω ⊂ {xn > 0}. The following result
implies boundary regularizing property of the couple (L,B) in Morrey spaces:

Lemma 4.1. Let (2.2) and (2.3) be satisfied and p ∈ (1,+∞), 1 < q ≤ p < +∞,
λ ∈ (0, n). Suppose r > 0 and let u ∈W 2,q(B+r ) be a solution to the equation Lu =
f ∈ Lp,λ(B+r ) such that Bu = ϕ on Br ∩{xn = 0} with ϕ ∈W

(p,λ)(Br ∩{xn = 0}).
Then there exists R ∈ (0, r) small enough such that Diju ∈ Lp,λ(B

+
R). Moreover,

there is a constant C = C(n, κ, p, λ, `, σ, ∂Ω) such that

‖Diju‖Lp,λ(B+R)
≤ C

(
‖u‖Lp,λ(B+R)

+ ‖f‖Lp,λ(B+R)
+ ‖ϕ‖W (p,λ)(BR∩{xn=0})

)
. (4.1)
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Proof. We will utilize the explicit representation formula of the second derivatives
D2u derived in [8, Lemma 4.2]. However, as that formula concerns oblique deriva-
tive problem for constant coefficients elliptic operator and homogeneous boundary
condition with constant coefficients boundary operator, first of all we shall reduce
the original problem to a homogeneous one.
Without loss of generality we may suppose that the ball Br is centered at the

origin. Let x0 = (x
′
0, x0n), x

′
0 = (x01, . . . , x0n−1). Obviously, we have

aij(x0)Diju(x) =
[
aij(x0)− a

ij(x)
]
Diju(x) + f(x) a.e. in B

+
r ,

`i(x
′
0)Diu(x

′) + σ(x′0)u(x
′) =

[
`i(x

′
0)− `i(x

′)
]
Diu(x

′)

+
[
σ(x′0)− σ(x

′)
]
u(x′) + ϕ(x′) x′ ∈ Br ∩ {xn = 0}.

Consider now the right-hand side of the boundary condition above and denote it
by ϕ̃. That is,

ϕ̃(x′, u) =
[
`i(x

′
0)− `i(x

′)
]
Diu(x

′) +
[
σ(x′0)− σ(x

′)
]
u(x′) + ϕ(x′). (4.2)

Define φ(x) = φ(x, u) by (3.1) with ϕ̃ given by (4.2). Since ϕ̃(x′, u) depends
affinely on u, it is clear that also the dependence of φ on u will be affine one. Later,
remembering the properties of φ established in Lemma 3.1 (see (3.2)), it is obvious
that

∂φ

∂`(x′0)
(x) + σ(x′0)φ(x) = ϕ̃(x

′, u) for xn = 0.

That is why, the function u(x)− φ(x) satisfies

aij(x0)Dij(u(x)− φ(x)) =
[
aij(x0)− a

ij(x)
]
Diju(x)

+f(x)− aij(x0)Dijφ(x) a.e. in B
+
r ,

∂(u− φ)

∂`(x′0)
+ σ(x′0)(u(x

′)− φ(x′)) = 0 x′ ∈ Br ∩ {xn = 0}.

Therefore, [8, Lemma 3.1] implies

u(x) = φ(x) +

∫
B+r

G(x0, x, y)
{(
aij(x0)−a

ij(y)
)
Diju(y)+f(y)−a

ij(x0)Dijφ(y)
}
dy,

where

G(x0, x, y) = Γ(x0, x− y)− Γ(x0, T (x, x0)− y) + θ(x0, T (x, x0)− y);

Γ(x0, ξ) is the normalized fundamental solution of the operator a
ij(x0)Dij :

Γ(x0, ξ) =
1

n(2− n)ωn
√
det {aij(x0)}

(
Aij(x0)ξiξj

)(2−n)/2
with ωn and A

ij(x0) being the measure of the unit ball in R
n and the inverse matrix

of {aij(x0)}, respectively;

T (x, y) = x−
2xn
ann(y)

an(y), T (x) = T (x, x), an(y) = (a1n(y), . . . , ann(y));
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θ(x0, ξ) =
2

nωn
√
det {aij(x0)}

`n(x
′
0)

ann(x0)

×

∞∫
0

eσ(x
′
0)s(ξ + sT (`(x′0)))n

(Aij(x0)(ξ + sT (`(x′0)))i(ξ + sT (`(x
′
0)))j)

n/2
ds

with (ξ + sT (`(x′0)))i being the i-th component of the vector ξ + sT (`(x
′
0)) ∈ R

n.
Now, similar arguments as these used in the proof of [8, Lemma 4.2] lead to

Diju(x) = Dijφ(x)

+ P.V.

∫
B+r

Γij(x, x−y)
{(
aij(x)−aij(y)

)
Diju(y)+f(y)−L(x)φ(y)

}
dy

+ cij(x) (f(x)− L(x)φ(x)) + Iij(x, x) + Jij(x, x) (4.3)

for almost all x ∈ B+r , where L(x)φ(y) = aij(x)Dijφ(y) and Γi(x, ξ) = DξiΓ(x, ξ),
Γij(x, ξ) = DξiξjΓ(x, ξ), θi(x, ξ) = Dξiθ(x, ξ), θij(x, ξ) = Dξiξjθ(x, ξ),

cij(x) =

∫
|ξ|=1

Γi(x, ξ)ξjdσξ;

Iij(x, z) =

∫
B+r

Γij(z, T (x, z)−y)
{(
ahk(z)− ahk(y)

)
Dhku(y) + f(y)− L(x)φ(y)

}
dy

for i, j < n;
Iin(x, z)
=
∫
B+r

Γij(z, T (x, z)− y)
{(
ahk(z)− ahk(y)

)
Dhku(y) + f(y)− L(x)φ(y)

}
Bj(z)dy

for i < n;
Inn(x, z)
=
∫
B+r

Γij(z, T (x, z)−y)
{(
ahk(z)−ahk(y)

)
Dhku(y)+f(y)−L(x)φ(y)

}
Bi(z)Bj(z)dy;

Jij(x, z) =

∫
B+r

θij(z, T (x, z)−y)
{(
ahk(z)− ahk(y)

)
Dhku(y) + f(y)− L(x)φ(y)

}
dy

for i, j < n;
Jin(x, z)
=
∫
B+r

θij(z, T (x, z)− y)
{(
ahk(z)− ahk(y)

)
Dhku(y) + f(y)− L(x)φ(y)

}
Bj(z)dy

for i < n;
Jnn(x, z)
=
∫
B+r

θij(z, T (x, z)−y)
{(
ahk(z)−ahk(y)

)
Dhku(y)+f(y)−L(x)φ(y)

}
Bi(z)Bj(z)dy.

The vector B(z) = (B1(z), . . . , Bn(z)) above is given by the formula

B(z) =
∂

∂xn
T (x, z), that is B(z) =

(
−2

a1n(z)

ann(z)
, . . . ,−2

an−1, n(z)

ann(z)
,−1

)
.
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Suppose now q < p and let s ∈ [q, p]. Take an arbitrary w ∈ W 2,s,λ(B+r ) and
define

Sw = φ(x) +

∫
B+r

G(x0, x, y)
{(
aij(x0)−a

ij(y)
)
Dijw(y)+f(y)−a

ij(x0)Dijφ(y)
}
dy,

with ϕ̃ = ϕ̃(x′, w) given by (4.2) and φ(x) = φ(x,w) defined by (3.1).
The idea in proving Lemma 4.1 will be to show that S is a contraction mapping

from W 2,s,λ(B+R) into itself for small enough R ∈ (0, r). (The fact that S maps
W 2,s(B+r ) into itself will follow from the calculations below.) Then, having in mind
that u ∈W 2,q(B+R) is a fixed point of the map S it will follow easily the statement
of Lemma 4.1 and the estimate (4.1).
Take now two arbitrary functions w1, w2 ∈ W 2,s,λ(B+r ). Denoting w = w1−w2,

one has

Sw1 − Sw2 = φ(x,w)

+

∫
B+r

G(x0, x, y)
{(
aij(x0)−a

ij(y)
)
Dijw(y)−a

ij(x0)Dijφ(y, w)
}
dy

with

ϕ̃(x′, w) =
[
`i(x

′
0)− `i(x

′)
]
Diw(x

′) +
[
σ(x′0)− σ(x

′)
]
w(x′), (4.4)

and

φ(x) = φ(x′, xn) =
xn

`n(x0)

∫
Rn−1

ϕ̃(x′ − xny
′)η(y′)dy′ (see (3.1)).

Taking into account the assumptions (2.2), we have

‖Sw1 − Sw2‖Ls,λ(B+r ) ≤ C(n, κ)

(
‖φ(x,w)‖Ls,λ(B+r )

+
∥∥∥∫
B+r

G(x0, x, y)
(
(aij(x0)−a

ij(y))Dijw(y)+Dijφ(y, w)
)
dy
∥∥∥
Ls,λ(B+r )

)
.

SinceG(x0, x, y) = O(|x−y|2−n) as |x−y| → 0 (see [8, Lemma 3.1, Remark 3.1]) and
aij ∈ L∞(Ω), the integral

∫
B+r
G(x0, x, y)((a

ij(x0)−aij(y))Dijw(y)+Dijφ(y, w))dy is
a Riesz potential. Thus, the classical theory (cf. [13, Lemma 7.12], [4, Lemma I.1])
implies∥∥∥∥∥∥∥

∫
B+r

G(x0, x, y)
(
(aij(x0)− a

ij(y))Dijw(y) +Dijφ(y, w)
)
dy

∥∥∥∥∥∥∥
Ls,λ(B+r )

≤ C(n, s)r2
(∥∥D2w∥∥

Ls,λ(B+r )
+
∥∥D2φ(·, w)∥∥

Ls,λ(B+r )

)
.
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Further, according to (4.3) one has

Dij(Sw1 − Sw2)(x) = Dijφ(x,w)

+ P.V.

∫
B+r

Γij(x, x − y)
{(
aij(x) − aij(y)

)
Dijw(y) − L(x)φ(y, w)

}
dy

− cij(x)L(x)φ(x,w) + Iij(x, x, w) + Jij(x, x, w) for a.a. x ∈ B
+
r ,

with cij , Iij(x, x, w) and Jij(x, x, w) being as above with u replaced by w and
missing term f(y) at the integrands.
Since Γij(x, ξ) are Calderón–Zygmund kernels in the ξ variable, Proposition 3.2

implies∥∥∥∥∥∥∥P.V.
∫
B+r

Γij(x, x− y)
{(
aij(x)− aij(y)

)
Dijw(y)− L(x)φ(y, w)

}
dy

∥∥∥∥∥∥∥
Ls,λ(B+r )

≤ C(n, s, κ, γij ,M, ∂Ω)
(
γ(r)‖D2w‖Ls,λ(B+r ) + ‖D

2φ(·, w)‖Ls,λ(B+r )

)
with M = maxi,j=1,... ,nmax|α|≤2n

∥∥∥∂αΓij(x,ξ)∂ξα

∥∥∥
L∞(Ω×Σ)

.

Further, the geometric properties of the mapping T ensure c1|x̃−y| ≤ |T (x)−y| ≤
c2|x̃− y| (cf. [7]) for some positive constants c1 and c2. Thus, Propositions 3.3 and
3.4 yield

‖Iij(·, ·, w)‖Ls,λ(B+r ), ‖Iij(·, ·, w)‖Ls,λ(B+r )

≤ C(n, s, κ, γij ,M, ∂Ω)

∥∥∥∥∥∥
n∑

h,k=1

C̃(ahk, Dhkw) + K̃(Lφ(·, w))

∥∥∥∥∥∥
Ls,λ(B+r )

≤ C
(
γ(r)‖D2w‖Ls,λ(B+r ) + ‖D

2φ(·, w)‖Ls,λ(B+r )

)
.

Finally,

‖cij(x)L(x)φ(x,w)‖Ls,λ (B+r ) ≤ C‖D
2φ(·, w)‖Ls,λ(B+r ).

Therefore,

‖Sw1 − Sw2‖
∗
W 2,s,λ(B+r )

≤ C
(
rγ(r)‖D2w‖Ls,λ(B+r ) + r

2‖D2w‖Ls,λ(B+r )

+r‖D2φ(·, w)‖Ls,λ(B+r ) + ‖φ(·, w)‖Ls,λ(B+r )

)
(4.5)

with C = C(n, s, κ, γij ,M, ∂Ω).
To express the last two norms above in terms of ‖w‖∗

W 2,s,λ(B+r )
, we use Lemma 3.1.

Thus,

‖φ‖∗
W 2,s,λ(B+r )

= ‖φ(·, w)‖Ls,λ(B+r ) + r‖D
2φ(·, w)‖Ls,λ(B+r )

≤ cr1/2‖ϕ̃‖∗
W (s,λ)(B+r ∩{xn=0})

.

On the other hand, (4.4) implies

r1/2‖ϕ̃(·, w)‖∗
W (s,λ)(B+r ∩{xn=0})

≤Cr1/2
(
‖(`i(x

′
0)− `i(x

′))Diw‖
∗
W (s,λ)(B+r ∩{xn=0})

+‖(σ(x′0)− σ(x
′))w‖∗

W (s,λ)(B+r ∩{xn=0})

)
.
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Remembering the Lipschitz regularity of the coefficients of the boundary operator
(2.3), the Rademacher theorem and [3, Theorem 1.2] yield

r1/2‖(`i(x
′
0)− `i(x

′))Diw‖
∗
W (s,λ)(B+r ∩{xn=0})

+ r1/2‖(σ(x′0)− σ(x
′))w‖∗

W (s,λ)(B+r ∩{xn=0})
≤ Cr1/2‖w‖∗

W 2,s,λ(B+r )
.

Therefore, (3.3) implies

‖φ(·, w)‖∗
W 2,s,λ(B+r )

≤ Cr1/2‖w‖∗
W 2,s,λ(B+r )

.

Taking into account (2.2), (4.5) reads

‖Sw1 − Sw2‖
∗
W 2,s,λ(B+r )

≤ C(r)‖w1 − w2‖
∗
W 2,s,λ(B+r )

, C(r) = o(1) as r → 0,

where C(r) = C(γ(r) + r + r1/2). Taking r = R to be sufficiently small above we
have C(R) < 1, that is, S is a contraction mapping from W 2,s,λ(B+R) (equipped
with the norm ‖ · ‖∗

W 2,s,λ(B+R)
) into itself for each s ∈ [q, p]. Now, remembering

that u ∈ W 2,q(B+R) is a fixed point of S, and using the imbedding W
2,p,λ(B+R) ⊂

W 2,q,λ(B+R ) ⊂ W 2,q(B+R ), as well as the fact that the fixed point of S should be
unique one, we obtain D2u ∈ Lp,λ(B+R ).
To get the estimate (4.1), we have to take the Lp-norm of the both sides of

(4.3). The calculations are similar to these already carried out in obtaining (4.5).
Precisely, taking w1 = u and w2 = 0 we have

‖u‖∗
W 2,p,λ(B+r )

= ‖Su‖∗
W 2,p,λ(B+r )

≤ ‖Su− S0‖∗
W 2,p,λ(B+r )

+ ‖S0‖∗
W 2,p,λ(B+r )

.

The first norm above is estimated exactly as in (4.5), while the second one gives
‖f‖Lp,λ(B+R)

and ‖ϕ‖W (p,λ)(BR∩{xn=0}).

This completes the proof of Lemma 4.1. ♦

5. Global Morrey Regularity and Solvability of the Problem (2.1)

Proof of Theorem 2.1. Bearing in mind the interior Morrey regularity ([12, Theo-
rem 3.3]), the statement of Theorem 2.1 and the bound (2.4) follow from Lemma 4.1
through a suitable partition of unity. ♦

Proof of Theorem 2.2. The functions f ≡ 0 and ϕ ≡ 0 lie in Lp,λ(Ω) andW (p,λ)(∂Ω),
respectively, for each p > 1 and each λ ∈ (0, n). In particular, this holds true
for p > n. Thus, bearing in mind the Aleksandrov–Bakelman–Pucci maximum
principle ([23, Theorem 2.6.2]) it follows that u(x) = 0 is the unique solution of
the homogeneous oblique derivative problem (2.1) (f ≡ 0, ϕ ≡ 0). This proves
uniqueness of the solution to (2.1).
Concerning the strong solvability in the spaceW 2,p,λ(Ω) of the problem (2.1), we

note that Lp,λ(Ω) ⊂ Lp(Ω). Therefore, in view of [8, Theorem 1.2], there exists a
unique solution u ∈ W 2,p(Ω) of (2.1). Further, Theorem 2.1 asserts u ∈ W 2,p,λ(Ω).
To derive the estimate (2.5) we have for the linear operator

(L,B) : W 2,p,λ(Ω)→ Lp,λ(Ω)×W (p,λ)(∂Ω)
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that

‖(L,B)u‖Lp,λ(Ω)×W (p,λ)(∂Ω) = ‖Lu‖Lp,λ(Ω) + ‖Bu‖W (p,λ)(∂Ω)

≤ C
(
‖u‖Lp,λ(Ω) + ‖Du‖Lp,λ(Ω) + ‖D

2u‖Lp,λ(Ω)
)

≤ C‖u‖W 2,p,λ(Ω).

This shows continuity of (L,B). Further, (L,B) is injective and surjective mapping
as it was shown before. Thus, the Banach theorem on inverse mappings implies
continuity of the operator (L,B)−1, i.e., the bound (2.5). ♦
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