
Available online at www.sciencedirect.com

1877–0509 © 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Prof. Elhadi Shakshuki and Prof. Muhammad Younas.
doi:10.1016/j.procs.2011.07.118

Procedia Computer Science 5 (2011) 857–864

The Fifth International Workshop on RFID Technology - Concepts,
Applications, Challenges (IWRT 2011)

Finding Commonalities in RFID Semantic Streams

Michele Rutab, Simona Coluccia,b, Floriano Sciosciab, Eugenio Di Sciasciob, Francesco M. Doninia

aUniversità della Tuscia, Viterbo, Italy
bPolitecnico di Bari, Bari, Italy

Abstract

A stream is a time-ordered sequence of data values. It is possible to define a semantic stream as a time-ordered

sequence of metadata, i.e., a concept stream. It may derive from a collection of semantic annotations referred to

objects/subjects whose status evolves during a process as in case of product flow in supply chains. Although a

concrete added value comes from the annotation of products and processes, several issues are inherited. Particularly,

concept streams typically assume a not compact form, hence a fully comprehensive concise representation is needed.

Leveraging capabilities allowed by EPCglobal RFID protocol standard, the paper proposes a general framework able

to provide a compact representation of large concept streams also finding informative commonalities in them so

allowing automated pattern analysis and trend discovery. A case study is presented to clarify the approach.
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1. Introduction

Radio-Frequency IDentification (RFID) technology allows to capture and retrieve on-product information in sev-

eral stages of good life-cycle so evidencing specific peculiarities of transponders as data collectors but also posing not

negligible issues related to information processing and management. Information conveyed by RFIDs can be collected

and analyzed as stream, i.e., as time-ordered sequence of data values.

Data Stream Management Systems extend Data Base Management Systems to interrogate order-based or time-

based data flows, but the huge amount and the heterogeneity of information to be evaluated makes practically unfruitful

to process the overall stream. Hence, summary data structures are exploited to sum up large data blocks; they can

be queried more easily but obviously return approximated results. A semantic stream is a time-ordered sequence of

annotations referred to objects/subjects evolving during a process. As opposed to simplistic data streams, metadata

related to both products and processes provide a semantically rich and unambiguous representation making possible

to infer implicit information from the stream itself.

This paper proposes an integrated framework which exploits knowledge representation theory and languages (and

in particular Description Logics (DLs) [1]) to annotate relevant events and goods so enabling added-value services.

EPCglobal RFID protocol standard has been extended as in [2] and further leveraged allowing tagged objects to

host machine-understandable information. Although, inevitably, concept streams have a not compact form, a fully

comprehensive concise representation is so possible automatically finding trends in them. Also pattern analyses

are enabled. One of the most popular inference featuring DL reasoning, i.e., Subsumption, has been exploited in

[3] to feature novel services aimed at finding commonalities in concept collections formalized in a generic DL L.
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Particularly, the subsumer matrix defined in in [3] has been modified and extended here in order to represent a digest

(a.k.a., synopsis [4]) of a semantic stream.

The proposed framework is presented and applied in a supply chain setting. Modern chains induce high dy-

namism, and they are made of interactions and connections rapidly evolving and modifying. The issue of conceiving

such an agile vision while taking into account objectives like total quality management, controlled optimizations and

environmental impact, requires to re-design organization and structures. Information is a relevant asset for granting

quality standards, to enable quick business analysis and performance evaluation in order to take corrective actions

and to enable sustainability and reliability. RFID-based technology well supports chains evolution, but usually relies

on a stable and fixed back-end which makes every solution only partially applicable to intrinsically volatile contexts.

Furthermore, current identification mechanism –exclusively providing “true/false” replies to queries on RFID data–

appears as too restrictive for advanced applications. On the contrary, given the increased storage availability (up to

several kBs [5]) modern transponders provide, RFID could provide further automation of actions and processes.

The remainder of the paper is structured as in what follows. Section 3 reports on relevant related work before

discussing the proposed approach in Section 4, while a case study in Section 5 highlights benefits of the proposal.

Section 6 closes the paper.

2. Background

In the last decade, data stream processing systems were investigated in depth and several challenges, application

scenarios and solution approaches have been proposed in the literature [4]. Most proposals are based on extensions

of both data model and query semantics of traditional DBMSs (Data Base Management Systems) into DSMSs (Data
Stream Management Systems), in order to support continuous queries over an order-based or time-based data window
that moves as new data arrive. Extensions to standard SQL or new SQL-like query languages have been proposed

accordingly. The practical inability to store and process a complete stream often led to the use of summary data

structures as synopses or digests. Queries over synopses return approximated results. Semantic stream processing is

thus emerging as a significant research challenge and opportunity [6]. Unfortunately, in traditional knowledge-based

systems, semantic-based inferences are grounded on heavyweight tools, such as temporal logic and belief revision,

that are not suitable for high data volumes that change rapidly. In order to cope with these issues, the approach

proposed here models semantic streams according to Description Logics (DLs) formalism and exploits specifically

targeted reasoning services for stream processing. In what follows some basic background in this regard will be

provided.

DLs are a family of formalisms widely employed for knowledge representation in a decidable fragment of First

Order Logic. Throughout the paper, we will refer to the ALN(D) (Attributive Language with unqualified Number

restrictions and concrete Domains) DL: ALN(D) extends the basic sublanguage of ALN DL with concrete fea-

tures. ALN provides a limited set of constructs, used to describe the knowledge domain by combining the basic DL

elements, namely concept names, representing objects of the domain –i.e., Color,Material, S ize, Pattern– and role
names, referred to possible binary relationships among concepts, i.e., hasPattern, hasMainMaterial, hasPrice, hasPro−

ductType. Every DL includes two special concepts, � and ⊥, a concept interpreted by the whole domain and by

an empty set, respectively. ALN also allows qualified universal restrictions –i.e., ∀hasMainMaterial.Cotton de-

notes products mainly made up by cotton– and number restrictions –i.e., ≥ 3hasProductType, ≤ 2hasProductType
denotes objects made up by at least three or at most two product types– over roles. By extending ALN with con-

crete features, concepts can be linked to a concrete domain D (e.g., integers, reals, strings and so on) through a

set of unary predicates p, –i.e., by =50 hasPrice we mean objects of the domain exactly pricing 50 Eur. By using

such constructs it is possible to detail concept inclusions and definitions, which constitute the intensional knowl-

edge of a DL system, called TBox in DL notation and ontology in knowledge representation. For example, the

inclusion DarkRed � Red � ∀hasS hade.DarkS hade (respectively DarkBlue � Blue � ∀hasS hade.DarkS hade and

MidnightBlue � Blue � ∀hasS hade.DarkS hade) asserts that the set of dark red (respectively dark blue and midnight

blue) objects is included in the one of red (respectively blue and blue) objects with dark shade; the concept defini-

tion S o f tGood ≡ Product� ≤3 (hasExpirationDays) asserts that a soft good is a product with less than 3 days of

expiration time.
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The semantics of concept descriptions is conveyed through an Interpretation I = (ΔI, ·I), where ΔI is a non-

empty set denoting the domain of I and ·I is an interpretation function such that: i) ·I maps each concept name A in

a set AI ⊆ ΔI; ii) ·I maps each role name R in a binary relation rI ⊆ ΔI × ΔI.

3. Related work

RFID-based supply chain scenarios introduce peculiarities w.r.t. generic data stream processing, concerning both

the properties of managed data and main application requirements. Consequently, several specialized solutions have

been proposed, which can be divided in two broad categories. The first one concerns run-time processing of data

streams [7, 8, 9, 10]. Proposed approaches bear similarities with general-purpose DSMSs. Nevertheless, they manage

only very basic information, namely raw data produced by RFID readers, consisting of (EPC, location, time) triples,

where the EPC (Electronic Product Code) is the unique product identifier and each RFID reading event is marked

with location and time. The second research direction focuses on off-line computation and efficient data storage

[11, 12, 13, 14]. Wang [9] formalized some features and semantics of RFID events, proposing an extension of the

Entity-Relationship model. Based on such extended conceptual model, data streams are analyzed w.r.t. temporal

aspects. In [12] a location-oriented indexing was presented, tracing paths registered by RFID readers through a

novel representation model. [13] and [14] provided, instead, storage models borrowed from datawarehouse literature,

where multidimensional analysis is based on data aggregation along different dimensions. The main limitation is that

aggregation by product characteristics is limited to trivial taxonomies of product types, which are defined in an ad-hoc

fashion and lack explicit semantics.

More advanced information and knowledge representation techniques have been recently proposed for smarter

supply chain management, able to support analyses with higher-level semantics. Particularly, a rich characteriza-

tion of products equipped with RFID tags can be achieved by means of Semantic Web languages such as RDF1 and

OWL2. In [15] technological solutions were proposed to allow storage and extraction of semantically annotated prod-

uct descriptions in EPCglobal UHF Generation 2 RFID tags. Semantic Web technologies allow a formalization of

annotations in a machine understandable way w.r.t. shared conceptual specifications (ontologies), so promoting inter-

operability and sophisticated inferences at various stages of product lifecycle [16, 17]. A range of tools can be used for

information processing and analysis, including rule-based systems, logic-based reasoning engines and query engines

based on declarative languages such as SPARQL3. The Open World Assumption (OWA) enables meaningful analyses

even in the presence of incomplete information. This feature allows to overcome shortcomings of widely adopted

“closed world” paradigms -such as the relational model- that often arise when interfacing heterogeneous information

systems of independent partner organizations. This is indeed the case of supply chain management architectures.

Several approaches have been proposed to extend standard SPARQL language and query engines for RDF knowl-

edge bases with temporal properties. In [18], authors proposed an approach toward reasoning over streams of times-

tamped RDF statements, which is composed by two elements: a SPARQL extension –named C-SPARQL (Continuous

SPARQL)– bringing the notion of continuous query processing (typical of DSMSs) into the language; a software sys-

tem architecture with a plain open source DSMS and a plain SPARQL query engine working in pipeline. Such

elements execute continuous queries over a temporal window on the RDF assertion stream. Further work [19] intro-

duced simple reasoning in terms of incremental maintenance of materializations of ontological entailments. Similar

approaches include Streaming SPARQL [20] and Time-Annotated SPARQL [21]. Streaming Knowledge Bases [22]

use a SQL-like language, instead of SPARQL, and achieves high query processing scalability by preprocessing the

ontology referenced by RDF statements in the stream, reformulating RDF entailment rules as SQL queries and using

a tuple-based DSMS stream processor to execute them. All the above approaches [19] are limited to the simple en-

tailment regime of RDF, therefore cannot provide the capability to detect commonalities in concept expressions that

are exploited by the system proposed here to perform meaningful queries over RFID semantic streams.

1Resource Description Framework, W3C Recommendation 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
2Web Ontology Language, version 2, W3C Recommendation 27 October 2009, http://www.w3.org/TR/owl2-overview/
3SPARQL Protocol And Query Language for RDF, W3C Recommendation 15 January 2008, http://www.w3.org/TR/rdf-sparql-query/
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4. Theoretical framework

Before describing the theoretical framework underlying the proposed approach, the employed reasoning services

will be shortly recalled in Section 4.1 to make the paper self-contained. Furthermore, the proposed semantic stream

representation framework will be presented in Section 4.2.

4.1. Resource Representation and Reasoning in Description Logics

The most important –and well-known– service featuring DL reasoning checks for specificity in hierarchies, by

determining whether a concept description is more specific than another one.

Definition 1 (Subsumption). Given two concept descriptions C and D and a TBox T in a DL L, we say that D
subsumes C w.r.t. T (C �T D) if for every model of T , CI ⊂ DI. As a special case, two concepts are equivalent if
they subsume each other.

For example, let us consider the following concept descriptions referred to different products: P1 = S hirt�
∀hasMainColor.LightBlue and P2 = U pperBodyGarment � ∀hasMainColor.Blue. Also consider the TBox T mod-

eling the concept inclusions introduced in Section 2 and the one: S hirt �T U pperBodyGarment. Hence, given the

model, knowledge expressed by P1 is more specific than the one required by P2 w.r.t. T : according to the previous

definition P2 subsumes P1.

Based on subsumption, new reasoning services may be defined in DLs. In particular, we are interested in the

ones aimed at finding commonalities in a concepts collections formalized in a generic DL L. In what follows, several

non-standard inferences significant to this aim will be recalled starting from Least Common Subsumer definition [23].

Definition 2 (LCS). Let C1, . . . ,Cp be p concept descriptions in a DLL. An LCS of C1, . . . ,Cp, denoted by LCS (C1, . . .
is a concept description E in L s.t. the following conditions hold: i) Ch � E for h = 1, . . . , p; ii) E is the least L-
concept description satisfying (i), i.e., if E′ is an L-concept satisfying Ci � E′ for all i = 1, . . . , n, then E � E′.

As an example, the LCS of the above descriptions, P1 and P2, is P2 itself, i.e., the most specific description subsuming

both concepts, it represents shared features.

Several scenarios deal with the problem of identifying features shared by a significant subset of a set of concepts

in DL, rather than by the set as a whole. In order to evidence such partial commonalities, specific non-standard

inferences based on LCS computation have been devised [3]. In particular, common subsumers of k concepts in a

collection of p elements, with k < p have been defined as k-Common Subsumers (k-CS); furthermore, as by definition

LCSs are also k-CSs, for every k ≤ p, Informative k-Common Subsumers (IkCS) have been defined as a specific

subset of k-CSs not subsuming all p concepts and then adding informative content to the LCS computation. Before

continuing, such definition will be slightly refined to cope with the modeling framework presented in Section 4.2.

Definition 3 (r-CS, IrCS). Let C1, . . . ,Cp be p concepts in a DL L, and let be k ≤ p. A r-Common Subsumer (r-CS)
of C1, . . . ,Cp is a concept D � � such that D is an LCS of at least r = k/p concepts among C1, . . . ,Cp. As a special
case, we define as Informative r-Common Subsumers (IrCS) those specific r-CSs for which r < 1.

4.2. Compact Modeling of Resource Collections

Hereafter, it will be shown how to model concept collections formalized in ALN(D) according to a compact

lossless representation. Such a modeling framework allows to find commonalities in resource annotations formalized

in DL. The modeling technique we propose requires concept stream elements to be written in components according

to the following recursive definition:

Definition 4 (Concept Components). Let C be a concept description in a DLL, with C formalized as C1 � · · · �Cm.
The Concept Components of C are defined as follows: if C j, with j = 1 . . . ,m is either a concept name, or a negated
concept name, or a concrete feature or a number restriction, then C j is a Concept Component of C; if C j = ∀R.E,
with j = 1 . . . ,m , then ∀R.Ek is a Concept Component of C, for each Ek Concept Component of E.

As a consequence the Subsumers Matrix (SM) [3] should be re-defined as in what follows.
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Definition 5 (Subsumers Matrix). Let C1, . . . ,Cp be a collection of concept descriptions Ch in a DL L and let
Dj ∈ {D1, . . . ,Dm} be the Concept Components deriving from the collection. We define the Subsumers Matrix
T = (th j), with h = 1, . . . , p and j = 1, . . . ,m (i.e., rows are in a one-to-one reference with concepts and columns are
in a one-to-one reference with components), such that th j = 1 if the component Dj subsumes Ch, and th j = 0 if the
component Dj does not subsume Ch.

Basically, in a given row h, the “1” elements are at least as many as the components of Ch. They may be more

since for example a component of another concept might subsume Ch as well.

Definition 6 (Concept Component Relative Cardinality (RCF
Dj

)). . Let C1, . . . ,Cp be a concepts collection and F
be a collection of concepts included in the collection itself: F ⊆ (C1, . . . ,Cp). For each concept component Dj

deriving from C1, . . . ,Cp, a Concept Component Relative Cardinality is the number of concepts in F subsumed by
Dj. Such a number is RCF

Dj
=
∑

s f j, for each f such that C f ∈ F.

As proved in [2], EPCglobal RFID protocol standard can be enhanced and further leveraged allowing tagged

objects to host machine-understandable information annotated in DL syntax w.r.t. a reference ontology. Homomorphic

compression techniques [24] favor the practical feasibility of that. The framework proposed here exploits subsumers

matrix to model RFID-based product annotations flowing through a generic supply chain by means of a compact and

semantic-based representation. In particular, the specific subsumers matrix to be computed takes a set of semantic-

enhanced good descriptions, formalized inALN(D), as input collection. By the way, in order to cope with semantic

streams modeling, a more aggregated information is required. We are interested in representing a collection S 1, . . . , S n

of semantic streams, with each stream S i made up by a collection of concept descriptions in ALN(D) representing

products in the stream. To this aim, the following, preliminary, definition of Aggregate Collection is needed.

Definition 7 (Aggregate Collection). Let S 1, . . . , S n be a collection of concept collections S i where S i is as a col-
lection of pi concept descriptions in a Description Logic L,: S i = C1i , . . . ,Cpi . We define S 1, . . . , S n an Aggregate
Collection.

For each concept component, it is relevant to map how many concepts, aggregated in every semantic stream, are

subsumed by the component itself. Such a modeling step deals with the semantic-based discovery for aggregation

features and trends identification. To this aim, the Definition 5 is extended by the Aggregate Subsumers Matrix
(ASM) one.

Definition 8 (Aggregate Subsumers Matrix). Let S 1, . . . , S n be an aggregate collection, with S i = C1i , . . . ,Cpi for
i = 1 . . . n. Let Dj ∈ {D1, . . . ,Dm} be the Concept Components deriving from all the concepts in the aggregate
collection. The Aggregate Subsumers Matrix is defined as A = (ai j) , with i = 1 . . . n and j = 1 . . .m, such that for
each i, ai j = v, with 0 ≤ v ≤ pi, where v is the number of concept descriptions in S i subsumed by the component Dj.

In what follows, the definition of an Aggregate Model for an aggregate collection S 1, . . . , S n will be finally for-

malized.

Definition 9 (Aggregate Model). Let S 1, . . . , S n be an aggregate collection, according to Definition 7: for i = 1 . . . n,
S i is a collection of concept descriptions Cki, with k = 1 . . . pi,. An Aggregate Model for S 1, . . . , S n is the pair 〈T, A〉,
made up by the following items:

• T is the subsumers matrix deriving from the collection C1, . . . ,Cp =
⋃

(Cki), with i = 1 . . . n and k = 1 . . . pi,
whose elements tk j are computed through oracles to subsumption.

• A is the aggregate subsumers matrix deriving from the input collection S 1, . . . , S n, whose elements ai j are
determined by processing information stored in T . In particular, each row i in A is related to an aggregate
collection S i, defined as a collection of descriptions Cki whose subsumption relationship with components
deriving from S 1, . . . , S n is stored in T . According to such a modeling, values ai j, for each component Dj, are
determined as Concept Component Relative Cardinality RCS i

Dj
(see Definition 6).

When referring to ASM, the new feature defined hereafter characterizes our modeling.

Definition 10. Referring to the ASM coming from S 1, . . . , S n, we define Concept Component Ratio (RDj ) the number

of concepts subsumed by Dj out of the collection S 1, . . . , S n cardinality. Such a number is RDj =
∑n

i=1 ai j∑n
i=1 |S i j | .
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EPC Timestamp Reader ID Arrived Source/Dest. Annotation D1 D2 . . . Dm
EPCi tsi Ri true/ f alse Node IDi Ci ti1 ti2 . . . tim

Table 1: Format of recorded semantic RFID product stream, containing the Subsumers Matrix (i = 1, . . . , p)

Set | Set | Time Arrived Source/Dest. D1 D2 . . . Dm
S i |S i | tsi true/ f alse Node idi ai1 ai2 . . . aim

Table 2: Digest of semantic RFID stream in a supply chain node, containing the Aggregate Subsumers Matrix (i = 1, . . . , n)

5. Case study

A case study is now outlined to clarify practical applications of the proposed framework. In particular, semantic

RFID product flow in a warehouse is considered. Each product is described via semantic-enhanced RFID as an

ALN(D) concept expression in OWL language, encoded in a compressed format, according to the approach outlined

in [16]. Feasibility and cost-effectiveness are favored by the adoption of compression algorithms and the growing

availability of passive RFID tags endowed with user memory amounts in the kBs. Furthermore, storing semantically

annotated product descriptions in RFID tags does not add significant performance overhead to RFID readers and

data collection equipment [15]. As products arrive or depart the warehouse, they are scanned by gate RFID readers;

reading events, including semantic annotations extracted from tags, are fed to a semantic DSMS which computes

Concept Components and subsumption tests through a reasoning engine. An extension of the Aggregate Model,

described in Section 4, is used to store both standard RFID data –EPC code, timestamp, provenance/destination– and

semantic-based information. For each product, a record of Table 1 is stored in the DSMS: it can be noticed that the

semantic stream so described includes the SM. In this way, analytical processing queries can combine data-oriented

and logic-based criteria with greater flexibility. Since product information travels within tagged physical products

themselves, each supply chain node collects data without depending on an external information infrastructure or a

network with supply chain partners. Organizational complexity, technological costs and security risks are reduced.

RFID data collection is characterized by high volumes, particularly for large distribution centers that are currently

at the forefront of RFID-based innovation in supply chain management. Storage and analysis of a complete semantic

stream and SM can become inefficient for very small time windows. The proposed approach allows semantic-aware

information aggregation in the ASM, which is used like a digest in typical DSMSs to perform massive analysis.

Table 2 provides the reference structure of the ASM: each stream digest line represents a stock of items that have

arrived or departed together (or in an arbitrarily narrow time frame). We can suppose that, in many real-world cases,

products in the same stock will be rather homogeneous, but this is not a requirement of the approach. For each stock,

the following information is stored: cardinality (number of individual items); timestamp (according to application

requirements, either a single date/time value or a range can be stored); a flag stating whether the stock has arrived

or departed; the source (respectively, destination) of the arrived (resp., departed) stock; a pointer to the full SM, if

present. Different settings can be adopted, according to data volumes and application requirements. For example,

a warehouse receiving/sending a daily average of 100000 products grouped in 1000 stocks could store the full SM

just for the current day (up to 100000 records), an ASM aggregated by stock for the last month (30 × 1000 = 30000

records), an ASM aggregated by hour for the last year (24 × 365 = 8760 records for incoming products and 8760 for

outgoing ones) and an ASM aggregated by day for the previous ten years (365 × 10 = 3650 records for incoming

products and 3650 for outgoing ones).

Let us consider a toy example of a semantically annotated product flow in a supply chain, with respect to ontology

axioms reported in Section 2 and Section 4.1 (the full ontology adopted for the case study is not reported due to lack

of space).

– Striped midnight blue cotton shirts (100 small items 100 medium, 100 large, all priced 60 Eur): S1 = S hirt � =60 hasPrice � ∀hasMainColor.MidnightBlue �

∀hasPattern.S triped � ∀hasMainMaterial.Cotton � ∀hasS ize.S mall (resp. ∀hasS ize.Medium, ∀hasS ize.Large )

– Striped brick red cotton shirts (50 small items, 50 medium, 100 large, all priced 50 Eur): S2 = S hirt � =50 hasPrice � ∀hasMainColor.BrickRed �

∀hasPattern.S triped � ∀hasMainMaterial.Cotton � ∀hasS ize.S mall (resp. ∀hasS ize.Medium, ∀hasS ize.Large )

– Plain light blue silk shirts (50 medium items priced 99 Eur, 50 large ones priced 109 Eur): S3 = S hirt � =99 hasPrice (resp. =109 hasPrice ) �∀hasMainColor.LightBlue

∀hasPattern.Plain � ∀hasMainMaterial.S ilk � ∀hasS ize.Medium (resp. ∀hasS ize.Large )

– Dark blue wool jackets (50 small items, 50 medium, 50 large, all priced 150 Eur): S4 = Jacket � =150 hasPrice �∀hasMainColor.DarkBlue �∀hasPattern.Plain �



Michele Ruta et al. / Procedia Computer Science 5 (2011) 857–864 863

Set | Set | S hirt ∀hasMain
Material.Wool

∀hasS ize.
S mall

∀hasS ize.
Medium

∀hasS ize.
Large

∀hasMainColor.
∀hasS hade.LightS hade

∀hasMainColor.
∀hasS hade.DarkS hade

. . .

S 1 300 300 0 100 100 100 0 300 . . .

S 2 200 200 0 50 50 100 0 0 . . .

S 3 100 100 0 0 50 50 100 0 . . .

S 4 150 0 150 50 50 50 0 150 . . .

S 5 100 0 0 0 50 50 100 0 . . .

S 6 150 0 150 50 50 50 0 150 . . .

Total 1000 600 300 250 350 400 200 600 . . .

CCR 0.60 0.30 0.25 0.35 0.40 0.20 0.60 . . .

Table 3: A subset of the columns of the Aggregate Subsumers Matrix

∀hasMainMaterial.Wool � ∀hasS ize.S mall (resp. ∀hasS ize.Medium, ∀hasS ize.Large )

– Light gray synthetic trousers (50 medium items, 50 large, all priced 90 Eur): S5 = Trousers � =90 hasPrice � ∀hasMainColor.LightGray � ∀hasPattern.Plain �

∀hasMainMaterial.S ynthetic � ∀hasS ize.Medium (resp. ∀hasS ize.Large )

– Checked dark red wool sweaters (50 small items, 50 medium, 50 large, all priced 80 Eur): S6 = S weater � =80 hasPrice � ∀hasMainColor.DarkRed �

∀hasPattern.Checked � ∀hasMainMaterial.Wool � ∀hasS ize.S mall(resp. ∀hasS ize.Medium, ∀hasS ize.Large )

Table 3 reports some columns of the ASM. For reader’s convenience, column totals and CCR are reported at the

end of the table. It can be noticed that 1000 individual product descriptions read via RFID are summarized in just

6 records, with significant storage space reduction. Analytical processing can exploit informative commonalities in

semantic descriptions of products along with time and path dimension exploited by classical RFID data management

systems. In our toy example, we can answer several interesting kinds of queries.

A. Find the maximum Concept Component Ratio (CCR) in the time interval [tstart, tend].

B. Find the IrCS in the time interval [tstart, tend]. This query, applied with different time frames, is useful to discov-

er/monitor global trends. In our toy example, warehouse managers want to discover relevant product characteristics

that are present in at least half the products. A query for informative common subsumers in the ASM with a threshold

r = 0.5 (50%) will return S hirt and ∀hasMainColor.∀hasS hade.DarkS hade concept components. This means that

(i) shirts are the most relevant product and (ii) current trends favor dark colors over light ones. Adding time constraints

can be useful to monitor how trends vary in time, e.g., clothing color, pattern or material prevalence may vary, due

to weather and fashion. This kind of semantic-based query is analoguous to find facts with a given support in data

mining. Nevertheless, datawarehouse approaches [13, 14] use a simplistic concept taxonomy to classify products and

perform mining, whereas our ontology-based modeling is more expressive and flexible. Furthermore, modifications

to the conceptual model (e.g., new product types or properties) have direct impact on the logical database schema,

whereas in our case the ontology can evolve without impact on the storage structures described in Section 4.2.

C. Find the IrCS in the time interval [tstart, tend] for a given source/destination. This query can be useful to dis-

cover/monitor specific trends, e.g., what are the most shipped kinds of garments by each supplier. Data slicing by

source/destination is possible for any type of query.

D. Find how many items (or equivalently, the CCR) of type X arrived/departed in the time interval [tstart, tend]. Se-

mantic stream processors described in Section 3 cannot answer this kind of query due to expressiveness limitations of

RDF w.r.t. OWL. This query has two sub-types.

1. If X is one of the Concept Components in the ASM, an exact answer can be computed. In our example, if we

want to know how many wool garments arrived, we compute the total and CCR for the ∀hasMainMaterial.Wool
column.

2. If X is an arbitrary concept expression, the system is able to provide an approximated answer by analyzing the

ASM. Each concept component Dj is tested for subsumption w.r.t. X, then
∑n

i=1 min({ai j|Dj �T X}) is returned

as upper bound for the number of items subsuming X. For example, let us find how many large shirts have been

received: X1 = S hirt � ∀hasS ize.Large. Concept components in the third and sixth column of Table 3 satisfy

the subsumption relationship and the result is therefore min({300, 100}) + min({200, 100}) + min({100, 50}) +
min({0, 50}) + min({0, 50}) + min({0, 50}) = 250 hence CCR(X1) ≤ 250/1000 = 0.25. The expression can

also contain concept components not present in the ASM, e.g., X2 = U pper Body Garment � >100 hasPrice
retrieves all garments for the upper part of the body with price higher than 100 Eur. In our example, all items

in all stocks except S 5 subsume U pper Body Garment while half the items in S 3 and all items in S 4 subsume
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>100 hasPrice, hence the result is CCR(X2) ≤ (50 + 150)/1000 = 0.20. If the full SM is available for the query

time window, it can be used instead of the ASM to compute the exact answer.

6. Conclusion

Grounding on capabilities enabled by an enhanced version of EPCglobal RFID protocol standard and leveraging

subsumption-based logic inferences, the paper presented a general framework for managing concept streams. The

proposed approach allows to benefit from a semantically rich description of products and relevant processes involving

them in order to find informative commonalities in large semantic streams. Fully automated pattern analysis and trend

discovery is then possible. A case study referred to a product flow in a supply chain has been presented to clarify the

proposal and to outline its benefits.
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