Search for Dijet Resonances in 7 TeV pp Collisions at CMS

V. Khachatryan et al.*

(CMS Collaboration)

(Received 1 October 2010; published 17 November 2010)

A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 pb⁻¹ collected by the CMS experiment at the Large Hadron Collider. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances, with mass less than 2.50 TeV, excited quarks, with mass less than 1.58 TeV, and axigluons, colorons, and E_6 diquarks, in specific mass intervals. This extends previously published limits on these models.

DOI: 10.1103/PhysRevLett.105.211801

PACS numbers: 13.85.Rm, 13.87.Ce, 14.80.-j

Two or more energetic jets arise in proton-proton collisions when partons are scattered with large transverse momenta p_T . The invariant mass spectrum of the two jets with largest p_T (dijets) falls steeply and smoothly, as predicted by quantum chromodynamics (QCD). Many extensions of the standard model predict the existence of new massive objects that couple to quarks (q) and gluons (g), and result in resonant structures in the dijet mass. In this Letter we report a search for narrow resonances in the dijet mass spectrum, measured with the CMS detector [1] at the LHC, at a proton-proton collision energy of $\sqrt{s} = 7$ TeV.

In addition to this generic search, we search for narrow s-channel dijet resonances from eight specific models. First, string resonances (S), which are Regge excitations of quarks and gluons in string theory, with multiple massdegenerate spin states and quantum numbers [2,3]; string resonances with mass ~ 2 TeV are expected to decay predominantly to qg (91%) with small amounts of gg (5.5%) and $q\bar{q}$ (3.5%). Second, mass-degenerate excited quarks (q^*) , which decay to qg, predicted if quarks are composite [4]; the compositeness scale is set to be equal to the mass of the excited quark. Third, axial vector particles called axigluons (A), which decay to $q\bar{q}$, predicted in a model where the symmetry group SU(3) of QCD is replaced by the chiral symmetry $SU(3)_L \times SU(3)_R$ [5]. Fourth, color-octet colorons (C), also decaying to $q\bar{q}$, predicted by the flavoruniversal coloron model embedding the SU(3) symmetry of QCD in a larger gauge group [6]. Fifth, scalar diquarks (D), which decay to qq and $\bar{q}\bar{q}$, predicted by a grand unified theory based on the E_6 gauge [7]. Sixth, Randall-Sundrum (RS) gravitons (G), which decay to $q\bar{q}$ and gg, predicted in the RS model of extra dimensions [8]; the value of the dimensionless coupling $\kappa/\overline{M}_{\text{Pl}}$ is chosen to be 0.1. Seventh and eighth, new gauge bosons (W' and Z'), which decay to $q\bar{q}$, predicted by models that propose new gauge symmetries [9]; the W' and Z' resonances are assumed to have standard-model-like couplings.

A detailed description of the CMS experiment can be found elsewhere [1]. The CMS coordinate system has the origin at the center of the detector. The z-axis points along the direction of the counterclockwise beam, with the transverse plane perpendicular to the beam; ϕ is the azimuthal angle in radians, θ is the polar angle, and the pseudorapidity is $\eta \equiv -\ln(\tan[\theta/2])$. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter. Within the field volume are the silicon pixel and strip tracker ($|\eta| < 2.4$), and the barrel and end cap calorimeters ($|\eta| < 3$): a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass-scintillator hadronic calorimeter (HCAL). Outside the field volume, in the forward region, there is an iron-quartz fiber calorimeter $(3 < |\eta| < 5)$. The ECAL and HCAL cells are grouped into towers, projecting radially outward from the origin, for triggering purposes and to facilitate jet reconstruction. In the region $|\eta| < 1.74$ these projective calorimeter towers have segmentation $\Delta \eta = \Delta \phi = 0.087$; the η and ϕ width increases at higher values of η . The energy depositions measured in the ECAL and the HCAL within each projective tower are summed to find the calorimeter tower energy.

The integrated luminosity of the data sample selected for this analysis is $2.9 \pm 0.3 \text{ pb}^{-1}$ [10]. A single-jet trigger is used in both the online hardware-level (L1) and the software-level (HLT) of the trigger system [1] to select an unprescaled sample of events with a nominal jet transverse energy threshold at the HLT of 50 GeV. The trigger efficiency for this analysis is measured from the data to be larger than 99.5% for dijet masses above 220 GeV.

Jets are reconstructed using the anti- k_T algorithm [11] with a distance parameter R = 0.7. The reconstructed jet

^{*}Full author list given at the end of the article.

Published by The American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

energy *E* is defined as the scalar sum of the calorimeter tower energies inside the jet. The jet momentum \vec{p} is the corresponding vector sum of the tower energies using the tower directions. The *E* and \vec{p} of a reconstructed jet are corrected as a function of p_T and η for the nonlinearity and inhomogeneity of the calorimeter response. The correction is between 43% and 15% for jets with corrected p_T between 0.1 and 1.0 TeV in the region $|\eta| < 1.3$. The jet energy corrections were determined and validated using simulations, test beam data, and collision data [12].

The dijet system is composed of the two jets with the highest p_T in an event (leading jets). We require that the pseudorapidity separation of the two leading jets, $\Delta \eta = \eta_1 - \eta_2$, satisfies $|\Delta \eta| < 1.3$, and that both jets be in the region $|\eta| < 2.5$. These η cuts maximize the search sensitivity for isotropic decays of dijet resonances in the presence of QCD background. The dijet mass is given by $m = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$. We select events with m > 220 GeV without any requirements on jet p_T .

To remove possible instrumental and noncollision backgrounds in the selected sample, the following selections are made. Events are required to have a reconstructed primary vertex within |z| < 24 cm. For jets, at least 1% of the jet energy must be detected in the ECAL, at most 98% can be measured in a single photodetection device of the HCAL readout, and at most 90% can be measured in a single cell. These criteria, which are fully efficient for dijets, remove 0.1% of the events passing the pseudorapidity constraints and the dijet mass threshold.

Figure 1 presents the inclusive dijet mass distribution for $pp \rightarrow 2$ leading jets + X, where X can be anything, including additional jets. We plot the measured differential cross section versus dijet mass in bins approximately equal to the dijet mass resolution. The data are compared to a QCD prediction from PYTHIA [13], which includes a full GEANT simulation [14] of the CMS detector and the jet energy corrections. The prediction uses a renormalization scale $\mu = p_T$ and CTEQ6L1 parton distribution functions [15]. The PYTHIA prediction agrees with the data within the jet energy scale uncertainty, which is the dominant systematic uncertainty. To test the smoothness of our measured cross section as a function of dijet mass, we fit the data with the parametrization

$$\frac{d\sigma}{dm} = \frac{P_0 (1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2 + P_3 \ln(m/\sqrt{s})}},\tag{1}$$

with four free parameters P_0 , P_1 , P_2 and P_3 . This functional form has been used by prior searches to describe both data and QCD predictions [16,17]. In Fig. 1 we show both the data and the fit, which has a $\chi^2 = 32$ for 31 degrees of freedom. In Fig. 2 we show the ratio between the data and the fit. The data are well described by the smooth parametrization.

We search for narrow resonances, for which the natural resonance width is negligible compared to the CMS dijet

FIG. 1 (color online). Dijet mass spectrum (points) compared to a smooth fit (solid) and to predictions [13] including detector simulation of QCD (short-dashed), excited quark signals (dot-dashed), and string resonance signals (long-dashed). The errors are statistical only. The shaded band shows the effect of a 10% systematic uncertainty in the jet energy scale (JES).

mass resolution. Figures 1 and 2 present the predicted dijet mass distribution for string resonances and excited quarks using the PYTHIA Monte Carlo and the CMS detector simulation. The predicted mass distributions exhibit a Gaussian core from jet energy resolution and a tail toward low masses from QCD radiation. This can be seen in Fig. 3, which shows examples of the predicted dijet mass distribution of resonances from three different parton pairings:

FIG. 2 (color online). Ratio (points) between the dijet mass data and the smooth fit, compared to the simulated ratios for excited quark signals (dot-dashed) and string resonance signals (long-dashed) in the CMS detector. The errors are statistical only.

FIG. 3 (color online). Simulation of the expected dijet mass distributions in the CMS detector from a narrow 1.2 TeV resonance of type quark-quark (dot-dashed), quark-gluon (dotted), and gluon-gluon (dashed).

 $q\bar{q}$ (or qq) resonances from the process $G \rightarrow q\bar{q}$ [8], qgresonances from $q^* \rightarrow qg$ [4], and gg resonances from $G \rightarrow gg$ [8]. For resonance masses between 0.5 and 2.5 TeV, the dijet mass resolution varies from 8% to 5% for qq, 10% to 6% for qg, and 16% to 10% for gg, respectively. The increase of the width of the measured mass shape and the shift of the mass distribution toward lower masses are enhanced when the number of gluons in the final state is larger, because QCD radiation is larger for gluons than for quarks. The latter also implies that the detector response is lower to gluon jets than to quark jets [18] (jet energy corrections, applied both to data and to simulations, are for the mixture of quark and gluon jets expected in QCD). The distributions in Fig. 3 are generically valid for other resonances with the same parton content and with a natural width small compared to the dijet mass resolution. There is no indication of narrow resonances in our data as shown in Figs. 1 and 2.

We use the dijet mass data points, the background (QCD) parametrization, and the dijet resonance shapes to set specific limits on new particles decaying to the parton pairs qq (or $q\bar{q}$), qg, and gg. For setting upper limits, before accounting for systematic uncertainties, we use a Bayesian formalism with a uniform prior for the signal cross section. We calculate the posterior probability density as a function of resonance cross section, independently at 22 different values of the resonance mass from 0.5 to 2.6 TeV in steps of 0.1 TeV. From this we find initial 95% confidence level (CL) upper limits on the cross section, including only statistical uncertainties. The dominant sources of systematic uncertainty are the jet energy scale

(10%), the jet energy resolution (10%), the integrated luminosity (11%), and the background parametrization choice (included by using a different parametrization [19] that also describes the data). The jet energy scale and resolution uncertainties are conservative estimates, consistent with those measured using collision data [12]. To incorporate systematic uncertainties, we then use an approximate technique, which in our application is generally more conservative than a fully Bayesian treatment. The posterior probability density for the cross section is broadened by convoluting it, for each resonance mass, with a Gaussian systematic uncertainty [19]. As a result, the cross section limits including systematic uncertainties increase by 17%-49% depending on the resonance mass and type. Table I lists the generic upper limits at the 95% CL on $\sigma \times BR \times A$, the product of cross section (σ), branching fraction (BR), and acceptance (A) for the kinematic requirements $|\Delta \eta| < 1.3$ and $|\eta| < 2.5$, for qq, qg, and gg resonances. The acceptance for isotropic decays is $A \approx 0.6$ independent of resonance mass.

In Fig. 4 we compare these upper limits to the model predictions as a function of resonance mass. The predictions are from lowest order calculations of the product $\sigma \times BR \times A$ using the CTEQ6L1 parton distributions [15]. New particles are excluded at the 95% CL in mass regions for which the theory curve lies above our upper limit for the appropriate pair of partons. We also determine the expected lower limit on the mass of each new particle, for a smooth background in the absence of signal. For string resonances the expected mass limit is 2.40 TeV, and we use the limits on *qg* resonances to exclude the mass range 0.50 < M(S) < 2.50 TeV. For comparison, previous measurements [16] imply a limit on string resonances of about 1.4 TeV. For excited quarks the expected

TABLE I. Upper limits at the 95% CL on $\sigma \times BR \times A$, as a function of the new particle mass, for narrow resonances decaying to dijets with partons of type quark-quark (*qq*), quark-gluon (*qg*), and gluon-gluon (*gg*). The limits apply to the kinematic range where both jets have pseudorapidity $|\eta| < 2.5$ and $|\Delta \eta| < 1.3$.

Mass	Upper limit (<i>pb</i>)			Mass	Upper limit (<i>pb</i>)		
(TeV)	qq	qg	88	(TeV)	qq	qg	88
0.5	118	134	206	1.6	3.05	3.72	6.71
0.6	182	229	339	1.7	3.13	3.64	5.88
0.7	90.7	134	281	1.8	2.92	3.41	5.37
0.8	70.8	93.5	177	1.9	2.73	3.15	4.78
0.9	52.7	71.6	142	2.0	2.71	3.02	4.39
1.0	20.3	29.0	71.4	2.1	2.50	2.84	4.15
1.1	17.0	20.1	35.1	2.2	2.20	2.55	3.69
1.2	17.0	20.4	32.5	2.3	1.96	2.28	3.32
1.3	10.5	12.9	22.8	2.4	1.79	2.08	2.94
1.4	6.77	8.71	16.4	2.5	1.67	1.93	2.74
1.5	3.71	5.02	10.3	2.6	1.55	1.80	2.50

FIG. 4 (color online). 95% CL upper limits on $\sigma \times BR \times A$ for dijet resonances of type gluon-gluon (open circles), quarkgluon (solid circles), and quark-quark (open boxes), compared to theoretical predictions for string resonances [2], excited quarks [4], axigluons [5], colorons [6], E_6 diquarks [7], new gauge bosons W' and Z' [9], and Randall-Sundrum gravitons [8].

mass limit is 1.32 TeV, and we exclude the mass range $0.50 < M(q^*) < 1.58$ TeV, extending the previous exclusion of $M(q^*) < 1.26$ TeV [16,17,19–22]. For axigluons or colorons the expected mass limit is 1.23 TeV, and we use the limits on qq resonances to exclude the mass intervals 0.50 < M(A) < 1.17 TeV and 1.47 < M(A) < 1.52 TeV, extending the previous exclusion of 0.11 < M(A) <1.25 TeV [16,19,21,23–25]. For E_6 diquarks the expected mass limit is 1.05 TeV, and we exclude the mass intervals 0.50 < M(D) < 0.58 TeV, and 0.97 < M(D) < 1.08 TeV, and 1.45 < M(D) < 1.60 TeV, extending the previous exclusion of 0.29 < M(D) < 0.63 TeV [16,19]. For W', Z', and RS gravitons we do not expect any mass limit, and do not exclude any mass intervals with the present data. The systematic uncertainties included in this analysis reduce the excluded upper masses by roughly 0.1 TeV for each type of new particle.

In conclusion, the measured dijet mass spectrum is a smoothly falling distribution as expected within the standard model. We see no evidence for new particle production. Thus we present generic upper limits on $\sigma \times BR \times A$ that can be applied to any model of dijet resonances, and set specific mass limits on string resonances, excited quarks, axigluons, flavor-universal colorons, and E_6 diquarks, all of which extend previous exclusions.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of

the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.).

- [1] CMS Collaboration, JINST 3, S08004 (2008).
- [2] L. A. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, and T. R. Taylor, Phys. Rev. Lett. 101, 241803 (2008).
- [3] S. Cullen, M. Perelstein, and M. E. Peskin, Phys. Rev. D 62, 055012 (2000).
- [4] U. Baur, I. Hinchlie, and D. Zeppenfeld, Int. J. Mod. Phys. A 2, 1285 (1987).
- [5] P. H. Frampton and S. L. Glashow, Phys. Lett. B 190, 157 (1987).
- [6] E.H. Simmons, Phys. Rev. D 55, 1678 (1997).
- [7] J.L. Hewett and T.G. Rizzo, Phys. Rep. 183, 193 (1989).
- [8] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).
- [9] E. Eichten, I. Hinchlie, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579 (1984).
- [10] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-EWK-10-004, 2010, http://cdsweb .cern.ch/record/1279145?ln=en.
- [11] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.
- [12] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-10-003, 2010, http://cdsweb .cern.ch/record/1279362?ln=en.
- [13] T. Sjostrand *et al.*, Comput. Phys. Commun. **135**, 238 (2001).
- [14] S. Agostinelli *et al.* (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
- [15] J. Pumplin et al., J. High Energy Phys. 07 (2002) 012.
- [16] T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. D 79, 112002 (2009).
- [17] G. Aad *et al.* (ATLAS Collaboration), Phys. Rev. Lett. 105, 161801 (2010).
- [18] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-07-002, 2007.
- [19] F. Abe *et al.* (CDF Collaboration), Phys. Rev. D 55, R5263 (1997).

- [20] J. Alitti *et al.* (UA2 Collaboration), Nucl. Phys. **B400**, 3 (1993).
- [21] F. Abe *et al.* (CDF Collaboration), Phys. Rev. Lett. 74, 3538 (1995).
- [22] V. M. Abazov *et al.* (D0 Collaboration), Phys. Rev. D **69**, 111101 (2004).
- [23] C. Albajar *et al.* (UA1 Collaboration), Phys. Lett. B **209**, 127 (1988).
- [24] F. Abe *et al.* (CDF Collaboration), Phys. Rev. D **41**, 1722 (1990).
- [25] F. Abe *et al.* (CDF Collaboration), Phys. Rev. Lett. **71**, 2542 (1993).

V. Khachatryan,¹ A. M. Sirunyan,¹ A. Tumasyan,¹ W. Adam,² T. Bergauer,² M. Dragicevic,² J. Erö,² C. Fabjan,² M. Friedl,² R. Frühwirth,² V. M. Ghete,² J. Hammer,^{2,b} S. Hänsel,² C. Hartl,² M. Hoch,² N. Hörmann,² J. Hrubec,² M. Jeitler,² G. Kasieczka,² W. Kiesenhofer,² M. Krammer,² D. Liko,² I. Mikulec,² M. Pernicka,² H. Rohringer,² R. Schöfbeck,² J. Strauss,² A. Taurok,² F. Teischinger,² W. Waltenberger,² G. Walzel,² E. Widl,² C.-E. Wulz,² V. Mossolov,³ N. Shumeiko,³ J. Suarez Gonzalez,³ L. Benucci,⁴ L. Ceard,⁴ E. A. De Wolf,⁴ X. Janssen,⁴ T. Maes,⁴ L. Mucibello,⁴ S. Ochesanu,⁴ B. Roland,⁴ R. Rougny,⁴ M. Selvaggi,⁴ H. Van Haevermaet,⁴ P. Van Mechelen,⁴ N. Van Remortel,⁴ V. Adler,⁵ S. Beauceron,⁵ S. Blyweert,⁵ J. D'Hondt,⁵ O. Devroede,⁵ A. Kalogeropoulos,⁵ J. Maes,⁵ M. Maes,⁵ S. Tavernier,⁵ W. Van Doninck,⁵ P. Van Mulders,⁵ I. Villella,⁵ E. C. Chabert,⁶ O. Charaf,⁶ B. Clerbaux,⁶ G. De Lentdecker,⁶ V. Dero,⁶ A. P. R. Gay,⁶ G. H. Hammad,⁶ T. Hreus,⁶ P. E. Marage,⁶ L. Thomas,⁶ C. Vander Velde,⁶ P. Vanlaer,⁶ J. Wickens,⁶ S. Costantini,⁷ M. Grunewald,⁷ B. Klein,⁷ A. Marinov,⁷ D. Ryckbosch,⁷ F. Thyssen,⁷ M. Tytgat,⁷ L. Vanelderen,⁷ P. Verwilligen,⁷ S. Walsh,⁷ N. Zaganidis,⁷ S. Basegmez,⁸ G. Bruno,⁸ J. Caudron,⁸ J. De Favereau De Jeneret,⁸ C. Delaere,⁸ P. Demin,⁸ D. Favart,⁸ A. Giammanco,⁸ G. Grégoire,⁸ J. Hollar,⁸ V. Lemaitre,⁸ O. Militaru,⁸ S. Ovyn,⁸ D. Pagano,⁸ A. Pin,⁸ K. Piotrzkowski,^{8,b} L. Quertenmont,⁸ N. Schul,⁸ N. Beliy,⁹ T. Caebergs,⁹ E. Daubie,⁹ G. A. Alves,¹⁰ D. De Jesus Damiao,¹⁰ M. E. Pol,¹⁰ M. H. G. Souza,¹⁰ W. Carvalho,¹¹ E. M. Da Costa,¹¹ C. De Oliveira Martins,¹¹ S. Fonseca De Souza,¹¹ L. Mundim,¹¹ H. Nogima,¹¹ V. Oguri,¹¹ J. M. Otalora Goicochea,¹¹ W. L. Prado Da Silva,¹¹ A. Santoro,¹¹ S. M. Silva Do Amaral,¹¹ A. Sznajder,¹¹ F. Torres Da Silva De Araujo,¹¹ F. A. Dias,¹² M. A. F. Dias,¹² T. R. Fernandez Perez Tomei,¹² E. M. Gregores,¹² F. Marinho,¹² S. F. Novaes,¹² Sandra S. Padula,¹² N. Darmenov,^{13,b} L. Dimitrov,¹³ V. Genchev,^{13,b} P. Iaydjiev,^{13,b} F. Marinho,¹² S. F. Novaes,¹² Sandra S. Padula,¹² N. Darmenov,^{13,6} L. Dimitrov,^{15,6} V. Genchev,^{15,6} P. Iaydjiev,^{15,6} S. Piperov,¹³ M. Rodozov,¹³ S. Stoykova,¹³ G. Sultanov,¹³ V. Tcholakov,¹³ R. Trayanov,¹³ I. Vankov,¹³ M. Dyulendarova,¹⁴ R. Hadjiiska,¹⁴ V. Kozhuharov,¹⁴ L. Litov,¹⁴ E. Marinova,¹⁴ M. Mateev,¹⁴ B. Pavlov,¹⁴ P. Petkov,¹⁴ J. G. Bian,¹⁵ G. M. Chen,¹⁵ H. S. Chen,¹⁵ C. H. Jiang,¹⁵ D. Liang,¹⁵ S. Liang,¹⁵ J. Wang,¹⁵ J. Wang,¹⁵ X. Wang,¹⁵ Z. Wang,¹⁵ M. Yang,¹⁵ J. Zang,¹⁵ Z. Zhang,¹⁵ Y. Ban,¹⁶ S. Guo,¹⁶ Z. Hu,¹⁶ W. Li,¹⁶ Y. Mao,¹⁶ S. J. Qian,¹⁶ H. Teng,¹⁶ B. Zhu,¹⁶ A. Cabrera,¹⁷ B. Gomez Moreno,¹⁷ A. A. Ocampo Rios,¹⁷ A. F. Osorio Oliveros,¹⁷ J. C. Sanabria,¹⁷ N. Godinovic,¹⁸ D. Lelas,¹⁸ K. Lelas,¹⁸ R. Plestina,^{18,c} D. Polic,¹⁸ I. Puljak,¹⁸ Z. Antunovic,¹⁹ M. Dzelalija,¹⁹ V. Brigljevic,²⁰ S. Duric,²⁰ K. Kadija,²⁰ S. Morovic,²⁰ A. Attikis,²¹ R. Fereos,²¹ M. Galanti,²¹ L. Mayas,²¹ C. Nicolacu,²¹ F. Ptoches,²¹ P. A. Pazis,²¹ H. Pułzaczewski,²¹ A. Abdel-basit,^{22,d} Y. Assrap,^{22,e} J. Mousa,²¹ C. Nicolaou,²¹ F. Ptochos,²¹ P. A. Razis,²¹ H. Rykaczewski,²¹ A. Abdel-basit,^{22,d} Y. Assran,^{22,e} M. A. Mahmoud,^{22,f} A. Hektor,²³ M. Kadastik,²³ K. Kannike,²³ M. Müntel,²³ M. Raidal,²³ L. Rebane,²³ V. Azzolini,²⁴ P. Eerola,²⁴ S. Czellar,²⁵ J. Härkönen,²⁵ A. Heikkinen,²⁵ V. Karimäki,²⁵ R. Kinnunen,²⁵ J. Klem,²⁵ M. J. Kortelainen,²⁵ T. Lampén,²⁵ K. Lassila-Perini,²⁵ S. Lehti,²⁵ T. Lindén,²⁵ P. Luukka,²⁵ T. Mäenpää,²⁵ E. Tuominen,²⁵ J. Tuominemi,²⁵ E. Tuovinen,²⁵ D. Ungaro,²⁵ L. Wendland,²⁵ K. Banzuzi,²⁶ A. Korpela,²⁶ T. Tuuva,²⁶ D. Sillou,²⁷ M. Besancon,²⁸ M. Dejardin,²⁸ D. Denegri,²⁸ B. Fabbro,²⁸ J. L. Faure,²⁸ F. Ferri,²⁸ S. Ganjour,²⁸ F. X. Gentit,²⁸ A. Givernaud,²⁸ P. Gras,²⁸ G. Hamel de Monchenault,²⁸ P. Jarry,²⁸ E. Locci,²⁸ S. Ganjour, F. X. Gentit, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, ²⁸ M. Marionneau, ²⁸ L. Millischer, ²⁸ J. Rander, ²⁸ A. Rosowsky, ²⁸ M. Titov, ²⁸ P. Verrecchia, ²⁸ S. Baffioni, ²⁹ L. Bianchini, ²⁹ M. Bluj, ^{29,g} C. Broutin, ²⁹ P. Busson, ²⁹ C. Charlot, ²⁹ L. Dobrzynski, ²⁹ R. Granier de Cassagnac, ²⁹ M. Haguenauer, ²⁹ P. Miné, ²⁹ C. Mironov, ²⁹ C. Ochando, ²⁹ P. Paganini, ²⁹ D. Sabes, ²⁹ R. Salerno, ²⁹ Y. Sirois, ²⁹ C. Thiebaux, ²⁹ A. Zabi, ²⁹ J.-L. Agram, ³⁰ A. Besson, ³⁰ D. Bloch, ³⁰ D. Bodin, ³⁰ J.-M. Brom, ³⁰ M. Cardaci, ³⁰ E. Conte, ³⁰ F. Drouhin, ³⁰ C. Ferro, ³⁰ J.-C. Fontaine, ³⁰ D. Gelé, ³⁰ U. Goerlach, ³⁰ S. Greder, ³⁰ P. Juillot, ³⁰ M. Karim, ³⁰ A.-C. Le Bihan, ³⁰ Y. Mikami, ³⁰ P. Van Hove, ³⁰ F. Fassi, ³¹ D. Mercier, ³¹ C. P. et al. ³² D. P. Latter, ³² N. C. ³⁴ M. P. ³² N. C. ³⁴ M. P. ³⁴ M. P. ³⁴ M. ³⁶ C. P. et al. ³² D. P. ³⁴ M. P. ³⁴ M. ³⁶ M. Karim, ³⁰ A.-C. ³⁴ M. P. ³⁴ M. P. ³⁴ M. ³⁵ M. C. Baty,³² N. Beaupere,³² M. Bedjidian,³² O. Bondu,³² G. Boudoul,³² D. Boumediene,³² H. Brun,³² N. Chanon,³² R. Chierici,³² D. Contardo,³² P. Depasse,³² H. El Mamouni,³² A. Falkiewicz,³² J. Fay,³² S. Gascon,³² B. Ille,³² R. Chienelli, "D. Contaido, "I. Depusse, "In Di Mandoun, "I. Funktowicz, "J. Fuj, "D. Guscon, "D. Ine,"
T. Kurca, ³² T. Le Grand, ³² M. Lethuillier, ³² L. Mirabito, ³² S. Perries, ³² V. Sordini, ³² S. Tosi, ³² Y. Tschudi, ³²
P. Verdier, ³² H. Xiao, ³² V. Roinishvili, ³³ G. Anagnostou, ³⁴ M. Edelhoff, ³⁴ L. Feld, ³⁴ N. Heracleous, ³⁴ O. Hindrichs, ³⁴
R. Jussen, ³⁴ K. Klein, ³⁴ J. Merz, ³⁴ N. Mohr, ³⁴ A. Ostapchuk, ³⁴ A. Perieanu, ³⁴ F. Raupach, ³⁴ J. Sammet, ³⁴ S. Schael, ³⁴ D. Sprenger,³⁴ H. Weber,³⁴ M. Weber,³⁴ B. Wittmer,³⁴ M. Ata,³⁵ W. Bender,³⁵ M. Erdmann,³⁵ J. Frangenheim,³⁵

T. Hebbeker,³⁵ A. Hinzmann,³⁵ K. Hoepfner,³⁵ C. Hof,³⁵ T. Klimkovich,³⁵ D. Klingebiel,³⁵ P. Kreuzer,^{35,b} D. Lanske,^{35,a} C. Magass,³⁵ G. Masetti,³⁵ M. Merschmeyer,³⁵ A. Meyer,³⁵ P. Papacz,³⁵ H. Pieta,³⁵ H. Reithler,³⁵ S. A. Schmitz,³⁵ L. Sonnenschein,³⁵ J. Steggemann,³⁵ D. Teyssier,³⁵ M. Bontenackels,³⁶ M. Davids,³⁶ M. Duda,³⁶ G. Flügge,³⁶ H. Geenen,³⁶ M. Giffels,³⁶ W. Haj Ahmad,³⁶ D. Heydhausen,³⁶ T. Kress,³⁶ Y. Kuessel,³⁶ A. Linn,³⁶ H. Giffels,³⁶ A. Linn,³⁶ D. Heydhausen,³⁶ T. Kress,³⁶ Y. Kuessel,³⁶ A. Linn,³⁶ H. Giffels,³⁶ A. Linn,³⁶ A. Nowack,³⁶ L. Perchalla,³⁶ O. Pooth,³⁶ J. Rennefeld,³⁶ P. Sauerland,³⁶ A. Stahl,³⁶ M. Thomas,³⁶ D. Tornier,³⁶ M. H. Zoeller,³⁶ M. Aldaya Martin,³⁷ W. Behrenhoff,³⁷ U. Behrens,³⁷ M. Bergholz,^{37,h} K. Borras,³⁷ A. Campbell,³⁷ E. Castro,³⁷ D. Dammann,³⁷ G. Eckerlin,³⁷ A. Flossdorf,³⁷ G. Flucke,³⁷ A. Geiser,³⁷ I. Glushkov,³⁷ J. Hauk,³⁷ A. Nowack, ⁹ L. Perchalla,⁹ O. Pooth, ⁹ J. Rennefeld, ⁹ P. Sauerland, ⁹ A. Stahl, ⁹ M. Thomas, ⁷ D. Tornier, ⁵ M. H. Zoeller,⁴ M. Aldaya Martin, ² W. Behrenkoff, ³⁷ U. Berghol, ²³ M. K. Borras, ⁷ D. Jonphell, ³⁷ E. Castro, ³⁷ D. Dammann, ³⁷ G. Eckerlin, ³⁷ A. Flossdorf, ⁵⁷ G. Flucke, ⁵⁷ A. Geiser, ⁵⁷ I. Glushkov, ³⁷ J. Hauk, ³⁷ H. Jung, ⁵⁷ W. Kasemann, ³⁷ I. Katkov, ²⁷ P. Katsas, ³⁷ C. Kleinwort, ³⁷ H. Kluge, ⁷⁸ A. Knutsson, ³⁷ J. Kritcker, ³⁷ J. Mich, ³⁷ A. Museg, ¹⁷ W. Johmann, ³⁷ A. Markel, ³⁷ M. Marierield, ³⁷ L. A. Melzer-Pellmann, ³⁷ S. Buge, ³⁷ W. Johen, ³⁷ J. Parenti, ³⁷ A. Rasperza, ³⁷ A. Raval, ¹³ R. Schmidt, ²¹A. T. Schoerner-Sadenius, ³⁷ N. Sen, ³⁷ M. Stein, ³⁷ J. Joreger, ³⁸ D. Ecktein, ³⁸ H. Enderle, ³⁸ U. Gebbert, ³⁸ K. Skahube, ³⁸
 G. Kaussen, ³⁸ R. Klanner, ³⁸ B. Mura, ³⁶ S. Naumann-Emme, ³⁸ F. Nowak, ³⁸ N. Pietsch, ³⁸ C. Sander, ³⁸ H. Schlerker, ³⁸ S. Schwaler, ³⁸ J. Schwalek, ³⁰ D. Daeuwel, ³⁹ W. De Boer, ³⁹ A. Dierlamn, ³⁹ G. Dirkes, ⁵⁹ M. Schrindr, ³¹ D. Martschei, ³⁰ S. Mueller, ³¹ D. Malier, ⁵⁰ M. B. Neuland, ³⁰ M. Niegel, ³⁰ O. Oust, ³⁰ K. Rabbertz, ³⁰ R. Schudt, ³⁰ H. Biegel, ³⁰ O. Oberst, ³³ A. Ochelra, ³⁰ J. Ott, ³⁰ T. Peiffer, ³⁰ D. Schelerderdeckr, ³⁰ F. P. Schilling, ³⁰ G. Schutt, ³⁰ H. Jeinrich, ³¹ H. Held, ³⁰ K. H. Hoffmann, ³⁵ S. Hooc, ³¹ T. Kuhr, ³⁰ D. Scheler, ³⁰ D. Zueket, ³⁰ F. B. Zieberth, ³⁰ O. Daekakis, ⁴⁰ T. Geralis, ⁴⁰ S. Kesisoglou, ⁴⁰ A. Kyriakis, ⁴⁰ D. Loukas, ⁴¹ J. Marcinekis, ⁴¹ A. Panagiotou, ⁴¹ M. B. Neuland, ³⁰ M. Niezel, ³⁰ O. Gubert, ³¹ D. Toronde, ³¹ J. Wagner-Kuhr, ³⁰ L. B. Zieberth, ³⁰ G. Schutt, ³⁰ H. J. Simonis, ³⁰ F. M. Stober, ³² D. Toende, ³¹ J. Negner-Kuhr, ³⁰ J. Zimos, ³¹ T. L. Trocsanyi, ⁴⁵ B. Uyari, ⁴⁵ S. Bansal, ⁴⁰ S. Kesisoglou, ⁴⁴ A. Kyriakis, ⁶¹ D. Loukas, ⁴¹ J. Marcinekis, ⁴¹ A. Rangiotou, ⁴¹ A. Massholi, D. Pelani, S. B. P. Noli, Starting Starting Starting Starting Starting Starting Starting, Starting Starting, S

M. Biasotto,^{60a,n} D. Bisello,^{60a,60b} A. Branca,^{60a} R. Carlin,^{60a,60b} P. Checchia,^{60a} M. De Mattia,^{60a,60b} T. Dorigo,^{60a} F. Gasparini,^{60a,60b} P. Giubilato,^{60a,60b} A. Gresele,^{60a,60c} S. Lacaprara,^{60a,n} I. Lazzizzera,^{60a,60c} M. Margoni,^{60a,60b} G. Maron,^{60a} A. T. Meneguzzo,^{60a,60b} M. Nespolo,^{60a} M. Passaseo,^{60a} L. Perrozzi,^{60a,b} N. Pozzobon,^{60a,60b} P. Ronchese,^{60a,60b} F. Simonetto,^{60a,60b} E. Torassa,^{60a} M. Tosi,^{60a,60b} A. Triossi,^{60a} S. Vanini,^{60a,60b} P. Zotto,^{60a,60b} P. Baesso,^{61a,61b} U. Berzano,^{61a} C. Riccardi,^{61a,61b} P. Torre,^{61a,61b} P. Vitulo,^{61a,61b} C. Viviani,^{61a,61b} M. Biasini,^{62a,62b} G. M. Bilei,^{62a} B. Caponeri,^{62a,62b} L. Fanò,^{62a,62b} P. Lariccia,^{62a,62b} A. Lucaroni,^{62a,62b} M. Valdata,^{62a,62b} M. Menichelli,^{62a} A. Nappi,^{62a,62b} A. Santocchia,^{62a,62b} L. Servoli,^{62a} S. Taroni,^{62a,62b} M. Valdata,^{62a,62b} D. Accercei,^{63a,63c} C. Declicci,^{63a} L. Demendici,^{63a,63b,b} T. Deccei,^{63a,b} P. Contoldi,^{63a} R. Volpe,^{62a,62b,b} P. Azzurri,^{63a,63c} G. Bagliesi,^{63a} J. Bernardini,^{63a,63b,b} T. Boccali,^{63a,b} R. Castaldi,^{63a} R. T. D'Agnolo, ^{63a,63c} R. Dell'Orso, ^{63a} F. Fiori, ^{63a,63b} L. Foà, ^{63a,63c} A. Giassi, ^{63a} A. Kraan, ^{63a} F. Ligabue, ^{63a,63c} T. Lomtadze, ^{63a} L. Martini, ^{63a} A. Messineo, ^{63a,63b} F. Palla, ^{63a} F. Palmonari, ^{63a} S. Sarkar, ^{63a,63c} G. Segneri, ^{63a} A. T. Serban, ^{63a} P. Spagnolo, ^{63a} R. Tenchini, ^{63a,64b} G. Tonelli, ^{63a,63b,b} A. Venturi, ^{63a} P. G. Verdini, ^{63a} L. Barone, ^{64a,64b} E. Di Marco, ^{64a,64b} M. Diemoz, ^{64a} D. Franci, ^{64a,64b} M. Grassi, ^{64a} E. Longo, ^{64a,64b} G. Organtini, ^{64a,64b} A. Palma, ^{64a,64b} F. Pandolfi, ^{64a,64b,b} R. Paramatti, ^{64a} S. Rahatlou, ^{64a,64b,b} N. Amapane, ^{65a,65b} R. Arcidiacono, ^{65a,65b} M. Costa, ^{65a,65b} M. Arneodo, ^{65a,65c} C. Biino, ^{65a} C. Botta, ^{65a,65b,b} N. Cartiglia, ^{65a} R. Castello, ^{65a,65b} M. Costa, ^{65a,65b,b} A. Demaria, ^{65a,65b} M. Musich, ^{65a,65b} M. Marone, ^{65a,65b} S. Maselli, ^{65a} E. Migliore, ^{65a,65b,b} A. Romero, ^{65a,65b} M. Ruspa, ^{65a,65b,b} C. Mariotti, ^{65a} M. Morone, ^{65a,65b} A. Solano, ^{65a,65b} A. Staiano, ^{65a,65b, A}. Romero, ^{65a,65b} M. Ruspa, ^{65a,65b,b} F. Ambroglini, ^{66a,66b} S. Belforte, ^{66a} F. Cossutti, ^{66a} G. Della Ricca, ^{66a,66b} B. Gobbo, ^{66a} D. Montanino, ^{66a,66b} A. Penzo, ^{66a} S. G. Heo, ⁶⁷ S. Chang, ⁶⁸ J. Chung, ⁶⁸ D. H. Kim, ⁶⁸ J. E. Kim, ⁶⁸ D. J. Kong, ⁶⁸ H. Park, ⁶⁸ D. Son, ⁶⁸ D. C. Son, ⁶⁸ Zero Kim, ⁶⁹ J. Y. Kim, ⁶⁹ S. Song, ⁶⁹ S. Choi, ⁷⁰ B. Hong, ⁷⁰ M. Jo, ⁷⁰ H. Kim, ⁷⁰ J. H. Kim, ⁷¹ C. Park, ⁷¹ I. C. Park, ⁷¹ G. Ryu, ⁷¹ Y. Choi, ⁷² Y. K. Choi, ⁷² J. Goh, ⁷² J. Lee, ⁷² S. Lee, ⁷² H. Seo, ⁷² I. Yu, ⁷² M. J. Bilinskas, ⁷³ I. Grigelionis, ⁷³ M. Janulis, ⁷³ D. Martisiute, ⁷³ P. Petrov, ⁷³ T. Sabonis, ⁷³ H. Castilla Valdez, ⁷⁴ E. De La Cruz Burelo, ⁷⁴ R. Lopez-Fernandez, ⁷⁴ A. Sánchez Hernández, ⁷⁴ L. M. Villasenor-Cendejas, ⁷⁴ S. Carrillo Moreno, ⁷⁵ F. Vazquez Valencia, ⁷⁵ H. A. Salazar Ibarguen, ⁷⁶ E. Casimiro Linares, ⁷⁷ A. Morelos Pineda, ⁷⁷ M. A. Reyes-Sant R. T. D'Agnolo,^{63a,63c} R. Dell'Orso,^{63a} F. Fiori,^{63a,63b} L. Foà,^{63a,63c} A. Giassi,^{63a} A. Kraan,^{63a} F. Ligabue,^{63a,63c} Grigelionis, ⁵ M. Janulis, ⁵ D. Martisiute, ⁵ P. Petrov, ⁶ T. Sabonis, ⁶ H. Castilla Valdez, ⁷⁴ E. De La Cruz Burelo, ⁷⁵ R. Lopez-Fernandez, ⁷⁴ A. Sánchez Hernández, ⁷⁴ L. M. Villasenor-Cendejas, ⁷⁴ S. Carrillo Moreno, ⁷⁵ F. Vazquez Valencia, ⁷⁵ H. A. Salazar Ibarguen, ⁷⁶ E. Casimiro Linares, ⁷⁷ A. Morelos Pineda, ⁷⁷ M. A. Reyes-Santos, ⁷⁷ P. Allfrey, ⁷⁸ D. Krofcheck, ⁷⁸ J. Tam, ⁷⁸ P. H. Butler, ⁷⁹ R. Doesburg, ⁷⁹ H. Silverwood, ⁷⁹ M. Ahmad, ⁸⁰ I. Ahmed, ⁸⁰
 M. L. Asghar, ⁸⁰ H. R. Hoorani, ⁸⁰ W. A. Khan, ⁸⁰ T. Khurshid, ⁸⁰ S. Qazi, ⁸⁰ M. Cwiok, ⁸¹ W. Dominik, ⁸¹ K. Doroba, ⁸¹ A. Kalinowski, ⁸¹ M. Konecki, ⁸¹ J. Krolikowski, ⁸¹ T. Frueboes, ⁸² R. Gokieli, ⁸² M. Górski, ⁸² M. Kazana, ⁸² K. Nawrocki, ⁸² M. Szleper, ⁸² G. Wrochna, ⁸² P. Zalewski, ⁸² N. Almeida, ⁸³ A. David, ⁸³ P. Faccioli, ⁸³ P. G. Ferreira Parracho, ⁸³ M. Gallinaro, ⁸³ P. Martins, ⁸³ G. Mini, ⁸³ P. Musella, ⁸³ A. Nayak, ⁸³ L. Raposo, ⁸³ P. Q. Ribeiro, ⁸³ J. Seixas, ⁸³ P. Silva, ⁸³ D. Soares, ⁸³ J. Varela, ⁸³ H. K. Wöhri, ⁸³ I. Belotelov, ⁸⁴ P. Bunin, ⁸⁴ M. Finger, ⁸⁴ M. Finger, J., ⁸⁴ I. Golutvin, ⁸⁴ A. Kamenev, ⁸⁴ V. Karjavin, ⁸⁴ G. Kozlov, ⁸⁴ A. Lanev, ⁸⁴ P. Moisenz, ⁸⁴ V. Palichik, ⁸⁴ V. Perelygin, ⁸⁴ S. Shmatov, ⁸⁴ V. Smirnov, ⁸⁴ A. Volodko, ⁸⁴ A. Zarubin, ⁸⁴ N. Bondar, ⁸⁵ V. Golovtsov, ⁸⁵ Y. Ivanov, ⁸⁵ V. Kim, ⁸⁵ P. Levchenko, ⁸⁵ V. Murzin, ⁸⁵ V. Oreshkin, ⁸⁵ I. Smirnov, ⁸⁵ N. Sulimov, ⁸⁵ L. Uvarov, ⁸⁵ S. Vavilov, ⁸⁵ A. Vorobyev, ⁸⁵ Yu. Andreev, ⁸⁶ S. Troitsky, ⁸⁶ V. Epshteyn, ⁸⁷ V. Gavrilov, ⁷ V. Kaftanov, ^{87,a} M. Kossov, ^{87,b} A. Krokhotin, ⁸⁷ E. Vlasov, ⁸⁷ A. Zhokin, ⁸⁷ F. Boos, ⁸⁸ M. Dubinin, ^{88,o} L. Dudko, ⁸⁸ A. Ershov, ⁸⁸ A. Gribushin, ⁸⁸ O. Kodolova, ⁸⁴ I. Lakhin, ⁸⁵ S. Obraztsov, ⁸⁸ S. Petrushanko, ⁸⁵ A. Sargonov, ⁸⁷ S. Semenov, ⁸⁷ I. Shreyber, ⁸⁷ V. Stolin, ⁸⁷ F. Vlasov, ⁸⁷ A. Zhokin, ⁸⁷ E. B G. Codispoti,⁹³ J. F. de Trocóniz,⁹³ J. Cuevas,⁹⁴ J. Fernandez Menendez,⁹⁴ S. Folgueras,⁹⁴ I. Gonzalez Caballero,⁹⁴ L. Lloret Iglesias,⁹⁴ J. M. Vizan Garcia,⁹⁴ I. J. Cabrillo,⁹⁵ A. Calderon,⁹⁵ M. Chamizo Llatas,⁹⁵ S. H. Chuang,⁹⁵ J. Duarte Campderros,⁹⁵ M. Felcini,^{95,p} M. Fernandez,⁹⁵ G. Gomez,⁹⁵ J. Gonzalez Sanchez,⁹⁵ R. Gonzalez Suarez,⁹⁵

<page-header>

 M.A. Borgia, ¹¹³ R. Breedon, ¹¹³ M. Calderon De La Barca Sanchez, ¹¹³ D. Cebra, ¹¹³ M. Chertok, ¹¹³ J. Conway, ¹¹³ P. T. Cox, ¹¹³ J. Dolen, ¹¹³ R. Erbacher, ¹¹³ E. Friis, ¹¹³ W. Ko, ¹¹³ A. Kopecky, ¹¹³ R. Lander, ¹¹³ H. Liu, ¹¹³ S. Maruyama, ¹¹³ T. Miceli, ¹¹³ M. Nikolic, ¹¹³ D. Pellett, ¹¹³ J. Robles, ¹¹³ T. Schwarz, ¹¹³ M. Searle, ¹¹³ J. Smith, ¹¹³ M. Squires, ¹¹³ M. Tripathi, ¹¹³ R. Vasquez Sierra, ¹¹³ C. Veelken, ¹¹³ V. Andreev, ¹¹⁴ K. Arisaka, ¹¹⁴ D. Cline, ¹¹⁴ R. Cousins, ¹¹⁴ A. Deisher, ¹¹⁴ J. Duris, ¹¹⁴ S. Erhan, ¹¹⁴ C. Farrell, ¹¹⁴ J. Hauser, ¹¹⁴ M. Ignatenko, ¹¹⁴ C. Jarvis, ¹¹⁴ R. Cousins, ¹¹⁴ A. Deisher, ¹¹⁴ J. Duris, ¹¹⁴ S. Erhan, ¹¹⁴ C. Farrell, ¹¹⁴ J. Hauser, ¹¹⁴ M. Ignatenko, ¹¹⁴ C. Jarvis, ¹¹⁴ C. Plager, ¹¹⁵ F. Giordano, ¹¹⁵ G. Hanson, ¹¹⁵ G. Y. Jeng, ¹¹⁵ S. C. Kao, ¹¹⁵ F. Liu, ¹¹⁵ H. Liu, ¹¹⁵ A. Luthra, ¹¹⁵ J. W. Gary, ¹¹⁵ F. Giordano, ¹¹⁵ G. Hanson, ¹¹⁶ G. Y. Jeng, ¹¹⁵ S. C. Kao, ¹¹⁵ F. Liu, ¹¹⁵ H. Liu, ¹¹⁵ A. Luthra, ¹¹⁵ H. Nguyen, ¹¹⁵ G. Pasztor, ^{115, ii} A. Satpathy, ¹¹⁵ B. C. Shen, ^{115, a} R. Stringer, ¹¹⁵ J. Sturdy, ¹¹⁵ S. Sumowidagdo, ¹¹⁵ R. Wilken, ¹¹⁶ S. Wimpenny, ¹¹⁶ M. Andrews, ¹¹⁶ J. G. Branson, ¹¹⁶ E. Dusinberre, ¹¹⁶ D. Evans, ¹¹⁶ F. Golf, ¹¹⁶ A. Holzner, ¹¹⁶ M. Lebourgeois, ¹¹⁶ J. Letts, ¹¹⁶ M. Sani, ¹¹⁶ V. Sharma, ^{116, h} S. Simon, ¹¹⁶ Y. Tu, ¹¹⁶ A. Vartak, ¹¹⁶ P. Grifert, ¹¹⁷ J. Incandela, ¹¹⁷ C. Justus, ¹¹⁷ P. Kalavase, ¹¹⁷ S. A. Koay, ¹¹⁷ D. Kovalskyi, ¹¹⁷ V. Krutelyov, ¹¹⁷ S. Lowette, ¹¹⁷ N. Mccoll, ¹¹⁷ V. Pavlunin, ¹¹⁷ F. Rebassoo, ¹¹⁷ J. Ribnik, ¹¹⁷ J. Richman, ¹¹⁷ M. Gataullin, ¹¹⁸ D. Kcira, ¹¹⁸ W. Litvine, ¹¹⁸ Y. Ma, ¹¹⁸ A. Mott, ¹¹⁸ H. B. Newman, ¹¹⁸ C. Rogan, ¹¹⁸ K. Shin, ¹¹⁸ Y. Chen, ¹¹⁸ M. Gataullin, ¹¹⁸ D. Kcira, ¹¹⁸ W. Litvine, ¹¹⁸ Y. Ma, ¹¹⁸ A. Mott, ¹¹⁹ R. Y. Zhu, ¹¹⁸ B. Akgun, ¹¹⁹ A. Calamba, ¹¹⁹ N. Terentyev, ¹¹⁹ H. Vogel, ¹¹⁹ N. Terentyev,¹¹⁹ H. Vogel,¹¹⁹ I. Vorobiev,¹¹⁹ J. P. Cumalat,¹²⁰ M. E. Dinardo,¹²⁰ B. R. Drell,¹²⁰ C. J. Edelmaier,¹²⁰ W. T. Ford,¹²⁰ B. Heyburn,¹²⁰ E. Luiggi Lopez,¹²⁰ U. Nauenberg,¹²⁰ J. G. Smith,¹²⁰ K. Stenson,¹²⁰ K. A. Ulmer,¹²⁰ S. R. Wagner,¹²⁰ S. L. Zang,¹²⁰ L. Agostino,¹²¹ J. Alexander,¹²¹ F. Blekman,¹²¹ A. Chatterjee,¹²¹ S. Das,¹²¹ N. Eggert,¹²¹ L. J. Fields,¹²¹ L. K. Gibbons,¹²¹ B. Heltsley,¹²¹ K. Henriksson,¹²¹ W. Hopkins,¹²¹ A. Khukhunaishvili,¹²¹ B. Kreis,¹²¹ V. Kuznetsov,¹²¹ Y. Liu,¹²¹ G. Nicolas Kaufman,¹²¹ J. R. Patterson,¹²¹ J. P. Puigh,¹²¹ D. Riley,¹²¹ A. Ryd,¹²¹ M. Saelim,¹²¹ X. Shi,¹²¹ W. Sun,¹²¹ W. D. Teo,¹²¹ J. Thom,¹²¹ J. Thompson,¹²¹ J. Vaughan,¹²¹ Y. Weng,¹²¹ L. Winstrom,¹²¹ P. Wittich,¹²¹ A. Biselli,¹²² G. Cirino,¹²² D. Winn,¹²² S. Abdullin,¹²³ M. Albrow,¹²³ J. Anderson,¹²³ G. Apollinari,¹²³ M. Atac,¹²³ J. A. Bakken,¹²³ S. Banerjee,¹²³ L. A. T. Bauerdick,¹²³ A. Beretvas,¹²³ J. Berryhill,¹²³ P. C. Bhat,¹²³ I. Bloch,¹²³ F. Borcherding,¹²³ K. Burkett,¹²³ J. N. Butler,¹²³ I. Fisk,¹²³ J. Freeman,¹²³ F. Chlebana,¹²³ S. Cihangir,¹²³ M. Demarteau,¹²³ O. Gutsche,¹²³ A. Hahn,¹²³ I. Fisk,¹²³ J. Freeman,¹²³ I. Hirschauer,¹²³ B. Hooberman,¹²³ K. Gunthoti,¹²³ O. Gutsche,¹²³ A. Hahn,¹²³ I. Hanlon,¹²³ R. M. Harris,¹²³ I. Hirschauer,¹²³ B. Hooberman,¹²³ E. James,¹²³ H. Jensen,¹²³ M. Johnson,¹²⁴ I. Fisk,¹²³ J. Freeman,¹²³ Y. Gao,¹²³ E. Gottschalk,¹²³ D. Green,¹²³ K. Gunthoti,¹²³ O. Gutsche,¹²³ A. Hahn,¹²³ J. Hanlon,¹²³ R. M. Harris,¹²³ J. Hirschauer,¹²³ B. Hooberman,¹²³ E. James,¹²³ H. Jensen,¹²³ M. Johnson,¹²³ U. Joshi,¹²³ R. Khatiwada,¹²³ B. Kilminster,¹²³ B. Klima,¹²³ K. Kousouris,¹²³ S. Kunori,¹²³ S. Kwan,¹²³ P. Limon,¹²³ R. Lipton,¹²³ L. Lykken,¹²³ K. Maeshima,¹²³ J. M. Marraffino,¹²³ D. Mason,¹²³ P. McBride,¹²³ T. McCauley,¹²³ R. Kishra,¹²³ S. Mrenna,¹²³ Y. Musienko,^{123,ij} C. Newman-Holmes,¹²³ V. O'Dell,¹²³ S. Popescu,¹²³ R. Pordes,¹²³ O. Prokofyev,¹²³ N. Saoulidou,¹²³ E. Sexton-Kennedy,¹²³ S. Sharma,¹²³ A. Soha,¹²³ W. J. Spalding,¹²³ L. Spiegel,¹²³ P. Tan,¹²³ L. Taylor,¹²³ S. Tkaczyk,¹²³ L. Uplegger,¹²³ E. W. Vaandering,¹²³ R. Vidal,¹²³ J. Whitmore,¹²³ W. Wu,¹²³ F. Yang,¹²³ F. Yumiceva,¹²³ J. C. Yun,¹²³ D. Acosta,¹²⁴ P. Avery,¹²⁴ D. Bourilkov,¹²⁴ M. Chen,¹²⁴ G. P. Di Giovanni,¹²⁴ D. Dobur,¹²⁴ A. Drozdetskiy,¹²⁴ R. D. Field,¹²⁴ M. Fisher,¹²⁴ Y. Fu,¹²⁴ I. K. Furic,¹²⁴ J. Gartner,¹²⁴ S. Goldberg,¹²⁴ B. Kim,¹²⁴ S. Klimenko,¹²⁴ J. Konigsberg,¹²⁴ A. Korytov,¹²⁴ K. Kotov,¹²⁴ A. Kropivnitskaya,¹²⁴ T. Kypreos,¹²⁴ K. Matchev,¹²⁴ G. Mitselmakher,¹²⁴ L. Muniz,¹²⁴ Y. Pakhotin,¹²⁴ M. Petterson,¹²⁴ C. Prescott,¹²⁴ R. Remington,¹²⁴ M. Schmitt,¹²⁴ B. Scurlock,¹²⁴ P. Sellers,¹²⁴ M. Snowball,¹²⁴ D. Wang,¹²⁴ J. Yelton,¹²⁴ M. Zakaria,¹²⁴ C. Ceron,¹²⁵ V. Gaultney,¹²⁵ L. Kramer,¹²⁵ L. M. Lebolo,¹²⁵ S. Linn,¹²⁵ P. Markowitz,¹²⁵ G. Martinez,¹²⁵ D. Mesa,¹²⁵ J. L. Rodriguez,¹²⁵ T. Adams,¹²⁶ A. Askew,¹²⁶ J. Bochenek,¹²⁶ J. Chen,¹²⁶ B. Diamond,¹²⁶ S. V. Gleyzer,¹²⁶ J. Haas,¹²⁶ S. Hagopian,¹²⁶ M. Baarmand,¹²⁷ B. Dorney,¹²⁷ J. Chen, ¹²⁶ B. Diamond, ¹²⁶ S. V. Gleyzer, ¹²⁶ J. Haas, ¹²⁶ S. Hagopian, ¹²⁶ V. Hagopian, ¹²⁶ M. Jenkins, ¹²⁶ K. F. Johnson, ¹²⁶ H. Prosper, ¹²⁶ S. Sekmen, ¹²⁶ V. Veeraraghavan, ¹²⁶ M. M. Baarmand, ¹²⁷ B. Dorney, ¹²⁷ S. Guragain, ¹²⁷ M. Hohlmann, ¹²⁷ H. Kalakhety, ¹²⁷ H. Mermerkaya, ¹²⁷ R. Ralich, ¹²⁷ I. Vodopiyanov, ¹²⁷ M. R. Adams, ¹²⁸ I. M. Anghel, ¹²⁸ L. Apanasevich, ¹²⁸ Y. Bai, ¹²⁸ V. E. Bazterra, ¹²⁸ R. R. Betts, ¹²⁸ J. Callner, ¹²⁸ R. Cavanaugh, ¹²⁸ C. Dragoiu, ¹²⁸ E. J. Garcia-Solis, ¹²⁸ C. E. Gerber, ¹²⁸ D. J. Hofman, ¹²⁸ S. Khalatyan, ¹²⁸ F. Lacroix, ¹²⁸ C. O'Brien, ¹²⁸ C. Silvestre, ¹²⁸ A. Smoron, ¹²⁸ D. Strom, ¹²⁸ N. Varelas, ¹²⁸ U. Akgun, ¹²⁹ E. A. Albayrak, ¹²⁹ B. Bilki, ¹²⁹ K. Cankocak, ^{129,kk} W. Clarida, ¹²⁹ F. Duru, ¹²⁹ C. K. Lae, ¹²⁹ E. McCliment, ¹²⁹ J. P. Merlo, ¹²⁹ A. Mestvirishvili, ¹²⁹ A. Moeller, ¹²⁹ J. Nachtman, ¹²⁹ C. R. Newson, ¹²⁹ E. Norbeck, ¹²⁹ J. Olson, ¹²⁹ Y. Onel, ¹²⁹ F. Ozok, ¹²⁹ S. Sen, ¹²⁹ J. Wetzel, ¹²⁹ T. Yetkin, ¹²⁹ K. Yi, ¹²⁹ B. A. Barnett, ¹³⁰ B. Blumenfeld, ¹³⁰

A. Bonato,¹³⁰ C. Eskew,¹³⁰ D. Fehling,¹³⁰ G. Giurgiu,¹³⁰ A. V. Gritsan,¹³⁰ Z. J. Guo,¹³⁰ G. Hu,¹³⁰ P. Maksimovic,¹³⁰ S. Rappoccio,¹³⁰ M. Swartz,¹³⁰ N. V. Tran,¹³⁰ A. Whitbeck,¹³⁰ P. Baringer,¹³¹ A. Bean,¹³¹ G. Benelli,¹³¹ O. Grachov,¹³¹ M. Murray,¹³¹ D. Noonan,¹³¹ V. Radicci,¹³¹ S. Sanders,¹³¹ J. S. Wood,¹³¹ V. Zhukova,¹³¹ D. Bandurin,¹³² T. Bolton,¹³² I. Chakaberia,¹³² A. Ivanov,¹³² M. Makouski,¹³² Y. Maravin,¹³² S. Shrestha,¹³² I. Svintradze,¹³² Z. Wan,¹³² J. Gronberg,¹³³ D. Lange,¹³³ D. Wright,¹³³ A. Baden,¹³⁴ M. Boutemeur,¹³⁴ S. C. Eno,¹³⁴ D. Ferencek,¹³⁴ J. A. Gomez,¹³⁴ N. J. Hadley,¹³⁴ R. G. Kellogg,¹³⁴ M. Kirn,¹³⁴ Y. Lu,¹³⁴ A. C. Mignerey,¹³⁴ K. Rossato,¹³⁴ P. Rumerio,¹³⁴ F. Santanastasio,¹³⁴ A. Skuja,¹³⁴ J. Temple,¹³⁴ M. B. Tonjes,¹³⁴ S. C. Tonwar,¹³⁵ P. Everaerts,¹³⁵ G. Bauer,¹³⁵ J. Bendavid,¹³⁵ W. Busza,¹³⁵ E. Butz,¹³⁵ I. A. Cali,¹³⁵ M. Chan,¹³⁵ V. Dutta,¹³⁵ P. Everaerts,¹³⁵ G. Gomez Ceballos,¹³⁵ P. D. Luckey,¹³⁵ T. Ma,¹³⁵ S. Nahn,¹³⁵ C. Roland,¹³⁵ G. Roland,¹³⁵ M. Goncharov,¹³⁵ K. Sung,¹³⁵ E. A. Wenger,¹³⁵ B. Wyslouch,¹³⁵ S. Xie,¹³⁵ M. Yang,¹³⁵ Y. Yilmaz,¹³⁵ S. Xie,¹³⁵ M. Zanetti,¹³⁵ P. Cole,¹³⁶ S. I. Cooper,¹³⁶ P. Cushman,¹³⁶ B. Dahmes,¹³⁶ A. De Benedetti,¹³⁶ M. Sasseville,¹³⁶ A. Singovsky,¹³⁶ L. M. Cremaldi,¹³⁷ R. Godang,¹³⁷ R. Kroeger,¹³⁷ L. Perera,¹³⁷ R. Rahmat,¹³⁷ D. A. Sanders,¹³⁷ D. Summers,¹³⁷ K. Bloom,¹³⁸ S. Bose,¹³⁸ J. Butt,¹³⁸ D. R. Claes,¹³⁸ A. Dominguez,¹³⁸ M. Eads,¹³⁸ J. Keller,¹³⁸ T. Kelly,¹³⁸ I. Kravchenko,¹³⁸ J. Lazo-Flores,¹³⁸ C. Lundstedt,¹³⁸ L. Perera,¹³⁷ R. Rahmat,¹³⁷ D. A. Sanders,¹³⁷ D. Summers,¹³⁷ K. Bloom,¹³⁸ S. Bose,¹³⁸ J. Butt,¹³⁸ D. R. Claes,¹³⁸ A. Dominguez,¹³⁸ M. Eads,¹³⁸ J. Keller,¹³⁸ T. Kelly,¹³⁸ I. Kravchenko,¹³⁸ J. Lazo-Flores,¹³⁸ C. Lundstedt,¹³⁸ H. Malbouisson,¹³⁸ S. Malik,¹³⁸ G. R. Snow,¹³⁸ U. Baur,¹³⁹ A. Godshalk,¹³⁹ I. Iashvili,¹³⁹ A. Kharchilava,¹³⁹ A. Kumar,¹³⁹ K. Smith,¹³⁹ J. Zennamo,¹³⁹ G. Alverson,¹⁴⁰ E. Barberis,¹⁴⁰ D. Baumgartel,¹⁴⁰ O. Boeriu,¹⁴⁰ M. Chasco,¹⁴⁰ K. Kaadze,¹⁴⁰ S. Reucroft,¹⁴⁰ J. Swain,¹⁴⁰ D. Wood,¹⁴⁰ J. Zhang,¹⁴⁰ A. Anastassov,¹⁴¹ A. Kubik,¹⁴¹ N. Odell,¹⁴¹ R. A. Ofierzynski,¹⁴¹ B. Pollack,¹⁴¹ A. Pozdnyakov,¹⁴¹ M. Schmitt,¹⁴¹ S. Stoynev,¹⁴¹ M. Velasco,¹⁴¹ S. Won,¹⁴¹ L. Antonelli,¹⁴² D. Berry,¹⁴² M. Hildreth,¹⁴² C. Jessop,¹⁴² D.J. Karmgard,¹⁴² J. Kolb,¹⁴² T. Kolberg,¹⁴² K. Lannon,¹⁴² W. Luo,¹⁴² S. Lynch,¹⁴² N. Marinelli,¹⁴² D. M. Morse,¹⁴³ L. S. Durkin,¹⁴³ J. Gu,¹⁴³ C. Hill,¹⁴³ P. Killewald,¹⁴³ T. Y. Ling,¹⁴³ M. Rodenburg,¹⁴³ G. Williams,¹⁴³ N. Adam,¹⁴⁴ E. Berry,¹⁴⁴ P. Elmer,¹⁴⁴ D. Gerbaudo,¹⁴⁴ V. Halyo,¹⁴⁴ P. Hebda,¹⁴⁴ A. Hunt,¹⁴⁴ J. Jones,¹⁴⁴ H. Saka,¹⁴⁴ D. Lopes Pegna,¹⁴⁴ J. Marlow,¹⁴⁴ A. Zuranski,¹⁴⁴ J. G. Acosta,¹⁴⁵ X. T. Huang,¹⁴⁵ A. Lopez,¹⁴⁵ H. Mendez,¹⁴⁵ S. Oliveros,¹⁴⁵ J. E. Ramirez Vargas,¹⁴⁵ A. Zatserklyaniy,¹⁴⁵ E. Alagoz,¹⁴⁶ V. E. Barnes,¹⁴⁶ G. Bolla,¹⁴⁶ L. Borrello,¹⁴⁶ D. Bortoletto,¹⁴⁶ A. Everett,¹⁴⁶ A. F. Garfinkel,¹⁴⁶ Z. Gecse,¹⁴⁶ L. Gutay,¹⁴⁶ M. Jones,¹⁴⁶ O. Koybasi,¹⁴⁶ A. T. Laasanen,¹⁴⁶ N. Leonardo,¹⁴⁶ A. Zuranski, ¹⁴⁷ J. G. Acosta, ¹⁴⁵ X. T. Huang, ¹⁴⁷ A. Lopez, ¹⁴⁵ H. Mendez, ¹⁴⁵ S. Oliveros, ¹⁴⁵ J. E. Ramirez Vargas, ¹⁴⁵ A. Zatserklyaniy, ¹⁴⁵ E. Alagoz, ¹⁴⁶ V. E. Barnes, ¹⁴⁶ G. Bolla, ¹⁴⁶ L. Borrello, ¹⁴⁶ D. Bortoletto, ¹⁴⁶ A. Everett, ¹⁴⁶ A. F. Garfinkel, ¹⁴⁶ Z. Gecse, ¹⁴⁶ L. Gutay, ¹⁴⁶ M. Jones, ¹⁴⁶ O. Koybasi, ¹⁴⁶ A. T. Laasanen, ¹⁴⁶ N. Leonardo, ¹⁴⁶ C. Liu, ¹⁴⁶ V. Maroussov, ¹⁴⁶ M. Meier, ¹⁴⁶ P. Merkel, ¹⁴⁶ D. H. Miller, ¹⁴⁶ N. Neumeister, ¹⁴⁶ K. Potamianos, ¹⁴⁷ I. Shipsey, ¹⁴⁶ D. Silvers, ¹⁴⁶ A. Svyatkovskiy, ¹⁴⁶ H. D. Yoo, ¹⁴⁶ J. Zablocki, ¹⁴⁶ Y. Zheng, ¹⁴⁶ P. Jindal, ¹⁴⁷
N. Parashar, ¹⁴⁷ C. Boulahouache, ¹⁴⁸ V. Cuplov, ¹⁴⁸ K. M. Ecklund, ¹⁴⁸ F. J. M. Geurts, ¹⁴⁸ J. H. Liu, ¹⁴⁸ J. Morales, ¹⁴⁸ B. P. Padley, ¹⁴⁸ R. Redjimi, ¹⁴⁸ J. Roberts, ¹⁴⁸ J. Zabel, ¹⁴⁸ B. Betchart, ¹⁴⁹ A. Bodek, ¹⁴⁹ Y. S. Chung, ¹⁴⁹
P. de Barbaro, ¹⁴⁹ R. Demina, ¹⁴⁹ Y. Eshaq, ¹⁴⁹ H. Flacher, ¹⁴⁹ A. Garcia-Bellido, ¹⁴⁹ P. Goldenzweig, ¹⁴⁹ Y. Gotra, ¹⁴⁹
J. Han, ¹⁴⁹ A. Harel, ¹⁴⁹ D. C. Miner, ¹⁴⁹ D. Orbaker, ¹⁴⁹ G. Petrillo, ¹⁴⁹ D. Vishnevskiy, ¹⁴⁹ M. Zielinski, ¹⁴⁹ A. Bhatti, ¹⁵⁰ L. Duggan, ¹⁵¹ Y. Gershtein, ¹⁵¹ R. Gray, ¹⁵¹ S. Chnetzer, ¹⁵¹ S. Somalwar, ¹⁵¹ D. Hita, ¹⁵¹ A. Lath, ¹⁵¹ S. Panwalkar, ¹⁵¹
D. Duggan, ¹⁵¹ Y. Gershtein, ¹⁵¹ S. Schnetzer, ¹⁵¹ S. Somalwar, ¹⁵¹ R. Stone, ¹⁵¹ J. Gilmore, ¹⁵³ A. Gutrola, ¹⁵³ D. Toback, ¹⁵³ M. Weinberger, ¹⁵³ N. Akchurin, ¹⁵⁴ C. Bardak, ¹⁵⁴ J. Damgov, ¹⁵⁴ S. Sengupta, ¹⁵³ D. Toback, ¹⁵³ M. Weinberger, ¹⁵³ N. Akchurin, ¹⁵⁴ C. Bardak, ¹⁵⁴ J. Damgov, ¹⁵⁴ E. Yazgan, ¹⁵⁴ K. Kovitanggoon, ¹⁵⁴ S. W. Lee, ¹⁵⁴ P. Mane, ¹⁵⁴ Y. Roh, ¹⁵⁴ A. Sill, ¹⁵⁴ I. Volobouev, ¹⁵⁴ R. Wigmans, ¹⁵⁴ C. Jeong, ¹⁵⁴ K. Kovitanggoon, ¹⁵⁵ D. Engh, ¹⁵⁵ C. Florez, ¹⁵⁵ W. Gabella, ¹⁵⁵ W. Johns, ¹⁵⁵ P. Kurt, ¹⁵⁵ C. Maguire, ¹⁵⁵ A. Melo, ¹⁵⁵ P. Sheldon, ¹⁵⁵ D. Engh, ¹⁵⁵ C.

(CMS Collaboration)

¹Yerevan Physics Institute, Yerevan, Armenia ²Institut für Hochenergiephysik der OeAW, Wien, Austria ³National Centre for Particle and High Energy Physics, Minsk, Belarus ⁴Universiteit Antwerpen, Antwerpen, Belgium ⁵Vrije Universiteit Brussel, Brussel, Belgium ⁶Université Libre de Bruxelles, Bruxelles, Belgium ⁷Ghent University, Ghent, Belgium ⁸Université Catholique de Louvain, Louvain-la-Neuve, Belgium ⁹Université de Mons, Mons, Belgium ¹⁰Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil ¹¹Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ¹²Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil ¹³Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria ¹⁴University of Sofia, Sofia, Bulgaria ¹⁵Institute of High Energy Physics, Beijing, China ¹⁶State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China ⁷Universidad de Los Andes, Bogota, Colombia ¹⁸Technical University of Split, Split, Croatia ¹⁹University of Split, Split, Croatia ²⁰Institute Rudjer Boskovic, Zagreb, Croatia ²¹University of Cyprus, Nicosia, Cyprus ²²Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt ²³National Institute of Chemical Physics and Biophysics, Tallinn, Estonia ²⁴Department of Physics, University of Helsinki, Helsinki, Finland ²⁵Helsinki Institute of Physics, Helsinki, Finland ²⁶Lappeenranta University of Technology, Lappeenranta, Finland ²⁷Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France ²⁸DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France ²⁹Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France ³⁰Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France ³¹Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France ³²Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France ³³E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia ³⁴*RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany* ³⁵RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany ³⁶RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany ³⁷Deutsches Elektronen-Synchrotron, Hamburg, Germany ³⁸University of Hamburg, Hamburg, Germany ³⁹Institut für Experimentelle Kernphysik, Karlsruhe, Germany ⁴⁰Institute of Nuclear Physics "Demokritos," Aghia Paraskevi, Greece ⁴¹University of Athens, Athens, Greece ⁴²University of Ioánnina, Ioánnina, Greece ⁴³KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary ⁴⁴Institute of Nuclear Research ATOMKI, Debrecen, Hungary ⁴⁵University of Debrecen, Debrecen, Hungary ⁴⁶Panjab University, Chandigarh, India ⁴⁷University of Delhi, Delhi, India ⁴⁸Bhabha Atomic Research Centre, Mumbai, India ⁴⁹Tata Institute of Fundamental Research–EHEP, Mumbai, India ⁵⁰Tata Institute of Fundamental Research–HECR, Mumbai, India ⁵¹Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran ^{52a}INFN Sezione di Bari, Bari, Italy ^{52b}Università di Bari, Bari, Italy ⁵² Politecnico di Bari, Bari, Italy ^{53a}INFN Sezione di Bologna, Bologna, Italy

211801-11

^{53b}Università di Bologna, Bologna, Italy ^{54a}INFN Sezione di Catania, Catania, Italy ^{54b}Università di Catania, Catania, Italy ^{55a}INFN Sezione di Firenze, Firenze, Italy ^{55b}Università di Firenze, Firenze, Italy ⁵⁶INFN Laboratori Nazionali di Frascati, Frascati, Italy ⁵⁷INFN Sezione di Genova, Genova, Italy ^{58a}INFN Sezione di Milano-Biccoca, Milano, Italy ^{58b}Università di Milano-Bicocca, Milano, Italy ^{59a}INFN Sezione di Napoli, Napoli, Italy ^{59b}Università di Napoli "Federico II," Napoli, Italy ^{60a}INFN Sezione di Padova, Padova, Italy ^{60b}Università di Padova, Padova, Italy ⁶⁰cUniversità di Trento (Trento), Padova, Italy ^{61a}INFN Sezione di Pavia, Pavia, Italy ^{61b}Università di Pavia, Pavia, Italy ^{62a}INFN Sezione di Perugia, Perugia, Italy ^{62b}Università di Perugia, Perugia, Italy ^{63a}INFN Sezione di Pisa, Pisa, Italy ^{63b}Università di Pisa, Pisa, Italy ⁶³cScuola Normale Superiore di Pisa, Pisa, Italy ^{64a}INFN Sezione di Roma, Roma, Italy ^{64b}Università di Roma "La Sapienza," Roma, Italy ^{65a}INFN Sezione di Torino, Torino, Italy ^{65b}Università di Torino, Torino, Italy ⁶⁵*c*Università del Piemonte Orientale (Novara), Torino, Italy ^{66a}INFN Sezione di Trieste, Trieste, Italy ^{66b}Università di Trieste, Trieste, Italy ⁶⁷Kangwon National University, Chunchon, Korea ⁶⁸Kvungpook National University, Daegu, Korea ⁶⁹Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea ⁷⁰Korea University, Seoul, Korea ⁷¹University of Seoul, Seoul, Korea ⁷²Sungkyunkwan University, Suwon, Korea ⁷³Vilnius University, Vilnius, Lithuania ⁷⁴Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico ⁷⁵Universidad Iberoamericana, Mexico City, Mexico ⁷⁶Benemerita Universidad Autonoma de Puebla, Puebla, Mexico ⁷⁷Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico ⁷⁸University of Auckland, Auckland, New Zealand ⁷⁹University of Canterbury, Christchurch, New Zealand ⁸⁰National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan ⁸¹Institute of Experimental Physics, Warsaw, Poland ⁸²Soltan Institute for Nuclear Studies, Warsaw, Poland ⁸³Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal ⁸⁴Joint Institute for Nuclear Research, Dubna, Russia ⁸⁵Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia ⁸⁶Institute for Nuclear Research, Moscow, Russia ⁸⁷Institute for Theoretical and Experimental Physics, Moscow, Russia ⁸⁸Moscow State University, Moscow, Russia ⁸⁹P.N. Lebedev Physical Institute, Moscow, Russia ⁹⁰State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia ⁹¹University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia ⁹²Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ⁹³Universidad Autónoma de Madrid, Madrid, Spain ⁹⁴Universidad de Oviedo, Oviedo, Spain ⁹⁵Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain ⁹⁶CERN, European Organization for Nuclear Research, Geneva, Switzerland ⁹⁷Paul Scherrer Institut, Villigen, Switzerland ⁹⁸Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

⁹⁹Universität Zürich, Zurich, Switzerland

¹⁰⁰National Central University, Chung-Li, Taiwan ¹⁰¹National Taiwan University (NTU), Taipei, Taiwan ¹⁰²Cukurova University, Adana, Turkey ¹⁰³Middle East Technical University, Physics Department, Ankara, Turkey ¹⁰⁴Bogazici University, Istanbul, Turkey ¹⁰⁵National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine ¹⁰⁶University of Bristol, Bristol, United Kingdom ¹⁰⁷Rutherford Appleton Laboratory, Didcot, United Kingdom ¹⁰⁸Imperial College, London, United Kingdom ¹⁰⁹Brunel University, Uxbridge, United Kingdom ¹¹⁰Baylor University, Waco, Texas 76798, USA ¹¹¹Boston University, Boston, Massachusetts 02215, USA ¹¹²Brown University, Providence, Rhode Island 02912, USA ¹¹³University of California, Davis, Davis, California 95616, USA ¹¹⁴University of California, Los Angeles, Los Angeles, California 90095, USA ¹¹⁵University of California, Riverside, Riverside, California 92521, USA ¹¹⁶University of California, San Diego, La Jolla, California 92093, USA ¹¹⁷University of California, Santa Barbara, Santa Barbara, California 93106, USA ¹¹⁸California Institute of Technology, Pasadena, California 91125, USA ¹¹⁹Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA ¹²⁰University of Colorado at Boulder, Boulder, Colorado 80309, USA ¹²¹Cornell University, Ithaca, New York 14853-5001, USA ¹²²Fairfield University, Fairfield, Connecticut 06824, USA ¹²³Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA ¹²⁴University of Florida, Gainesville, Florida 32611-8440, USA ¹²⁵Florida International University, Miami, Florida 33199, USA ¹²⁶Florida State University, Tallahassee, Florida 32306-4350, USA ¹²⁷Florida Institute of Technology, Melbourne, Florida 32901, USA ¹²⁸University of Illinois at Chicago (UIC), Chicago, Illinois 60607-7059, USA ¹²⁹The University of Iowa, Iowa City, Iowa 52242-1479, USA ¹³⁰Johns Hopkins University, Baltimore, Maryland 21218, USA ¹³¹The University of Kansas, Lawrence, Kansas 66045, USA ¹³²Kansas State University, Manhattan, Kansas 66506, USA ¹³³Lawrence Livermore National Laboratory, Livermore, California 94720, USA ¹³⁴University of Maryland, College Park, Maryland 20742, USA ¹³⁵Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ¹³⁶University of Minnesota, Minneapolis, Minnesota 55455, USA ¹³⁷University of Mississippi, University, Mississippi 38677, USA ¹³⁸University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0111, USA ¹³⁹State University of New York at Buffalo, Buffalo, New York 14260-1500, USA ¹⁴⁰Northeastern University, Boston, Massachusetts 02115, USA ¹⁴¹Northwestern University, Evanston, Illinois 60208-3112, USA ¹⁴²University of Notre Dame, Notre Dame, Indiana 46556, USA ¹⁴³The Ohio State University, Columbus, Ohio 43210, USA ¹⁴⁴Princeton University, Princeton, New Jersey 08544-0708, USA ¹⁴⁵University of Puerto Rico, Mayaguez, Puerto Rico 00680 ¹⁴⁶Purdue University, West Lafayette, Indiana 47907-1396, USA ¹⁴⁷Purdue University Calumet, Hammond, Indiana 46323, USA ¹⁴⁸Rice University, Houston, Texas 77251-1892, USA ¹⁴⁹University of Rochester, Rochester, New York 14627-0171, USA ¹⁵⁰Rockefeller University, New York, New York 10021-6399, USA ¹⁵¹Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8019, USA ⁵²University of Tennessee, Knoxville, Tennessee 37996-1200, USA ¹⁵³Texas A&M University, College Station, Texas 77843-4242, USA ¹⁵⁴Texas Tech University, Lubbock, Texas 79409-1051, USA ¹⁵⁵Vanderbilt University, Nashville, Tennessee 37235, USA ¹⁵⁶University of Virginia, Charlottesville, Virginia 22901, USA ¹⁵⁷Wayne State University, Detroit, Michigan 48202, USA ¹⁵⁸University of Wisconsin, Madison, Wisconsin 53706, USA

^aDeceased.

- ^bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
- ^cAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
- ^dAlso at Cairo University, Cairo, Egypt.
- ^eAlso at Suez Canal University, Suez, Egypt.
- ^fAlso at Fayoum University, El-Fayoum, Egypt.
- ^gAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.
- ^hAlso at Brandenburg University of Technology, Cottbus, Germany.
- ⁱAlso at Moscow State University, Moscow, Russia.
- ^jAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
- ^kAlso at Eötvös Loránd University, Budapest, Hungary.
- ¹Also at Tata Institute of Fundamental Research-HECR, Mumbai, India.
- ^mAlso at Facoltá Ingegneria Università di Roma "La Sapienza," Roma, Italy.
- ⁿAlso at Laboratori Nazional di Legnaro dell' INFN, Legnaro, Italy.
- ^oAlso at California Institute of Technology, Pasadena, CA, USA.
- ^pAlso at University of California, Los Angeles, Los Angeles, CA, USA.
- ^qAlso at University of Florida, Gainesville, FL, USA.
- ^rAlso at the Université de Genève, Geneva, Switzerland.
- ^sAlso at Scuola Normale e Sezione dell' INFN, Pisa Italy.
- ^tAlso at INFN Sezione di Roma, Università di Roma "La Sapienza," Roma, Italy.
- ^uAlso at University of Athens, Athens, Greece.
- ^vAlso at The University of Kansas, Lawrence, KS, USA.
- ^wAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
- ^xAlso at Paul Scherrer Institut, Villigen, Switzerland.
- ^yAlso at Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain.
- ^zAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
- ^{aa}Also at Adiyaman University, Adiyaman, Turkey.
- ^{bb}Also at Mersin University, Mersin, Turkey.
- ^{cc}Also at Izmir Institute of Technology, Izmir, Turkey.
- ^{dd}Also at Kafkas University, Kars, Turkey.
- ^{ee}Also at Suleyman Demirel University, Isparta, Turkey.
- ^{ff}Also at Ege University, Izmir, Turkey.
- ^{gg}Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
- ^{hh}Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
- ⁱⁱAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
- ^{jj}Also at Institute for Nuclear Research, Moscow, Russia.
- ^{kk}Also at Istanbul Technical University, Istanbul, Turkey.