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Abstract. The paper discuss the computation of the worst case uncertainty (WCU) in common 

measurement problems. The usefulness of computing the WCU besides the standard 

uncertainty is illustrated. A set of equations to compute the WCU in almost all practical 

situations is presented. The application of the equations to real-world cases is shown. 

1.  Introduction 

The Guide to the Expression of Uncertainty in Measurements (GUM) [1] does not consider explicitly 

the “worst case uncertainty” (WCU), that is, the uncertainty with a 100% coverage probability. The 

GUM Uncertainty Framework (GUF) is focused on standard uncertainties, and on the computation of 

expanded uncertainties under the hypothesis of Gaussian distribution. Therefore, while in the GUF an 

expanded uncertainty with coverage probability of 95% or 99% is easily computed, the expanded 

uncertainty with 100% coverage probability is not. Indeed, either it is infinite (in the Gaussian 

approximation), or it needs separate propagation rules [2]. 

In practice, WCUs are widely used and, in general, worst-case analysis is a well-known and 

regarded tool in engineering [3], [4]. First of all, accuracy characteristics of almost all commercial 

instruments are given in terms of WCUs [5]. As a consequence, in common engineering and 

laboratory practice, simple functions of few measurements are assessed using the WCU, using simple 

and well-known propagation rules [6]. (For example, the absolute WCU of 1 2x x−  is the sum of the 

absolute WCUs of 1x  and 2x ; the relative WCU of 1 2/x x  is the sum of the relative WCUs; and so 

on.) WCUs, in general, are the most convenient way of defining a credible interval whenever the 

involved distributions are bounded and without long tails, which is very common, e.g. when the 

measurement model involves few input quantities with uniform distribution. Therefore, the lack of an 

adequate theoretical recognition and sistematization of the WCU concept is not a desirable situation 

for the measurement science community. 

In this paper, the propagation of the WCU is discussed. Firstly, it is pointed out that the information 

sufficient to compute the standard uncertainty (SU) is, in general, not sufficient to compute the WCU, 

but, for the same reason, computing only the SU may give insufficient information to state correctly 

the expanded uncertainty. Afterwards, the problem of computing the WCU without a full Monte Carlo 

analysis is considered. It is demonstrated that simple propagation formulae can be given in a very 

common situation, i.e. when measurement errors are a linear function of a set of statistically 

independent measurement errors. For this case, also the propagation of the SU is computed, avoiding 

explicit computation of correlation coefficients. The propagation formulae are shown to be congruent 
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with accuracy characteristics of instrument manufacturers, characteristics that cannot be written nor 

understood in the GUF. 

Throughout the paper, the concept of measurement error is used. It is the difference ˆE X X= − , 

where X̂  is the measurement and X  is the unknown measurand. According to the Bayesian approach 

of Supplement 1 of GUM [7], X̂  is deterministic, X  is a random variable, and therefore E  is a 

random variable. Computing the propagation using E  instead of X  does not change the final result 

(GUM, E.5) and has some advantages; in particular, it is necessary to clarify the accuracy 

characteristics of many instruments, which have an underlying “error model”. The WCU is the 

maximum absolute value that the random variable E  can assume: in the following, it is denoted by 

max | |U E= . 

2.  Worst-case uncertainty for a general measurement model and general input quantities 

2.1.  Computation of WCU using joint distributions 

Let 
1( ,..., )Ny g x x=  be the measurement model, 

iE  the measurement errors on the input quantities, 

( ) max | |i i iU x E U= =  the WCUs on the input quantities ( 1,...,i N= ), yE  the error on the output 

quantity,  and ( ) max | |y yU y E U= =  the WCU on the output quantity. 

Computing the WCU on the output quantity requires, in the general case, complete knowledge of 

the multivariate joint probability density function (pdf) of the errors 
1,..., NE E , and a cumbersome 

computation of the entire distribution of the error E . In particular, unlike SU, correlation coefficients 

are useless when computing the WCU. This is illustrated by the following example. 

Let us consider two measurements 
1 2,x x , affected by uncorrelated errors 

1 2,E E  with identical 

(marginal) distributions 
1 1 2 2( ) ( )f e f e= , supposed to be symmetric triangular in [ 1,1]−  (and therefore 

with WCU 
1 2( ) ( ) 1xU x U x U= = = ). The information on 

1 2,E E  is sufficient to evaluate the SU, but 

not the WCU, of the sum 
1 2y x x= + . The inspection of the joint pdf in two different cases of 

uncorrelated errors clarifies the issue.  

Fig. 1 shows the joint distribution of statistically independent triangular 
1 2,E E , while Fig. 2 shows 

the distribution in a case when they are uncorrelated but not independent. The resulting distribution 

( )f e  of 
1 2E E E= +  in the two cases is depicted in Figs. 3 and 4. Uncorrelated errors with the same 

distribution yield completely different output distributions and WCU ( ( ) 2U y =  in the first case, 

( ) 1U y =  in the second one). 

 

 

 

Figure 1. Joint pdf of independent errors with 

identical marginal pdf (triangular with 
xU =1). 

 Figure 2. Joint pdf of uncorrelated, but not 

independent, errors, with the same marginal pdf. 

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

e
1

e
2

p
d
f

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

e
1

e
2

p
d
f

IMEKO 2013 TC1 + TC7 + TC13 IOP Publishing
Journal of Physics: Conference Series 459 (2013) 012038 doi:10.1088/1742-6596/459/1/012038

2



 

 

 

 

 

 

For a generic joint pdf of the input errors 
i

E , computing the distribution of the output error E can 

be accomplished only via Monte Carlo simulations, in the same way described in GUM Supplement 1.  

 

Figure 3. Distribution of 
1 2E E E= +  for the 

joint distribution depicted in Fig. 1. 

 Figure 4. Distribution of 
1 2E E E= +  for the 

joint distribution depicted in Fig. 2. 

2.2.  Reasons for computing the WCU 

In the two cases above, let us assume knowledge of the WCU only, i.e. ( ) 2U y =  in the first case, 

( ) 1U y =  in the second. The SU, due to the hypothesis of uncorrelated errors, is 

2 2

1 2( ) ( ) ( ) / 3xu y u x u x U= + =  = 0.577 in both cases. Therefore, the ratio (WCU/SU) is 

( ) / ( ) 3.464U y u y =  in the first case,  and ( ) / ( ) 3 1.732U y u y = =  in the second case. 

The ratio /U u  is the maximum sensible coverage factor and therefore indicates, even without 

knowing the actual distributions ( )f e , the applicability of the normal approximation. In the first case 

the ratio / 3.5U u =  indicates that coverage factors like 2k =  or 2.58k =  (for probabilities of 95% or 

99%, respectively) are applicable and accurate, while, in the second case, the ratio / 1.732U u =  

demonstrates that these coverage factors do not make sense. In the first case, for a coverage factor 

2k = , the actual coverage probability p  is 95.75%p = , with a negligible difference from the 

Gaussian value 95.45%. In the second case, instead, the ratio / 1.732U u =  immediately suggests that 

the error must have a uniform distribution, and the measurement uncertainty is effectively quantified 

by the WCU. Summing up, a simple procedure to compute the WCU, without computing the entire 

distribution, is desirable. The reasons are essentially the following: 

• the ratio WCU/SU shows the applicability of the normal approximation (i.e., of the GUF); 

• the WCU is the maximum expanded uncertainty that may be attached to the measurement. 

3.  Practical computation of worst-case uncertainty 

3.1.  Worst-case uncertainty propagation for statistically independent errors 

Under the hypothesis of statistically independent errors, computing the WCU is very simple and even 

more straightforward then computing the SU. This well-known fact is recalled here to introduce 

concepts and notation used later. In particular, a compact matrix notation is used. We introduce the 

symbols 
1[ ,..., ]T

Nx x=x , ( )y g= x , 
1[ ,... ]T

x NE E=E , 
1[ ( ),..., ( )]T

x NU x U x=U . We denote with 

1/ [ / ,..., / ]Ny y x y x= ∂ ∂ = ∂ ∂ ∂ ∂C x  the Jacobian matrix of the measurement model (for a scalar output 

it is a row vector). This is the vector of the sensitivity coefficients. The well-known first-order 

approximation of the error propagation law is 
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 y xE ≅ ⋅C E . (1) 

If the input errors are statistically independent, the maximum absolute value of the output error, 

max | | max | |y xE = ⋅C E , is simply factorized in | | max | |
x

⋅C E , where | |C  denotes the matrix of the 

absolute values of the elements of C. Therefore the WCU is given by: 

 | |y xU ≅ ⋅C U . (2) 

With the same notation, the SU is simply expressed by 

 
2 T

y x
u = ⋅ ⋅C Σ C  (3) 

where 
xΣ , the covariance matrix, in this case is diagonal 2 2

1diag( ( ),... ( ))x Nu x u x=Σ . 

3.2.  Extending the propagation formulae to non-independent errors 

The simple formulae above can be extended to the case of non-independent errors in a case that is very 

common in practice:  

• the errors, although not independent, can be expressed as a linear function of statistically 

independent errors.  

A typical example of this kind of situation is the static error introduced by an A/D converter, which 

is usually expressed in the form [8] 

 ( ) ( ) ( )qe x G x O inl x e x= ∆ ⋅ + + +  (4) 

where G∆  is the gain error, O  is the offset error, ( )inl x  is the integral nonlinearity error, and ( )qe x  

is the quantization error. The experimental results about the variability of the systematic errors in 

ADC-based instrument are reported in [9], [10]. 

If many measurements 
1,..., Nx x  are taken by the A/D converter in repeatability conditions (but with 

different measurand), gain and offset errors are essentially the same in all the measurements, while the 

integral nonlinearity and the quantization errors are not. Therefore, the N  measurement errors are a 

function of 2 2N +  independent errors: G∆ , O , 
1( )inl x , 1( )qe x , …, ( )Ninl x , ( )q Ne x . Many other 

examples of this situation are possible, including the common case of “cascaded” measurement 

models. 

In all such cases, the propagation formulae for the WCU are a simple extension of those for 

independent errors. Let 
1' [ ' ,..., ' ]T

ME E=E  be the vector of the statistically independent errors. The 

input errors 
1[ ,... ]T

x NE E=E  
are given by 

 'x = ⋅E T E  (5) 

where T is a transformation matrix. Equations (1), (2), (3) becomes 

 'yE = ⋅ ⋅C T E , | | 'yU = ⋅ ⋅C T U , 
2 T T

y x
u = ⋅ ⋅ ⋅ ⋅C T Σ T C

   
 (6)-(7)-(8) 

Equation (7) is the propagation law for the WCU. An example of its application is easily done, 

considering errors of the kind (4).  

For two measurements 
1 2,x x  taken in repeatability conditions, affected by errors (4), the 

independent errors are the 6 1×  (unknown) vector 

 1 2 1 2' [ , , ( ), ( ), ( ), ( )]T

q q
G O inl x inl x e x e x= ∆E . (9) 

with associated (known) WCUs given by 
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 ' [ , , , , , ]T

G O inl q inl q
U U U U U U=U . (10) 

On the basis of the error model (4), the transformation matrix T is: 

 
1

2

1 1 0 1 0

1 0 1 0 1

x

x

 
=  
 

T . (11) 

It is now immediate to compute the worst-case uncertainty for any given measurement model 

1 2( , )g x x . For example, if 1 2y x x= − , the sensitivity coefficients are [ ]1, 1= −C , and therefore 

 [ ]1 2
,0,1,1,1,1x x⋅ = −C T . (12) 

The WCU is: 

 1 2| | ' | | 2 2y G inl qU x x U U U= ⋅ ⋅ = − + +C T U . (13) 

The elements of the vector ⋅C T  are modified sensitivity coefficients: they are sensitivity 

coefficients of the independent errors. In the example, 1 2x x−  is the coefficient of the gain error, 0 is 

the coefficient of the offset error, etc. 

4.  Application to real-world instruments and to the GUM 

The derived propagation formulae applies, of course, to real-world measurements. An example are the 

accuracy characteristics provided by Agilent Technologies [11], [12]. This manufacturer gives 

accuracy specification in terms of WCUs, like almost all instrument manufacturers, but usually gives 

also separate formulae for the uncertainty of the single measurement x , and for the difference of two 

measurements in repeatability conditions (“dual cursor measurements”), 2 1y x x= − . Therefore, it is 

very simple to write down the vector 'U  and the matrix T for a pair of measurements 1 2( , )x x . 

Below, we report 'U  and T for different instruments, together with the formulae for the WCU of 

the single measurement 1x  and the difference 1 2y x x= − . The formulae are computed according to 

the developed mathematics, and of course coincide with those reported in the technical sheets. In the 

formulae, 
FS

V  is the selected full-scale range, and 
P

V  is the selected “vertical position”. 

 

Agilent 54600B: 

' [1.9% 1% 0.5% | | 0.2% 0.2% ]
FS P FS FS

V V V V= ⋅U  

1

2

1 1 1 0

1 1 0 1

x

x

 
=  
 

T  

1 1( ) 1.9% | | 1.2% 0.5% | |
FS P

U x x V V= + +  

1 2 1 2( ) 1.9% | | 0.4%
FS

U x x x x V− = − +  

 

Agilent U1610A: 

' [4% 0.1 div 2 mV 1.6% | | 0.2% 0.2% ]
P FS FS

V V V= ⋅U  

1

2

1 1 1 1 0

1 1 1 0 1

x

x

 
=  
 

T  

1 1( ) 4% | | 0.1 div 2 mV 1.6% 0.2%
P FS

U x x V V= + + + +  

1 2 1 1 2( ) ( ) 4% | | 0.4%
FS

U x x U x x x V− = = − +  
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For the U1610A, in the final declared characteristics the manufacturer substitutes 14% | |x  and 

1 24% | |x x−  with a common upper bound, 4%
FS

V . 

5.  Conclusions 

Worst case analysis is a precious and commonly used tool in engineering, but it is not included in the 

GUM, mainly because the WCU does not fit in the propagation equations for the SU. The paper shows 

briefly that WCU can be included in the GUM framework with a set of separate equations, which are, 

however, very simple and formally analogous to those for SU. WCU can be computed simply and 

automatically when measurement errors are independent, and in almost all the practical cases of non-

independent errors. The WCU/SU ratio indicates when the Gaussian approximation of the GUF is 

applicable, and when not. 
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