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Abstract

The TOTEM experiment has made a precise measurement of the elastic proton–proton differential 
cross-section at the centre-of-mass energy 

√
s = 8 TeV based on a high-statistics data sample obtained 

with the β∗ = 90 m optics. Both the statistical and systematic uncertainties remain below 1%, except 
for the t-independent contribution from the overall normalisation. This unprecedented precision allows 
to exclude a purely exponential differential cross-section in the range of four-momentum transfer squared 
0.027 < |t | < 0.2 GeV2 with a significance greater than 7 σ . Two extended parametrisations, with quadratic 
and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the 
differential cross-section extrapolation to t = 0, and further applying the optical theorem, yields total cross-
section estimates of (101.5 ± 2.1) mb and (101.9 ± 2.1) mb, respectively, in agreement with previous 
TOTEM measurements.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The differential cross-section dσ/dt of hadronic proton–(anti)proton scattering at low |t | has 
traditionally been parametrised with a simple exponential function, e−B|t |, giving a satisfactory 
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description of all past experimental data. Nonetheless, a few experiments have already reported 
about hints of slight deviations from this behaviour. At the ISR, for 

√
s between 21.5 GeV 

and 52.8 GeV, elastic pp and partly p̄p data have shown a change of slope [1,2] or have been 
better parametrised with quadratic exponential functions, e−B|t |−Ct2

[3,4]. At the Sp̄pS, for √
s = 546 GeV, a change of slope at |t | ≈ 0.14 GeV2 has been observed, while the inclusion 

of a quadratic term in the exponent did not improve the fit significantly [5]. At the Tevatron [6–9]
no deviations from pure exponential functions were observed, except at larger |t | where the in-
fluence of the shoulder (∼ 0.8 GeV2 at 

√
s = 0.546 TeV and ∼ 0.6 GeV2 at 1.8 and 1.96 TeV) 

becomes visible. At the LHC, at 7 TeV as well as at 8 TeV, all data published so far [10–13] have 
been compatible with a pure exponential shape.

This report presents a new data sample of elastic scattering at the energy of 
√

s = 8 TeV. 
Thanks to its high statistics, an unprecedented precision has been reached in the region 0.027 �
|t | � 0.2 GeV2. Both the statistical and systematic components of the differential cross-section 
uncertainty are controlled at a level below 1%, except for the overall normalisation (Sec-
tion 5.2.6). Consequently, the functional form of the cross-section can be strongly constrained, 
thus having more impact on theoretical model building and, in particular, on the extrapolation to 
t = 0 used for total cross-section determination. Neglecting the influence of Coulomb scattering 
in the observed range, the often used purely exponential extrapolation has been found inadequate, 
and extended parametrisations are provided, still yielding total cross-section values compatible 
with the previous TOTEM results [12] at the same energy.

This article is organised as follows. Section 2 outlines the detector apparatus used for this 
measurement. Section 3 summarises the data-taking conditions; details on the LHC beam optics 
are given in Section 4. Section 5 describes the data analysis and reconstruction of the differential 
cross-section. In Section 6 three parametrisations of the differential cross-section are tested, and 
from those compatible with data the total cross-section is derived. The results are summarised in 
Section 7.

2. Experimental apparatus

The TOTEM experiment is located at the LHC interaction point (IP) 5 together with the CMS 
experiment. In this article only the Roman Pot (RP) system, the sub-detector relevant for elastic 
scattering measurement, is outlined, whereas TOTEM’s full experimental apparatus is described 
elsewhere [14]. Roman Pots are movable beam-pipe insertions that approach the LHC beam very 
closely in order to detect particles scattered at very small angles. They are organised in two sta-
tions placed symmetrically around the IP: one on the left side (in LHC sector 45), one on the 
right (sector 56). Each station is formed by two units: near (214 m from the IP) and far (220 m). 
Each unit includes three RPs: one approaching the beam from the top, one from the bottom and 
one horizontally. Each RP hosts a stack of 10 silicon strip sensors (pitch 66 µm) with a strongly 
reduced insensitive region at the edge facing the beam (few tens of micrometres). The sensors 
are equipped with trigger-capable electronics. Since elastic scattering events consist of two anti-
parallel protons, the detected events can have two topologies, called diagonals: 45 bottom–56 top 
and 45 top–56 bottom.

This report will use a reference frame where x denotes the horizontal axis (pointing out of the 
LHC ring), y the vertical axis (pointing against gravity) and z the beam axis (in the clockwise 
direction).
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3. Data taking

The measurement presented here is based on data taken in July 2012, during the LHC fill 
number 2836 providing protons colliding at the centre-of-mass energy 

√
s = 8 TeV. The vertical 

RPs were inserted at a distance of 9.5 times the transverse beam size, σbeam. Initially two, later 
three colliding bunch-pairs were used, each with a typical population of 8 ·1010 protons, yielding 
an instantaneous luminosity of about 1028 cm−2 s−1 per bunch. The main trigger required a 
coincidence between the RPs in both arms, combining the near and far units of a station in OR
to ensure maximal efficiency. During the about 11 h long data-taking, a luminosity of 735 µb−1

was accumulated, giving 7.2 · 106 tagged elastic events.

4. Beam optics

The beam optics relates the proton state at the IP to its state at the RP location. At the IP, the 
direction of a proton can be described by the scattering angle θ∗ (with respect to the z axis) and 
azimuthal angle φ∗ (about the z axis). Alternatively, the horizontal (x) and vertical (y) projections 
of the scattering angle can be used:

θ∗
x = θ∗ cosφ∗ , θ∗

y = θ∗ sinφ∗ . (1)

A proton emerging from the vertex (x∗, y∗) at the angle (θ∗
x , θ∗

y ) and with momentum p(1 + ξ), 
where p is the nominal initial-state proton momentum, arrives at the RPs in a transverse position

x(zRP) = Lx(zRP) θ∗
x + vx(zRP) x∗ + Dx(zRP) ξ ,

y(zRP) = Ly(zRP) θ∗
y + vy(zRP) y∗ + Dy(zRP) ξ (2)

relative to the beam centre. This position is determined by the optical functions: effective length 
Lx,y(z), magnification vx,y(z) and dispersion Dx,y(z). The relative final-state momentum devi-
ation ξ has the following contributions:

• Beam momentum offsets ξoff relative to the nominal momentum and time-dependent varia-
tions, ξvar, with σ(ξoff) ∼ 10−3 and σ(ξvar) ∼ 10−4 (see discussion in Section 5.2.8).

• The momentum loss, ξscatt, in diffractive scattering processes.

For elastic scattering the dispersion terms, Dx,y ξ , can be ignored:

• The protons lose no momentum in elastic collisions (i.e. ξscatt = 0).
• Due to the collinearity of the two elastically scattered protons and the symmetry of the optics 

of the two beams, the effects of beam energy deviations (ξoff and ξvar) on the reconstructed 
scattering angle (Eq. (5) in Section 5.1.1) are strongly suppressed. Residual effects from 
optics imperfections have been verified to be negligible compared to all other uncertainties.

For the reported measurement, a special optics with β∗ = 90 m was used, with essentially 
the same characteristics as at 

√
s = 7 TeV [10], see Table 1 for details. In the vertical plane, 

it features parallel-to-point focussing (vy ≈ 0) and large effective length Ly . In the horizontal 
plane, the almost vanishing effective length Lx simplifies the separation of elastic and diffractive 
events: any sizeable horizontal displacement must be due to a momentum loss ξ .



G. Antchev et al. / Nuclear Physics B 899 (2015) 527–546 531
Table 1
Optical functions for elastic proton transport. The values refer to the right arm; for the left 
arm the moduli are very similar, but Lx and Ly have the opposite sign.

RP unit Lx vx Ly vy

Near 2.45 m −2.17 239 m 0.040
Far −0.37 m −1.87 264 m 0.021

5. Analysis

The analysis method is similar to the ones used in the previous publications [11,12]. However, 
a different normalisation approach is used (Section 5.2.6) that makes all t -independent scaling 
factors irrelevant.

The analysis is presented in two main blocks. Section 5.1 covers all aspects related to the re-
construction of a single event. Section 5.2 describes the steps of transforming a raw t -distribution 
into the differential cross-section. The t -distributions for the two diagonals are analysed sepa-
rately. After comparison (Section 5.3) they are finally merged (Section 5.4).

5.1. Event analysis

Event kinematics are determined from the coordinates of track hits in the RPs after proper 
alignment (see Section 5.1.2), using the LHC optics (see Section 5.1.3).

5.1.1. Kinematics reconstruction
The scattering angles and vertex position are first determined for each proton (i.e. from each 

arm) separately by inverting the proton transport, Eq. (2), assuming ξ = 0. The following formu-
lae optimise the robustness against optics imperfections:

θ∗L,R
x = vN

x xF − vF
xxN

vN
x LF

x − vF
xLN

x

, θ∗L,R
y = 1

2

(
yN

LN
y

+ yF

LF
y

)
, x∗L,R = LF

xx
N − LN

x xF

vN
x LF

x − vF
xLN

x

,

(3)

where the N and F superscripts refer to the near and far units, L and R to the left and right arm, 
respectively. This one-arm reconstruction is used for tagging elastic events, where the left and 
right arm protons are compared.

Once an event is selected, the information from both arms is merged yielding better angular 
resolution:

θ∗
x = θ∗L

x + θ∗R
x

2
, θ∗

y = θ∗L
y + θ∗R

y

2
. (4)

Eventually, the full scattering angle and four-momentum transfer squared are calculated as

θ∗ =
√

θ∗
x

2 + θ∗
y

2 , t = −p2
(
θ∗
x

2 + θ∗
y

2
)

, (5)

where p denotes the beam momentum.
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5.1.2. Alignment
The standard three-step procedure [15] has been applied: beam-based alignment prior to the 

run (as for LHC collimators) followed by two off-line methods. First, track-based alignment for 
relative positions among RPs, and second, alignment with elastic events for absolute position 
with respect to the beam. The final uncertainties per unit (common for top and bottom RPs) 
are: 2 µm (horizontal shift), 100 µm (vertical shift) and 0.2 mrad (rotation about the beam axis). 
Propagated through Eqs. (3) and (4) to the scattering angles reconstructed from both arms, the 
shifts lead to uncertainties of 0.8 µrad (horizontal) and 0.2 µrad (vertical). The relatively large 
impact of horizontal misalignment is due to the almost vanishing effective length Lx (cf. Eq. (3)). 
RP rotations induce a bias in the reconstructed horizontal scattering angle:

θ∗
x → θ∗

x + cθ∗
y , (6)

where the proportionality constant c has a mean of 0 and a standard deviation of 0.02.

5.1.3. Optics
In order to reduce the impact of imperfect optics knowledge, the LHC optics calibration [16]

has been applied. This method uses various RP observables to determine fine corrections to the 
optical functions presented in Eq. (2).

The residual errors induce a bias in the reconstructed scattering angles:

θ∗
x → (1 + dx) θ∗

x , θ∗
y → (1 + dy) θ∗

y . (7)

For the two-arm reconstruction, Eq. (4), the biases dx and dy have uncertainties of 0.21% and 
0.25%, respectively, and a correlation factor of −0.70. These estimates include the effects of 
magnet field harmonics. For evaluating the impact on the t -distribution, it is convenient to de-
compose the correlated biases dx and dy into eigenvectors of the covariance matrix:(

dx

dy

)
= η1

(−0.182%
+0.235%

)
︸ ︷︷ ︸

mode 1

+ η2

(−0.096%
−0.074%

)
︸ ︷︷ ︸

mode 2

(8)

normalised such that the factors η1,2 have unit variance.

5.1.4. Resolution
Statistical fluctuations in the reconstructed scattering angles are caused by the beam diver-

gence and, in the horizontal projection (due to the small Lx), also by the sensor resolution. They 
are studied by comparing the scattering angles reconstructed from the two arms, in particular 
through differences θ∗R

x,y − θ∗L
x,y as illustrated in Fig. 1. The distributions exhibit small deviations 

from a Gaussian shape which decrease with time.
Since in good approximation the fluctuations are independent in each arm, the angular res-

olution for the two-arm reconstruction, Eq. (4), is given by half of the standard deviation of 
the θ∗R

x,y − θ∗L
x,y distributions. As shown in Fig. 2, the resolution deteriorates slightly with time, 

which can be expected mainly due to the emittance growth. The small difference in θ∗
x resolu-

tion between the diagonals can be attributed to different RPs, each with slightly different spatial 
resolution, being involved in the two diagonals.

Measurements of beam emittances [17] show that the vertical beam divergences of the two 
beams are equal within a tolerance of about 15%. Exploiting this equality, one can deconvolute 
the distribution of θ∗R

y − θ∗L
y in order to obtain the beam-divergence distribution, used e.g. for 

acceptance corrections discussed in Section 5.2.3 (only required in the vertical plane).
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Fig. 1. Difference between vertical scattering angles reconstructed in the right and left arm, for the diagonal 45 bottom–56 
top. Upper graph (red): data from run start (0.5 to 1.5 h from the beginning of the run). Lower graph (blue): data from 
run end (10.5 to 11.5 h), scaled by 0.1. The solid lines represent Gaussian fits.

Fig. 2. Angular resolution for the two-arm reconstruction, Eq. (4), as a function of time (from the beginning of the run). 
The step in θ∗

y resolution around 7 h is due to inclusion of another colliding bunch-pair with a larger vertical emittance.

5.2. Differential cross-section

For a given t bin, the differential cross-section is evaluated by selecting and counting elastic 
events:

dσ

dt
(bin) =N U(bin)B 1

�t

∑
t ∈ bin

A(θ∗, θ∗
y ) E(θ∗

y ) , (9)

where �t is the width of the bin, N is a normalisation factor, and the other symbols stand for 
various correction factors: U for unfolding of resolution effects, B for background subtraction, 
A for acceptance correction and E for detection and reconstruction efficiency.

5.2.1. Event tagging
The cuts used to select elastic events are summarised in Table 2. Cuts 1 and 2 require the 

reconstructed-track collinearity between the left and right arm. Cuts 3 and 4 control the elasticity 
– if a proton loses momentum, the vertical position-angle correlation at the RPs is lost. Cut 5 
ensures that the two protons come from the same vertex (horizontally). The correlation plots 
corresponding to these cuts are shown in Fig. 3.
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Table 2
The elastic selection cuts. The superscripts R and L refer to the right and left arm, N and 
F correspond to the near and far units, respectively. The constant α = LF

y/LN
y − 1 ≈ 0.11. 

The right-most column gives a typical RMS of the cut distribution.

Discriminator Cut quantity RMS (≡ 1σ )

1 θ∗R
x − θ∗L

x 9.5 µrad
2 θ∗R

y − θ∗L
y 3.3 µrad

3 α yR,N − (yR,F − yR,N) 18 µm
4 α yL,N − (yL,F − yL,N) 18 µm
5 x∗R − x∗L 8.5 µm

Monte-Carlo simulation suggests that applying all the five cuts at 3 σ level would lead to a 
loss of about 2% of elastic events. Setting the thresholds to 4 σ yields a tolerable loss of about 
0.07% and therefore the cuts are applied at the 4 σ level.

The tagging efficiency is studied experimentally by applying the cuts also at the 5 σ level. This 
selection yields about 0.5% more events in every t bin – thus the inefficiency is irrelevant for this 
analysis since the overall normalisation is determined from another dataset, see Section 5.2.6.

5.2.2. Background
Expectable background (i.e. non-elastic events passing the tagging cuts) may come from cen-

tral diffraction as well as pile-up of single diffraction and/or beam-halo protons. The background 
rate is studied by plotting the discriminators from Table 2 under various cut combinations, see 
an example in Fig. 4. While the central part (signal) remains essentially constant, the tails (back-
ground) are strongly suppressed with increasing number of cuts applied. This interpretation is 
further supported by the discriminator distributions from non-diagonal RP configurations, see 
the dotted curves in the figure. While these top–top or bottom–bottom configurations cannot 
contain any elastic signal, they are likely to have a similar share of events causing background to 
the presented analysis. And indeed, the figure shows a good agreement at the distribution tails. 
Integrating the non-diagonal curve over the signal region (see the dashed lines in the figure) 
yields a background estimate of 1 −B < 10−4.

5.2.3. Acceptance correction
Two proton detection limitations have been identified: detector coverage (mostly at the edge 

facing the beam, i.e. relevant for small |θ∗
y |) and LHC apertures (|θ∗

y | ≈ 100 µrad). The correction 
accounting for these limitations includes two contributions – a geometrical correction Ageom
reflecting the fraction of the phase space within the acceptance and a component Afluct correcting 
for fluctuations around the acceptance limits (cuts in θ∗

y ):

A(θ∗, θ∗
y ) =Ageom(θ∗) Afluct(θ

∗
y ) . (10)

The calculation of the geometrical correction Ageom is based on the azimuthal symmetry of 
elastic scattering, experimentally verified for the data within acceptance. As shown in Fig. 5, for 
a given value of θ∗ the correction is given by:

Ageom(θ∗) = full arc length

arc length within acceptance
. (11)

The correction Afluct is calculated analytically from the probability that any of the two elas-
tic protons leaves the region of acceptance due to the beam divergence. The beam divergence 
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Fig. 3. Correlation plots for the event selection cuts summarised in Table 2, using all events with diagonal topology 
45 top–56 bottom. The black solid lines delimit the signal (±4 σ ) region.

distribution is modelled as a Gaussian with the spread determined by the method described in 
Section 5.1.4. This correction contribution is sizeable only close to the acceptance limits but is 
kept below 1.5 by discarding data with larger corrections. The uncertainties are related to the 
resolution parameters (vertical beam divergence, left-right asymmetry and non-Gaussian shape), 
and all stay below 0.1%.

Fig. 6 shows an example for the t -dependence of the acceptance correction for one diagonal. 
Since a single diagonal cannot cover more than half of the phase space, the minimum value of 
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Fig. 4. Distributions of discriminator 1, i.e. the difference between the horizontal scattering angle reconstructed from the 
right and the left arm. Solid curves: data from diagonal 45 top–56 bottom, the different colours correspond to various 
combinations of the selection cuts (see numbering in Table 2). Dotted curves: data from non-diagonal RP configurations, 
obtained by inverting track coordinates in the left arm. The vertical dashed lines represent the boundaries of the signal 
region (±4 σ ).

Fig. 5. Distribution of scattering angle projections θ∗
y vs. θ∗

x . The upper (lower) part comes from the diagonal 45 bottom–
56 top (45 top–56 bottom). The colour scale gives number of events (after the Afluct correction) per bin. The horizontal 
lines at θ∗

y ≈ ±100 µrad (red) represent cuts due to the LHC apertures, while those at θ∗
y ≈ ±30 µrad (magenta) repre-

sent cuts due to the sensor edges. The dotted circles show contours of constant scattering angle θ∗ as indicated in the 
middle of the plot. The parts of the contours within acceptance are emphasised in thick black. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

the correction is 2. As indicated in the figure, data points with too large correction (A � 5) are 
discarded.

5.2.4. Inefficiency corrections
Since the overall normalisation is determined from another dataset (see Section 5.2.6), any 

inefficiency correction that does not alter the t -distribution shape does not need to be consid-
ered in this analysis (trigger, data acquisition and pile-up inefficiency discussed in [11,12]). The 
inefficiencies left are related to the inability of a RP to resolve the elastic proton track.
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Fig. 6. Full acceptance correction, A, for diagonal 45 bottom–56 top. The points give the mean value per bin, the error 
bars indicate the standard deviation. The sharp shape change at |t | ≈ 0.16 GeV2 is caused by the LHC aperture cuts. The 
data left of the dashed vertical line are discarded due to excessively large acceptance correction.

Fig. 7. Single-RP uncorrelated inefficiency for the far top RP in the left arm. The rapid drop at θ∗
y ≈ 35 µrad is due to 

acceptance effects at the sensor edge. The straight (red) lines represent a linear fit of the efficiency dependence on the 
vertical scattering angle (solid) and its extrapolation to the region affected by acceptance effects (dashed).

One such case is when a single RP cannot detect and/or reconstruct a proton track, with no 
correlation to other RPs. This type of inefficiency, I3/4, is evaluated by removing the RP from 
the tagging cuts (Table 2), repeating the event selection and calculating the fraction of recovered 
events. A typical example is given in Fig. 7, showing that the efficiency decreases gently with 
the vertical scattering angle. This dependence stems from the fact that protons with larger |θ∗

y |
hit the RPs further from their edge and therefore the potentially created secondary particles have 
more chance to induce additional signal in the sensors and thus prevent from resolving the elastic 
proton track.

Another source of inefficiency are proton interactions in a near RP affecting simultaneously 
the far RP downstream. The contribution from these near-far correlated inefficiencies, I2/4, is 
determined by evaluating the rate of events with high track multiplicity (� 5) in both near and 
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Fig. 8. Unfolding correction as a function of |t |. The different shape for |t | � 0.16 GeV2 is due to a slightly different 
position of the LHC aperture cut in the two diagonals.

far RPs. Events with high track multiplicity simultaneously in a near top and near bottom RP 
are not counted as such a shower is likely to have started upstream from the RP station and 
thus unrelated to the elastic proton interacting with detectors. The outcome, I2/4 ≈ 1.5%, is 
compatible between left/right arms and top/bottom RP pairs, in addition it compares well to 
Monte-Carlo simulations (e.g. Section 7.5 in [18]).

The full correction is calculated as

E(θ∗
y ) = 1

1 −
( ∑

i∈RPs
I i

3/4(θ
∗
y ) + 2I2/4

) . (12)

The first term in the parentheses sums the contributions from the four RPs of a diagonal and 
grows from about 7 to 10% from the lowest to the highest |θ∗

y |. The second term amounts to 
about 3%.

5.2.5. Unfolding of resolution effects
The correction for resolution effects has been determined by the following iterative proce-

dure. The differential cross-section data are fitted by a smooth curve which serves as an input to 
a Monte-Carlo simulation using the resolution parameters determined in Section 5.1.4. Making 
a ratio between simulated histograms with and without smearing effects gives a set of per-bin 
correction factors. Applying them to the yet uncorrected differential cross-section yields a better 
estimate of the true t -distribution which can be used as input to the next iteration. The itera-
tions stop when the difference between the input and output t -distributions becomes negligible, 
which is typically achieved after the second iteration. Thanks to the good angular resolution (see 
Section 5.1.4), the final correction is not large, as shown in Fig. 8.

For the uncertainty estimate, the uncertainties of θ∗
x and θ∗

y resolutions (accommodating the 
full time variation) as well as fit-model dependence have been considered, the first contribution 
being dominant.

5.2.6. Normalisation
The normalisation N is determined by requiring the same cross-section integral between 

|t | = 0.027 and 0.083 GeV2 as for dataset 1 from [12], where the luminosity-independent 
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calibration was applied. The leading uncertainty of the scaling factor 4.2% comes from the 
luminosity-independent method.

5.2.7. Binning
Two binnings have been considered. The “optimised” option sets the bin size to 1 σ of the 

resolution in t . The “per-mille” binning is built such that each bin collects about one per-mille of 
the events.

5.2.8. Beam energy uncertainty
Besides the systematic uncertainties mentioned at the above analysis steps, the uncertainty 

of the beam momentum needs to be considered when the scattering angles are translated into t , 
see Eq. (5). The beam momentum at 

√
s = 8 TeV is derived from the current-to-field calibration 

functions of the LHC dipole magnets (see Section 4 in [19], Section 3.1 in [20]), yielding a 
relative momentum uncertainty of 0.07%. Taking into account a further contribution of 0.02%
from quadrupole misalignments, the total relative beam momentum uncertainty amounts to 0.1%, 
which is the value used in the present analysis.

The precision of this method has been confirmed by direct beam energy measurements at 
450 GeV [21,22]. Another confirmation is given in [20] (Eq. (29)), where an alternative beam-
momentum measurement based on common proton–ion injections is extrapolated from the in-
jection beam energy of 450 GeV to the data-taking energy of 4 TeV using the LHC magnetic 
model. The outcome is consistent with the nominal beam momentum within an uncertainty of 
0.1%. When the proton–ion method is directly applied at 4 TeV, see Eq. (28) in [20], the measure-
ment result is consistent with the above evaluations, but the uncertainty of this method, 0.65%, 
is larger.

Finally, energy variations with time during a fill do not exceed ±0.03% (Section 10 in [20]) 
and are hence negligible.

5.2.9. Propagation of systematic uncertainties
The systematic effects are propagated to the t -distribution with help of a Monte-Carlo simu-

lation. A fit of the final differential cross-section data is used to generate the true t -distribution. 
Simultaneously, another t -distribution is built, having introduced one of the above mentioned 
systematic effects at 1 σ level. The difference between the t -distributions gives the systematic 
effect on the differential cross-section. Formally, this procedure is equivalent to evaluating

δsq(t) ≡ ∂(dσ/dt)

∂q
δq , (13)

where δq corresponds to 1 σ bias in the quantity q responsible for a given systematic effect.
The Monte-Carlo simulations show that the combined effect of several systematic errors is 

well approximated by linear combination of the individual contributions from Eq. (13).

5.3. Systematic cross-checks

Compatible results have been obtained from data originating from different bunches, different 
diagonals and different time periods.

In addition, the complete analysis chain has been applied in two independent analysis imple-
mentations, yielding compatible results.
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Fig. 9. Impact of t -dependent systematic effects on the differential cross-section. Each curve corresponds to a systematic 
error at 1 σ , cf. Eq. (13). The two contributions due to optics correspond to the two vectors in Eq. (8). The envelope is 
determined by summing all shown contributions in quadrature for each |t | value. The right plot provides a vertical zoom; 
note that the envelope is out of scale.

5.4. Final data merging

Finally, the differential cross-section histograms from both diagonals are merged. This is 
accomplished by a per-bin weighted average, with the weight given by inverse squared statis-
tical uncertainty. The statistical and systematic uncertainties are propagated accordingly. For the 
systematic ones, the correlation between the diagonals is taken into account. For example, the 
vertical (mis-)alignment of the RPs within one unit is almost fully correlated, thus the effect 
on the differential cross-section is opposite in the two diagonals, and consequently its impact is 
strongly reduced once the diagonals are merged.

The final systematic uncertainties, except the 4.2% coming from the normalisation, are sum-
marised in Fig. 9 where their impact on the differential cross-section is shown. The leading 
uncertainties include normalisation, optics imperfections and beam momentum offset. Their 
effects are quantified in Table 3, which can be used to approximate the covariance matrix of 
systematic uncertainties:

Vij =
∑
q

δsq(i) δsq(j) , (14)

where i and j are bin indices (row numbers in Table 3) and the sum goes over the leading error 
contributions q (four right-most columns in the table).

5.5. Statistical uncertainty adjustment

The statistical fluctuations in the differential cross-section using the “optimised” binning have 
been slightly overestimated, whereas the “per-mille” binning does not suffer from this problem. 
One way to demonstrate this is to split the data into groups of consecutive points small enough 



G. Antchev et al. / Nuclear Physics B 899 (2015) 527–546 541
Table 3
The elastic differential cross-section as determined in this analysis using the “optimised” binning. The three left-most 
columns describe the bins in t . The representative point gives the t value suitable for fitting [23]. The other columns 
are related to the differential cross-section. The four right-most columns give the leading systematic biases in dσ/dt for 
1 σ -shifts in the respective quantities, δsq , see Eqs. (13) and (14). The two contributions due to optics correspond to the 
two vectors in Eq. (8).

|t | bin [GeV2] dσ/dt [mb/GeV2]
left 
edge

right 
edge

represent. 
point

value statistical 
uncertainty

systematic 
uncertainty

normalisation 
N

optics 
mode 1

optics 
mode 2

beam 
momentum

0.02697 0.03005 0.02850 305.09 0.527 12.85 +12.83 −0.479 −0.263 +0.257
0.03005 0.03325 0.03164 287.95 0.478 12.08 +12.06 −0.502 −0.217 +0.206
0.03325 0.03658 0.03491 269.24 0.436 11.32 +11.31 −0.491 −0.174 +0.159
0.03658 0.04005 0.03831 251.31 0.401 10.59 +10.57 −0.478 −0.135 +0.115
0.04005 0.04365 0.04184 235.15 0.371 9.874 +9.861 −0.465 −0.0981 +0.0750
0.04365 0.04740 0.04551 218.32 0.343 9.185 +9.172 −0.451 −0.0647 +0.0383
0.04740 0.05129 0.04933 202.64 0.318 8.521 +8.509 −0.437 −0.0343 +0.0052
0.05129 0.05534 0.05330 187.10 0.295 7.882 +7.870 −0.421 −0.0070 −0.0244
0.05534 0.05956 0.05743 173.06 0.274 7.270 +7.257 −0.405 +0.0172 −0.0504
0.05956 0.06394 0.06173 158.77 0.255 6.685 +6.672 −0.388 +0.0385 −0.0731
0.06394 0.06850 0.06620 144.93 0.236 6.127 +6.114 −0.370 +0.0569 −0.0925
0.06850 0.07324 0.07085 133.12 0.219 5.597 +5.584 −0.352 +0.0724 −0.109
0.07324 0.07817 0.07568 121.24 0.203 5.096 +5.082 −0.334 +0.0853 −0.122
0.07817 0.08329 0.08071 109.77 0.188 4.623 +4.609 −0.316 +0.0957 −0.132
0.08329 0.08862 0.08593 99.077 0.174 4.179 +4.164 −0.297 +0.104 −0.140
0.08862 0.09417 0.09137 89.126 0.161 3.762 +3.747 −0.279 +0.109 −0.145
0.09417 0.09994 0.09702 79.951 0.148 3.374 +3.359 −0.260 +0.113 −0.147
0.09994 0.10593 0.10290 71.614 0.137 3.014 +2.998 −0.242 +0.115 −0.148
0.10593 0.11217 0.10902 63.340 0.125 2.680 +2.664 −0.224 +0.115 −0.147
0.11217 0.11866 0.11538 56.218 0.115 2.373 +2.357 −0.206 +0.114 −0.144
0.11866 0.12540 0.12199 49.404 0.105 2.092 +2.075 −0.189 +0.111 −0.139
0.12540 0.13242 0.12887 43.300 0.0961 1.835 +1.818 −0.173 +0.107 −0.134
0.13242 0.13972 0.13602 37.790 0.0876 1.601 +1.585 −0.157 +0.102 −0.127
0.13972 0.14730 0.14346 32.650 0.0795 1.391 +1.374 −0.142 +0.0974 −0.120
0.14730 0.15520 0.15120 28.113 0.0720 1.201 +1.185 −0.127 +0.0924 −0.112
0.15520 0.16340 0.15925 24.155 0.0659 1.030 +1.016 −0.0955 +0.0866 −0.104
0.16340 0.17194 0.16761 20.645 0.0616 0.877 +0.866 −0.0590 +0.0804 −0.0951
0.17194 0.18082 0.17632 17.486 0.0574 0.743 +0.733 −0.0302 +0.0739 −0.0865
0.18082 0.19005 0.18537 14.679 0.0543 0.626 +0.617 −0.0081 +0.0673 −0.0780
0.19005 0.19965 0.19478 12.291 0.0504 0.524 +0.515 +0.0052 +0.0606 −0.0697

for a linear function to approximate well the differential cross-section within each group. Then, 
performing straight-line fits through each group yields on average χ2 values slightly too low. 
Alternatively, the issue can be demonstrated as follows. The data sample is divided into several 
sub-samples corresponding to the same luminosity, and the analysis method described in the 
earlier sections is repeated for each of these sub-samples. Then, fluctuations of each bin content 
are determined from the several sub-samples, giving values slightly lower than the uncertainty 
estimates.

As a remedy, the statistical uncertainties in the “optimised” binning have been divided by a 
factor of 1.176. This value has been determined by requiring both binnings to give the same 
value of χ2/ndf for fits of dσ/dt to the fit function in Eq. (15) with Nb = 3 which has enough 
flexibility to describe the data.
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Fig. 10. Differential cross-section using “optimised” binning, as given in Table 3.

6. Results

The final differential cross-section in the “optimised” binning is presented in Table 3 and 
Fig. 10. In order to visualise small deviations from the leading pure-exponential behaviour, 
Fig. 11 shows the relative difference of the cross-section from a reference exponential (pure 
exponential fit using statistical uncertainties only). This plot immediately suggests a non-
exponentiality of the data: pure exponentials would look like (almost) linear functions in this 
kind of representation.

To study the detailed behaviour of the differential cross-section, a series of fits has been made 
using the parametrisation:

dσ

dt
(t) = dσ

dt

∣∣∣∣
t=0

exp

⎛
⎝ Nb∑

i=1

bi t
i

⎞
⎠ , (15)

which includes the pure exponential (Nb = 1) and its straight-forward extensions (Nb = 2, 3).
The fits have been performed by the standard least-squares method, in particular minimising:

χ2 = �TV−1� , �i = dσ

dt

∣∣∣∣
bin i

− 1

�ti

∫
bin i

f (t)dt , V = Vstat + Vsyst , (16)

where � is a vector of differences between the differential cross-section data and a fit function 
f , with �ti representing the width of the i-th bin. The covariance matrix V is given by the sum 
of the statistical component Vstat (statistical uncertainty squared from Table 3 on the diagonal) 
and the systematic component Vsyst (see Eq. (14)).

The quality of fits is judged on the basis of several measures. The first is the value of χ2

after minimisation divided by the number of degrees of freedom (ndf). Secondly, the p-value 
stands for the probability that a χ2 value greater than the observed one would be drawn from 
the χ2 distribution with the given number of degrees of freedom. Finally, significance means the 
half-width of a central region that needs to be excluded from a normal distribution to get the 
same integrated probability as the p-value. The significance is expressed in multiples of sigma, 
the standard deviation of the normal distribution.
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Fig. 11. Differential cross-section using the “optimised” binning and plotted as relative difference from a reference expo-
nential (see vertical axis). The black dots represent data points with statistical uncertainty bars. The coloured continuous 
curves correspond to fits with parametrisation Eq. (15) and different numbers of parameters in the exponent. The straight 
(red) line lies seemingly too high with respect to the data points, which is a consequence of the systematic degrees of 
freedom included in the fit: some of the effects in Fig. 9 may flatten the distribution which at the same time changes 
the overall normalisation. The widest error band (yellow) corresponds to the full systematic uncertainty, the hatched 
(brown) one includes all systematic contributions except the normalisation. Both bands are centred around the fit curve 
with Nb = 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 11 shows several fits of the differential cross-section with the parametrisation in Eq. (15)
and different numbers of parameters in the exponent, Nb. The corresponding fit quality is given 
in Table 4, indicating that the purely exponential fit (Nb = 1) is excluded at 7.2 σ significance. 
The other two fits (Nb = 2, 3) are of reasonable quality and can, therefore, be used for a total 
cross-section estimation with the optical theorem in the form

σ 2
tot = 16π (h̄c)2

1 + ρ2

dσel

dt

∣∣∣∣
t=0

, (17)

which neglects the effects due to the Coulomb interaction. Using the COMPETE [24] preferred-
model extrapolation of ρ = 0.140 ± 0.007 yields

Nb = 2 : σtot = (101.5 ± 2.1) mb ,

Nb = 3 : σtot = (101.9 ± 2.1) mb ,
(18)

which are well compatible with the previous measurement using the luminosity-independent 
method [12].

The incompatibility between a pure-exponential behaviour and the data with the “per-mille” 
binning can be shown equally well. However, since the number of points is drastically increased, 
the straight-forward χ2 test does not have sufficient sensitivity, and a different test is used. As-
suming that the data can be described by a pure exponential, the fit parameters should have 
compatible values for fits over different ranges. Fig. 12 shows a fit (minimisation of χ2 from 
Eq. (16)) with the parametrisation

dσ

dt
(t) =

{
a1 eb1|t | |t | < 0.07 GeV2

a2 eb2|t | |t | > 0.07 GeV2 (19)
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Table 4
Details of the fits in Fig. 11 using parametrisation Eq. (15). The matrices give the correlation factors between the fit 
parameters.

Nb dσ/dt |t=0
[mb/GeV2]

b1
[GeV−2]

b2
[GeV−4]

b3
[GeV−6]

χ2/ndf p-Value Significance

1 531 ± 22 −19.35 ± 0.06 – – 117.5/28 = 4.20 6.2 · 10−13 7.20 σ(+1.00
−0.11

−0.11
+1.00

)
2 537 ± 22 −19.89 ± 0.08 2.61 ± 0.30 – 29.3/27 = 1.09 0.35 0.94 σ⎛

⎝+1.00
+0.19
−0.34

+0.19
+1.00
−0.76

−0.34
−0.76
+1.00

⎞
⎠

3 541 ± 22 −20.14 ± 0.15 5.95 ± 1.75 −12.0 ± 6.2 25.5/26 = 0.98 0.49 0.69 σ⎛
⎜⎜⎝

+1.00
+0.08
−0.04
−0.02

+0.08
+1.00
−0.90
+0.85

−0.04
−0.90
+1.00
−0.99

−0.02
+0.85
−0.99
+1.00

⎞
⎟⎟⎠

Fig. 12. Differential cross-section using the “per-mille” binning and plotted as relative difference from the reference 
exponential (see vertical axis). The black dots represent data points with statistical uncertainty bars. The red line (with 
two straight segments) shows pure exponential fits in regions below and above |t | = 0.07 GeV2, see Eq. (19). The 
widest error band (yellow) corresponds to the full systematic uncertainty, the hatched one (brown) includes all systematic 
contributions except the normalisation. Both bands are centred around the fit curve. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

giving a reasonable fit quality (p-value of 0.57). The compatibility of the parameters in the two 
|t | regions can be verified by evaluating

χ2
p = �T

pV−1
p �p , �p =

(
a1 − a2
b1 − b2

)
, (20)

where Vp is the covariance matrix for the difference vector �p. It yields χ2
p = 65.2 which with 

2 degrees of freedom corresponds to a p-value of 7 · 10−15 and a significance of 7.8 σ . This, 
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in turn, rules out the hypothesis of a purely exponential behaviour of the data over the entire 
observed range.

Since parameters estimated with the least squares method are unbiased, the test in Eq. (20) is 
asymptotically binning independent. Indeed, applying it to the data in the “optimised” binning 
(prior to the statistical uncertainty rescaling, Section 5.5) yields χ2

p = 65.9 which corresponds 
to a significance of 7.8 σ . After the uncertainty rescaling, the exclusion significance increases to 
8.9 σ .

Finally, it should be emphasised that the above exclusion of purely exponential behaviour 
is entirely robust against certain systematic errors, most notably normalisation and beam mo-
mentum offset. The former can only affect the intercept dσ/dt |t=0, the latter can also scale the 
parameters bi . However, none of them can bring the parameters b2 and b3 to zero or vice versa.

7. Conclusions and outlook

Thanks to a very-high statistics data set TOTEM has excluded a purely exponential differential 
cross-section for elastic proton–proton scattering with significance greater than 7 σ in the |t |
range from 0.027 to 0.2 GeV2 at 

√
s = 8 TeV. The data are described satisfactorily with an 

exponent quadratic or cubic in t . Using this refined parametrisation for the extrapolation to the 
optical point, t = 0, yields total cross-section values compatible with the previous measurement, 
in all cases neglecting the effects due to the Coulomb interaction.

In an upcoming analysis, this proof of non-exponentiality in a t -domain strongly dominated by 
hadronic interactions will be combined with a measurement of elastic scattering in the Coulomb–
nuclear interference region, thus allowing to study the role of the Coulomb interaction in the 
non-exponential behaviour.
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