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Modulated enhanced diffraction (MED) is a technique allowing the dynamic

structural characterization of crystalline materials subjected to an external

stimulus, which is particularly suited for in situ and operando structural

investigations at synchrotron sources. Contributions from the (active) part of the

crystal system that varies synchronously with the stimulus can be extracted by an

offline analysis, which can only be applied in the case of periodic stimuli and

linear system responses. In this paper a new decomposition approach based on

multivariate analysis is proposed. The standard principal component analysis

(PCA) is adapted to treat MED data: specific figures of merit based on their

scores and loadings are found, and the directions of the principal components

obtained by PCA are modified to maximize such figures of merit. As a result, a

general method to decompose MED data, called optimum constrained

components rotation (OCCR), is developed, which produces very precise

results on simulated data, even in the case of nonperiodic stimuli and/or

nonlinear responses. The multivariate analysis approach is able to supply in one

shot both the diffraction pattern related to the active atoms (through the OCCR

loadings) and the time dependence of the system response (through the OCCR

scores). When applied to real data, OCCR was able to supply only the latter

information, as the former was hindered by changes in abundances of different

crystal phases, which occurred besides structural variations in the specific case

considered. To develop a decomposition procedure able to cope with this

combined effect represents the next challenge in MED analysis.

1. Introduction

Recently a technique has been proposed, which is able to

capture structural features of a crystal system varying in phase

with an external stimulus (Chernyshov et al., 2011). This

technique is called modulated enhanced diffraction (MED),

and it is based on the joint analysis of a series of X-ray

diffraction patterns, collected while varying the external

stimulus (van Beek et al., 2012). Thanks to the advent of

modern synchrotron experimental setups, where higher X-ray

brilliance is coupled with fast readout and low-noise area

detectors, today complete diffraction patterns can be collected

within minutes, even for poorly diffracting crystal systems.

This has opened the possibility of in situ and operando crys-

tallographic studies, where specific chemical or physical

processes can be monitored. In this context, the classical

outcome of the crystallographic analysis, i.e. a detailed struc-

tural knowledge of a given state of the crystal system, has been

complemented by a dynamical characterization of the struc-

tural features of the system while its state is varying in time.
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MED appears to be the perfect technique to respond to this

new demand, and in fact new beamlines are being constructed,

with the capability to perform MED measurements, e.g. the

NSLS-Il XPD (http://www.bnl.gov/ps/nsls2/beamlines/XPD.

php), although few experiments have been performed so far

(Caliandro et al., 2012; van Beek et al., 2012; Ferri et al., 2013;

Lu et al., 2014; Ferri et al., 2014; Palin et al., 2015).

In its original formulation, this technique employed phase

sensitive detection (PSD) for demodulating series of diffrac-

tion patterns and obtaining one that is representative of the

part of the system varying with the stimulus (active part)

(Caliandro et al., 2012). Although the technique is very

accurate and informative in ideal cases, PSD suffers from

important limitations. Besides requiring separation between

peaks in the case of powder patterns, basically it requires a

periodic stimulus and a linear response of the crystal system.

In other words, the response of the system must follow the

same trend as the stimulus, and its variations in time should be

symmetrical in time. This strongly limits the application of the

MED technique, even considering the fact that the response of

the system is unknown before doing the analysis, and often

structural features underlying key properties in functional and

engineering materials have a nonlinear behaviour.

In order to overcome such limitations, multivariate analysis

has been applied to MED data (Milanesio et al., 2014). The

PSD demodulation has thus been replaced by a matrix

decomposition aiming at extracting the part of the system

response which varies in time. First applications of multi-

variate analysis showed the undoubted advantage of allowing

MED analysis on systems whose response is not perfectly

linear with respect to the stimulus, but, when applied to

symmetric responses, the decomposition was more approx-

imate than the PSD demodulation (Palin et al., 2015).

In this paper we have investigated the MED theory to find

proper conditions to be applied to multivariate methods in

order to perform a more precise decomposition. In detail, we

have modified the principal component decomposition to

provide a new algorithm, called optimum constrained

components rotation. With this algorithm the components

extracted using the principal component technique are further

subjected to a constrained optimization to refine the result.

The objective functions found to solve the problem respond to

conditions derived from the MED theory and so they result in

a more precise solution than the one given by simple blind

source decomposition. The derived conditions are also used as

criteria for the assessment of the decomposition quality. The

capabilities of the new algorithm have been demonstrated by

using simulated and real data which otherwise would have not

been demodulated effectively by the PSD.

2. The MED theory for powder diffraction

Suppose a set of X-ray powder diffraction (XPD) patterns is

collected by changing an external parameter called the

stimulus. The resulting data matrix can be described by the

function Að2�; tÞ, which gives the measured profile as a func-

tion of the diffraction angle 2� for each value of time t, i.e. for

each value of the stimulus. Að2�; tÞ can be written as

Að2�; tÞ ¼ P
h

mhLh FhðtÞ
�� ��2

f 2�; 2�h; tð Þ þ bð2�; tÞ; ð1Þ

where FhðtÞ, mh and Lh are, respectively, the structure factor,

multiplicity and Lorentz–Polarization factor of the reflection

h, f ð2�; 2�hÞ is a function describing the peak centred at 2�h
(typically a Gaussian or Lorentzian shape), and bð2�Þ is a

function describing the background.

Suppose now that part of the crystal structure is changing

with the stimulus, i.e. some (active) atoms vary their crystal-

lographic parameters in phase with the variations of the

stimulus, while the remaining (spectator) atoms are not

affected by the stimulus. Then, the amplitude of each reflec-

tion can be parameterized as follows:

FhðtÞ
�� ��2 ¼ FhA

� �þ �FhAðtÞ þ FhS

�� ��2

¼ �FhAðtÞ
�� ��2 þ FhA

� �þ FhS

�� ��2

þ 2 �FhAðtÞ
�� �� FhA

� �þ FhS

�� �� cosð’A � ’SAÞ; ð2Þ
where subscripts A and S indicate active and spectator sub-

lattices, respectively, the structure factor for active atoms

FhAðtÞ has been written as the sum of an average value hFhAi
and a time-dependent term �FhA, ’A is the phase value of

hFhAi and �FhA, and ’SA is the phase value of hFhAi þ FhS. A

vector representation of equation (2) is given in Fig. 1. It is

worth noting our assumption that during the MED experiment

the vector �FhA only changes its modulus, while its phase ’A

remains constant: such an assumption is specific for the

modulations that will be considered in the following. If we

assume the same variations for all the active atoms, the

corresponding variations of the structure factors can be

written as

�FhA ¼ �PðtÞ FhA

� �
; ð3Þ

where �P is �nðtÞ=hni in the case of occupancy (n) variations,

½�f 0ðtÞ þ i�f 00ðtÞ�=ðh f 0i þ ih f 00iÞ if the real ( f 0) and imaginary
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Figure 1
Vector representation of the structure factors for active (A) and spectator
(S) atoms in a MED experiment.
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( f 00) parts of the atomic scattering factors vary, or ��BðtÞh2 in

the case of small thermal factor (B) variations, so that

�Bh2 � 1 (Caliandro et al., 2013). In the general case, such

variations can be expressed by

�P ¼ j�PjgðtÞ; ð4Þ
where gðtÞ is a function that describes the time behaviour of

the response of the crystal system to the stimulus variations. It

is worth noticing that variations of the atomic coordinates can

be hardly described by equation (3), and hence such variations

cannot in general be recovered by MED. By relating equations

(2), (3), and (4), equation (1) can be rewritten as

Að2�; tÞ ¼ P
h

mhLh f ð2�; 2�h; tÞ

� �
�Pj j FhA

� �
gðtÞ� �2 þ FhA

� �þ FhS

�� ��2

þ 2 �Pj j FhA

� �
gðtÞ FhA

� �þ FhS

�� �� cosð’A � ’SAÞ
�

þ bð2�; tÞ; ð5Þ
which means that the data matrix, once the background is

subtracted, can be written as the sum of three terms, each

having specific time dependence:

Að2�; tÞ � bð2�; tÞ ¼ Rð2�; tÞgðtÞ2 þ Sð2�; tÞgðtÞ þ Tð2�; tÞ:
ð6Þ

Here

Rð2�; tÞ ¼ P
h

mhLh f ð2�; 2�h; tÞ �Pj j2 FhA

� �2
;

Sð2�; tÞ ¼ P
h

mhLh f ð2�; 2�h; tÞ2 �Pj j FhA

� �
FhA

� �þ FhS

�� ��
� cosð’A � ’SAÞ;

Tð2�; tÞ ¼ P
h

mhLh f ð2�; 2�h; tÞ FhA

� �þ FhS

�� ��2
:

8>>>>>><
>>>>>>:

ð7Þ

The first term of equation (7) has contributions only from

active atoms, and Rð2�; tÞ can be interpreted as the set of XPD

profiles that would be measured if the crystal system were

constituted by active atoms only. The second term depends on

both active and spectator atoms, so Sð2�; tÞ gives information

about the interaction between the active and spectator sub-

lattices. The third term has contribution from the part of the

structure factors which does not vary with time.

In accordance with the hypothesis that the peak shape

function and the peak position do not vary with time, i.e. the

crystallite size, defectivity and cell parameters are not affected

by the stimulus, equation (6) can be rewritten as

Að2�; tÞ � bð2�; tÞ ¼ Rð2�ÞgðtÞ2 þ Sð2�ÞgðtÞ þ Tð2�Þ ð8Þ
and Rð2�Þ represents the diffraction intensities as determined

by the averaged crystallographic parameters of the active

atoms.

2.1. Demodulation by phase sensitive detection

If the stimulus is periodic with period Tp, one way to extract

dynamic information from the set of measured patterns is to

demodulate it through the following integral:

Akð2�; ’Þ ¼
2

Tp

ZTp

0

Að2�; tÞ � bð2�; tÞ½ � sin k!t þ ’ð Þ dt: ð9Þ

It implements the concept of the lock-in amplifier, in which the

(background-subtracted) response of the system Að2�; tÞ �
bð2�; tÞ is multiplied by a reference signal sinðk!t þ ’Þ, inte-

grated over the period of the stimulus Tp and normalized by

the factor of 2/Tp. The demodulated signal Akð2�; ’Þ only

contains the components of Að2�; tÞ � bð2�; tÞ varying at the

same frequency as the reference signal. This technique is

called phase sensitive detection (PSD) and is extensively used

in spectroscopy to select the portions of the spectra that

change under the influence of the periodic stimulus (see for

example Urakawa & Baiker, 2006). Under the same hypoth-

eses as equation (8) and by using equation (1), equation (9)

can be rewritten as

Akð2�; ’Þ ¼
X
h

mhLh f ð2�; 2�hÞ
2

Tp

ZTp

0

FhðtÞ
�� ��2

sin k!t þ ’ð Þ dt:

ð10Þ
Hereafter, we only consider the time-independent quantity

Akðh; ’Þ ¼
RTp

0

FhðtÞ
�� ��2

sin k!t þ ’ð Þ dt: ð11Þ

The demodulation integral in equation (9), applied to equa-

tion (2), extracts only the time-dependent terms and

suppresses the time-independent contributions arising from

FhS and hFhAi, leading to

Akðh; ’Þ ¼ �Pj j FhA

� �� �2 RTp

0

g2ðtÞ sin k!t þ ’ð Þ dt

þ 2 �Pj j FhA

� �
FhA

� �þ FhS

�� �� cosð’A � ’SAÞ
� �

� RTp

0

gðtÞ sin k!t þ ’ð Þ dt: ð12Þ

It has been demonstrated (Chernyshov et al., 2011) that if the

periodic function gðtÞ can be expanded in a Taylor series with

only odd (even) coefficients, i.e. it has an exact odd (even)

symmetry in time, then A2ðh; ’Þ will be proportional to

½j�PjhFhAi�2, i.e. the signal demodulated at k = 2 will only

contain contributions from active atoms. For example, if

gðtÞ ¼ sinð!t þ �Þ, then A2ðh; ’Þ ¼ ðT=4Þ sinð2�� ’Þ �
½j�PjhFhAi�2. As a consequence, by considering equations (7)

and (10), the demodulated term A2ð2�; ’Þ will be proportional

to the above-defined function Rð2�Þ. Therefore, PSD is able to

recover the diffraction intensities as determined by the aver-

aged crystallographic parameters of the active atoms, by using

the fact that atomic variations occurring at the same frequency

as the external stimulus are effectively varying with double

this frequency in the diffraction intensities, as they are

proportional to the square of the diffraction amplitudes.

Following the above arguments, a figure of merit for PSD

demodulation can be introduced, which measures the degree

of symmetry in time of the response. It is defined as

research papers

J. Appl. Cryst. (2015). 48, 1679–1691 Rocco Caliandro et al. � Multivariate analysis for modulated enhanced diffraction 1681
electronic reprint



FOMFFT ¼
PN=2

i¼2

FT gðtÞ½ ��� ��	 

even

� PN=2

i¼1

FT gðtÞ½ ��� ��	 

odd

����
����

PN=2

i¼2

FT gðtÞ½ ��� ��	 

even

þ PN=2

i¼1

FT gðtÞ½ ��� ��	 

odd

; ð13Þ

where N is the number of measurements forming the profile

gðtÞ, the symbol FT represents the (discrete) Fourier trans-

form, and the summations refer to even and odd Fourier

frequencies as indicated by the subscripts. The higher the

even–odd frequency asymmetry in the power spectrum of gðtÞ,
the higher the value of FOMFFT, and the higher the efficiency

of the PSD demodulation, since the hypothesis underlying this

approach is better satisfied. Conversely, low values of FOMFFT

characterize asymmetric or nonperiodic gðtÞ functions.

2.2. Decomposition by multivariate analysis

Equation (8) represents a linear decomposition of the

background-subtracted data matrix Að2�; tÞ � bð2�; tÞ into the

matrix ½Rð2�Þ; Sð2�Þ;Tð2�Þ�, which is defined for each 2� value,

and the matrix ½gðtÞ2; gðtÞ; 1�, describing the time dependence

of the data and defined for each value of the stimulus. Such

decomposition can be conveniently obtained by a variety of

multivariate methods. One of these methods is principal

component analysis (PCA), which is a projection algorithm

used to reduce the dimensionality of multivariate data.

To better explain the multivariate approach, we will here-

after use a matrix notation, where the data matrix

Að2�; tÞ � bð2�; tÞ is written as the matrix Xðm; nÞ, of size M �
N, in which the columns run over the variables (2�) and the

rows over the diffraction profiles taken at different times (t).

In PCA the data matrix is decomposed into a number of

principal components (PCs) that maximize the explained

variance in the data on each successive component, under the

constraint of being orthogonal to the previous PCs:

X ¼ UW0; ð14Þ
where the transformation is defined by a set of N-dimensional

vectors of N loadings W(:,n) (this notation addresses the nth

column vector of W) that map each row vector of X to a new

vector of principal component (or scores) U(:,n) (U has size

M � N). The loadings are calculated as the eigenvectors of the

covariance matrix of the data, XTX; the magnitude of the

corresponding eigenvalues represents the variance of the data

along the eigenvector directions (Wold et al., 1987).

A relevant application of PCA is that, in many problems,

the initial dimensionality of the data set, equal to the number

of columns (N), can be reduced if the total variance can be

approximated by the first (few) k components. The number k

then represents the effective number of PCs used in the

approximation:

Xðn;mÞ ¼ PN
l¼1

Uðn; lÞWðm; lÞ ffi Pk

l¼1

Uðn; lÞWðm; lÞ: ð15Þ

The data matrix can be projected into a new coordinate

system, given by the loadings. Plots based on this coordinate

system are known as the score plots and can be used to reveal

patterns in data. Score and loading vectors are then two

alternative representations of the data matrix: the former

characterize it in the sample space, the latter in the variable

space.

When applied to the set of XPD patterns, PCA can be

interpreted as sketched in Fig. 2. A powder diffraction profile

(sample) can be seen as a data point of an N-dimensional

space, where N is the number of 2� values (variables), while

the coordinates of the point in a reference system of this space

are the values of intensity associated with each 2� value. PCA

can reduce the dimensionality of this representation, by using

a reference system with only k orthogonal axes that represent

the directions of maximum variability of the data. The coor-

dinates of the data point in this new reference system are the

scores, while the loadings are the coefficients which define the

N directions with respect to the original reference system.

In the framework of the MED technique, PCA can supply

an approximated decomposition, by projecting equation (8) in

a space with k = 2. The approximation comes from the fact

that, apart from their magnitude, the components in equation

(8) might be correlated. The first principal component (PC1) is

thus an approximation of the term Sð2�ÞgðtÞ, because it is

larger than the others, having contributions from all the atoms

of the crystal system. The second principal component (PC2)

is an approximation of the term Rð2�ÞgðtÞ2, while the third

term is neglected, being constant in time (and represents the

unexplained variance that is neglected in the approximation

done using k = 2) (see Palin et al., 2015). The matrix

½Rð2�Þ; Sð2�Þ� is then approximated by the loadings of the first

two principal components, i.e. W(:,1) and W(:,2), and the

matrix ½gðtÞ2; gðtÞ� by their corresponding scores, i.e. U(:,1) and

U(:,2). As a matter of fact, Rð2�Þ is obtained as the loading

associated with PC2, and gðtÞ is obtained as the scores asso-

ciated with PC1. Moreover, a condition should be verified

between PC2 and PC1 scores: one should be proportional to

the square of the other.
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Figure 2
Schematic representation of a hypothetical powder diffraction profile (P)
constituted by N = 3 intensity values (I1, I2, I3) for respective 2� values
(2�1, 2�2, 2�3). When projected in the space of the principal component
directions PC1 and PC2, it can be described by only two values: Score1

and Score2.
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It is worth noting that, if the hypothesis that the peak shape

and position do not change with the stimulus does not hold,

the PCA decomposition cannot be accomplished, because

equation (8) is not valid and the dependence on 2� and t

variables cannot be separated.

3. PCA adapted to MED

As elaborated in x2, an optimal demodulation/decomposition

of the MED signal would be characterized by the condition

that Rð2�Þ is positive for each value of 2� [see equation (7)].

For PCA, this condition applies to the loadings associated with

PC2. In addition, the PC2 scores should be proportional to the

square of the PC1 scores. In the previously presented

geometrical view, these two conditions constrain the direction

of PC2 to lie in the positive sector of the reference system in

the N-dimensional space, and the arrangements of the data

points in the PC2–PC1 plane, which should follow a parabolic

trend. In the following, we will refer to these conditions

through the following notation:

Uð:; 2Þ ¼ �Uð:; 1Þ2 þ "; ð16Þ

Wð:; 2Þ> 0; ð17Þ
where for the loadings and scores we have used the notation of

the previous section. We here remark that the proportionality

between the second and the square of the first score is given up

to a residual ", which represents the limitations to further

model the residual terms [as Tð2�; tÞ in equations (6) and (7)].

Previous reasoning suggests that application of PCA to

MED data requires a number of constraints to be imposed

[equations (16) and (17)]. Constrained PCA (CPCA) provides

a common framework to introduce constraints on scores and

loadings (Takane & Hunter, 2001). In the CPCA approach the

data matrix is firstly modelled as the sum of different contri-

butions, each one pertaining to a different kind of constraint

(on samples or on variables), then decomposition in scores

and loadings is achieved within each term X ¼ GMH0 þ
BH0 þGCþ E. As explained by Takane & Hunter (2001), the

first term in the CPCA model pertains to what can be

explained by both G and H, the second term to what can be

explained by H only, the third term to what can be explained

by G only, and the last term is the residual of the model. Here

G and H are the matrices including external information (the

constraints) on the data samples and on the variables,

respectively.

However, the conditions in equations (16) and (17) cannot

be set as described above, since we firstly make a PCA

decomposition, to find (without constraints) the different

contributions in equation (8), and then we apply the

constraints, i.e. we impose some conditions on the scores (the

time profile) and loadings (the diffraction intensities) to satisfy

the nature of the problem. The idea proposed here is then to

modify the PCA by introducing such constraints, specific to

the MED analysis. In PCA decomposition, it results that the

scores are orthogonal to each other. Since this constraint is not

required by the MED problem, and indeed its application

could be detrimental, we allow the score axes to change their

direction, by exploring the k-dimensional space (already

reduced to the principal components) driven by a properly

defined cost function. The idea is that we are able to detect the

optimal rotated axes of a low-dimensional space (where data

still have a meaningful representation) by minimizing an

objective function, provided that the two conditions in equa-

tions (16) and (17) are satisfied. It is worth noting that, in this

perspective, the axes will be no longer orthogonal.

To formalize the problem, we start the analysis by detailing

the case k = 2. After a PCA, the (approximated) data matrix is

in the form

X ffi UðkÞW
0
ðkÞ; ð18Þ

where U(k) and W(k) are matrices of size [M � 2] and [N � 2],

respectively. The subscript (k) refers to the first k columns of

both the scores and the loadings matrices. Equivalently,

equation (18) can be rewritten in the following way:

X ffi UðkÞT
� �

T�1W0
ðkÞ

� �
; ð19Þ

in which T is a [k � k] (in our case [2 � 2]) matrix, very similar

(but not equal) to a rotation matrix. If we put

T ¼ cos� sin 
sin� cos 

 �
; ð20Þ

where � and  are two independent parameters defining the

change in direction of the axes, it is very simple to show that

T�1 ¼ 1

cos �þ  ð Þ
cos � sin 
� sin� cos �

 �
: ð21Þ

The new scores are then

ÛU ¼ UðkÞT
� � )

ûuðm; 1Þ ¼ uðm; 1Þ cos �þ uðm; 2Þ sin�

ûuðm; 2Þ ¼ uðm; 1Þ sin þ uðm; 2Þ cos 

	
m ¼ 1; :::;M

ð22Þ
and the new loadings are

ŴW ¼ T�1W0
ðkÞ

� � )
ŵwðn; 1Þ ¼ 1

cos �þ  ð Þ wðn; 1Þ cos � wðn; 2Þ sin ½ �

ŵwðn; 2Þ ¼ 1

cos �þ  ð Þ �wðn; 1Þ sin�þ wðn; 2Þ cos ’½ �

8>><
>>:

n ¼ 1; :::;N: ð23Þ
The main properties of the matrix T are that (i) the variances

associated with the first and second scores do not change in

such a transformation (the columns of T have norm 1) and (ii)

the changes in the directions of the two scores are indepen-

dent (� 6¼  ).

Actually, two figures of merit (i.e. cost functions for the

minimization problem) have been defined as internal criteria

to assess the quality of the MED decomposition, which

implement conditions (16) and (17), respectively:
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(1) The Pearson correlation coefficient between the second

(rotated) score and the square of the first (rotated) score (h�i
stands for average on the m index):

FOMscores

¼
PM
n¼1

ûuðm; 1Þ2 � ûuðm; 1Þ2
� �� �

ûuðm; 2Þ � ûuðm; 2Þ� �� �����
����

PM
n¼1

ûuðm; 1Þ2 � ûuðm; 1Þ2
� �� �2

	 
1=2 PN
n¼1

ûuðm; 2Þ � ûuðm; 2Þ� �� �2

	 
1=2
:

ð24Þ
This figure of merit requires that the mean square of the

residual " in equation (16) is minimum, regardless of the

proportional term �. The absolute values in the numerator

account for the sign ambiguity of PCA scores.

(2) The normalized difference between the positive and the

negative parts of the area underlying the second loading:

FOMloadings ¼
PN
n¼1

ŵwðn; 2Þ>�ŵw

� �� PN
n¼1

ŵwðn; 2Þ< � �ŵw

� �����
����

PN
n¼1

ŵwðn; 2Þ>�ŵw

� �þ PN
n¼1

ŵwðn; 2Þ< � �ŵw

� �����
����
;

ð25Þ
where ŵwðn; 2Þ is the intensity of the second loading at the

angle 2�n, rotated by using equation (23), and �ŵw is the stan-

dard deviation of ŵwðn; 2Þ. Thus FOMloadings measures the

positive–negative asymmetry of the second (rotated) loading;

its definition is dictated by the fact that the overall sign of the

PCA loadings ŵwðn; 2Þ is arbitrary.

Both the figures of merit have 1 as the highest and best

value. The idea is to find the optimal combination of ð�; Þ
verifying equation (24) with the constraint in equation (22).

Thus the cost function to be maximized is FOMscores, while

FOMloadings serves as a control for the convergence of the

search procedure.

The method can be generalized to k 6¼ 2. In this case the

PCA decomposition can be rewritten as

X ffi UðkÞT
� �

T0ðTT0Þ�1
� �

W0
ðkÞ

� �
; ð26Þ

where the matrix T has now size [k � 2] and ½ðT0ðTT0Þ�1� is the

Moore–Penrose generalized inverse of T. The degree of

freedom in T is now 2(k � 1), since we have

T ¼
�1

�2

..

.

�k

�1

�2

..

.

�k

2
6664

3
7775 ð27Þ

together with the constraints

Pk

i¼1

�2
i � 1 ¼ 0

Pk

i¼1

�2
i � 1 ¼ 0

8>><
>>:

ð28Þ

to preserve the variance associated with the scores. The

rotated scores are, in this case,

ÛU ¼ UðkÞT
� � )

ûuðm; 1Þ ¼ Pk

i¼1

uðm; iÞ�i

ûuðm; 2Þ ¼ Pk

i¼1

uðm; iÞ�i

8>>><
>>>:

m ¼ 1; :::;M:
ð29Þ

The general solution is hence given by the determination of

the unknowns in T, to be found by the solution of the following

constrained optimization problem:

Tð�i; �iÞ
� �

opt
¼ arg max

T
FOM U;W;Tð�i; �iÞ

� �� �
;

s:t: :

Pk

i¼1

�2
i � 1 ¼ 0

Pk

i¼1

�2
i � 1 ¼ 0

8>>><
>>>:

ð30Þ

where the figure of merit can be either the one in equation

(24) or that in equation (25). In the case of k = 2 the previous

problem is just an optimization problem (without constraints),

since the form of the matrix T in equation (27) automatically

includes the normalization.

This algorithm, which we call optimum constrained

components rotation (OCCR), provides the optimal coeffi-

cient for the rotation of the scores. The rotation of the load-

ings is given by equation (19) for the case where k = 2 or by

equation (26).

It is worth noting that while CPCA first decomposes the

original data matrix into several components (external

analysis) and then applies PCA to each components sepa-

rately, or to some of the components combined (internal

analysis), the proposed OCCR technique applies PCA to the

data set and imposes the specific constraints of equations (16)

and (17) by rotating each component separately, relaxing the

orthogonal conditions between the scores.

Furthermore, it may be appropriate to remark here that

differences exist also between OCCR and multivariate curve

resolution (MCR), the latter being a multivariate analysis

algorithm proposed especially in the chemometric research

field. MCR is a data-driven method, i.e. it decomposes the data

set with limited or no information on the system, and it intends

to recover the pure response profiles (they can be spectra, pH

profiles, time profiles) of the chemical constituents or species

of an unresolved mixture obtained in chemical processes (see

http://www.mcrals.info/). MCR (Lawton & Sylvestre, 1971;

Sylvestre et al., 1974), starting from PCA, tries to refine the

solution by determining a decomposition into two matrices

(the ‘concentration’ profiles C and the ‘spectra’ profiles S of

individual components, corresponding to the scores and

loadings in our case) that are both non-negative. The two

matrices are found by solving a constrained least-squares

problem and starting from the reduced data matrix XPCA

achieved after the application of an initial PCA to original

data:
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X ¼ CS0 þ E;

C; S s:t: :

min
ĈC

XPCA � ĈCŜS
0��� ���

min
ŜS

XPCA � ĈCŜS
0��� ���

8><
>:

ð31Þ

This problem is exactly the alternating least-squares (ALS)

algorithm applied in the non-negative matrix factorization

(NNMF) algorithm (Lee & Seung, 2001; Berry et al., 2007;

Voronov et al., 2014). The algorithms OCCR and MCR have

similarities: they both start from an initial PCA to reduce the

dimensionality and they both try to decompose the data

matrix into the product of two matrices. However, they have

basic differences:

(a) In OCCR the solution is given without solving a least-

squares problem, as happens in MCR, since equation (30) is

solved using a general optimization method and the unknowns

[i.e. the elements of matrix T in equations (20) or (27)] are not

linearly related to the figure of merit. As a consequence, MCR

looks for solutions that are approximations of the initial

matrix [XPCA in equation (31)], while in OCCR the solution is

the optimization of a figure of merit properly designed for the

MED problem.

(b) OCCR does not impose the constraint that both the

matrices be positive, as MCR does.

We did not consider applying MCR (which is basically a

constrained NNMF algorithm) to the MED problem for the

following two reasons:

(1) The NNMF solution is very sensitive to initial conditions

[i.e. the starting values given to matrices C and S to iteratively

solve equation (31)], as demonstrated by the extensive

literature on such problems (see for example Langville et al.,

2006).

(2) In the MED case, we do not have to require both the

matrices of the decomposition to be positive. In detail, if k = 2,

we need only the second loading to be positive, while the first

loading, as well as the first score, can have both positive and

negative parts, owing to the term cosð’A � ’SAÞ [see equation

(7)]. Instead, the condition in equation (16) can be applied in a

variant of the NNMF. [Many variants have been developed for

NNMF and resumed by MCR. See for example Li et al.

(2007).]

We tried to modify the ALS algorithm by relaxing the non-

negativity condition (applied just for the second loading) and

trying to impose the constraint in equation (16), but the results

were not as successful as those achieved with OCCR.

4. Applications

To test the above concepts, we have chosen CuFe2O4, known

as an inverse spinel, in its cubic form. The copper ions sit

predominantly on octahedral cation sites and the iron atoms

split between octahedral and tetrahedral ones (Fig. 3). It has

been shown to be a catalyst for the water–gas shift (WGS)

process, in which carbon monoxide reacts with water to

produce carbon dioxide and molecular hydrogen. Several

crystal phases are expected to play a role in the WGS reaction,

and the configuration and properties of its active sites are still

a matter of debate (Papavasiliou, 2004; Men et al., 2004). To

reproduce the working condition, CuFe2O4 was exposed in situ

to a mixture of CO/H2O, and time-resolved X-ray powder

diffraction measurements were performed.

Previous temperature programmed reduction in CO studies

showed that metallic Cu0 and CuO crystal phases are formed

in addition to the cubic CuFe2O4, with a mole fraction varia-

bility in the ranges [0, 0.5] and [0, 0.1], respectively. Moreover,

the occupancy of the octahedral site in CuFe2O4 is expected to

change with occupancy variations between 0.8 and 0.9 in a

complex way (Estrella et al., 2009). The calculated XPD

profiles from the sole Cu atom and the whole CuFe2O4 crystal

phase are compared in Fig. 3.

The published variation of the octahedral site occupancy

suggested that the system could be a good test of the MED

technique. Model calculations showed that a 20% variation in

the occupancy of the octahedral site could be extracted from

demodulation of cyclic model data (Dooryhee et al., 2014;

Tutuncu et al., 2015). These model data did not include any of

the other phases that are present in the experimental powder

pattern and did not model the cell dimension changes in

CuFe2O4 that occur as the Cu is removed. However, the PSD

demodulation of experimental data to determine the change

of octahedral Cu2+ did not yield the expected trend. This could

be attributed to the peak overlap of CuFe2O4 with the Cu0 and

CuO powder patterns, the peak shifts, and a nonlinear

response of XPD data to a square wave cyclic pulse. In

addition, the experimental octahedral Cu2+ occupancies may

have been overestimated in the published refinement, because

there is a high correlation between the weight fraction and the

occupancy.

The above problems make this system a challenging appli-

cation of the multivariate analysis here proposed. To tackle

the complex real data we preliminarily applied the algorithms

to simulated data, where the expected variations were
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Figure 3
Crystal structure of CuFe2O4, with Cu atoms in red, Fe atoms in yellow
and O atoms in blue, and calculated X-ray diffraction patterns (	 =
0.3196 Å) of the entire structure (black) and of the Cu atoms only (red).
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implemented with an increasing level of complexity. The

successful application of these techniques to real data is also

presented.

4.1. Experimental data collection

X-ray data were collected at the beamline X7B of the

National Synchrotron Light Source (NSLS) at Brookhaven

National Laboratory with an X-ray energy of 38 keV

(0.3196 Å) and 0.5 � 0.5 mm beam size. A large two-dimen-

sional Perkin Elmer area detector (2048 � 2048 pixels and

200 � 200 mm pixel size) was mounted orthogonal to the beam

path, 400 mm downstream from the sample. Raw two-

dimensional data were azimuthally integrated and converted

to one-dimensional intensity versus 2� by using the FIT2D

program (Hammersley et al., 1996). Lanthanum hexaboride

was measured as standard material to calibrate the sample and

detector geometry, including the sample-to-detector distance.

Several periods of measurements were performed, with CO

flowed in the first half-period, and O2 in the second one, thus

reproducing a square-wave stimulus. The temperature was

kept constant at 508 K.

4.1.1. Data generation and analysis. Simulated data

representing occupancy variations of the Cu atom in CuFe2O4

were generated by using the program GSAS (Larson & Von

Dreele, 1995; Toby, 2001). Occupancy values beyond realistic

limits were used, for extensive tests of our algorithms.

Experimental and simulated XPD profiles were processed by

the programs 2DMED (Tutuncu et al., 2015) to implement the

PSD demodulation and RootProf (Caliandro & Belviso, 2014)

to implement the PCA decomposition, and by a MATLAB

(The MathWorks Inc., Natick, MA, USA) script to implement

the OCCR method. A Rietveld analysis (Rietveld, 1969) was

performed on real data by using the program QUANTO

(Altomare et al., 2001); crystal structures have been displayed

by the viewer JAV (Burla et al., 2012).

4.2. Results on simulated data

Our first goal was to check the ability of the multivariate

decomposition to detect and quantify occupancy variations for

different kinds of system response and compare its perfor-

mance with that of the PSD demodulation. Different patterns

of occupancy variations for the Cu atom within the CuFe2O4

crystal phase were implemented, starting from regular ones,

resembling triangular, sinusoidal or square waves, and then

increasing their complexity, by introducing fast, slow or

asymmetric decay in the square waves. These represent the

profile of the function gðtÞ introduced in x2. Notably, the scores

of the first principal component obtained by OCCR are

perfectly superimposed on the occupancy values used in the

simulations (Fig. 4). Since the scores are in arbitrary units, in

Fig. 4 they have been rescaled as follows:

scores0 ¼ occh i þ �occ

scores � scoresh i
�scores

; ð32Þ

where hocci and �occ are, respectively, the mean value and the

standard deviation of the occupancy values put in the simu-

lations, and hscoresi and �scores are the same quantities for the

OCCR scores values. The scaling proposed in equation (32) is

simply one of the possible methods (remove the score mean,

scale to the occupancy dynamics, add the occupancy mean) to

obtain a satisfying visual comparison between the score of the

first principal component obtained by OCCR and the actual

occupancy values. It works so nicely because the two profiles

have very similar shape (the degree of similarity, without any

scaling, can be inferred by the value of the Pearson correlation

coefficient as in Table 1).

Regarding the loadings, the case of sinusoidal variation of

occupancy (SI) is shown as an example in Fig. 5. xx2 and 3

show that the loadings of the second principal component

represent the XRD diffraction pattern related to the active

part of the crystal system, i.e. Rð2�Þ in the notation of equation

(7), and in fact those obtained after OCCR (Fig. 5, full line)

coincide with the calculated diffraction pattern from the Cu

atom (Fig. 3, red line). Conversely, the loadings from PCA

have negative peaks which hinder their use in phasing

procedures aiming at finding the positions of the active atoms.
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Figure 4
Values of the occupancy of the Cu atom set in the simulations (blue) and
scores of the first principal component (red) obtained after the OCCR
procedure and rescaled according to equation (32).
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The overall results obtained for simulated data are

summarized in Table 1, where the Pearson correlation coef-

ficients between the calculated XRD profiles of the Cu atom

and the profiles obtained by PCA and OCCR demodulation

(corresponding to their PC2 loadings), and those obtained by

PSD demodulation, are compared. Other simulated system

responses have been added with respect to those reported in

Fig. 4, to explore other system responses (ramp) and/or

different ranges spanned by occupancy values. It can be noted

that PCA can only approximate the true Rð2�Þ profiles, as the

correlation coefficient can be much lower than 1. As an

example, the value of 0.478 is obtained for the case of TR,

shown in Fig. 5, where most of the low-angle peaks of the true

profile are completely missed by the PCA decomposition. It is

worth noting that the PCA results are related in an unpre-

dictable way to the system response. For example, the corre-

lation coefficient is 0.940 if the occupancy is varied as a

sinusoid between 0.0 and 0.4, or 0.521 if it is varied in the same

way between 0.8 and 1.0. The way PCA behaves is basically

related to the criterion that its components be orthogonal (i.e.

uncorrelated), while the time-dependent terms present in the

MED signal are strongly correlated [see equation (8)].

Moreover, most of the data variance is accounted for by PC1,

while PC2 is only a small fraction (see Table S1 in the

supporting information), so the direction of the PC2 eigen-

vector is not well defined. OCCR overcomes both problems by

using the MED relations (16) and (17) to explore the space of

the solutions with non-orthogonal components. In fact OCCR

is able to perfectly reproduce the true Rð2�Þ profiles in all the

considered cases, i.e. it is able to properly change the inten-

sities of the PCA profiles to match the XRD profile of the

active atom, as shown in Fig. 5. Notably, the performance is

independent of the system response and of the spanned range

of values. The PSD demodulation produces the same results as

OCCR for periodic responses at definite symmetry in time. If

the response is made asymmetrical (SQ_asym) or nonperiodic

(ramp), the correlation coefficient of PSD drops significantly

(nonperiodic signals are demodulated by assuming that they

continue periodically). This behaviour is expected from the

PSD theory (see x2.1), and in fact the trend of the correlation

coefficient for PSD reproduces that of the FOMFFT values.

Specifically, a perfect PSD demodulation occurs for FOMFFT >

0.80, while a dramatic decrease of PSD efficiency occurs for

FOMFFT < 0.70, where OCCR gives much better results. Thus

OCCR is the only option to treat MED data when FOMFFT <

0.70.

A comprehensive analysis of the Rð2�Þ profiles assessed by

the different methods is given in Fig. 6, where they have been

classified by PCA. Each point in the scatter plot of the PC2

versus PC1 scores represents a decomposed or demodulated
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Figure 5
X-ray diffraction patterns obtained after PCA (blue dots) and OCCR
(red line) decomposition applied to the simulation with triangular
variation of the Cu occupancy (TR). The calculated profile from the Cu
atom coincides with that after OCCR decomposition.

Figure 6
Results of the MED analysis on simulated profiles. The calculated profile
from the Cu atom (True) is compared with profiles demodulated by PSD
and decomposed by PCA, through a PCA analysis. They are all
represented as points in the scatter plot of the second (PC2) versus the
first (PC1) principal component. The data variance explained by the PC is
reported in parentheses. X-ray powder diffraction profiles corresponding
to each point or cluster of points are shown, zoomed in the 2� range [6.0	,
15.5	] and by using lines of different colour. All the profiles obtained by
OCCR and those obtained by PSD for simulations SI, TR and SQ
coincide with the True profile.

Table 1
Results of the MED analysis on simulations where the occupancy of the
Cu atom is varied according to various functions (system response).

PCA, OCCR and PSD are the values of the Pearson correlation coefficient
between the calculated XRD profile of the Cu atom and those obtained,
respectively, by PCA or OCCR decomposition, or by PSD demodulation.
FOMFFT is the figure of merit for PSD demodulation, as defined in equation
(13). The intervals spanned by the occupancy values are reported in square
brackets.

System response Acronym PCA OCCR PSD FOMFFT

Sinusoidal [0 0.4] SI 0.940 1.000 1.000 1.00
Triangular [0.8 1] TR 0.478 1.000 1.000 0.94
Square, slow decay [0 1] SQ 0.695 1.000 1.000 0.79
Square, fast decay [0 1] SQ_fast 0.704 1.000 0.860 0.70
Square, asymmetric decay [0 1] SQ_asym 0.684 1.000 0.316 0.64
Sinusoidal [0.8 1] – 0.521 1.000 1.000 1.00
Ramp [0.8 1] – 0.609 1.000 0.788 0.24
Ramp [0 1] – 0.919 1.000 0.215 0.15
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profile, and its separation from the calculated profile (True)

signifies the differences between the profiles. To appreciate

the distance between points, one should take into account the

amount of data variance explained by PC1 and PC2, reported

in Fig. 6: separations along the PC1 axis are much more

relevant than those along the PC2 axis. The low-angle part of

the profiles associated with single points or groups of points is

also shown in Fig. 6. All the profiles obtained by OCCR have

their representative points perfectly superimposed on the

‘True’ point, and they all coincide with the profile shown in the

corresponding profile panel. The same holds for PSD demo-

dulated profiles calculated for simulations with symmetric

response (SI, TR, SQ), while those obtained from simulations

with asymmetric response (SQ_asym and SQ_fast) are very far

from the ‘True’ point, and the corresponding panels show

peaks with negative (SQ_asym) or anomalous (SQ_fast)

intensities. PCA decomposition represents an intermediate

result: none of its points overlap with the ‘True’ one, but they

are closer to it than the PSD demodulated profiles from

simulations with asymmetric responses. In particular, TR has a

profile that is close to that obtained by PSD applied on

SQ_asym; SQ, SQ_fast and SQ_asym have similar profiles,

with very small negative peaks, and SI has a profile close to the

True one, with no negative peaks.

Further insights into the performance of the multivariate

analysis can be gained by inspection of Table 2, where

CORRscores is the Pearson correlation coefficient between the

implemented gðtÞ values and the PC1 scores, and FOMscores

and FOMloadings are defined in x3, equations (24) and (25),

respectively. The values in Table 2 refer to PCA decomposi-

tion, while the corresponding values after OCCR are all 1.0.

Thus the first evidence is that OCCR is able to optimize both

the loadings and the scores output of the PCA, by supplying

precise estimates of the Rð2�Þ profile and the gðtÞ trend. The

second evidence is that the PCA can estimate the scores of the

first two principal components much better than the corre-

sponding loadings. In fact, both CORRscores, expressing the

agreement of the PC1 scores with the gðtÞ trend, and

FOMscores, assessing the expected relation between PC1 and

PC2 scores, have values higher than 0.860 for all simulated

cases. FOMloadings can instead be as low as 0.437, as the

presence of negative peaks in the PC2 loadings deteriorate the

agreement with the expected XPD profile (see Fig. 5).

An example of the errors that can be made in estimating

gðtÞ is given in Fig. 7(a), where the scores obtained by PCA

and OCCR for the simulation ramp [0 1] are reported: the

right trend is obtained only after OCCR, while PCA gives a

good approximation, with CORRscores = 0.996. It is worth

noting that for PCA a better estimate for gðtÞ is obtained if a

subset of measurements is taken. In fact, ramp [0.8 1] has

CORRscores = 1; however this occurs at the expense of the

estimate of Rð2�Þ, as FOMloadings drops from 1.00 to 0.44 (see

Table 2). The correlation between PC1 and PC2 scores for the

same simulations is shown in Fig. 7(b): a clear parabolic shape

indicates that the MED condition given by equation (17) is

satisfied. It is only approximated after PCA decomposition

and is exactly followed after OCCR decomposition. In fact,

from the geometrical point of view, equation (16) corresponds

to a parabola having the axis parallel to the Y axis and passing

through x = 0. It is worth remarking that the case shown in
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Table 2
Results of the MED analysis on simulations where the occupancy of the
Cu atom is varied according to various functions (system response).

CORRscores is the Pearson correlation coefficient between the occupancy
values used in the simulation and the scores of the first principal component;
FOMscores and FOMloadings are the values of the figures of merit defined by
equations (23) and (24), respectively. All the values refer to the PCA
decomposition. Corresponding values after OCCR are all equal to 1.0.

System response CORRscores FOMscores FOMloadings

Sinusoidal [0 0.4] 0.999 0.993 1.000
Triangular [0.8 1] 1.000 0.994 0.540
Square, slow decay [0 1] 0.994 0.956 0.876
Square, fast decay [0 1] 0.997 0.860 0.891
Square, asymmetric decay [0 1] 0.996 0.945 0.858
Sinusoidal [0.8 1] 0.998 0.986 0.602
Ramp [0.8 1] 1.000 0.996 0.437
Ramp [0 1] 0.996 0.950 1.000

Figure 7
Scores of the first principal component (PC1) (a) and scatter plot of the
second (PC2) versus the first (PC1) principal component scores (b)
obtained after PCA and OCCR procedures for a simulation where the
occupancy of the Cu atoms varies linearly between 0 and 1. Such an
asymmetric response would not be treatable by PSD.

Figure 8
Contour plots of FOMscores (left) and FOMloadings (right) as a function of
the rotation parameters � and  for the simulation SQ. The paths visited
during the OCCR procedure are highlighted by white dots. The starting
angles are (0, 0).
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Fig. 7 could not be accomplished by PSD, owing to its

nonperiodic response.

The landscapes of FOMscores and FOMloadings in the space of

the rotation parameters � and  , and the actual path followed

during the OCCR minimization procedure, are shown in Fig. 8

for the SQ simulation. Similar plots for the other simulations

are given as supporting information. Interestingly, it results

that the FOMscores landscape has a stronger dependence on the

 parameter, while the FOMloadings landscape only depends on

the � parameter. This can be explained by the fact that

FOMscores is mainly influenced by changes in the orientation of

the smaller PC2 axis with respect to the larger PC1 axis.

Therefore its dependence on ÛUð:; 2Þ, which in turn depends on

the  rotation angle [equation (22)], is stronger than that on

ÛUð:; 1Þ, while FOMloadings depends only on ŴWð:; 2Þ [equation

(25)], which in turn depends only on the parameter � [equa-

tion (23)].

The dependence of the multivariate decomposition on

sampling has been studied for the simulation ramp [0 1], by

removing 2� values uniformly and gradually and comparing

the resulting PC1 scores with the gðtÞ profiles (Fig. 9a). Simi-

larly, measurements have been sampled and the resulting PC2

loadings have been compared with the Rð2�Þ profiles (Fig. 9b).

The results indicate that OCCR maintains its performance

even on decreasing the 2� sampling by a factor of ten, or

reducing the number of measurements to the minimum

allowed for the decomposition, i.e. three. Also, a worse result

is obtained for PCA, which is affected by sampling when the

2� sampling is decreased by a factor of four or when using less

than eight measurements.

4.3. Results on experimental data

When the OCCR procedure was applied to real data

measurements, a trend of the PC1 scores (Fig. 10a) was

obtained, which is very similar to that obtained with the

simulated data SQ_asym (Fig. 10b). Thus the response of the

system for real data resembles that of a square wave with

asymmetric decay, like that implemented in SQ_asym. The FT

analysis of the OCCR scores suggests a more pronounced

asymmetry for real data, as FOMFFT is 0.38, compared to the

value of 0.64 for SQ_asym.

The obtained time dependence of the system response can

be readily interpreted on the basis of the experimental

conditions and on a (static) Rietveld analysis carried out on

each measured profile, separately. Data can be clearly divided

into two half-periods:

(a) During measurements from 1 to 91 the fluxed CO

produces a decrease in the amount of the CuFe2O4 phase,

which is always the dominant phase, and a corresponding

increase in the amount of the Cu0 phase. These trends are

smooth and highly correlated. The CuO phase is only present

in the first 4–5 measurements.

(b) At measurement 92 a drastic change of experimental

conditions occurs, since CO flow is closed and O2 starts being

fluxed. As a consequence, the Cu0 phase undergoes a sharp

decrease and a CuO phase an abrupt increase.

(c) During measurements from 93 to 180 the amounts of the

CuFe2O4 and CuO phases remain nearly constant, while the

Cu0 phase is present in negligible amount.

However, it should be noted that the Rietveld analysis

cannot precisely disentangle the changes in the relative

abundances of different crystal phases from the variation of

the occupancy of the Cu atom occupying the octahedral site of

CuFe2O4. This is due to the strong overlap between the peaks

of the dominant CuFe2O4 phase and those of the minority Cu0

and CuO phases, the high correlation between refinement

parameters (the octahedral occupancy correlates by �0.82

with the scale factor of the CuFe2O4 phase, and by 0.67 with

the thermal factor associated with the octahedral site), and the

concurrent presence of Cu2+ and Fe2+ ions in the octahedral

site. As an example, the results of the Rietveld analysis of two

measurements in the first and second half-periods are shown
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Figure 9
Sensitivity to sample size. (a) Person’s correlation coefficient between the
loadings of the second principal component and the calculated Cu pattern
as a function of the number of uniformly sampled measurements; (b)
Person’s correlation coefficient between the scores of the first principal
component and the occupancy values used in simulations as a function of
the number of uniformly sampled 2� values. Error bars account for
different ways to sample the corresponding number of 2� values or
number of measurements.

Figure 10
Scores of the first principal component (PC1) obtained after PCA and
OCCR procedures applied to real data (a) and simulated data with
squared asymmetric response (b).
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in Fig. 11, where contributions of the different phases are

highlighted.

The presence of structural changes in the CuFe2O4 phase is

confirmed by the (dynamic) MED analysis, considering the

correlation between PC2 and PC1 scores. The parabolic trend

followed by real data (Fig. 12a) is similar to the trend followed

by simulated SQ_asym data (Fig. 12b), suggesting that the

MED relation of equation (16) is valid also for real data,

although approximated. The corresponding values of

FOMscores are 0.698 after PCA and 0.982 after OCCR, to be

compared with 0.945 and 1.000, respectively, for SQ_asym (see

Table 2).

Beside the encouraging results on scores, those on loadings

were not as good. The OCCR procedure was found to

decrease the value of FOMloadings, which goes from 0.449 after

PCA to 0.370, contrary to the SQ_asym simulation, where it

increases from 0.858 to 1.000 (see Table 2). Similar results are

obtained if subsets of measurement are considered. We envi-

saged three reasons for such a failure:

(1) The tailored multivariate analysis presented in x3 is only

valid if a MED signal is considered, which can be originated by

occupancy, scattering factor or thermal factor variations of a

subset of atoms, according to equations (3) and (4). If,

however, the relative abundance of diverse crystal phases

changes with time, besides structural variations of one of the

phases, the decomposition of equation (8) is no longer valid,

and PCA and/or OCCR will produce unpredictable results.

(2) The time dependence of variations of phase abundances

are highly correlated with those of the occupancy variations.

For this reason, they cannot be empirically assigned to

different principal components by PCA, but more likely they

will be mixed in the same component, definitely hindering the

MED decomposition of its scores.

(3) The XPD peaks influenced by occupancy variations of

the octahedral site significantly overlap with those related to

the CuFe2O4 phase, making it difficult to differentiate the

principal components through their loadings.

For such reasons, the new OCCR approach was able to

extract the time dependence of the overall (structural and

quantitative) variations in experimental data but, similarly to

the PSD approach, not to extract the signal related to changes

in the octahedral site occupancy.

5. Conclusions

In this paper, we took a step forward in the application of the

MED technique. In its original formulation, it could only be

applied to crystal systems that produce a linear response to an

external stimulus. More specifically, the response had to cover

a full period and be perfectly symmetric in the time domain.

This strict requirement, which in practice narrows the scope of

MED, does not come from the technique itself but from the

PSD algorithm used to demodulate the MED signal. Driven

by the need to extend the applicability of MED to real-world

data, we faced the problem by replacing the PSD demodula-

tion by a more flexible approach, based on multivariate

analysis. As a first step, the standard formulation of PCA has

been applied for the purpose: MED data have been decom-

posed into principal components, which are expected to

contain the same information as the harmonic components

coming from PSD. Unfortunately, this decomposition is only

approximate, and we realized that PCA can produce better
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Figure 12
Scatter plot of the second (PC2) versus the first (PC1) principal
component scores obtained after PCA and OCCR procedures applied
to real data (a) and simulated data with squared asymmetric response (b).

Figure 11
Results of the Rietveld analysis applied on measurements No. 5 (a) and
No. 160 (b). Observed (grey), calculated (blue) and difference (red)
profiles are shown. Profiles and reflection positions of CuFe2O4 (violet),
Cu0 (green) and CuO (yellow) phases are also shown.
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results than PSD only for systems with nonlinear response,

while its results are worse than PSD if linear-response systems

are involved. A way to prevent this deadlock was to modify the

PCA approach, by adapting it to MED. We then found rela-

tions between scores and loadings of the principal components

which must be met in the case of perfect decomposition of

MED data, put these in mathematical form by using appro-

priate figures of merit, and developed an algorithm, OCCR, to

modify the principal components in order to fulfil the MED

requirements. We have thus recovered the gap between PCA

and PSD, so that the multivariate analysis is now able to

produce perfect decomposition of MED data for systems with

both linear and nonlinear responses. Another advantage of

the OCCR approach is that its loadings represent the

diffraction pattern due to the active sublattice, thus allowing

chemical selectivity in X-ray diffraction, and, in addition, its

scores represent the system response in the time domain, thus

allowing a dynamic characterization of the crystal system. At

the same time, however, real-world data can be more complex

than expected. In particular, in our experiment the structural

effect related to a nonlinear response to the external stimulus

(gas flowing) is added to variations in abundances of different

crystal phases within a period of application of the stimulus.

The formation and destruction of other crystal phases in

addition to that experiencing structural variations is an effect

that was not foreseen in the original MED theory, and addi-

tional effort is needed to account for such phenomena while

treating MED data. As an additional drawback, we realized

that structural and quantitative changes were highly corre-

lated, in both the time and reciprocal-space (peak over-

lapping) domains. When we applied our OCCR approach to

such real data, we were only able to characterize the time

dependence of the system response through the OCCR scores,

while the information from its loadings was lost. The further

extension of the multivariate analysis approach to MED data

to treat such cases is being developed. Finally, the proposed

OCCR approach gives an elegant solution of the inverse

problem of MED (Chernyshov et al. 2011); this could be

developed to a new tool to probe the kinetic response of

complex systems, as an alternative to Fourier analysis.
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