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Abstract

We use direct numerical simulations in the presence of free-stream turbulence having different values of intensity, Tu, and integral

length scale, L, in order to determine which kind of structures are involved in the path to transition of a boundary-layer flow. The

main aim is to determine under which conditions the path to transition involves structures similar to the linear or non-linear optimal

perturbations. For high values of Tu and L, we observe a large-amplitude path to transition characterized by localized vortical

structures and patches of high- and low-momentum fluctuations. Such a scenario is found to correlate well with the Λ and hairpin

structures resulting from the time evolution of non-linear optimal perturbations, whereas, for lower Tu and L, a larger correlation

is found with respect to linear optimal disturbances. This indicates that a large-amplitude path to transition exists, different from

the one characterized by elongated streaks undergoing secondary instability. To distinguish between the two transition scenarios, a

simple parameter linked to the streamwise localisation of high- and low-momentum zones is introduced. Finally, an accurate law

to predict the transition location is provided, taking into account both Tu and L, valid for both the transition scenarios.
c© 2013 The Authors. Published by Elsevier B.V.
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1. Introduction

Transition from laminar to turbulent flow has a relevant role in many energy-production devices ranging from tur-

bogas power plants to wind turbines [1]. In particular, the performance of turbines and turbo-compressors are strongly

influenced by transition. For instance, being able to accurately control the transition point may allow engineers to re-

duce losses in low-pressure turbines, thus producing more efficient engines. The same control may lead to the design

of more compact axial compressors, using highly loaded blade rows. Moreover, transition has a remarkable impact

on the heat-exchange process, therefore, the control of the transition point becomes fundamental to design effective

cooling systems for high-temperature blade rows, which in turn represent the core of high efficiency power plants. A

thorough knowledge of the boundary layer transition mechanisms is essential to develop techniques to model [2,3]

and control [4] it, in order to improve the performance of modern turbomachinery. It is a very challenging task, since
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transition is a highly non-linear phenomenon, which involves a wide range of scales and depends on many variables

such as pressure gradient, free-stream turbulence intensity, fluid properties, body surface roughness, etc. One of the

most peculiar aspects of shear flows is that they may experience a sudden transition from an ordered motion to a com-

plex turbulent dynamics in response to finite amplitude disturbances. In boundary-layer flows, such a phenomenon

is known as bypass transition in contrast with the natural transition mechanism based on the slower amplification of

Tollmienn-Schlichting waves. Bypass transition is very common in turbomachinery flows since it originates from the

high level of the freestream turbulence, which is typical of such internal flows. In the present work, a numerical study

of the influence of the freestream turbulence on bypass transition in a boundary-layer flow over a flat plate is provided.

Several scenarios have been proposed in the last decade to describe such a fast route of transition [5,6]. The more

established one is grounded on the generation of low-amplitude (O(1/Re), Re being the Reynolds number) streamwise

rolls which induce, by means of the lift-up effect, O(1) streaks eventually undergoing secondary instability of sinuous

type [6,7]. Such streamwise-invariant flow structures have been found to provide at a given time the largest energy

growth through linear non-normal mechanisms, thus representing the linear optimal disturbances for a boundary-layer

flow. As proved by Luchini[8], when a shear flow is perturbed by an external source, disturbances of any shape tend

to the optimal one, even when the initial perturbation is relatively far from the optimal [8]. In the past years, several

authors have observed this types of structures in boundary-layer flows excited by free-stream turbulence (FST) of

moderate intensity (Tu) and integral length scale [5,7] (L). However, recent observations in the presence of large

amplitude localized turbulent slabs [9] or FST [10] of large Tu and L indicate the existence of a different path to

transition, characterized by spanwise vortex structures in the early stages. In this high-energy FST scenario, streaks

appear before breakdown, but they would not have a fundamental role in the transition process, which is characterized

by localized finite-amplitude vortical structures.

In the last two years, a new optimization approach has been developed for determining the most ”dangerous”

perturbations in shear flows, based on the formulation of a fully-non-linear optimal growth problem. This approach

has been applied recently to pipe [11], Couette [12,13] and boundary-layer flows [14–16], discovering the relevance

of non-linear optimal perturbations which have a very different localized structure with respect to the linear ones

and outgrow them, leading to transition through a very fast non-linear route (which will be hereafter called optimal
trajectory). Nevertheless, no evidence has still been provided about the existence of such finite-amplitude structures

in the process of transition arising by receptivity from environmental disturbances, such as free-stream turbulence,

roughness at the wall, or acoustic waves.

In this work, an overall picture of the bypass transition scenarios is provided in order to determine whether, and under

which conditions, the transitional flow structures are correlated with the linear or non-linear perturbations on the

optimal trajectory. To this end, the NS equations for an incompressible fluid are solved by direct numerical simulation

(DNS) and the first phases of formation of turbulent spots are studied. Finally, a law to predict the transition location

is provided, depending on the freestream turbulence intensity and its integral length scale.

2. Problem formulation

Bypass transition is induced by synthetic turbulence introduced at the inlet of the computational domain, obtained

as a superposition of the continuous modes of the Orr–Sommerfeld and Squire operators [5,7]. We select 400 eigen-

modes, each one associated with a three-dimensional wave-vector, k = (α, γ, β), where α, γ, β are the wavenumbers in

the streamwise, wall-normal, and spanwise direction. Since turbulence is introduced at the inlet of the computational

domain, the streamwise wavenumber is replaced by the temporal frequency ω using the relation ω = αU∞, U∞ being

the free-stream velocity. For the turbulence to be isotropic and homogeneous, the Von Karman energy spectrum has

been chosen. Following the formulation of Ref. [7], we introduce the integral length scale L = 1.8/kmax (where kmax

is the magnitude of the wave-vector corresponding to the maximum energy eigenvector), and derive the following

expression for the spectrum:

E(k) =
2

3

a(kL)4

(b + (kL)2))17/6
LTu2 (1)

with a = 1.606 and b = 1.350. The integral length scale L indicates the main longitudinal scale of the turbulence, and is

linked to the longitudinal two-point correlation length scale, L11 ≈ 0.643L [17]. The eigenvectors associated with the
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selected wavenumbers are computed solving the Orr–Sommerfeld and Squire problem, and summed up to obtain the

inlet synthetic turbulence, having integral length scale L and intensity Tu =
√

(u2
rms + v2

rms + w2
rms)/3 (urms, vrms,wrms

being the root mean square values of the streamwise, wall-normal, and spanwise components of velocity). At inlet

points, the turbulent fluctuations are superposed to the Blasius velocity profile, providing the boundary condition for

solving the governing Navier-Stokes equations for an incompressible fluid:

∂u
∂t
+ (u · ∇)u = −∇p +

1

Re
∇2u, (2)

∇ · u = 0.

The Reynolds number is defined as Re = U∞δ∗0/ν, ν being the kinematic viscosity, δ∗0 the inflow boundary-layer

displacement thickness, p the pressure, and u = (u, v,w), where u, v,w are the streamwise, wall-normal, and spanwise

velocity components. All of the simulations are performed at Re = 300. For Tu ≥ 4.5%, a reference domain with

Lx = 500, Ly = 70 and Lz = 90 is chosen, x, y, and z being the streamwise, the wall-normal, and the spanwise

directions, respectively; whereas, for Tu < 4.5% the domain (as well as the grid points) have been doubled in the

streamwise direction. The dependence of the results with respect to the domain lengths Lx, Ly, and Lz, has been

checked. The inlet of the computational domain is located at xin = 100. Based on a grid-convergence analysis, a mesh

made by 551× 200× 181 points – stretched in the wall-normal direction – has been selected for the reference domain.

The grid sizes at the wall in plus units have been found consistent with the ones in Ref. [10]. The NS equations are

integrated by a second-order-accurate fractional step method [18]. The following boundary conditions are applied: a

convective condition at outlet points; the no-slip boundary condition at the bottom wall; zero perturbation with respect

to the Blasius flow at the upper-boundary; periodicity for the three velocity components in the spanwise direction. The

results have been validated by reproducing the decay of Tu and the skin-friction coefficient (C f ) space distribution

obtained in Ref. [7] for L = 5 and Tu = 4.7%, and Ref. [10] for L = 35 and Tu = 6.7%.

3. Results

We performed 28 simulations for Tu = 3.5%,4.5%, 5.5%,6.5% and L = 5, 10, 15, 20, 25, 30, 35. The smallest

values of Tu are larger then the typical threshold for bypass transition (i.e., Tu > 1%), so ’natural’ transition via

Tollmien-Schlichting waves is not observed. The largest values of Tu and L are typical of many practical applications

involving high-speed flows in complex geometries such as turbomachinery[1,3] and combustors. Figure 1 shows the

streamwise velocity and vorticity fluctuations (surfaces for u′ = −0.2 and ωx
′ = ±0.1) extracted at t = 2250 from

a DNS with L = 35 and two values of Tu (Tu = 3.5%, 6.5% from top to bottom). For Tu = 3.5% (first frame),

the receptivity region is characterized by mildly oscillating streamwise streaks which undergo secondary instability

and breakdown. One can also notice that strong vortical structures appear only at a large abscissa, where strong

sinuous oscillation of the streaks are observed, leading to transition in a spanwise-localized flow region. For larger

turbulence intensity, stronger oscillations of the streaks and more high-vorticity regions are observed already at

smaller abscissae. Increasing further the turbulent intensity (second frame of Figure 1) leads to a much larger density

of vortical structures and a higher localization of the low-momentum zones. A similar behaviour is observed when

increasing the turbulence intensity for L = 5 to L = 35 for a given value of Tu. Thus, it appears that, for increasing Tu
and L, the transition mechanism changes from the classical secondary instability of the streaks to a different scenario

based on the occurrence of localized vortical structures. Recalling that the coherent structures recovered in the early

phases of the former scenario are very well correlated to the structures found by a linear energy optimization [6,8], we

conjecture that the latter scenario could be linked to the onset of localized finite-amplitude coherent structures, which

might be well correlated to the ones on the non-linear optimal trajectory recently recovered in Ref. [14].

To verify such a conjecture, we compute non-linear optimal perturbations at Re = 300 using the method employed

in Ref. [14]. Since in Ref. [16] it has been shown that the structure of the non-linear optimal perturbation is

only slightly dependent on the domain size and target time, we choose for the optimization a smaller domain with

dimensions lx = 200, ly = 20, lz = 10, and target time equal to 125. Concerning the initial perturbation energy, E0, we

bisect its value of E0 until we obtain the initial optimal perturbation of minimal energy capable of inducing transition.

Thus, we are looking for localized flow structures, induced by receptivity to free-stream turbulence, which are similar

to the flow structures found during the route to transition of such optimal perturbation (the ”optimal” route). Such
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Fig. 1. Fluctuations of the streamwise component of the velocity (black surfaces for u′ = −0.2) and vorticity (yellow and blue for ω′x = ±0.1)

extracted at t = 2230 from the DNS with Tu = 3.5%, L = 5 (top) and with Tu = 6.5%, L = 35 (middle), for 0 < y < 10. Bottom left: zoom of the

region boxed by the thick line. Bottom right: non-linear optimal disturbance at to = 35 (ω̂x = ±0.1, û = −0.1

structures should outgrow the others during the evolution towards transition. In order to avoid any confusion with

the DNS time, t, we define to as the evolution time during the ”optimal” route with respect to the initial time of the

optimization.

The bottom right frame of Figure 1 shows the perturbation extracted at to = 35 from the non-linear optimal

route to transition (half of the domain is shown in z). It is composed by streamwise-inclined vortices (ω̂x being the

streamwise vorticity perturbation) along a region of high negative streamwise perturbation û. Similar structures are

indeed observed in the DNS for high values of Tu and L, the bottom left frame of the Figure showing one of them

extracted from the DNS. Structures recalling the ones on the non-linear optimal trajectory are often recovered within

the flow at high Tu and L: the large streamwise fluctuations often show a Λ-shape (see the bottom left inset of Figure

2), and in the receptivity zone the vortices are often recovered in an alternated inclined fashion (see the boxed regions

in the middle frame of Figure 1). It is worth pointing out that vortical structures are observed also at lower values of

Tu and L, but they are placed on the flanks of well-developed streamwise streaks (see the first frame of figure 1). Such

streaks are still not formed in the receptivity region for higher values of Tu and L (second frame of figure 1). In fact,

in the latter case, the vortices do not appear to be generated by a secondary instability of the streaks, but rather by the

onset of localized structures strongly recalling the ones on the non-linear optimal trajectory. Thus, it can be argued

that, among all of the localized flow structures, some ”quasi-optimal seeds” can be found which would outgrow the

other structures and lead to transition following a route close to the evolution of the non-linear optimal perturbation.

This can be confirmed by computing the correlation between the structures recovered within the boundary layer

(u′DNS (t)) and the perturbations on the non-linear optimal trajectory (ûOPT (to)) at various times. We define a correla-

tion,

C(t, to) = max
x,z

[ 〈u′DNS , ûOPT 〉√〈u′DNS , u′DNS 〉
√〈ûOPT , ûOPT 〉

]
(3)
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Fig. 2. Time evolution of the correlation C(t, to). The top insets show the non-linear optimal perturbation at to = 50 and to = 100; the bottom

insets show the structures extracted from the DNS with Tu = 6.5%, L = 35 at t = 2250 and t = 2300: green surfaces represent vortical structures

(Q-criterion); black surfaces represent streamwise velocity fluctuations (bottom) and perturbations (top) with values −0.15 (left) and −0.2 (right).

where the symbol 〈〉 indicates the energy inner product. For computing the correlation, the perturbations on the

optimal trajectory are enclosed in a box of dimensions: Δz = lz/2, to relax the symmetry with respect to the z = 0

plane; Δy = ly; Δx equal to the length of the region in which the perturbation on the optimal trajectory is greater

than 1% (therefore, the resulting length varies with to). The enclosing box is displaced over the DNS velocity field in

both x and z throughout the whole receptivity zone, i.e., from the inlet of the computational domain up to the abscissa

at which the skin friction coefficient C f overtakes its minimum value by 10%. Figure 2 shows an example of the

time evolution of the correlation for the region zoomed in figure 1, which have been moved in time in the streamwise

direction following the optimal disturbance evolution. Notice that, in this particular case, the DNS time, t, and the

optimization time, to, are shifted by an interval of 2200 units. The correlation reaches values greater than 0.5 for about

40 time units, corresponding to the early development of the inclined and Λ vortices (compare the insets on the left

in figure 2). Such a value decreases and than rises again at a time which corresponds to the formation of the hairpin

vortices (compare the insets on the right in figure 2). Notice that, as it could be anticipated, for to < 20 the correlation

show very low values, since quasi-optimal perturbations have still not been created by the receptivity process. In fact,

one has to consider that the initial optimal perturbations (to = 0) is composed by upstream-inclined vortical structures

[16], which are not likely to be induced by the freestream turbulence.

In order to generalize the results, the correlation C has been computed for several DNS snapshots in a time window

2000 < t < 2200, and the resulting values are averaged (the t-averaged value is indicated by C). Considering both

space and time shifts, up to 450000 values of correlations have been computed for each value of Tu and L. Moreover,

in order to account for the time evolution of the structures on the optimal trajectory, the correlation values have been

calculated for perturbations taken at several optimization times (to), ranging from 10 to 150. it is worth noticing that

the correlation used here is much more restrictive than the one used in the literature for recovering exact coherent

structures in small periodic domains [19], since the correlating velocity vectors are not rescaled in amplitude with

respect to the mean velocity, as done by Tutty & Kerswell (2007), for instance. This means that correlation values

close to 1 can be reached for a DNS velocity field almost coincident in both amplitude and shape to the one on the

optimal trajectory, which is very unlikely since here transition is reached in a natural way by a receptivity mechanism.

In order to establish which range of values is indicative of a good match, we have computed the correlation parameter

for perturbations on the linear optimal trajectory (obtained by a linear optimization and then rescaled in energy

to reach the laminar-turbulent boundary), essentially composed by streamwise streaks which have been found to

populate the receptivity zone for moderate values of Tu. Based on such computations, it appears that time-averaged

correlation values larger than 0.5 are very rarely detected in the flow, for both linear and non-linear perturbations. It

is worth pointing out that instantaneous correlation values up to 0.75 can be found for perturbations on the linear and
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(a) (b)

Fig. 3. Values of the time-averaged correlation C(to) versus the optimization time, computed between the perturbations on the non-linear optimal

trajectory at several times to and the DNS velocity field obtained for: (a) L = 35 and Tu = 3.5%, 4.5%, 5, 5%, 6.5%; (b) Tu = 6.5% and

L = 5, 15, 25, 35.

(a) (b)

Fig. 4. Values of the time-averaged correlation C(to) versus the optimization time, computed between the perturbations on the linear optimal

trajectory at several times to and the DNS velocity field obtained for: (a) L = 35 and Tu = 3.5%, 4.5%, 5, 5%, 6.5%; (b) Tu = 6.5% and

L = 5, 15, 25, 35.

(a) (b)

Fig. 5. Maximum and to-averaged values of the total (C
max

, C) and of the cross-stream correlation (C
max
⊥ ,C⊥), computed between the DNS velocity

field obtained for L = 35 and Tu = 3.5%, 4.5%, 5, 5%, 6.5%, and the perturbations on the (a) non-linear, and (b) linear optimal trajectory.

non-linear optimal trajectory. However, we consider that such instantaneous correlation measures are not relevant to

the present analysis, since we would like to provide a measure of the likelihood of the occurrence of certain structures

in the considered flow, and not the maximum correlation value which can be found under certain particular conditions.
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Figure 3 (a) shows the correlation values between the perturbations on the non-linear optimal trajectory at several

times to, and the DNS velocity field obtained for L = 35 and the four Tu values considered here. It appears that the

correlation is rather low at small optimization times, and than grows with time until to ≈ 130, which is close to the

target time of the non-linear optimization, approximately corresponding to the time of formation of the hairpin vortex.

This result could be anticipated, considering that for very low optimization times, the initial optimal perturbation is

composed by upstream-inclined vortical structures [16], which are not likely to be induced by free-stream turbulence,

whereas Λ and hairpin structures appear to be naturally generated by a receptivity process. Moreover, the correlation

curves are found to raise for increasing values of Tu. Correlation values of the order of 0.5 are reached for Tu =
5.5%, 6.5%, confirming that structures similar to the non-linear optimal ones are recovered for sufficiently high values

of Tu. A similar trend is observed for the correlation value versus L, as shown in Figure 3 (b) for Tu = 6.5% and

four values of L. For comparison purposes, Figure 4 shows the corresponding correlation values obtained between

the perturbations on the linear optimal trajectory and the DNS snapshots extracted for the same values of Tu and L.

Again, the maximum correlation values are of the order of 0.5, but now the largest values are observed for the lowest

values of Tu and L. One can also observe that in this case the correlation curves peak at lower times, indicating that

the largest similarities are recovered for perturbations which have not yet been influenced by non-linear effects. This

could be anticipated, considering that for the lowest values of Tu and L considered here, we know that quasi-linear

streaks are found to populate a very long region of the flow, until secondary instability sets in (see the first frame of

Figure 1). Therefore, this result can be considered as a validation of the proposed correlation approach. The results

for the linear and non-linear cases are summarized in figure 5 (a) and (b), respectively, providing, for the values of

Tu and L considered before, the maximum value of the correlation C
max

, and its averaged value with respect to to, C
(notice that such a to-averaging is different from the t−average mentioned before). Moreover, to validate the results,

a different measure of the correlation is also considered, namely, the cross-stream correlation C⊥, which is defined

following equation (3) using the cross-stream velocity vector, i.e., u⊥ = (v,w) [19], for both DNS and optimal velocity

fields. Such a correlation accounts for the fact that, in shear flows, the u component dominate the flow field and the

correlation value[19], and for this reason it is more restrictive than the first one. The first frame of Figure 5 shows

that, when perturbations on the non-linear optimal trajectory are considered, all of the considered correlation measures

(maximum and to-averaged total and cross-stream correlation) are found to increase with the turbulence intensity, for a

given L. On the other hand, when perturbations on the linear optimal trajectory are considered, the correlations values

decrease with Tu. These results indicate that, when the flow is excited with turbulence of large intensity and length

scale (namely, Tu > 4.5% and L > 20), the coherent structures in the transitional region are likely to show some

features of the disturbances on the non-linear optimal trajectory. On the other hand, when the free-stream turbulence

is not large enough (or it decays too rapidly) the transitional region is mostly characterized by the most energetic

structures with low amplitude [8], namely, the disturbances on the linear optimal trajectory, inducing the formation of

elongated streaks which undergo secondary instability.

These two scenarios appear to reflect the features of two plausible relative attractors on the laminar-turbulent

boundary recently identified for the boundary-layer flow starting from a linear and non-linear optimal disturbance

[20] (see also [21,22]).

We have thus outlined two routes to transition, which are triggered at different values of Tu and L. To distinguish

between the two scenarios, we introduce a simple parameter defined as follows. Since the main difference between

the flow structures is in the longitudinal correlation of the u′ fluctuation (namely, the presence of localized patches of

u′ instead of elongated streaks), we use the following streamwise average parameter:

U = max
y,z

∫ xT

xin
u′(x, y, z)dx

xT − xin
(4)

where xT is the transition-onset abscissa, i.e., the x value at which the C f overtakes its minimum by a percentage p
(with p = 1%, 10%, 20%, the results do not show remarkable differences). Figure 6 provides the contours ofU in the

L − Tu plane, plotted for p = 1%: for low values of Tu and L, U is rather high, and decreases for increasing values

of such parameters. For high Tu and L, the amplitude of u′ is large, but the fluctuations are poorly correlated in x,

resulting in small values ofU; on the other hand, for low Tu and L, the amplitude of u′ is lower, but the fluctuations

are strongly correlated in x, resulting in large values of U. Relating the values of U with the structures observed

within the flow, we can identify three regions in the L− Tu plane: i) forU > 0.23, the transition scenario is the linear
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Fig. 6. Contours of theU parameter in the L − Tu plane. The two insets show the typical structures of the two transition scenarios. For the linear
scenario (bottom): streamwise streaks (black and white contours on the plane y = 1) with vortices on their flanks (yellow and blue surfaces for

ω′x = ±0.1). For the non-linear scenario (top): localized velocity fluctuations with large-amplitude vortical zones, often in the form of Λ or hairpin

structures (the values of u′ and ω′x are the same as in the bottom inset). The dots indicate the L − Tu values of some DNS results available in the

literature.

one (i.e., the one based on the perturbations on the linear optimal trajectory, the streaks); ii) for 0.23 > U > 0.2, both

scenarios are observed; iii) for U < 0.2, the scenario is the non-linear one (i.e., the one based on the disturbances

on the non-linear optimal trajectory). It is worth to notice that the threshold value of U for which we observe the

linear scenario (0.23) is very close to the critical amplitude of the streaks at which secondary instability is triggered

[6]. Moreover, our observations appear to be in agreement with the results available in the literature, some of which

are indicated by dots in figure 6. For instance, elongated streaks undergoing breakdown are observed in [5] and [7],

with values of Tu and L typical of the linear scenario. On the other hand, in [10] two simulations are performed, one

in the linear, the other in the non-linear zone; in the latter, the authors observe that transition is due to the creation of

spanwise vortices rather than streamwise streaks.

Concerning the linear scenario, the linear optimal-growth theory [8,23] shows that disturbances grow as Re1/2
x (with

Rex = xU∞/ν). Andersson et al. [23] proposed that transition is triggered when the root mean square of the streamwise

velocity fluctuation urms ≈ Re1/2
x Tu achieves a critical value [8]. Such a model is found to apply well for cases with

low Tu and L (see the experimental data in [24,25]), but, being based on the linear optimal growth theory, it does

not take into account the growth of the other components of the velocity, which are not negligible in the non-linear
scenario. More recently, Brandt et al. [7] proposed a different law, urms ≈ Re1/2

x Tu2, linked to a two-step receptivity

process, in which the streamwise vorticity penetrates the boundary layer due to nonlinear interactions and then induces

the formation of streaks due to the linear lift-up effect. In order to establish which of these laws is valid in the cases

considered here, we analyze the variation in the streamwise direction of the variable ũrms =
√

(u2
rms + v2

rms + w2
rms).

Figure 7 provides the spatial distribution of the wall-normal maximum of ũrms, computed in six DNSs with different

values of Tu and L. The small vertical lines indicate, for each computation, the value Re1/2
x at the transition location

(Re1/2
xT ) measured at the abscissa where C f reaches its minimum value [10]. One can observe that transition is always

triggered when ũmax
rms reaches an estimated value of 0.18 (within a confidence interval indicated by the gray zone). We

have verified that, for Tu = 3.5%, umax
rms ≈ ũmax

rms at the transition abscissa, confirming the experimental findings in

[24,25]; however, for Tu = 6.5%, umax
rms is much lower than ũmax

rms at the transition location. In all of the cases, the

variable ũmax
rms varies almost linearly with Tu, indicating that if all of the velocity components are considered, the

law for transition prediction can be the same for all of the values of Tu and L. Moreover, transition occurs at a
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Fig. 7. Wall-normal maximum of ũrms =

√
(u2

rms + v2
rms + w2

rms) for six DNSs with different values of Tu and L. The small vertical lines indicate

the values of
√

(RexT ) measured at the abscissa where C f reaches its minimum. In all cases, transition is triggered when ũrms ≈ 0.18 (the gray zone

indicates the confidence interval).

lower abscissa for increasing values of L, indicating that the integral length scale should be taken into account in a law

predicting the transition location. Thus, we tried to match our numerical data with both of the above laws for transition

prediction, obtaining good results using the one proposed by Andersson et al. [23]. Furthermore, several functions of

L have been employed to improve such a law, taking into account the dependence on the integral length scale. Finally,

the following modified law for transition prediction, valid for both transition scenarios, has been obtained:

Re1/2
xT

Tu
L

L + 1
= const. (5)

Measuring the values of the transition abscissae in the 28 DNSs performed here, we found that the right hand side of

the equation is equal to 14.5 ± 0.4, very close to the equivalent value obtained by Fransson et al. [25] using a method

based on intermittency, namely
√

196. considered here.

4. Concluding remarks

The results provided in this paper indicate the possibility that, in a flat-plate boundary layer excited by free-stream

turbulence (FST) with large intensity (Tu > 4.5%) and integral length scale ( L > 20) transition from laminar to

turbulent flow follows a purely non-linear route correlated to the evolution of non-linear optimal perturbations. Our

results are in agreement with the conclusions of the work in Ref. [10] in which the effect of the FST length scale on the

transition mechanism at high-amplitude FST is studied. In fact, we find that, for such high values of FST intensity and

length scale, transition is initiated by localized perturbations directly induced inside the boundary layer by receptivity

to free-stream turbulence. This scenario is different from that observed at lower values of FST intensity and length

scale[7] since in the latter case transition is initiated by the formation of streaks which experience secondary instability

producing localized vortical structures. An important difference with respect to the analysis in Ref. [10] is that we do

not take into account the leading edge of the flat plate, so that the localized vortical structures we observe are generated

only by the action of the FST. Moreover, we provide a detailed analysis to put in evidence that those flow structures

are well correlated with structures on the non-linear optimal trajectory towards turbulence. We provide also a criterion

to distinguish these two transition scenarios by employing a simple parameter linked to the streamwise localisation of

high- and low-momentum zones. Finally, we propose a simple law for the prediction of the transition onset abscissa,

based on both turbulence intensity and integral length scale, which is valid for both transition scenarios. Such results

highlight the importance of non-linear coherent structures in boundary-layer transition and motivate further research

about non-linear optimal disturbances with the aim of better understanding the different paths to transition.
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Some computations have been performed on the Power 6 of the IDRIS, France.
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