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Theory of reciprocating contact for viscoelastic solids
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A theory of reciprocating contacts for linear viscoelastic materials is presented. Results are discussed for
the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. Depending on
the size of the contact, the frequency and amplitude of the reciprocating motion, and on the relaxation time
of the viscoelastic body, we establish that the contact behavior may range from the steady-state viscoelastic
solution, in which traction forces always oppose the direction of the sliding rigid punch, to a more elaborate
trend, which is due to the strong interaction between different regions of the path covered during the
reciprocating motion. Practical implications span a number of applications, ranging from seismic engineering to
biotechnology.
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I. INTRODUCTION

The mechanics and physics of soft materials are intrinsi-
cally complex due to the strongly time-dependent and usually
nonlinear constitutive stress-strain relations that govern their
response. Further intricacy is added when soft bodies are
brought into contact and the problem is exacerbated by the
geometry of the intimately mating surfaces. Over the past two
decades, the continuously growing technological relevance of
engineering applications involving polymeric materials and
soft tissues has generated enormous interest in the scientific
community and has contributed to a leap in the number
of publications in the field [1–3]; these span investigations
performed from the macroscopic to atomistic levels and
include analytical [4–6], numerical [7,8], and experimental
[9,10] studies. Surprisingly, in spite of these vast research
efforts, our understanding of soft-matter problems is definitely
far from being complete.

In this paper, we focus our attention on an issue that has
been systematically ignored but has a crucial importance:
the reciprocating contact of viscoelastic materials, where the
relative motion between the contacting bodies is periodi-
cally inverted. Indeed, researchers have almost universally
developed models to investigate unidirectional steady-state
sliding between two mating surfaces made of viscoelastic
material [5,8]. However, steady-state assumption cannot be
considered a universally valid condition. There is a countless
variety of engineering applications, ranging from the macro-
to the nanoscales, where a periodic inversion of the motion
direction is present. Earthquake viscoelastic dampers are a
classic example [11,12]. These devices are embedded in
civil structures to limit the consequences of earthquakes by
introducing a source of damping, that is, beyond the several
possible configurations, the hysteretic dissipation occurring
when a set of rigid punches deforms a layer of rubber.
Currently, the design in this field mostly relies on practical and
empirical guidelines, and no tool for quantitative predictions is
available. This lack of a robust theoretical framework involves
also very different components, like all the sealing systems
in mechanical applications with an alternate motion [13].
Indeed, enhancing performances and efficiency is infeasible

without an accurate knowledge of the interfacial stresses and,
consequently, of the dissipated power. Finally, reciprocating
contacts have prominence also at different scales and in
different contexts, like biology and biotechnology [14,15].
Skin, the ocular system, joints, the spine, and vertebrae are
some of the examples where viscoelastic soft contact occurs
in the human body. As recently suggested in Ref. [14], this can
be observed up to the cell scale, thus introducing the concept of
cell friction. Indeed, Ref. [14] shows experimental results for
reciprocating contact tests on layers of epithelial cells: What is
obtained in terms of friction cannot be explained with a simple
elastic model and needs a specific theory.

The schematic in Fig. 1 captures the variety of surfaces
whose function and/or performance can be ameliorated by
shedding light on the principles governing the problem under
investigation.

In this work, we develop a theoretical approach and a
numerical technique that allows us to study reciprocating
contact mechanics between linearly viscoelastic solids and
provide predictions of the response of the contacting surfaces
in terms of stresses, strain, and friction. The paper is outlined as
follows. Section II describes the mathematical formulation on
which the numerical methodology relies. Section III focuses on
a simple, tough explicative case, i.e., the reciprocating sliding
contact of a sphere over a viscoelastic layer. Final remarks are
included to comment on the relevance of the theory and of the
results. Appendixes A and B respectively discuss the validity
range of the model and provide a comparison with steady-state
conditions.

II. FORMULATION

The proposed formulation builds on the strengths of the
boundary element method (BEM) in terms of accurately
capturing interfacial stresses and displacements and, as such,
requires the determination of a viscoelastic reciprocating
Green’s function G(x,t).

To this end, let us first assume that the interfacial normal
stress distribution obeys the law σ (x,t) = σ [x − ξ0 sin (ωt)],
i.e., that the shape of normal stress distribution is fixed but
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FIG. 1. Reciprocating viscoelastic contacts: Schematic illustra-
tion showing relevant applications.

moves on the viscoelastic half-space with a sinusoidal law of
amplitude |ξ0| and angular frequency ω. The vector ξ0 also
identifies the direction of the reciprocating motion. Because
of linearity and translational invariance, replacing x → x +
ξ0 sin (ωt) allows us to write the relation between interfacial
stresses and displacement as

u(x,t) =
∫

d2x ′G(x − x′,t)σ (x′). (1)

In order to determine G(x,t), we recall that the general relation
between stress and displacement fields is [8]

u(x,t) = J (0)
∫

d2x ′G(x − x′)σ (x′,t)

+
∫ t

−∞
dτ J̇ (t − τ )

∫
d2x ′G(x − x′)σ (x′,τ ), (2)

where G(x) and J (t) are the elastic Green’s function and the
creep material function, respectively. The symbol “·” stands
for the time derivative. The creep function is easily linked to
the viscoelastic modulus E(ω) of the material by means of
the relation 1/E(ω) = iωJ (ω) [16], where i is the imaginary
unit and the Fourier transform of a function f (t) is f (ω) =∫

dt exp (−iωt)f (t). The viscoelastic modulus has the general
expression 1/E(ω) = 1/E∞ + ∫ ∞

0 dτC(τ )/(1 + iωτ ), where
E∞ is a real quantity corresponding to the elastic modulus
of the material at very large excitation frequencies. C(τ ) > 0
is usually defined as the creep spectrum, and τ is the relaxation
time [16]. In order to find the long-term limit of G(x,t) we
choose σ (x,t) = δ[x − ξ0 sin (ωt)] and, after substituting in

Eq. (2), we obtain

G(x,t) = J (0)G[x − ξ 0 sin(ωτ )]

+
∫ t

−∞
dτ J̇ (t − τ )G[x − ξ 0 sin(ωτ )]. (3)

The term G[x − ξ 0 sin (ωt)] can be rewritten as

G[x − ξ 0 sin(ωt)] = (2π )−2
∫

d2qG(q)e−iq·[x−ξ 0 sin(ωt)], (4)

where G(q) is the Fourier transform of the function G(x). Now,
let us observe that∫

dθeir sin θ e−iαθ = 2π

+∞∑
k=−∞

δ(α − k)Jk(r), (5)

where Jk(r) is the k-th order Bessel function of the first kind.
Consequently, Eq. (4) can be cast as

G[x − ξ 0 sin(ωt)] =
+∞∑

k=−∞
Ak(x)eikωt . (6)

In Eq. (6), Ak(x) can be written as

Ak(x) = (2π )−1
∫ 1

−1
dsG(x−sξ0)Bk(s) (7)

with Bk(s) being equal to Bk(s) = (−i)kTk(s)B0(s). Tk(s)
is the Chebyshev polynomial of the first kind and B0(s) =
2(1 − s2)

−1/2
for |s| � 1 and 0 otherwise. Substituting (6) in

(3) we obtain:

G(x,t) =
+∞∑

k=−∞

Ak(x)

E(kω)
eikωt . (8)

As mentioned above, the long-term response function G(x,t)
has been obtained under the assumption that the shape of the
stress field at the interface, whose general form is σ (x,t) =
σ [x − ξ0 sin (ωt),t], does not change during the reciprocating
motion, i.e., σ (x,t) = σ [x − ξ0 sin (ωt)]. Such a condition
holds true whenever a0/|ξ0| � 1, where a0 is the characteristic
dimension of the contact region, and is equivalent to require
that |∂σ/∂t |/(|ξ0 · ∇σ |ω) � 1 (see Appendix A for more
details). This assumption is justified in the majority of cases
of reciprocating contact and is satisfied pointwise almost
everywhere within the contact area in the analyses presented
in this work. Now, to invert the linear operator in Eq. (1), we
need a numerical approach which consists in discretizing the
contact domain in M square cells. Indeed, assuming that in
each boundary element the normal stress σ is constant and
equal to σj , the normal displacement ui = u(xi ,t) at the center
xi of the i-th square can be written as:

ui = 1

N

M∑
j=1

σj

N∑
r=1

L

[
xi−xj− cos

(
2r − 1

2N
π

)
ξ0

]

×
+∞∑

k=−∞

eikωt (−i)k

E(kω)
cos

[
k

(
2r − 1

2N
π

)]
, (9)

where L(x) is related to the Love’s solution [17]. It
should be observed that Eq. (9) is obtained by applying
the Chebishev-Gauss quadrature rule to the integral term
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∫ 1
−1 dsTk(s)L[xi−x′

j−sξ0](1 − s2)
−1/2

at M nodes, thus mak-
ing it easier to achieve the numerical convergence of the
problem.

Equation (2) can be solved by using the iterative technique
developed in Ref. [18] for elastic contacts, thus providing
contact areas, stresses, and strains. It should be noticed that the
method does not require any discretization of the time domain
as the time t is treated as a parameter.

Once the solution is known in terms of stresses and strains,
following the approach stated in Ref. [8], it is straightforward
to calculate the viscoelastic tangential force as:

FT =
∫

D

d2xσ (x)
∂u

∂x
. (10)

The friction coefficient can then be defined as μ = FT /FN ,
where FN is the external applied load.

Finally, we conclude noticing that the formulation, in
the current form, does not explicitly account for the role
of the tangential tractions at the contact interface. Indeed,
this is out of the scope of our work. The purpose of the
paper is to determine the normal stresses and the normal
displacements distribution, and, on this basis, calculate the
viscoelastic dissipation within the period of the reciprocating
motion. We also observe that the normal and tangential
contact problems have in general a very weak coupling,
which is normally neglected. This is well documented in
the literature, see e.g., Ref. [19]. Furthermore, in the case
of a rigid body in contact with an incompressible solid, as in
the case of rubber-like materials, no coupling exists between
the tangential and normal contact problems [19]. This further
justifies our assumption of neglecting the tangential tractions
at the interface.

III. RESULTS AND DISCUSSION

We study the contact of a rigid sphere of radius R undergo-
ing reciprocating sliding or rolling against a viscoelastic mate-
rial characterized by one relaxation time (the ratio between the
high-frequency modulus and the low-frequency E∞/E0 = 11
and the Poisson ratio ν = 0.5). We assume that the center
x(t) of the sphere moves on the viscoelastic half-space
following the law x(t) = [ξ0 sin (ωt),0]. The dimensionless
angular frequency of the reciprocating motion is ωτ = 5, with
τ being the relaxation time of the viscoelastic material.

Figure 2 shows the evolution of the dimensionless displace-
ments, u(x)/R, at the center of the contact as a function
of x/ξ0 and for a specific dimensionless applied normal
load Fn/R

2E∗
0 = 0.014, and ξ0/R = 1. Results are shown for

different values of ωt ∈ [−π/2,π/2]. An arrow refers, in each
case, to the current position of the sphere. At ωt = −π/2 the
sphere has just reached the left dead point and starts moving
from left to right. Upon reversal of the sliding direction, and
for ωt � −0.36π , a marked increase of the dimensionless
penetration at the center of the sphere is observed. This is due to
the fact that, although the speed is increasing, it is still too low
to cause a significant stiffening of the material, and the sphere
is also moving over a portion of the viscoelastic half-space
that has not yet had the time to relax after the previous
contact of the rigid body. As the sliding speed increases,
a non-negligible stiffening of the material and a marked
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FIG. 2. The dimensionless normal displacements u(x,y = 0)/R
as a function of the dimensionless abscissa x/ξ0 for a constant
dimensionless normal force Fn/R

2E∗
0 = 0.014 for an amplitude

ξ0/R = 1 and for several values of the dimensionless time ωt ∈
[−π/2,π/2].

decrease of the penetration are observed (see displacement
in correspondence to the arrow). This is clearly shown by
curves at ωt = −0.19π,−0.11π,−0.02π , which also show
additional deformation peaks, one at the left and one to the
right of the arrow: This is the result of the interplay between
the deformations, induced by the indenter as it moves to the
right, and the original not yet fully relaxed footprints left by
the sphere at preceding times. For 0 < ωt < π/2, the sliding
speed begins to decrease and the material softens again, thus
leading to an increase of penetration. It is now possible to
justify the occurrence of three different deformations peaks
within the track when the sphere is moving between the two
dead ends: One corresponds to the current position of the
sphere and the other two are located close to the left and right
dead points, respectively, and are the result of the material
inability to fully recover the viscoelastic deformations during
a period of time comparable to the period T = 2π/ω = 6.28 s
of the reciprocating motion (recall that the relaxation time is
τ = 5 s).

The merging or separation of the previous and current
sphere footprints, which takes place close to the dead points
of the reciprocating motion, has a significant effect on the
interfacial normal stress distribution. This is clearly shown in
Fig. 3, which depicts the evolution of the pressure distribution
and shows the shape of the contact area. Let us first observe
that at ωt =−π/2, i.e., when the sliding speed goes to zero, the
contact area as well as the interfacial normal stress distribution
are characterized by an asymmetric shape. The observed
asymmetry and, in particular, the presence of a peak on the
left of the contact patch is a consequence of the viscoelastic
time delay which prevents the material to relax immediately
when the sliding speed vanishes. As the sphere starts moving
to the right, such a peak cannot disappear suddenly but has
to show a gradual decrease. At the same time, since the
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FIG. 3. The shape of the contact area and the contour plots of the
normalized contact pressure distributions, p/E∗

0 , for several values
of ωt .

punch is travelling towards the right, as already observed in
steady-state viscoelastic contacts moving at constant velocity
[8], a peak in the pressure distribution has to be originated also
at the leading edge. Finally, at the center of the distribution,

where we have the maximum of the displacement field in the
contact area, the pressure must still resemble the classical
elastic Hertzian solution. This process strongly affects the
evolution of the pressure distribution at the interface with the
presence of multiple pressure peaks shown by the snapshots
taken at ωt = −0.40π,−0.38π,−0.36π (the reader may refer
to Appendix B to appreciate the difference with steady-state
conditions). A single-peaked pressure distribution is later
recovered: Indeed, an asymmetric pressure profile marked by
a peak closer to the contact leading edge is visible at ωt =
−0.28π .

We may observe that, for a single relaxation time material,
in addition to the ratio E∞/E0, the behavior of the recipro-
cating contact is also governed by other two dimensionless
parameters. The first dimensionless group is � = τ/t0, where
t0 = a0/ωξ0 and a0 is the Hertzian contact radius. This
parameter can be also interpreted as a dimensionless sliding
speed [8] and compares the relaxation time τ with the time t0
needed by the sphere to cover a distance a0. The second group,
 = a0/ξ0 = ωt0 = 2πt0/T , compares, instead, the time t0
with the period T = 2π/ω of the reciprocating motion. Since
we have earlier assumed that in our problem  = a0/ξ0 � 1,
we can focus on observing how the solution is affected by
�. For extremely small or extremely high values of �, the
response of the system is elastic (governed by either the high-
or the low-frequency elastic limit of the material), and no
tangential contact force will be generated. At intermediate
values of �, viscoelasticity will affect the solution leading
to asymmetric contact areas and pressure distributions and
to the generation of tangential contact forces. In such a case,
given the dimensionless parameter � = � = ωτ = 2πτ/T ,
if � < 1, then the reciprocating motion will occur on time
scales longer than the relaxation time τ of the material and
the system will resemble the steady-state behavior of the
contact between a sphere moving on a viscoelastic half-space
at constant speed [8]. If � ≈ 1, as in the case of Fig. 3,
then a strong interaction will be observed between different
viscoelastic regions of the path covered by the sphere during
the reciprocating motion. Note that, under the assumption
small a0/ξ0 values (which has been always adopted in this
paper), the condition � 	 1 implies � 	 1, and, in this case,
the elastic response of the material will be recovered: The
sphere will be just performing very fast oscillations, leading to
a local stiffening and, ultimately, to a high-frequency elastic
behavior.

In Fig. 4, the reduced tangential force, Ft/Fn, easily
calculated once pressures and displacements are known [8], is
plotted as a function of the dimensionless abscissa x/ξ0, which
identifies the position of the sphere along the path, for different
values of �. For � = 0.1 the material has the possibility to
relax before a single reciprocating cycle is completed. In this
case, as the solution resembles the steady-state viscoelastic
sliding contact, the tangential force Ft/Fn always opposes the
sphere speed at each point along the path. However, as � is
increased (see, e.g., results for � = 5 presented in Fig. 4),
the relaxation of the material involves time scales comparable
to the time period of the reciprocating motion; in this case,
regions exist on the sphere track, close to the dead points,
where Ft/Fn has the same direction as the sliding speed. This
is perfectly consistent with the results presented in Fig. 3.
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FIG. 4. The ratio between the tangential and the normal force
Ft/Fn as a function of the dimensionless abscissa x/ξ0 for different
values of �. Arrows refer to the hysteresis cycle direction.

IV. CONCLUSION

This work provides the explicit solution, in terms of a
Fourier series, of the long-term Green’s response function of
the reciprocating contact problem between a rigid punch and
a linear viscoelastic solid. The periodic features, intrinsically
marking the problem, enables the parametric calculation of
the contact solution for each time step without any necessity
of employing the solution in the previous time interval. By
implementing such a parametrically time-dependent approach,
we obtain the full numerical convergence in each moment of
the cycle and, interestingly, also when the punch inverts its
motion.

For the simple case of a sphere in contact with a vis-
coelastic layer, we show that the behavior of the system is
completely determined by two parameters, � = τ/t0 and
� = ωτ . Depending on these two parameters, the viscoelastic
reciprocating contact may present a wide variety of different
behaviors, ranging from the case that can be captured by
the steady-state solution for viscoelastic sliding, to the case
where such interactions lead to the formation of a multipeaked
interfacial pressure distribution and tangential contact forces
in (rather than opposing) the direction of the sliding speed.

This may have important implications in terms of design of
materials and solutions for different applications as it would
enable to accurately capture deformation rates, stress distri-
butions and viscoelastic friction during reciprocation. Indeed,
these are the key quantities to understand cell growth and
skin-counterface interactions, as well as to predict frictional
energy dissipation in, e.g., mechanical seals and earthquake
dampers.
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APPENDIX A: COMMENTS ON THE PARAMETRICALLY
TIME-DEPENDENT BOUNDARY ELEMENT

FORMULATION

When dealing with materials marked by a translationally
invariant linear response, the displacement distribution can be
related to the interfacial pressures by means of a convolution
integral with a time- and space-dependent function, i.e., the
Green’s function. We may then formulate the general contact
problem between a rigid indenter and a linearly viscoelastic
slab as:

u(x,t) =
∫ t

−∞
dτ

∫
d2xJ (t − τ )G(x − x′)σ̇ (x′,τ ), (A1)

where x is the in-plane position vector; t is the time; u(x,t)
is the normal surface displacement of the viscoelastic slab;
σ (x,t) is the normal interfacial stress; and G(x) and J (t) are,
respectively, the elastic Green’s function and the creep material
function. The relevance of such an approach is related to its
generality: No assumption is made a priori on the shape of the
contact domain. Indeed, the method can be employed for any
kind of contact punch and even for rough surfaces: Conditions,
like periodic boundaries and finite values of contacting layers
thickness, can be easily managed [20,21]. Furthermore, since
the creep function J (t) is absolutely general, the approach
is capable of dealing with any linearly viscoelastic material,
ranging from skin tissues to rubber-based composites.

However, solving directly Eq. (A1) may be extremely
challenging: Due to the necessity of performing discretization
both in time and space, the computational cost is huge and
often infeasible with the computational technologies currently
available. Consequently, when focusing our attention on the
reciprocating contacts, our efforts are aimed at reducing
the computational complexity of Eq. (A1) without loosing
its generality in terms of contact geometry and material
properties. Indeed, by assuming that the shape of the interfacial
normal stress distribution does not change, i.e., assuming that
it obeys the law σ (x,t) = σ [x − ξ0 sin (ωt)], where |ξ0| and ω

are, respectively, the amplitude and angular frequency of the
sinusoidal law, Eq. (A1) can be rewritten in the form stated in
Eq. (1). This expression has a significant advantage: It does not
require any discretization of the time domain since t is present
just as a parameter of the viscoelastic reciprocating Green’s
function G(x,t). Such a formulation enables us to employ the
efficient computational techniques already developed for the
purely elastic case [18] and, therefore, to find the solution for
a reciprocating contact. Incidentally, we observe that, from a
physical point of view, passing from Eq. (A1) to Eq. (1) is
fully justified, recalling the periodic features of the system
under investigation.

In this paper, we determine G(x,t) and investigate the main
peculiarities of the reciprocating contact mechanics. Indeed,
when developing the mathematical formulation, we rely on the
aforementioned condition of a constant shape of the interfacial
stress distribution. Recalling that the total time derivative of
pressure field is σ̇ = ∂σ/∂t + v · ∇σ , the condition implies
that the local rate of change in the pressure ∂σ/∂t , which
occurs on time scales of the order of the period T of the
reciprocating motion, should be negligible compared to the
rate of change of pressure due to the convective term v · ∇σ ,
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which occurs on a time scale of t0, where t0 is the time needed
by the sphere to cover a distance of the order of the contact
radius a0 . This then requires that t0/T ≈ a0/|ξ0| � 1. This
can be easily shown by estimating the local time derivative
and the convective term and requiring that |∂σ/∂t |

|v·∇σ | � 1, i.e.,∣∣∣∣∂σ

∂t

∣∣∣∣ ≈ σmax

T
; |v · ∇σ | ≈ σmax

a0
ω|ξ0|; (A2)

where σmax is the maximum contact pressure and, then, by
taking the ratio of the derivative terms, one obtains:

|∂σ/∂t |
|v · ∇σ | ≈ |∂σ/∂t |

ω|ξ0 · ∇σ | ≈ 1

2π

a0

|ξ0| � 1. (A3)

At the end of each stroke during reciprocation, the afore-
mentioned condition may look critical since the velocity of
the sphere tends to vanish; however, since the time the sphere
spends at the dead points of the cyclic sliding motion is
also zero, things have to be observed a bit more carefully.
Indeed, we can calculate the time t0 to cover a distance of
the order a0 when the sphere starts moving from the dead
point: The distance a0 can be estimated as a0 ≈ (1/2)ω2ξ0t

2
0 .

One can, then, easily show that t0/T ≈ (a0/|ξ0|)0.5; hence, if
a0/|ξ0| � 1, t0/T will also be sufficiently small to justify the
constant shape assumption at the dead points.

Incidentally, we observe that we have numerically checked
the condition |∂σ/∂t |

|v·∇σ | � 1 for all the cases presented in the main
manuscript once the stress distribution was calculated from the
solution of Eq. (1).

APPENDIX B: COMPARISON BETWEEN STEADY-STATE
AND RECIPROCATING CONTACTS

One of the main purposes of this paper is to shed light on the
unique features of the viscoelastic reciprocating contacts. To
this aim, it can be useful here to point out the differences
between viscoelastic steady-state sliding and reciprocating
conditions. From a physical point of view, the two conditions
are almost antithetical: In the steady-state case, the punch
always meets underformed material [8]; on the contrary,
as we explain in the main manuscript, when dealing with
reciprocating contacts, the rigid punch may deform a region
of material that has not yet relaxed. Only in the limit case of
small values of the parameter �, i.e., for a given relaxation
time τ for small frequencies ω, does the reciprocating case
tend to a steady-state-like regime, where the material has time
to relax before the punch re-engages with it.

This physical background entails remarkable differences
in terms of interfacial pressures, normal displacements, and,

RECIPROCATING STEADY-STATE

a

b

FIG. 5. The shape of the contact area and the contour plots of the
normalized contact pressure distributions, p/E∗

0 , in reciprocating (on
the left) and steady-state (on the right) conditions for different values
of the time and, consequently, of the speed.

consequently, friction. In Fig. 5, we compare the contour plots
of the normal pressure for the two cases, i.e., the reciprocating
contact conditions and the sliding steady-state contacts. In
Fig. 5(a), at the inversion point, i.e., when the speed is
nominally equal to zero, in the reciprocating case, the pressure
still shows a marked asymmetry, that is, the consequence
of the viscoelastic time delay which prevents the material
to relax immediately when the sliding speed vanishes. On
the contrary, in steady-state conditions, the solution at zero
speed cannot be anything else that the elastic classic Hertzian
solution with the zero-frequency modulus E0. Furthermore,
given a constant normal load, in this last case, due to the lower
modulus, the contact area is much bigger and normal stresses
are much smaller. When the punch starts moving back to the
right dead point, we still have remarkable differences in the
pressure distributions [see Fig. 5(b)]. Such differences are also
clearly perceived when looking at the normal displacements.
Upon the motion inversion, we observe the formation of
an additional peak in the displacement distribution: This is
impossible in steady-state conditions. Different distributions
in terms of pressure and normal displacements lead to a
different hysteretic curve (see Fig. 4 in the main manuscript),
thus highlighting the importance of the unique features that
characterize reciprocating contact conditions.
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