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Abstract: Speed manipulation of optical pulses is a very attractive research 

challenge enabling next-generation high-capacity all-optical communication 

networks. Pulses can be effectively slowed by using different integrated 

optical structures such as coupled-resonator waveguiding structures or 

photonic crystal cavities. Fast light generation by means of integrated 

photonic devices is currently a quite unexplored research field in spite of its 

crucial importance for all-optical pulse processing. In this paper, we report 

on the first theoretical demonstration of fast light generation in an ultra-

compact double vertical stacked ring resonator coupled to a bus waveguide. 

Periodic coupling between the two rings leads to splitting and recombining 

of symmetric and anti-symmetric resonant modes. Re-established 

degenerate modes can form when a symmetric and an anti-symmetric mode 

having different resonance order exhibit the same resonance wavelength. 

Under degenerate mode conditions, wide wavelength ranges where the 

group velocity is negative or larger than the speed of light in vacuum are 

generated. The paper proves how this physical effect can be exploited to 

design fast light resonant devices. Moreover, conditions are also derived to 

obtain slow light operation regime. 
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1. Introduction 

In the last few years, slow and fast light generation and processing is emerging as a very 

attractive research topic. Group velocity vg of an optical pulse can be effectively manipulated 

by a number of techniques which can make vg less, larger or opposite in sign with respect to 

the speed of light in vacuum c [1]. One major task in this research field is the theoretical and 

experimental investigation of novel integrated optical structures enabling the vg tuning. 

In normal dispersion regime the group velocity can be slowed (vg < c) and subluminal 

pulse propagation can be obtained, whereas in an anomalous dispersion regime a group 

velocity larger than c or negative leads to a superluminal pulse propagation. 

Integrated photonic structures slowing optical pulses have been both theoretically and 

experimentally largely investigated. These structures, based on either evanescently coupled 

coplanar ring resonators or photonic crystal cavities, allow very low values of vg [2–4]. 

Optical pulses having superluminal velocities have been experimentally demonstrated, 

without violating Einstein’s causality [5], by exploiting stimulated Brillouin scattering in 

optical fibers [6], coherent population oscillation in amplifying media [7], four wave mixing 

in semiconductor optical amplifiers [8], vapour atomic medium [9], coupling of modes with 

different polarization [10], innovative resonant structures formed by zigzag micro-ring 

resonator chains [11], and structural dispersion in coupled-resonator structures [12]. These 

pulses exhibit a reduced light matter interaction and so they suffer from a rather low loss. 

Main applications of fast light are in the gravitational waves, absolute rotation sensing [13, 

14] and in the field of information transmission and processing. 
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Very recently, the relationship between group velocity and information transfer speed in a 

communication system has been deeply discussed by considering also the effect of the 

receiver noise [15]. 

Integrated optical resonators are fundamental building blocks in a large variety of 

photonic devices such as add-drop multiplexers, physical or chemical sensors, switches and 

modulators [16–22]. Because of their spectral properties, integrated optical cavities can be 

effectively exploited as slow or fast light structures. Group velocity of optical pulses 

propagating in a ring resonator coupled to a straight bus waveguide has been deeply 

investigated showing that a wide spectrum of vg values can be obtained by tuning the 

parameters of the integrated structure [23,24]. Fast and slow light generation in a silicon 

nitride-based ring resonator has been experimentally demonstrated in [25]. 

Recently three-dimensional photonic structures formed by vertically-stacked micro-ring 

resonators have been theoretically proposed and modelled. In [26], a sequence of ring 

resonators vertically-stacked has been investigated but no application has been envisaged for 

this structure. The possibility of optically tuning the distance between two vertically-stacked 

micro-ring resonators by optical attractive and repulsive forces has been theoretically and 

experimentally explored in [27,28]. All-optical wavelength routing performed by optical 

gradient force due to radiation pressure in a compact photonic structure including two 

vertically-stacked ring resonators has been experimentally demonstrated in [29]. 

In this paper, for the first time, a theoretical investigation of a three-dimensional fast light 

device formed by two vertically-stacked micro-ring resonators and a straight bus waveguide is 

presented. Moreover, we discuss the possibility of perturbing the coupling between the 

stacked rings by either thermo-optic effect or optical forces. We prove that this perturbation 

enables group velocity manipulation in the proposed structure. 

2. Device architecture and modelling 

The investigated device, based on two vertically-stacked micro-ring resonators, is shown in 

Fig. 1. The two micro-ring resonators are on two different planes and are evanescently 

coupled each other. The resonator on the bottom plane is evanescently coupled also to a 

straight bus waveguide. The distance between the two rings is d while g is the distance 

between the ring and the bus waveguide [see Fig. 1 (b)]. The optical power propagates 

horizontally in the plane of rings and vertically between the adjacent rings. The bus 

waveguide enables to excite the resonant structure and to observe its spectral response. 

This device increases the degrees of freedom in the group velocity manipulation with 

respect to the case of a single ring resonator discussed in [23]. In fact, in single ring resonator 

vg manipulation can be performed only by changing the power transfer between the ring and 

the straight bus waveguide, whereas in the device of Fig. 1 the group-velocity control can be 

obtained by shifting the ring-bus power transfer or the distance between the two rings. 

The proposed device exhibits the basic features of both an optical resonator and a 

directional coupler. As in a directional coupler, optical power is periodically exchanged 

between the rings and supermodes are excited. The device behaves as on optical cavity with a 

wavelength-dependent transmittivity. 

The spectral response of the proposed optical cavity is calculated as the wavelength-

dependent ratio between the optical power at the two ends of the straight bus waveguide 

[input and through ports shown in Fig. 1(a)]. We have assumed that the two rings are identical 

(their radius has been denoted as R) and only the fundamental quasi-TE and quasi-TM modes 

are supported by the waveguiding rings. Moreover, we have supposed that only one of these 

two polarizations is excited at the input port. Finally we have assumed that the coupling 

between the straight bus waveguide and the top ring is negligible. 

For each polarization, the configuration including the two coupled rings supports two 

supermodes, which are two eigensolutions of the Helmholtz equation solved over the whole 

cross-section of the structure. According with the coupled mode theory (CMT), the two field 
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distributions relevant to the supermodes can be obtained as a linear combination of the modes 

supported by the two uncoupled rings. 

 

Fig. 1. Two vertically-stacked ring resonators coupled to a straight waveguide.(a) Top-view. 

(b) Cross-section. 

The curvilinear coordinate along the two rings has been denoted with ζ. The amplitudes of 

the optical signal propagating in the bottom and in the top rings have been denoted with 

1
( )a ζ  and 

2
( )a ζ , respectively. The dependence of these two amplitudes on the curvilinear 

coordinate ζ can be modelled by CMT, which provides these two coupled differential 

equations [30]: 

 

1

1 2

2

1 2

da
i  a i  a

d

da
i  a i  a

d

β κ
ζ

κ β
ζ


= +


 = +


 (1) 

where κ is the coupling coefficient between the rings, β is the propagation constant of the two 

identical optical modes within the rings and i is the imaginary unit. 

Taking into account also the propagation loss within the two rings by the attenuation 

coefficient α, the general expressions of 
1
( )a ζ  and 

2
( )a ζ  can be written as: 
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( ) ( ) ( ) ( ) ( )

1 1 2
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
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 (2) 

The two amplitudes 
1
(0)a  and 

2
(0)a  can be determined by imposing the boundary 

conditions. If L = 2 π R is the length of each ring, the first boundary condition is quite simple 

and can be expressed as: 

 ( ) ( )2 2
0a L a=  (3) 

This condition is due to the circular shape of the top ring and to the fact that this ring is 

coupled only with the bottom ring and not with the bus waveguide. 

Coupling between the straight bus waveguide and the bottom ring has been modelled by 

the following transfer matrix [31]: 
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where 
thr

E  is the amplitude of the signal coming out from the through port, 
in

E  is the 

amplitude of signal coming in the bus waveguide, h is the portion of the input optical 

amplitude that is coupled to the bottom ring, τ is the portion of the input optical amplitude 

remaining in the bus waveguide. 

The second equation of the system in Eq. (4) allows to derive the second boundary 

condition as: 

 ( ) ( )1

1

0 ina ihE
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−
=  (5) 

By imposing the two boundary conditions [Eqs. (3) and (5)] to the system in Eq. (2), we 

obtain: 
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From the first equation of the system in Eq. (4) and by using Eq. (6) we derive: 

 ( )1thr in
E E iha Lτ= +  (7) 

Therefore, by using Eq. (7), the ratio between the optical field amplitudes at the two ends of 

the bus waveguides is given by: 
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The spectral response ( )T λ  at the through port is given by 
2

thr in
E E  and so it is equal to: 

 ( )
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In the expression of the spectral response in Eq. (9) α, h, τ and κ have been assumed to be 

independent of wavelength. This assumption is valid when a wavelength range narrow enough 

is considered. 

Proposed modelling technique has been validated by the three-dimensional finite-

difference time-domain (3D-FDTD) algorithm. Spectral responses of different test structures 

including two vertically-stacked rings have been calculated by using both Eq. (9) and 3D-

FDTD. A very good agreement between results provided by the two numerical methods has 

been observed. This proves that our CMT-based modelling approach has accuracy 

comparable with that of the 3D-FDTD method which requires a computation time of several 

hours. 
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Simulations performed by 3D-FDTD confirmed all assumptions done in the model 

development. 

3. Resonator spectral response 

When the two rings are at a very large distance they can be considered as uncoupled and it 

results κ = 0 and cos(κ L) = 1. In this case, the spectral response is the same of that of a single 

ring resonator coupled to a bus waveguide. As it is well known, this response exhibits a 

periodical set of resonance minima λ1, λ2,…, λm, λm+1,… (m is the integer number denoting the 

resonance order). The distance between two adjacent minima is the free spectral range (FSR = 

λm - λm+1). The same spectral response as for κ = 0 can be achieved for κ L = 2 q π (q is an 

integer number), when cos(κ L) = 1. Therefore, when κ L = 2 q π the rings are fully decoupled 

and resonance frequencies correspond to those of the standing alone ring resonator. 

When cos(κ L) decreases being slightly less than 1, for each resonance order two 

resonance minima rather close each other appear in the spectral response. This minimum peak 

splitting is due to the fact that the two supermodes (symmetric and anti-symmetric) supported 

by the resonant structure have two different propagation constants and, therefore, they 

resonate at two different frequencies. Each of them is related to the symmetric or anti-

symmetric mode. The magnitude of the splitting between these two minima increases as cos(κ 

L) decreases. For each resonance order, the synchronous coupling between the two rings is 

responsible of a power splitting between the two resonant modes in order to lead the system to 

a minimum energy condition. 

If κ L = (2 q+1) π/2 and so cos(κ L) = 0, the resonator spectral response is the same of that 

of a single ring having a radius equal to 2 R. This means that the FSR is halved with respect to 

the case of uncoupled rings, the rings are fully coupled and complete power transfer between 

them occurs. 

Finally when cos(κ L) = -1, κ L = (2 q + 1) π, the spectral response has the same shape as 

in the case κ = 0, and it is translated in wavelength of a quantity equal to FSR/2. 

The amount of the κ-dependent splitting (∆λ) occurring when ( ) 1cos Lκ ≠ ±  can be 

estimated starting from the coupled differential equations modelling the coupling between the 

rings. It is given by: 

 ( )
2

m

eff
n

κλ
λ κ

π
∆ =  (10) 

Now, if we consider three adjacent resonant wavelengths λm-1, λm and λm + 1 under the 

condition κ = 0, we can observe how these resonance wavelengths change as κ increases using 

the grid of eigenvalues shown in Fig. 2. The lines in the grid show the dependence of 

resonance wavelengths on κ. For each m value the resonator with two vertically-stacked rings 

exhibits two resonance wavelengths. Only for specific κ values satisfying the condition cos(κ 

L) = ± 1 we have that at each resonant order corresponds only one resonance wavelength. In 

this operating regime, achieved when κ = q π / L, the excited resonant modes are degenerate 

modes. When a symmetric and an anti-symmetric resonant mode having different resonance 

order exhibit the same resonance wavelength, the degenerate mode condition is obtained. In 

the grid of eigenvalues of Fig. 2, degenerate mode condition corresponds to the crossing 

between two lines corresponding to a symmetric and an anti-symmetric mode and relevant to 

different resonance orders. 
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Fig. 2. Spectral properties of the optical cavity including the two vertically-stacked rings (� 

crossing between lines relevant to adjacent resonant orders, � crossing between lines relevant 

to non adjacent resonant orders). 

Spectral response of the proposed resonator strongly depends on the power transfer h
2
 

between the bottom ring and the straight bus waveguide. To show this physical behaviour of 

the proposed optical cavity we have assumed that the two rings have a radius R = 5 µm and 

are formed by a squared 300 nm x 300 nm Si-wire waveguide fully surrounded by silicon 

dioxide. Under these assumptions, the fundamental quasi-TE mode supported by the Si-wire 

exhibits an effective index equal to 2.04948. Propagation loss of this mode has been supposed 

equal to 5 dB/cm. Device operating wavelength is somewhat larger than 1.55 µm. 

We have plotted the cavity spectral response [see Figs. 3(a) and 3(b)] for h = 0.1 (h
2
 = 

1%), i.e. in weak power transfer case. In the contour plot in Fig. 3(a), the two variables are the 

wavelength and the coupling between the vertically-stacked rings. Wavelength range is from 

1.5512 µm to 1.5518 µm, and κ values are close to the degenerate mode condition κ  = *κ  = 

π / L = 0.1 -1µm . We can see that resonance curves, corresponding to the minimum 

transmittance, cross in correspondence of the degenerate mode condition obtained for κ = κ* 

= 0.1 µm
−1

. Degenerate mode resonates at λ = 1.55148 µm. 
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Fig. 3. Spectral response of the proposed optical cavity for both weak and strong power 

transfer between the bus waveguide and the bottom ring. (a) Contour plot of the spectral 

response for h = 0.1. (b) spectral response for different values of κ and for h = 0.1. (c) Contour 

plot of the spectral response for h = 0.7. (d) Spectral response for different values of κ and for h 

= 0.7. 

As shown in Fig. 3(b), for h = 0.1 a slight shift of κ with respect to κ* induces the splitting 

of resonance minimum so that, for each resonant order, two resonance frequency are 

observed. No significant change of resonance depth is induced by the κ shift. 

In case of strong power transfer between the bottom ring and the bus waveguide (h = 0.7 

and h
2
 = 49%) we have newly a degenerate mode condition for κ  = π / L = 0.1 -1µm  but the 

contour plot of the spectral response [Fig. 3(c)] is significantly different with respect to that 

obtained in weak power transfer case [Fig. 3(a)]. 

In the strong power transfer case, the splitting of the resonance minimum is inhibited in a 

narrow range of κ values around κ*. For example, when κ is equal to κ
* ±

1% κ* and κ
* ±

2% 

κ* no splitting of resonance wavelength occurs [see Fig. 3(d)]. The slight shift of κ with 

respect to κ* induces a clear change in the shape of spectral response and in the depth of 

resonance minimum but not the resonance splitting. In interval of κ values in which the 

splitting of resonance minimum is inhibited, there are specific κ values allowing to obtain a 

resonator spectral response with very deep resonance minima. In particular, for κ
* ±

1% κ*, 

we have that the spectral response of the proposed cavity includes a very deep minimum for 

each resonance order. Maximum resonance depth, equal to 13 dB, can be achieved for κ = 

0.0996 µm
−1

. 

The value of κ maximizing the resonance depth in case of strong power transfer depends 

on the optical loss α suffered by the resonant mode within the cavity. For h = 0.7, κ values 

maximizing the resonance depth are equal to 0.0996 µm
−1

 and 0.0992 µm
−1

 for α equal to 5 

dB/cm and 10 dB/cm, respectively. Assuming α = 5 dB/cm, κ = 0.0996 µm
−1

 and α = 10 

dB/cm, κ = 0.0992 µm
−1

 we have plotted the device spectral response (see Fig. 4). We have 

verified that the quality factor Q (defined as the ratio between the resonance wavelength and 
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the resonance width) remains practically constant in the two cases being around 1.55 x 10
5
. 

Then the Q-factor of the proposed device can be made rather insensitive to propagation loss 

within the rings properly optimizing the two key parameters h and κ. 

 

Fig. 4. Spectral response for h = 0.7 and α and κ values maximizing the resonance depth. 

By analyzing the results obtained for weak (h = 0.1) and strong coupling (h = 0.7) between 

the straight waveguide and bottom ring, we can conclude that the interaction between 

symmetric and anti-symmetric mode, close to the degenerate mode condition, induces the 

same effect of the coupling between modes having different polarization [10]. In particular, 

the existence of two dimensional phase singularities with opposite topological charges (π for 

the positive phase singularity and -π for the negative one) allows the orthogonality condition 

not to be satisfied. 

The spikes that appear in the spectrum for h = 0.7 are due to the transition from positive to 

negative phase singularity, with a global phase shift of 2π. This transition does not exist for h 

= 0.1. 

In Fig. 5 the phase response in proximity of the degenerate mode condition is plotted. As 

illustrated in Fig. 5(a), for h = 0.1 at the crossing wavelength 1.55148 mλ µ=  the two 

topological charges, -π (green semi-plane in ( , )λ κ  domain) and π (blue semi-plane), can be 

well distinguished also near κ = 0.1 -1µm . On the contrary, for h = 0.7 the topological charges 

are undefined at the crossing wavelength 1.55148µm  in the range of κ [0.099 -1µm , 

0.101 -1µm ], and this effect leads to the creation of two very deep resonance minima, at the 

positions marked by the black arrows in Fig. 5(b), due to the sharp phase transitions. 
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Fig. 5. Resonator phase behavior near the crossing point of two resonance lines having 

different symmetries. (a) h = 0.1. (b) h = 0.7. 

4. Group velocity manipulation 

Launching an optical pulse into the input port of the proposed device, it propagates within the 

vertically-stacked rings and comes out from the device through port. The envelope of the 

optical pulse moves at the group velocity vg, and the pulse distortion depends on the group 

velocity dispersion (vg dependence on λ). Group velocity is defined as the ratio between c and 

the group index ng (vg = c / ng). If ng < 1 we have fast pulse propagation being vg larger than c 

or negative. On the other hand, if ng > 1 we have vg < c and subluminal pulses are generated. 

The derivative of ng with respect to λ is a measure of pulse distortion and so reduced 

distortion implies 0
g

n λ∂ ∂ ≈ . 

Group index of our resonant cavity depends on λ and on the two key parameters h and κ. 

By properly tuning these last two parameters, vg can be effectively manipulated, which means 

that two degree of freedom are available in group velocity tuning. 

Previous discussion about spectral properties of the proposed device suggests that cavity 

behaviour significantly changes whether or not it operates in degenerate mode condition. 

Therefore we have investigated the resonator group velocity behaviour when κ = κ* and 
*κ κ≠ . 

Discussions about spectral properties of the vertically-stacked rings point out a significant 

influence of h on device behaviour. Group velocity dependence on h has been explored 

considering, as in the previous sub-section, the two cases of strong and weak power transfer 

between the bus waveguide and bottom ring. 

To obtain the expression of the group index ng of the proposed cavity we have derived the 

resonator phase response Φ. It is given by: 
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where 
eff

y L  n  L cβ ω= = , being 2 cω π λ= . 

Group index can be written as [23]: 
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 (12) 

where 
eff

Lβ = Φ . 
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The derivative of βeff with respect to ω can be expressed in the form: 

 
1eff y

 
L y

β

ω ω

∂ ∂Φ ∂
=

∂ ∂ ∂
 (13) 

and so we have that 
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 (14) 

The derivative of the phase response Φ has been obtained analytically. Also the analytic 

expression of 
g

n λ∂ ∂  has been derived. 

Under degenerate mode condition, i.e. for κ = κ* = 0.1 µm
−1

, we have plotted (see Fig. 6) 

ng as function of wavelength for h = 0.1 and h = 0.7. We have assumed the same geometry of 

the vertically-stacked rings described in previous sub-section. 

As shown in Fig. 6, in both cases (h = 0.1 and 0.7), it results ng < 1 in the considered 

wavelength range, which allows to conclude that the achievement of degenerate mode 

condition induces a superluminal regime. Group velocity is larger than 1 only in a narrow 

range around the resonance wavelength and so pulse slowing can be predicted in this narrow 

range around λ = 1.55148 µm. 

Group index dependence on λ is similar for the two considered h values. When h = 0.1 

larger (in module) negative values of ng can be achieved with respect to the case of h = 0.7. 

 

Fig. 6. Group index dependence on λ for h = 0.1 and h = 0.7 (κ = 0.1 µm−1). 

The dependence of the 
g

n λ∂ ∂  on λ, shown in Fig. 7, exhibits seven λ values in which 

0
g

n λ∂ ∂ =  (zero-crossing points). Only two of these zero-crossing points correspond to two 

quite wide ranges in which ng dependence on λ is flat. In these two ranges around 1.533 µm 

and 1.57 µm we have a very reduced pulse distortion. No other flat section in the plot shown 
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in Fig. 6 is associated to λ values in which 0
g

n λ∂ ∂ = . In two ranges very close to the 

resonance wavelength, the derivative 
g

n λ∂ ∂  is about zero. These ranges correspond to two 

flat section in the plot showing ng as a function of λ (Fig. 6). The dependence of 
g

n λ∂ ∂  on λ 

is similar for the two considered h values. The derivative exhibits larger values for h = 0.1. 

Zero-crossing points are the same in both cases. 

 

Fig. 7. Dependence on λ of 
g

n λ∂ ∂  for h = 0.1 and h = 0.7 (κ = 0.1 µm−1). 

In the 3 nm-wide wavelength range between 1.569 µm and 1.572 µm we have observed a 

very flat ng dependence on λ. In this range, 0
g

n λ∂ ∂ ≈ , and the group velocity is around - 20 

c and - 4.5 c, for h = 0.1 and 0.7, respectively. Moreover, in this range T (λ) = 1 and the 

amplitude of pulse spectral components located in this range are not attenuated. Then, we 

expect that an optical pulse having its spectrum in the range 1.569 µm - 1.572 µm, propagates 

with a speed (in module) significantly exceeding c, suffering from rather low attenuation and 

distortion. 

In the wavelength range between 1.548 µm and 1.5512 µm we have found that the group 

velocity is about equal to 2.5 c and 5 c, for h = 0.1 and 0.7, respectively. A very reduced 

distortion can be predicted also in this wavelength range, especially for h = 0.1. 

 

Fig. 8. Group index dependence on λ for three values of κ and for h = 0.1. 

When the degenerate mode condition (κ = κ*) is perturbed, the wavelength range around 

1.55 µm, in which ng > 1 and vg < c, significantly increases. This means that, when the 

degenerate mode condition is not satisfied, there are some wavelength ranges in which the 

cavity acts as slow light device. Fixing a wavelength value, vg can be tuned in a wide range by 

changing κ. For h = 0.1, we have plotted ng vs λ for κ = κ*, κ = κ* + 10% κ* and κ = κ* + 40% 
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κ* (see Fig. 8). The wavelength range around 1.55 µm where ng >1 (vg < c) is 15 nm large for 

κ = κ* + 40% κ*. In this wide range light is slowed. At λ = 1.55 µm, vg varies from 2 c to 0.3 c 

when κ passes from 0.1 µm
−1

 ( = κ*) to 0.14 µm
−1

 ( = κ* + 40% κ*). Moreover, we have 

verified that, at λ = 1.5516 µm, ng can be tuned from 0.5 to 1.5 by shifting κ of 10
−3

 µm
−1

. 

This κ change can be achieved by thermo-optic effect with an uniform increase of the 

structure temperature of 19° C. 

Group index dependence on the coupling coefficient κ between the rings has been 

investigated for the degenerate mode wavelength (λ = 1.55148 µm) and three other 

wavelength values (λ = 1.55 µm, 1.551 µm, 1.552 µm) close to it. Coupling coefficient has 

been varied from κ = κ* = 0.1 µm
−1

 to κ = 2 κ* = 0.2 µm
−1

. Figure 9 shows the possibility to 

manipulate ng and the group velocity by finely tuning the coupling coefficient between the 

vertically-staked rings. 

 

Fig. 9. ng versus κ for different values of λ ( = 1.55148 µm, 1.55 µm, 1.551 µm, 1.552 µm). 

For λ = 1.55148 µm, very large values of ng can be achieved by using κ values very near to 

0.1 µm
−1

. In the considered κ range, group index monotonically decreases by increasing κ and 

the condition ng = 1 is achieved for κ = 0.16 µm
−1

. For κ > 0.16 µm
−1

, fast light condition is 

fulfilled. 

For λ = 1.551 µm and 1.552 µm, the slow light condition (ng > 1) is verified for 0.102 

µm
−1

 < κ < 0.16 µm
−1

 and the maximum ng value (around 13) is achieved for κ = 0.118 µm
−1

. 

The derivative of ng with respect to κ is about 1 mm when κ is in the range from 0.105 µm
−1

 to 

0.115 µm
−1

. This means that a small change of κ in this range induces a large group index 

shift. For example, by thermo-optically tuning κ of 0.005 µm
−1

, a ng variation of 5 can be 

induced. 

Finally, for λ = 1.55 µm the maximum value of ng is about 5 and the maximum value of 

g
n κ∂ ∂ is equal to 0.2 mm. In this case, slow light condition is achieved for κ ranging from 

0.11 µm
−1

 to 0.16 µm
−1

. 

5. Conclusions 

A very compact silicon-on-insulator integrated photonic resonator including two vertically-

stacked micro-rings has been theoretically investigated by a very general model suitable for 

the investigation of resonant devices based on vertically-stacked rings made using any optical 

material. Cavity spectral response has been in deep discussed showing its dependence on the 
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two key parameters of the structure, the coupling coefficient κ between the rings and the 

power transfer h
2
 between the bus waveguide and the bottom ring. The developed theoretical 

model clearly points out the basic features of the investigated structures which simultaneously 

behaves as directional coupler and ring resonator. This very interesting feature of vertically-

stacked rings is valid in general, independently of the specific technology exploited for the 

device fabrication. 

When strong power transfer between the bottom ring and the bus waveguide occurs, it is 

possible to optimize the κ value so that the resonator quality factor is practically independent 

of propagation loss. For a resonance depth exceeding 10 dB, optimized Q-factor of the 

structure is around 155,000. One can expect that, in weak power transfer condition, a loss 

decrease induces a further Q-factor increase. 

The possibility of fast light generation in the proposed structure has been demonstrated. 

For a specific set of parameters, the cavity exhibits wide wavelength ranges in which the 

group velocity is larger than c. Around λ = 1.55 µm group velocity can be effectively tuned 

from 0.5 c to 1.5 c, so passing from slow to fast light operating regime, only by a κ variation 

of 1%,. Values of the group velocity derivative with respect to κ of the order of millimetres 

has been theoretically predicted. The κ shift required for group velocity manipulation can be 

induced, as an example, by thermo-optic effect. 

Although calculations have been made by considering waveguiding rings embedded in 

silica material system, results we have obtained keep valid also if at least one of the rings can 

move vertically. Since, as proved in [29], the distance d between the rings can be shifted by 

an optical control signal, all-optical manipulation of group velocity can be performed by the 

proposed resonating device. As an example, a κ shift of 0.04 µm
−1

 ( = 40% κ*) can be induced 

by a change of 44 nm in the distance d between the rings. 

Conclusions about the attractiveness of the proposed structure for group velocity 

manipulation do not depend on the specific technology considered for device fabrication, i.e. 

Silicon-on-Insulator, but are related to the potentiality of the resonant photonic structure 

including vertically-staked rings. 
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